JP2004346865A - Exhaust pressure estimating device for internal combustion engine and internal egr estimating device using the same - Google Patents

Exhaust pressure estimating device for internal combustion engine and internal egr estimating device using the same Download PDF

Info

Publication number
JP2004346865A
JP2004346865A JP2003146379A JP2003146379A JP2004346865A JP 2004346865 A JP2004346865 A JP 2004346865A JP 2003146379 A JP2003146379 A JP 2003146379A JP 2003146379 A JP2003146379 A JP 2003146379A JP 2004346865 A JP2004346865 A JP 2004346865A
Authority
JP
Japan
Prior art keywords
exhaust
calculating
pressure
calculated
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003146379A
Other languages
Japanese (ja)
Other versions
JP4148024B2 (en
Inventor
Takanao Koseki
孝尚 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003146379A priority Critical patent/JP4148024B2/en
Publication of JP2004346865A publication Critical patent/JP2004346865A/en
Application granted granted Critical
Publication of JP4148024B2 publication Critical patent/JP4148024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily determine the exhaust pressure PEX near an exhaust valve. <P>SOLUTION: An exhaust gas mass flow rate MFEXG and an exhaust gas constant REX are calculated on the basis of respective parameters relating to an operating state of an internal combustion engine (engine rotating speed NRPM, basic fuel injection amount TP, target combustion equivalent ratio TFBYA and the like) (steps 1, 2), an exhaust gas temperature TEVC is detected (step 3), the pressure loss terms relating to laminar flow and eddy flow are calculated on the basis of these values, and an exhaust pressure square value PEXSQ is calculated on the basis of the pressure loss terms and the atmospheric pressure PPAMB (step 4). Then the exhaust pressure PEX near the exhaust valve is calculated on the basis of its square root (step 5). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気圧力推定装置及びこれを用いた内部EGR量推定装置に関する。
【0002】
【従来の技術】
従来、内燃機関の排気圧力の検出に関し、特許文献1には、排気管に設けた排気圧力センサにて、燃焼室出口に比較的近い箇所の排気圧力を検出することが開示されている。
【0003】
【特許文献1】
特開平11−190235号公報
【0004】
【発明が解決しようとする課題】
しかしながら、特許文献1では、排気圧力センサ付加によりコストが増大してしまう。
【0005】
また、内部EGR率(1シリンダ当たりの総ガス量に対する内部EGR量の割合)の算出をするため、オーバーラップ中の吹き抜きガス量の算出として混合気体積流量に応じたテーブルを参照値とする場合には、適合工数が増加することや、テーブルの設定格子数により算出精度が悪化してしまうなどの問題があった。
【0006】
ここで、混合気体積流量についても、本来は排気ガスの体積流量と相関があるが、これが計量できないために、エアフロメータの信号、吸気温度、目標燃焼当量比から算出される混合気体積流量に応じて参照することとしていた。
【0007】
しかし、実際には、等混合気体積流量でも当量比により排気ガス組成が変化するため、排気ガス密度が変化することや、当量比、点火時期、及び内部EGR率により排気温度が変化するために排気ガス密度が変化するなど、これらのパラメータが変化した場合には、誤差が生じてしまう。
【0008】
そして、内部EGR量を算出した場合には、誤差が大きくなってしまうため、内部EGR量に応じて、点火時期、燃料噴射量、バルブ開閉タイミングなどを設定すると、実際の点火時期などが不十分となる結果、運転性の悪化や燃費・排気悪化を招くおそれがあった。
【0009】
本発明は上記問題を解決するためになされたものであり、排気圧力を簡易に求めること、及びこれを用いて内部EGR量を精度良く推定することを目的とする。
【0010】
【課題を解決するための手段】
そのため本発明では、内燃機関の排気通路の排気圧力損失を、層流圧力損失項と乱流圧力損失項との合計としてモデル化し、このモデルにより算出した排気圧力損失と大気圧とに基づいて、排気バルブ付近の排気圧力を算出する。
【0011】
また本発明では、算出された排気圧力に基づいて筒内圧力を算出し、更に排気ガス温度及びガス定数を各々算出して、少なくともこれらに基づいて、排気バルブ閉弁時の筒内ガス量を算出する一方、オーバーラップ中の吹き返しガス量を算出し、筒内ガス量と吹き返しガス量とに基づいて、内部EGR量を算出する。
【0012】
【発明の効果】
本発明によれば、排気バルブ付近の排気圧力は、排気圧力損失と大気圧とに基づいて算出されるため、適合工数が削減でき、簡易に算出することができる。そして、算出された排気圧力を用いて、内部EGR量をより精度良く算出でき、運転性や排気の改善ができる。
【0013】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態について説明する。
図1は、内燃機関の排気圧力推定装置及びこれを用いた内部EGR量推定装置の構成図である。
【0014】
エンジン1の各気筒のピストン2により画成される燃焼室3には、点火プラグ4を囲むように、吸気バルブ5と排気バルブ6とを備える。吸気バルブ5及び排気バルブ6のリフト特性(開閉時期)は、吸気側及び排気側に設けられた可変動弁ソレノイド22,23により、カム軸に対するカムの位相を変化させることで、バルブタイミングの制御が可能である。
【0015】
吸気通路7には、電子制御スロットル弁19が設けられており、これにより吸入新気量が制御される。燃料の供給は、吸気通路7に気筒毎に(または各燃焼室3に直接臨ませて)設けたインジェクタ20によりなされる。燃焼室3内で混合気は点火プラグ4により点火されて燃焼し、排気通路8へ排出される。
【0016】
排気通路8には、排気マニホールドからの排気を浄化するハニカム構造の第1触媒25と、これより下流の第2触媒26とがそれぞれ配置されている。そして、第2触媒26の下流側には、大気圧力を検出する大気圧力センサ27が配置されている。
【0017】
ここで、電子制御スロットル弁19、インジェクタ20、点火プラグ4(パワトラ内蔵点火コイル21)、可変動弁ソレノイド22,23の作動は、エンジンコントロールユニット(以下「ECU」と称する)30により制御される。
【0018】
これらの制御のため、ECU30には、各種センサからの信号が入力されている。
クランク角センサ14は、エンジン回転に同期してクランク角信号を出力し、これによりクランク角位置と共にエンジン回転数を検出可能である。そして、カム角センサ16,17は、吸気バルブ5及び排気バルブ6のカム角を検出可能であり、これにより可変動弁ソレノイド22,23の作動状態を検出可能である。
【0019】
そして、吸気通路7にて吸入新気量を検出するエアフロメータ9、電子制御スロットル弁19下流にて吸気圧力を検出する吸気圧力センサ10、排気通路8にて排気温度を検出する排気温度センサ12、排気通路8にて排気中に含まれる酸素量を検出するO2センサ(酸素センサ)13、エンジン1の冷却水温度を検出する水温センサ15、アクセル開度を検出するアクセル開度センサ18の出力信号などもECU30に入力され、これらに基づいて運転状態を検出可能である。
【0020】
次に、排気バルブ6付近の排気圧力PEXの算出について以下に説明する。
図2は、排気バルブ6付近の排気圧力PEXを予測するための物理モデルを示す図である。図3は、排気圧力PEXを算出する制御構成図を示している。
【0021】
図3に示す通り、排気ガス質量流量算出手段は、エンジン回転数NRPM(rpm)、基本燃料噴射量TP(msec)、及び目標燃焼当量比TFBYAに基づいて排気ガスの質量流量MFEXG(g/sec)を算出する。排気ガス質量流量MFEXGの算出については後述する。
【0022】
エンジン回転数NRPMは、前述のクランク角センサ14の信号に基づいて検出される。
基本燃料噴射量TPは、エアフロメータ9にて検出された吸入新気量(新気質量)MACYLに対してストイキ(理論空燃比:14.7)となる噴射パルス幅(燃料噴射量)であり、ストイキにおける係数をKとして、以下の式により算出する。
【0023】
TP=K・MACYL/NRPM
目標燃焼当量比TFBYAは、理論空燃比を14.7とすると、目標燃焼空燃比から次式により表され、目標燃焼空燃比がストイキのときに1となる。
【0024】
TFBYA=14.7/目標燃焼空燃比
また、排気ガスガス定数算出手段は、目標燃焼当量比TFBYA(または目標燃焼空燃比)に基づいて、図5に示すテーブルから排気ガス組成のガス定数REXを算出する。
【0025】
図5は、排気ガスガス定数算出テーブルであり、横軸は目標燃焼当量比TFBYA、縦軸は排気ガスガス定数REXを示す図である。なお、図中の点線はストイキを示している。
【0026】
再度図3を参照して、排気ガス温度算出手段は、排気温度センサ12の信号に基づいて排気バルブ閉弁時の排気ガス温度(筒内温度)TEVCを算出する。
大気圧力算出手段は、大気圧力センサ27の信号に基づいて大気圧力PPAMBを算出する。
【0027】
排気圧力算出手段は、排気圧力PEXの2乗値PEXSQ(=PEX)を算出する手段と、この2乗値PEXSQの平方根(排気圧力)PEXを算出する手段とで構成されている。排気圧力2乗値算出手段は、前述の各手段により算出された値MFEXG、REX、TEVC、PPAMBに基づいて、排気圧力PEXの2乗値PEXSQを算出する。平方根算出手段は、2乗値PEXSQの平方根PEXを算出する。
【0028】
次に、排気バルブ6付近の排気圧力PEXの算出について、図4に示す排気圧力PEXの算出フローチャートを用いて説明する。
図4のステップ1(図には「S1」と示す。以下同様)では、エンジン1から排出される排気ガスの質量流量MFEXG(g/sec)を算出する。この質量流量MFEXGの算出には、目標燃焼当量比TFBYAと、吸入新気量とに基づいて、以下の式により算出する。
【0029】
MFEXG=TP×(14.7+TFBYA)×NRPM×MINJP×CYLINDER/2/60
ここで、MINJPはインジェクタ20の燃料噴射倍率が1倍時のパルス幅当たりの燃料噴射質量(g/msec)、すなわち基準燃料圧力、基準燃料温度時に、インジェクタ20が噴射パルス幅当たりにどのくらいの燃料を噴射するかを表す値(設定値)である。CYLINDERはエンジン1の気筒数を示している。
【0030】
ステップ2では、前述の図5に示すテーブルから目標燃焼当量比TFBYAに応じた排気ガスのガス定数REX(J/gK)を算出する。
ステップ3では、排気温度センサ12の信号に基づいて、排気バルブ閉弁時の排気ガスの温度(筒内温度)TEVC(K)を算出する。なお、排気ガス温度TEVCは、燃料噴射量に応じた熱量により変化するため、このような特性を利用したテーブルから求めてもよい。
【0031】
ステップ4では、次式に示す通り、排気圧力PEXの2乗値PEXSQ(=PEX)を、大気圧PPAMB(Pa)と、層流圧力損失項および乱流圧力損失項に基づく排気圧力損失との和により算出する。
【0032】
PEXSQ=(KTBF×MFEXG+KLMF×MFEXG)×REX×TEVC/1000000+PPAMB
ここで、KTBF(1/m)は乱流の特性に応じて決まる係数(適合値)、
KLMF(Pa・s/m)は層流の特性に応じて決まる係数(適合値)を示している。なお、乱流特性値KTBFは、種類毎に、触媒25,26の入口径と触媒入口の総面積とに応じた値である。層流特性値KLMFは、触媒25,26の長さ、セルの径、及び触媒断面積の総和に応じた値である。
【0033】
ステップ5では、ステップ4で算出された排気圧力PEXの2乗値PEXSQの平方根を算出することで、排気圧力PEXを算出する。なお、排気圧力PEXの算出において、制御構成上、平方根算出が困難であるため、予め2乗値PEXSQと平方根PEXとの関係を、図6に示す平方根算出テーブルとして記憶させておき、2乗値PEXSQに応じてテーブルを参照することにより排気圧力PEXを算出してもよい。
【0034】
図6は、平方根算出テーブルであり、横軸は排気圧力PEXの2乗値PEXSQ、縦軸は排気圧力(平方根)PEXを示している。
また従来、排気圧力PEXは、排気系各部の圧力損失の総和で算出される一方、排気ガスが排気系各部の流速の増加に応じて層流状態から乱流状態へ遷移するため、各部の圧力損失は、各状態に応じて算出する必要があり、計算が複雑であった。
【0035】
このため本発明においては、層流が支配的となる触媒内の圧力損失と、乱流が支配的となるその他の排気管の圧力損失とに分けて考えることにより、これら2つの状態の圧力損失の和により、排気系の圧力損失を算出することで簡略的に且つ精度良く算出する。すなわち、排気系(排気バルブ6より下流)を、ほぼ層流状態と近似できる部位(触媒内)と、ほぼ乱流状態と近似できる部位(触媒以外の排気管)とに2分し、各々にて計算した圧力損失値の総計に基づいて排気圧力PEXを算出する。
【0036】
再度図2を用いて、エンジン1の排気通路8に配設された触媒25,26を通過する排気ガスの圧力損失から排気バルブ6近傍の排気圧力PEXを算出するための考え方を説明する。
【0037】
図示の通り、排気通路8において、第1触媒25の入口部の圧力損失をΔP1、第1触媒25内の圧力損失をΔP2、第2触媒26内の圧力損失をΔP3、及び大気圧力をPPAMBとする。このようにすると、排気バルブ6付近の排気圧力PEXは、次式に示す通り、各圧力損失ΔP1〜ΔP3及び大気圧力PPAMBの和で近似することができる。
【0038】
PEX≒ΔP1+ΔP2+Δ3+PPAMB
各圧力損失は、排気通路8のうち、触媒25,26内を層流状態として近似し、これ以外の排気通路8を乱流状態として近似することで、それぞれ分離して算出する。
【0039】
層流域(触媒25,26内)の圧力損失ΔP(ΔP2、ΔP3)は、次式に示すハーゲン−ポアゾイユの式により算出する。
ΔP=32×μ×Lca/Dca ×(Qca’/Aca
ここで、μは排気ガスの動粘度係数(Pa・s)、Lcaは触媒25,26の長さ(m)、Dcaは触媒25,26の直径(m)、Qca’は触媒25,26を通過する排気ガス体積流量(m/s)、Acaは触媒25,26の断面積(m)を示している。
【0040】
一方、乱流域(触媒25,26を除く排気通路8)の圧力損失ΔP(ΔP1)は、次式に示すダルシー−ワイバッハの式により算出する。
ΔP=λ×(Lex/Dex)×(ρ/2)×(Qex’/Aex
ここで、λは管摩擦係数、Lexは排気通路8の長さ(m)、Dexは排気通路8の直径(m)、ρは排気ガスの密度(kg/m)、Qex’は排気通路8を通過する排気ガス体積流量(m/s)、Aexは排気通路8の断面積(m)を示している。
【0041】
また、制御構成上は、排気ガスの体積流量Q’の算出が困難なため、体積流量Q’に基づく基本原理式を、層流域と乱流域とのそれぞれについて、以下に示す質量流量MFEXGに基づく算出式に変形して、制御の入力系の物理量に合うようにする。なお、P1は低圧側(テール側)、P2は高圧側(エンジン側)を示している。
[層流域]
P×dP=32×μ×dL/D×MFEXG×REX×TEVC/A
P2−P1=32×μ×L/D×MFEXG×REX×TEVC/A
P2=(64×μ×L/D×MFEXG×REX×TEVC/A+P11/2
[乱流域]
P×dP=λ×dL/D×(MFEXG/A)1/2×REX×TEVC/2
P2−P1=λ×L/D×(MFEXG/A)1/2×REX×TEVC/2
P2=(λ×L/D×(MFEXG/A)1/2×REX×TEVC+P11/2
また、排気圧力損失に対して、触媒25,26内では層流が支配的、その他の排気管では乱流が支配的と考えられるので、排気圧力PEXは、以下の式によって表される。
【0042】
【数1】

Figure 2004346865
【0043】
また、管摩擦係数λ、動粘度係数μは、これらの影響度が大きく現れる領域、すなわち圧力損失が高い領域では、ほぼ一定であるため、前述の式を含めて適合項とすると、以下のように簡略化した式で整理できる。
【0044】
【数2】
Figure 2004346865
【0045】
図7は、実験結果と前述の排気圧力の算出結果とを比較する図であり、横軸は実験結果の排気圧力(kPa)、縦軸は計算結果の排気圧力(kPa)を示している。
【0046】
図示の通り、高回転(6000rpm以上)、高負荷(ηv80%以上)等の吸入新気流量が大きい領域においては、脈動圧が発生しており、脈動の影響が顕著になるため、排気圧力が低くなっているが、ほぼ直線に近似している。このため、排気圧力PEXは、排気圧力損失(乱流及び層流)と大気圧とに基づいて算出する考え方により算出(近似)することが可能であることが解る。
【0047】
図8は、圧力損失と体積流量とを示す図であり、横軸は体積流量Q’(m/sec)、縦軸は差圧ΔP(kPa)を示している。(イ)は排気通路8のうち触媒25,26内での圧力損失ΔP2、ΔP3を除いた場合、すなわち乱流域における圧力損失ΔP1を示している。(ロ)は第1触媒25内(層流域)での圧力損失ΔP2を示している。(ハ)は第2触媒26内(層流域)での圧力損失ΔP3を示している。なお、図中の●は実験値(排気圧力ΔPと大気圧力PPAMBとの差圧:ゲージ圧)、◇は(イ)では触媒25,26を除いた排気通路8での差圧ΔP1、(ロ)では第1触媒25での差圧ΔP2、(ハ)では第2触媒26での差圧ΔP3をそれぞれ示している。
【0048】
図8(イ)に示す通り、乱流域においては、差圧ΔP1が2次曲線となっている(ダルシー−ワイバッハの式参照)。一方、図8(ロ)、(ハ)に示す通り、層流域においては、差圧ΔP2、ΔP3が略直線となっている(ハーゲン−ポアゾイユの式参照)。
【0049】
図9は、全圧力損失の算出結果を示す図であり、横軸は体積流量Q’(m/sec)、縦軸は全圧力損失ΔP(kPa)を示している。なお、図中の●は圧力損失の実験値(排気圧力ΔPと大気圧力PPAMBとの差圧:ゲージ圧)、◇は全差圧(ΔP1+ΔP2+ΔP3)を示している。
【0050】
図示の通り、計算結果の値と実験値とが近似しているため、圧力損失により排気圧力PEXを算出可能であることが解る。
また、図10は、レイノルズ数Reと体積流量Q’とを示す図であり、横軸は体積流量Q’(m/sec)、縦軸はレイノルズ数Reを示している。図中の太線は臨界レイノルズ数(約2300)を示している。なお、(イ)は排気通路8のうち触媒25,26を除いた部分のレイノルズ数Re1を示している。(ロ)は第1触媒25内でのレイノルズ数Re2を示している。(ハ)は第2触媒26内でのレイノルズ数Re3を示している。
【0051】
図11は、前述の図8の(イ)〜(ハ)及び図9をまとめて示す図である。横軸は体積質量Q’、縦軸は差圧ΔPを示している。図中の●は排気系全体の圧力損失の実験値、○は各圧力損失ΔP1〜ΔP3の総和(ΔP1+ΔP2+ΔP3)、+は第1触媒25の入口部における圧力損失ΔP1、×は第1触媒25内での圧力損失ΔP2、−は第2触媒26内での圧力損失ΔP3を示している。
【0052】
図12は、前述の図10(イ)〜(ハ)をまとめて示す図である。横軸は体積質量Q’(m/sec)、縦軸はレイノルズ数Reを示している。なお、体積流量Q’を0.001〜1までの範囲で示している。図中の+は第1触媒25の入口部におけるレイノルズ数Re1、×は第1触媒25内でのレイノルズ数Re2、−は第2触媒26内でのレイノルズ数Re3を示している。
【0053】
これまで述べたことから、図10(イ)、図12に示す通り、レイノルズ数Re1は、臨界レイノルズ数より大きく、乱流による圧力損失が支配的である。従って、排気通路8のうち、触媒25,26を除いた部分(その他排気管内)においては、ほぼ全域で乱流とみなして、圧力損失ΔP1を前述のダルシー−ワイバッハの式(乱流域における圧力損失ΔP)により算出可能である。
【0054】
一方、図10(ロ),(ハ)、図12に示す通り、触媒25,26内では、レイノルズ数Re2,Re3が、臨界レイノルズ数より小さく、層流による圧力損失が支配的である。従って、触媒25,26内においては、ほぼ全域で層流とみなして、圧力損失ΔP2、ΔP3を前述のハーゲン−ポアゾイユの式(層流域における圧力損失ΔP)によりそれぞれ算出可能である。
【0055】
そして、各部位において、層流・乱流状態におけるそれぞれの圧力損失を算出して加算した結果が、図7に示す通り、ほぼ実験値と相関があることが分かり、排気圧力実験値を排気圧力計算値に近似して求めることが可能であることが解る。
【0056】
また図13は、前述の圧力損失ΔP1〜ΔP3の総和から算出した排気圧力PEXと、実験値による排気圧力との推定誤差率(絶対圧力)を示す図である。
図示の通り、推定誤差が−0.2〜0.2の間の確率(%)が3割に近く、実験値から大きく外れる確率は減少しており、標準偏差0.71%を実現可能である。
【0057】
本実施形態によれば、内燃機関の排気通路8の排気圧力損失(ΔP1、ΔP2、ΔP3)を、層流状態を前提とする層流圧力損失項と乱流状態を前提とする乱流圧力損失項との合計としてモデル化し、このモデルにより算出した排気圧力損失(ΔP1+ΔP2+ΔP3)と大気圧PPAMBとに基づいて、排気バルブ6付近の排気圧力PEXを算出する(ステップ4,5)。このため、排気バルブ6付近の排気圧力PEXは、第1触媒25及び第2触媒26内における圧力損失(ΔP2、ΔP3)を、層流状態を前提として算出できる一方、その他の排気管(触媒25,26を除いた排気通路8)における圧力損失(ΔP1)を、乱流状態を前提として算出でき、適合が容易にでき、適合工程数が削減できる。
【0058】
また本実施形態によれば、内燃機関の排気通路8のうち、排気触媒担体内(第1触媒25、第2触媒26)を層流状態と近似し、これ以外を乱流状態と近似する。このため、排気バルブ6付近の排気圧力PEXを、各排気圧力損失を考慮して簡易に算出することができる。
【0059】
また本実施形態によれば、層流圧力損失項(ΔP2、ΔP3)は、排気ガスの質量流量MFEXGを算出する排気ガス質量流量算出手段(ステップ1)と、燃焼空燃比に応じた排気ガス組成のガス定数REXを算出するガス定数算出手段(ステップ2)と、排気バルブ閉弁時の排気ガスの温度TEVCを算出する排気ガス温度算出手段(ステップ3)と、層流の特性に応じて決まる所定値KLMFを算出する層流特性値算出手段と、に基づいて算出され、乱流圧力損失項(ΔP1)は、排気ガス質量流量MFEXGの2乗値MFEXGを算出する2乗値算出手段と、ガス定数算出手段(ステップ2)と、排気ガス温度算出手段(ステップ3)と、乱流の特性に応じて決まる所定値KTBFを算出する乱流特性値算出手段と、に基づいて算出される。このため、排気ガスの質量流量MFEXGに応じて層流と乱流との圧力損失(ΔP1、ΔP2、ΔP3)を算出でき、排気圧力PEXを、排気ガスの密度変化に対応して精度良く算出できる。そして、実機運転に基づく適合定数を2点のみとして、運転条件を少なくとも2水準の間(層流と乱流との間)で変えるだけで適合できる。
【0060】
また本実施形態によれば、排気ガス質量流量算出手段(ステップ1)は、吸入新気量MACYLを算出する吸入新気量算出手段と、目標燃焼当量比TFBYAを算出する目標当量比算出手段と、を含んで構成される。このため、目標燃料当量比TFBYA及び吸入新気量MACYLに応じて算出される基本燃料噴射量TPを用いて排気ガス質量流量MFEXGを容易に算出できる。
【0061】
また本実施形態によれば、排気圧力PEXは、排気圧力損失項(ΔP1+ΔP2+ΔP3)に大気圧力PPAMBの2乗値PPAMBを加算し(ステップ4)、その加算値の平方根で算出する(ステップ5)。このため、排気圧力PEXを簡略して算出できる。
【0062】
次に、前述の排気圧力PEXを用いた内部EGR量MRESの推定について説明する。
内部EGR量MRESは、点火時期、燃料噴射量、バルブ開閉タイミングなどを設定するために用いられ、内部EGR量MRESを算出するために排気圧力PEXが必要となる。
【0063】
図14は、排気圧力PEXに基づく、点火時期・燃料噴射量の制御構成図を示している。
図示の通り、排気圧力算出手段(前述の排気圧力推定装置)によりエンジン1の運転状態における排気圧力PEXを算出し、これに基づいて内部EGR率MRESFRおよび外部EGR率を算出し、これらに基づいて点火時期および燃料噴射量を算出する。
【0064】
ここで、内部EGR率MRESFR(1シリンダ当たりの総ガス量に対する内部EGR量の割合)の算出について、図15の内部EGR率算出手段の制御構成図と、図21の内部EGR率MRESFR算出フローとを用いて説明する。
【0065】
図15に示す吸入新気量算出手段は吸入新気量(新気質量)MACYL、目標燃焼当量比算出手段は目標燃焼当量比TFBYA、内部EGR量算出手段は内部EGR量MRESをそれぞれ算出し、これらの算出値に基づいて、内部EGR率算出手段は内部EGR率MRESFRを算出する。
【0066】
図21のステップ11では、エアフロメータ9により計測された吸入新気量に基づいて1シリンダ当たりの吸入新気量MACYLを算出する。
ステップ12では、クランク角センサ14の信号に基づいて検出されるエンジン回転数NRPMと、アクセル開度センサ18の信号に基づいて検出されるアクセル開度と、水温センサ15の信号に基づいて検出される冷却水温度とに応じて決まる目標燃焼当量比TFBYAを算出する。
【0067】
ステップ13では、後述する図22のフローチャートに従って、1シリンダ当たりの内部EGR量MRESを算出する。
ステップ14では、内部EGR率MRESFRを次式により算出し、処理を終了する。
【0068】
MRESFR=MRES/{MRES+MACYL×(1+TFBYA/14.7)}
ここで、ステップ13の内部EGR量MRESの算出について、図16の内部EGR量算出手段の制御構成図と、図22の内部EGR量算出フローとを用いて説明する。
【0069】
図16に示す排気バルブ閉弁時(図には「EVC時」と示す)筒内ガス量算出手段は筒内ガス量MRESCYL、吸気バルブ5及び排気バルブ6のオーバーラップ(図には「O/L」と示す)中吹き返しガス量算出手段は吹き返しガス量MRESOLをそれぞれ算出し、これらの算出値に基づいて、内部EGR量算出手段は内部EGR量MRESを算出する。
【0070】
図22のステップ15では、後述する図23のフローチャートに従って、排気バルブ閉弁時においてシリンダ内部に残留しているガス量である排気バルブ閉弁時筒内ガス量MRESCYLを算出する。
【0071】
ステップ16では、後述する図24のフローチャートに従って、オーバーラップ中に排気側から吸気側へ吹き返すガス量であるオーバーラップ中吹き返しガス量MRESOLを算出する。
【0072】
ステップ17では、次式に示す通り、排気バルブ閉弁時筒内ガス量MRESCYLとオーバーラップ中吹き返しガス量MRESOLとを加算して、内部EGR量MRESを算出する。
【0073】
MRES=MRESCYL+MRESOL
ここで、ステップ15の排気バルブ閉弁時筒内ガス量MRESCYLの算出について、図17の排気バルブ閉弁時筒内ガス量算出手段の制御構成図と、図23の排気バルブ閉弁時筒内ガス量MRESCYL算出フローとを用いて説明する。
【0074】
図17に示す目標燃焼当量比算出手段は排気ガスの目標燃焼当量比TFBYAを算出し、この値に基づき、排気ガスガス定数算出手段はガス定数REXを算出する。排気バルブ閉弁時筒内容積算出手段は筒内容積VEVC、排気バルブ閉弁時筒内温度算出手段は筒内温度TEVC、排気バルブ閉弁時圧力算出手段は筒内圧力PEVCをそれぞれ算出する。そして、これらの算出値に基づき、排気バルブ閉弁時筒内ガス量算出手段は筒内ガス量MRESCYLを算出する。
【0075】
図23のステップ18では、図30に示すテーブルから排気バルブ閉弁時筒内容積VEVCを求める。図30は、排気バルブ閉弁時筒内容積VEVC算出テーブルであり、横軸は排気バルブ開閉タイミング変化量VTCNOWE、縦軸は排気バルブ閉弁時筒内容積VEVCを示している。
【0076】
ここで、排気バルブ閉弁時期を変化させる機構を有するエンジンにおいては、排気側のカム角センサ17の信号に基づいて検出される排気バルブ開閉タイミング変化量VTCNOWEに応じて、図30に示す排気バルブ閉弁時筒内容積VEVCをテーブルから求める。
【0077】
なお、圧縮比を変化させる機構を有するエンジンにおいては、圧縮比の変化量に応じた排気バルブ閉弁時筒内容積VEVCをテーブルから求める。
また、排気バルブ閉弁時期と圧縮比とを同時に可変とする機構を有するエンジンにおいては、排気バルブ閉弁時期と圧縮比変化量とに応じた排気バルブ閉弁時筒内容積VEVCをテーブルから求める。
【0078】
図23のステップ19では、前述の図5に示すテーブルから目標燃焼当量比TFBYAに応じた排気ガスのガス定数REXを求める。
ステップ20では、排気温度センサ12の信号に基づいて検出した排気温度に基づいて、排気バルブ閉弁時筒内温度TEVCを推定する。なお、排気バルブ閉弁時筒内温度TEVCは、インジェクタ20の燃料噴射量に応じた熱量により変化するため、このような特性を利用したテーブルから求めてもよい。
【0079】
ステップ21では、前述の計算により算出された排気圧力PEXに基づいて、排気バルブ閉弁時筒内圧力PEVCを算出する。なお、排気圧力PEXと筒内圧力PEVCとは、近似しているものとしてもよいし、予め排気圧力PEXと筒内圧力PEVCとをマップにより求めて、排気圧力PEXに対応する筒内圧力PEVCを参照してもよい。
【0080】
ステップ22では、ステップ18〜ステップ21において算出された排気バルブ閉弁時筒内容積VEVC、排気ガスガス定数REX、排気バルブ閉弁時筒内温度TEVC、排気バルブ閉弁時筒内圧力PEVCの算出値から、排気バルブ閉弁時においてシリンダ内部に残留している排気バルブ閉弁時筒内ガス量MRESCYLを次式により算出する。
【0081】
MRESCYL=(PEVC×VEVC)/(REX×TEVC)
ここで、図22のステップ16のオーバーラップ中に排気側から吸気側へ吹き返すガス量MRESOLの算出について、図18のオーバーラップ中吹き返しガス量算出の制御構成図と、図24のオーバーラップ中吹き返しガス量MRESOL算出フローとを用いて説明する。
【0082】
図18に示す排気バルブと吸気バルブとの開閉タイミング変化量算出手段は吸気バルブと排気バルブとの開閉タイミング変化量VTCNOW,VTCNOWEからオーバーラップ変化量VTCOLを算出し、この算出値に基づいて、オーバーラップ中積算有効面積算出手段は積算有効面積ASUMOLを算出する。目標燃焼当量比算出手段は当量比TFBYAを算出し、この算出値に基づいて、排気ガスガス定数算出手段はガス定数REXを算出する。そして、これらの算出値と、エンジン回転数算出手段、排気ガス比熱比算出手段、排気バルブ閉弁時筒内温度算出手段、排気バルブ閉弁時筒内圧力算出手段、吸気圧力算出手段、チョーク過給判定算出手段による各算出値とに基づいて、オーバーラップ中吹き返しガス量算出手段は吹き返しガス量MRESOLを算出する。
【0083】
図24のステップ23では、吸気側カムの位相を検出するカム角センサ16の信号に基づいて検出される吸気バルブ開閉タイミング変化量VTCNOWと、排気側カムの位相を検出するカム角センサ17の信号に基づいて検出される排気バルブ開閉タイミング変化量VTCNOWEとを加算して、オーバーラップ変化量VTCOLを算出する。
【0084】
VTCOL=VTCNOW+VTCNOWE
ステップ24では、オーバーラップ変化量VTCOLに応じて、図31に示すテーブルからオーバーラップ中の積算有効面積ASUMOLを求める。
【0085】
図31は、オーバーラップ中の積算有効面積を算出するテーブルであり、横軸はオーバーラップ変化量VTCOL、縦軸はオーバーラップ中の積算有効面積ASUMOLを示している。オーバーラップ変化量VTCOLが大きくなると、積算有効面積ASUMOLが大きくなる。
【0086】
ここで、図32は、オーバーラップ中の積算有効面積ASUMOLの説明図であり、横軸はクランク角度、縦軸は吸気バルブ5と排気バルブ6とのそれぞれの開口面積を示している。そして、オーバーラップ中の或る時点における有効な開口面積は、排気バルブ開口面積と吸気バルブ開口面積とのうち小さい方とする。すなわち、オーバーラップ中の全期間における積算有効面積ASUMOLは、吸気バルブ5及び排気バルブ6が開いている期間の積分値(図中の斜線部)として示される。
【0087】
このようにしてオーバーラップ中積算有効面積ASUMOLを算出することで、吸気バルブ5と排気バルブ6とのオーバーラップ量を1つのオリフィス(流出孔)と疑似でき、排気系の状態と吸気系の状態とからこのオリフィスを通過する流量を簡略的に算出する。
【0088】
図24のステップ25では、クランク角センサ14の信号に基づいてエンジン回転数NRPMを算出する。
ステップ26では、図33に示すマップから排気ガス比熱比SHEATRを算出する。この制御構成は図19に示す。
【0089】
図19に示す目標燃焼当量比算出手段は目標燃焼当量比TFBYA、排気バルブ閉弁時筒内温度算出手段は筒内温度TEVCをそれぞれ算出し、これらの算出値に基づき、排気ガス比熱比算出手段は排気ガス比熱比SHEATRを算出する。
【0090】
図33は、排気ガス比熱比算出マップであり、横軸は目標燃焼当量比TFBYA、縦軸は排気ガス比熱比SHEATRを示している。なお、図中の点線はストイキの位置を示しており、目標燃焼当量比TFBYAがストイキ近傍にあるときは排気ガス比熱比SHEATRが小さくなり、リッチ側またはリーン側になると比熱比SHEATRが大きくなる。そして、排気バルブ閉弁時の筒内温度TEVCが変化した場合を太線矢印で示す。ここで、図21のステップ12で算出した目標燃焼当量比TFBYAと、図23のステップ20で算出した排気バルブ閉弁時筒内温度TEVCとに応じて、排気ガス比熱比SHEATRを求める。
【0091】
再度図24を参照して、ステップ27では、後述する図20の過給・チョーク判定手段の制御構成図と、図25の過給判定TBCRG・チョーク判定CHOKEフローとにより、過給判定TBCRG及びチョーク判定CHOKEを行う。
【0092】
ステップ28では、ステップ27での過給判定フラグTBCRGが0であるか否か、すなわち過給状態を判断する。過給判定フラグTBCRGが0の場合は、ステップ29へ進み、過給判定フラグTBCRGが0でない場合は、ステップ32へ進む。
【0093】
ステップ29では、ステップ27でのチョーク判定フラグCHOKEが0であるか否か、すなわちチョーク状態を判断する。
チョーク判定フラグCHOKEが0の場合は、ステップ30へ進み、後述する図26のフローから、過給無し且つチョーク無し時のオーバーラップ中の平均吹き返しガス流量MRESOLtmpを算出する。
【0094】
一方、ステップ29で、ステップ27でのチョーク判定フラグCHOKEが0でない場合には、ステップ31へ進み、後述する図27のフローから、過給無し且つチョーク有り時のオーバーラップ中の吹き返しガス流量MRESOLtmpを算出する。
【0095】
また、ステップ28で、ステップ27での過給判定フラグTBCRGが1、すなわち過給状態であり、且つステップ32でチョーク判定フラグCHOKEが0の場合は、ステップ33へ進み、後述する図28のフローから、過給有り且つチョーク無し時のオーバーラップ中の平均吹き返しガス流量MRESOLtmpを算出する。
【0096】
一方、ステップ32で、ステップ27でのチョーク判定フラグCHOKEが1の場合は、ステップ34へ進み、後述する図19のフローから、過給有り且つチョーク有り時の吹き返しガス流量MRESOLtmpを算出する。
【0097】
ステップ30,31,33,34で吹き返しガス流量MRESOLtmpを算出した後は、ステップ35へ進む。
ステップ35では、過給の有無とチョークの有無との状態に応じて、吹き返しガス流量MRESOLtmpとオーバーラップ期間中の積算有効面積ASUMOLとを積算することで、オーバーラップ中の吹き返しガス量MRESOLを次式により算出する。
【0098】
MRESOL=(MRESOLtmp×ASUMOL×60)/(NRPM×360)
ここで、ステップ27における過給・チョーク判定について、図20の過給・チョーク判定手段の制御構成図と、図25の過給判定TBCRG・チョーク判定CHOKEフローとを用いて説明する。
【0099】
図20に示す通り、排気ガス比熱比算出手段、排気バルブ閉弁時筒内圧力算出手段、吸気圧力算出手段の各算出値に基づき、過給・チョーク判定手段は過給判定TBCRGとチョーク判定CHOKEとを行う。
【0100】
図25のステップ36では、吸気圧力センサ10の信号に基づいて検出された吸気圧力PINと、図23のステップ21で算出された排気バルブ閉弁時筒内圧力PEVCとの比、すなわち吸気排気圧力比PINBYEXを次式により算出する。
【0101】
PINBYEX=PIN/PEVC
ステップ37では、吸気排気圧力比PINBYEXが1以下(PINBYEX≦1)であるか否か、すなわち過給状態を判断する。
【0102】
吸気排気圧力比PINBYEXが1以下(PINBYEX≦1)の場合、すなわち過給無しの場合は、ステップ38へ進み、過給判定フラグTBCRG=0を0に設定し、ステップ41へ進む。
【0103】
一方、吸気排気圧力比PINBYEXが1より大きい(PINBYEX>1)場合、すなわち過給有りの場合は、ステップ39へ進み、過給判定フラグTBCRGを1に設定し、ステップ40へ進み、図24のステップ26で算出した排気ガス比熱比SHEATRを、図34に示すテーブルから求めた空気及び燃料の混合気比熱比MIXAIRSHRとする。
【0104】
図34は、混合気比熱比MIXAIRSHR算出テーブルであり、横軸は目標燃焼当量比TFBYA、縦軸は混合気比熱比MIXAIRSHRを示している。なお、図中の点線はストイキを示し、比熱比MIXAIRSHRは、リーン側のときは大きく、リッチ側のときは小さくなる。そして、図21のステップ12で算出した目標燃焼当量比TFBYAに対応する混合気比熱比MIXAIRSHRをテーブルから求める。
【0105】
そして、ステップ40において、排気ガス比熱比SHEATRを混合気比熱比MIXAIRSHRに置き換えることで、ターボ過給や慣性過給等の過給時におけるオーバーラップ中のガス流れが吸気系から排気系へ向かう(吹き抜ける)ときにおいても、オリフィスを通過するガスの比熱比を排気ガスの比熱比から吸気混合気の比熱比に変更することにより、吹き抜けるガス量を精度良く推定し、内部EGR量を精度良く算出する。
【0106】
ステップ41では、ステップ26またはステップ40で算出した排気ガス比熱比SHEATRに基づき、最小と最大とのチョーク判定しきい値SLCHOKEL,SLCHOKEHを次式により算出する。
【0107】
SLCHOKEL={2/(SHEATR+1)}^{SHEATR/(SHEATR−1)}
SLCHOKEH={2/(SHEATR+1)}^{−SHEATR/(SHEATR−1)}
このチョーク判定しきい値SLCHOKEL,SLCHOKEHは、チョークする限界値を算出している。
【0108】
また、ステップ41において、制御構成上、累乗計算が困難な場合には、予めこれらの計算結果を、最小チョーク判定しきい値SLCHOKELテーブルと最大チョーク判定しきい値SLCHOKEHテーブルとして記憶しておき、排気ガス比熱比SHEATRに応じて求めてもよい。
【0109】
ステップ42では、ステップ36で算出した吸気排気圧力比PINBYEXが、最小チョーク判定しきい値SLCHOKEL以上で且つ最大チョーク判定しきい値SLCHOKEH以下の範囲内にあるか否か、すなわちチョーク状態を判定する。
【0110】
吸気排気圧力比PINBYEXが範囲内にある場合、すなわちチョーク無しと判断した場合は、ステップ43へ進み、チョーク判定フラグCHOKEを0に設定する。
【0111】
一方、吸気排気圧力比PINBYEXが範囲内にない場合、すなわちチョーク有りと判断した場合は、ステップ44へ進み、チョーク判定フラグCHOKEを1に設定する。
【0112】
また、図24のステップ30の吹き返しガス流量MRESOLtmpの算出について、図26の過給無し且つチョーク無し時オーバーラップ中吹き返しガス流量算出フローを用いて説明する。
【0113】
ステップ45では、図23のステップ19で算出された排気ガスのガス定数REXと、ステップ20で算出された排気バルブ閉弁時の筒内温度TEVCとに基づき、ガス流量算出式密度項MRSOLDを次式により算出する。
【0114】
MRSOLD=SQRT{1/(REX×TEVC)}
ここで、SQRTは温度及びガス定数に関する係数である。なお、制御構成上、ガス流量算出式密度項MRSOLDの算出が困難な場合は、予めこの計算結果をマップとして記憶しておき、排気ガスガス定数REXと筒内温度TEVCとに応じて求めてもよい。
【0115】
ステップ46では、図24のステップ26で算出された排気ガス比熱比SHEATRと、図25のステップ36で算出された吸気排気圧力比PINBYEXとに基づき、ガス流量算出式圧力差項MRSOLPを次式により算出する。
【0116】
MRSOLP=SQRT[SHEATR/(SHEATR−1)×{PINBYEX^(2/SHEATR)−PINBYEX^((SHEATR+1)/SHEATR)}]
ステップ47では、図23のステップ21で算出された排気バルブ閉弁時筒内圧力PEVCと、図26のステップ45とステップ46とで算出されたガス流量算出式密度項MRSOLDとガス流量算出式圧力差項MRSOLPとに基づいて、過給無し・チョーク無し時のオーバーラップ中の吹き返し流量MRESOLtmpを次式により算出する。
【0117】
MRESOLtmp=1.4×PEVC×MRSOLD×MRSOLP
また、ステップ31の吹き返しガス流量MRESOLtmpについて、図27の過給無し且つチョーク有り時の吹き返しガス流量算出フローを用いて説明する。
【0118】
ステップ48では、図26のステップ45と同じく、ガス流量算出式密度項MRSOLDを前述の式より算出する。
ステップ49では、図24のステップ26で算出された排気ガス比熱比SHEATRに基づき、ガス流量算出式チョーク時圧力差項MRSOLPCを次式により求める。
【0119】
MRSOLPC=SQRT[SHEATR×{2/(SHEATR+1)}^{(SHEATR+1)/(SHEATR−1)}]
なお、制御構成上、累乗計算が困難な場合には、予めこの式の計算結果を、ガス流量算出式チョーク時圧力差項MRSOLPCマップとして記憶しておき、排気ガス比熱比SHEATRに応じて求めてもよい。
【0120】
ステップ50では、図23のステップ21で算出された排気バルブ閉弁時筒内圧力PEVCと、図27のステップ48で算出されたガス流量算出式密度項MRSOLDと、ステップ49で算出されたチョーク時圧力差項MRSOLPCに基づいて、過給無し・チョーク有り時のオーバーラップ中吹き返し流量MRESOLtmpを次式により算出する。
【0121】
MRESOLtmp=PEVC×MRSOLD×MRSOLPC
また、ステップ33のオーバーラップ中の平均吹き返しガス流量MRESOLtmpの算出について、図28の過給有り・チョーク無し時の吹き返しガス流量算出フローを用いて説明する。
【0122】
ステップ51では、図25のステップ40で算出された排気ガス比熱比SHEATRと、ステップ36で算出された吸気排気圧力比PINBYEXとに基づき、ガス流量算出式過給時圧力差項MRSOLPTを次式により求める。
【0123】
MRSOLPT=SQRT[SHEATR/(SHEATR−1)×{PINBYEX^(−2/SHEATR)−PINBYEX^(−(SHEATR+1)/SHEATR)}]
なお、制御の構成上、累乗計算が困難な場合は、予めこの式の計算結果を、ガス流量算出式過給時圧力差項MRSOLPTマップとして記憶しておき、排気ガス比熱比SHEATRと吸気排気圧力比PINBYEXとに応じて求めてもよい。
【0124】
ステップ52では、吸気圧力センサ10の信号に基づいて検出された吸気圧力PINと、ステップ51で算出された過給時圧力差項MRSOLPTとに基づいて、過給有り・チョーク無し時オーバーラップ中吹き返しガス流量MRESOLtmpを次式により算出する。
【0125】
MRESOLtmp=−0.152×PIN×MRSOLPT
ここで、吹き返しガス流量MRESOLtmpは負の値を示すことで、オーバーラップ中に吸気系から排気系へ吹き抜けるガス流量を表すことができ、これに基づいて内部EGR量を減じる。
【0126】
また、ステップ34の吹き返しガス流量MRESOLtmpの算出について、図29の過給有り・チョーク有り時オーバーラップ中吹き返しガス流量算出フローを用いて説明する。
【0127】
ステップ53では、図27のステップ49と同じく、ガス流量算出式チョーク時圧力差項MRSOLPCを前述の式またはマップから求める。
ステップ54では、吸気圧力PINと、ガス流量算出式チョーク時圧力差項MRSOLPCとに基づいて、過給有り・チョーク有り時のオーバーラップ中吹き返しガス流量MRESOLtmpを次式により算出する。
【0128】
MRESOLtmp=−0.108×PIN×MRSOLPC
ここで、吹き返しガス流量MRESOLtmpは負の値を示すことで、オーバーラップ中に吸気側から排気側へ吹き抜けるガス流量を表すことができ、内部EGR量を減じることとなる。
【0129】
ここで、ステップ30,31,33,34で、過給の有無とチョークの有無との状態に応じて、吹き返しガス流量MRESOLtmpを算出する。そして、前述のステップ35でオーバーラップ中吹き返しガス量MRESOLを算出した後は、図22のステップ16からステップ17へ進み、前述のステップ17で内部EGR量MRESを算出する。そして、図21のステップ13からステップ14へ進み、前述の内部EGR率MRESFRを算出して、処理を終了する。
【0130】
本実施形態によれば、前述の排気圧力推定装置と、この装置に基づいて算出された排気圧力PEXにより排気バルブ閉弁時の筒内圧力PEVCを算出する手段(ステップ21)と、排気バルブ閉弁時の排気ガスの温度TEVCを算出する排気ガス温度算出手段(ステップ20)と、燃焼空燃比に応じた排気ガス組成のガス定数REXを算出するガス定数算出手段(ステップ19)と、少なくとも筒内圧力PEVC、排気ガス温度TEVC、及びガス定数REXに基づいて排気バルブ閉弁時の筒内ガス量MRESCYLを算出する手段(ステップ22)と、排気バルブ開期間と吸気バルブ開期間とのオーバーラップ中の吹き返しガス量MRESOLを算出する手段(ステップ35)と、を備え、筒内ガス量MRESCYLと吹き返しガス量MRESOLとに基づいて、内部EGR量MRESを算出する(ステップ17)。このため、算出された排気圧力PEXを用いて、内部EGR量MRESをより精度良く算出でき、運転性や排気の改善ができる。そして、多次元パラメータを含む制御構築においても、各パラメータに応じて物理式に基づき内部EGR量MRESを算出するため、容易に構築でき、適合が容易となる。
【0131】
また本実施形態によれば、オーバーラップ中吹き返しガス量算出手段は、排気ガス温度算出手段(ステップ20)と、筒内圧力算出手段(ステップ21)と、ガス定数算出手段(ステップ19)と、吸気圧力PINを算出する手段(ステップ36)と、排気ガス組成変化に対応した比熱比SHEATRを算出する手段(ステップ26)と、排気バルブ開期間と吸気バルブ開期間とのオーバーラップ中の積算有効面積ASUMOLを算出する手段(ステップ24)と、機関回転数NRPMを算出する手段(ステップ25)と、過給及びチョークの有無を判定する手段(ステップ27)と、を含んで構成され、これらの算出値と、排気ガス温度TEVC、筒内圧力PEVC、及びガス定数REXとに基づいて、オーバーラップ中の吹き返しガス量MRESOLを算出する(ステップ35)。このため、状態量の変化による密度変化やオリフィス通過体積流量変化に対応でき、あらゆる運転状態において精度良く内部EGR量MRESを算出できる。
【0132】
また本実施形態によれば、過給及びチョークの判定手段(ステップ37,42)は、吸気圧力PINと排気バルブ閉弁時筒内圧力PEVCとに基づいて、吸気排気圧力比PINBYEXを算出する手段(ステップ36)を備え、排気ガス組成変化に対応した比熱比SHEATRを、過給判定手段(ステップ48)が過給有りとした場合に設定する。このため、全開運転における慣性過給時や、過給機による過給時でも精度良くオーバーラップ中の吹き返しガス量MRESOLを算出でき、アイドル運転時などにおいてチョークが発生した場合でも精度良く内部EGR量MRESを算出できる。
【0133】
また本実施形態によれば、オーバーラップ中積算有効面積算出手段(ステップ24)は、吸気バルブ開閉タイミングを算出する手段と、排気バルブ開閉タイミングを算出する手段と、からオーバーラップ量を算出し、このオーバーラップ量に応じて有効面積の積算値ASUMOLを求める。このため、オーバーラップ量に基づいて積算有効面積ASUMOLを算出でき、物理式による計算を簡略化することができる。
【0134】
また本実施形態によれば、オーバーラップ中積算有効面積算出手段(ステップ24)は、吸気バルブリフト中の開口面積と排気バルブリフト中の開口面積とのいずれか一方の最小値を積分して、積算有効面積ASUMOLを算出する。このため、オーバーラップ期間の積算有効面積ASUMOLを1つのオリフィスとして疑似でき、排気系の状態と吸気系の状態とからこのオリフィスを通過する流量を簡略的に算出することができる。
【図面の簡単な説明】
【図1】排気圧力推定装置及び内部EGR量推定装置の構成図
【図2】排気圧力推定モデルを示す図
【図3】排気圧力算出の制御構成図
【図4】排気圧力の算出フローチャート
【図5】排気ガスガス定数算出テーブル
【図6】平方根算出テーブル
【図7】実験結果と排気圧力の算出結果との比較図
【図8】圧力損失と体積流量とを示す図
【図9】全圧力損失の算出結果を示す図
【図10】レイノルズ数と体積流量とを示す図
【図11】各パラメータを示す図
【図12】各部位のレイノルズ数を示す図
【図13】算出した排気圧力と、実験値による排気圧力との推定誤差率を示す図
【図14】排気圧力に基づく点火時期・燃料噴射量の制御構成図
【図15】内部EGR率算出手段の制御構成図
【図16】内部EGR量算出手段の制御構成図
【図17】排気バルブ閉弁時筒内ガス流量算出手段の制御構成図
【図18】オーバーラップ中吹き返しガス量算出手段の制御構成図
【図19】排気ガス比熱比算出手段の制御構成図
【図20】過給・チョーク判定手段の制御構成図
【図21】内部EGR率算出フローチャート
【図22】内部EGR量算出フローチャート
【図23】排気バルブ閉弁時筒内ガス量算出フローチャート
【図24】オーバーラップ中吹き返しガス量算出フローチャート
【図25】過給判定・チョーク判定フローチャート
【図26】過給無し・チョーク無し時オーバーラップ中吹き返しガス流量算出フローチャート
【図27】過給無し・チョーク有り時オーバーラップ中吹き返しガス流量算出フローチャート
【図28】過給有り・チョーク無し時オーバーラップ中吹き返しガス流量算出フローチャート
【図29】過給有り・チョーク有り時オーバーラップ中吹き返しガス流量算出フローチャート
【図30】排気バルブ閉弁時筒内容積算出テーブル
【図31】オーバーラップ中積算有効面積算出テーブル
【図32】オーバーラップ中積算有効面積の説明図
【図33】排気ガス比熱比算出テーブル
【図34】混合気比熱比算出テーブル
【符号の説明】
1 エンジン
5 吸気バルブ
6 排気バルブ
10 吸気圧力センサ
12 排気温度センサ
13 O2センサ
14 クランク角センサ
15 水温センサ
16 吸気側カム角センサ
17 排気側カム角センサ
18 アクセル開度センサ
25 第1触媒
26 第2触媒
27 大気圧力センサ
30 ECU[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust pressure estimation device for an internal combustion engine and an internal EGR amount estimation device using the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, regarding detection of an exhaust pressure of an internal combustion engine, Patent Document 1 discloses that an exhaust pressure sensor provided in an exhaust pipe detects an exhaust pressure at a location relatively close to a combustion chamber outlet.
[0003]
[Patent Document 1]
JP-A-11-190235
[0004]
[Problems to be solved by the invention]
However, in Patent Literature 1, the cost increases due to the addition of the exhaust pressure sensor.
[0005]
Further, in order to calculate the internal EGR rate (the ratio of the internal EGR amount to the total gas amount per cylinder), a table corresponding to the air-fuel mixture volume flow rate is used as a reference value as the calculation of the blown gas amount during the overlap. In such a case, there are problems such as an increase in the number of adaptation steps and a decrease in calculation accuracy due to the number of grids set in the table.
[0006]
Here, the air-fuel mixture volume flow rate also originally has a correlation with the exhaust gas volume flow rate. However, since this cannot be measured, the air-fuel mixture volume flow rate calculated from the signal of the air flow meter, the intake air temperature, and the target combustion equivalent ratio is used. Was to be referenced accordingly.
[0007]
However, in actuality, the exhaust gas composition changes according to the equivalence ratio even at the same mixture volume flow rate, so that the exhaust gas density changes and the exhaust temperature changes due to the equivalence ratio, the ignition timing, and the internal EGR rate. When these parameters change, for example, when the exhaust gas density changes, an error occurs.
[0008]
When the internal EGR amount is calculated, the error becomes large. Therefore, if the ignition timing, the fuel injection amount, the valve opening / closing timing, and the like are set according to the internal EGR amount, the actual ignition timing and the like are insufficient. As a result, there is a possibility that driving performance and fuel efficiency / exhaust may deteriorate.
[0009]
The present invention has been made to solve the above-described problem, and has as its object to easily obtain an exhaust pressure and accurately estimate an internal EGR amount using the exhaust pressure.
[0010]
[Means for Solving the Problems]
Therefore, in the present invention, the exhaust pressure loss of the exhaust passage of the internal combustion engine is modeled as the sum of the laminar pressure loss term and the turbulent pressure loss term, and based on the exhaust pressure loss and the atmospheric pressure calculated by this model, Calculate the exhaust pressure near the exhaust valve.
[0011]
Further, in the present invention, the in-cylinder pressure is calculated based on the calculated exhaust pressure, the exhaust gas temperature and the gas constant are each calculated, and the in-cylinder gas amount when the exhaust valve is closed is determined based on at least these values. On the other hand, the amount of blowback gas during the overlap is calculated, and the internal EGR amount is calculated based on the in-cylinder gas amount and the blowback gas amount.
[0012]
【The invention's effect】
According to the present invention, since the exhaust pressure near the exhaust valve is calculated based on the exhaust pressure loss and the atmospheric pressure, the number of adaptation steps can be reduced, and the calculation can be easily performed. Then, using the calculated exhaust pressure, the internal EGR amount can be calculated more accurately, and operability and exhaust can be improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an exhaust pressure estimation device for an internal combustion engine and an internal EGR amount estimation device using the same.
[0014]
A combustion chamber 3 defined by a piston 2 of each cylinder of the engine 1 is provided with an intake valve 5 and an exhaust valve 6 so as to surround a spark plug 4. The lift characteristics (opening / closing timing) of the intake valve 5 and the exhaust valve 6 are controlled by changing the phase of the cam with respect to the cam shaft by the variable valve solenoids 22 and 23 provided on the intake side and the exhaust side. Is possible.
[0015]
An electronically controlled throttle valve 19 is provided in the intake passage 7 to control the intake fresh air amount. Fuel is supplied by an injector 20 provided in the intake passage 7 for each cylinder (or directly facing each combustion chamber 3). In the combustion chamber 3, the air-fuel mixture is ignited by an ignition plug 4 and burns, and is discharged to an exhaust passage 8.
[0016]
A first catalyst 25 having a honeycomb structure for purifying exhaust gas from the exhaust manifold and a second catalyst 26 downstream of the first catalyst 25 are disposed in the exhaust passage 8. At the downstream side of the second catalyst 26, an atmospheric pressure sensor 27 for detecting the atmospheric pressure is arranged.
[0017]
Here, the operations of the electronic control throttle valve 19, the injector 20, the ignition plug 4 (the ignition coil 21 with a built-in power tiger), and the variable valve solenoids 22 and 23 are controlled by an engine control unit (hereinafter referred to as "ECU") 30. .
[0018]
For these controls, signals from various sensors are input to the ECU 30.
The crank angle sensor 14 outputs a crank angle signal in synchronization with the engine rotation, and thereby can detect the engine rotation speed together with the crank angle position. The cam angle sensors 16 and 17 can detect the cam angles of the intake valve 5 and the exhaust valve 6, and thereby can detect the operating states of the variable valve solenoids 22 and 23.
[0019]
An air flow meter 9 for detecting a new intake air amount in the intake passage 7, an intake pressure sensor 10 for detecting intake pressure downstream of the electronic control throttle valve 19, and an exhaust temperature sensor 12 for detecting exhaust temperature in the exhaust passage 8. The output of an O2 sensor (oxygen sensor) 13 for detecting the amount of oxygen contained in the exhaust gas in the exhaust passage 8, the water temperature sensor 15 for detecting the coolant temperature of the engine 1, and the accelerator opening sensor 18 for detecting the accelerator opening A signal or the like is also input to the ECU 30, and the operating state can be detected based on the signal.
[0020]
Next, the calculation of the exhaust pressure PEX near the exhaust valve 6 will be described below.
FIG. 2 is a diagram showing a physical model for predicting the exhaust pressure PEX near the exhaust valve 6. FIG. 3 shows a control configuration diagram for calculating the exhaust pressure PEX.
[0021]
As shown in FIG. 3, the exhaust gas mass flow rate calculating means calculates the exhaust gas mass flow rate MFEXG (g / sec) based on the engine speed NRPM (rpm), the basic fuel injection amount TP (msec), and the target combustion equivalent ratio TFBYA. ) Is calculated. The calculation of the exhaust gas mass flow rate MFEXG will be described later.
[0022]
The engine speed NRPM is detected based on a signal from the crank angle sensor 14 described above.
The basic fuel injection amount TP is an injection pulse width (fuel injection amount) that becomes stoichiometric (theoretical air-fuel ratio: 14.7) with respect to the intake new air amount (new air mass) MACYL detected by the air flow meter 9. , And the coefficient in stoichiometry is K, and is calculated by the following equation.
[0023]
TP = K • MACYL / NRPM
If the stoichiometric air-fuel ratio is 14.7, the target combustion equivalent ratio TFBYA is expressed by the following equation from the target combustion air-fuel ratio, and becomes 1 when the target combustion air-fuel ratio is stoichiometric.
[0024]
TFBYA = 14.7 / target combustion air-fuel ratio
The exhaust gas constant calculating means calculates the gas constant REX of the exhaust gas composition from the table shown in FIG. 5 based on the target combustion equivalent ratio TFBYA (or the target combustion air-fuel ratio).
[0025]
FIG. 5 is an exhaust gas constant calculation table, in which the horizontal axis shows the target combustion equivalent ratio TFBYA and the vertical axis shows the exhaust gas constant REX. Note that the dotted line in the figure indicates stoichiometry.
[0026]
Referring to FIG. 3 again, the exhaust gas temperature calculating means calculates the exhaust gas temperature (in-cylinder temperature) TEVC when the exhaust valve is closed based on the signal of the exhaust temperature sensor 12.
The atmospheric pressure calculating means calculates the atmospheric pressure PPAMB based on the signal of the atmospheric pressure sensor 27.
[0027]
The exhaust pressure calculation means calculates the square value of the exhaust pressure PEX, PEXSQ (= PEX2) And means for calculating the square root (exhaust pressure) PEX of the square value PEXSQ. The exhaust pressure square value calculating means calculates a square value PEXSQ of the exhaust pressure PEX based on the values MFEXG, REX, TEVC, and PPAMB calculated by the above-described means. The square root calculating means calculates a square root PEX of the square value PEXSQ.
[0028]
Next, the calculation of the exhaust pressure PEX near the exhaust valve 6 will be described with reference to the exhaust pressure PEX calculation flowchart shown in FIG.
In step 1 of FIG. 4 (referred to as “S1” in the figure, the same applies hereinafter), a mass flow rate MFEXG (g / sec) of the exhaust gas discharged from the engine 1 is calculated. This mass flow rate MFEXG is calculated by the following equation based on the target combustion equivalent ratio TFBYA and the intake fresh air amount.
[0029]
MFEXG = TP × (14.7 + TFBYA) × NRPM × MINJP × CYLINDER / 2/60
Here, MINJP is the fuel injection mass per pulse width (g / msec) when the fuel injection magnification of the injector 20 is 1, that is, how much fuel the injector 20 per injection pulse width at the reference fuel pressure and reference fuel temperature. Is a value (set value) indicating whether or not to inject. CYLINDER indicates the number of cylinders of the engine 1.
[0030]
In step 2, the gas constant REX (J / gK) of the exhaust gas is calculated from the table shown in FIG. 5 according to the target combustion equivalent ratio TFBYA.
In step 3, based on the signal from the exhaust temperature sensor 12, the exhaust gas temperature (in-cylinder temperature) TEVC (K) when the exhaust valve is closed is calculated. Since the exhaust gas temperature TEVC changes depending on the amount of heat corresponding to the fuel injection amount, the exhaust gas temperature TEVC may be obtained from a table using such characteristics.
[0031]
In step 4, the square value PEXSQ of the exhaust pressure PEX (= PEX2) Is calculated from the sum of the atmospheric pressure PPAMB (Pa) and the exhaust pressure loss based on the laminar pressure loss term and the turbulent pressure loss term.
[0032]
PEXSQ = (KTBF × MFEXG2+ KLMF x MFEXG) x REX x TEVC / 1,000,000 + PPAMB2
Here, KTBF (1 / m4) Is a coefficient (fit value) determined according to the characteristics of turbulence,
KLMF (Pa · s / m3) Indicates a coefficient (adapted value) determined according to the characteristics of the laminar flow. The turbulence characteristic value KTBF is a value corresponding to the inlet diameter of the catalysts 25 and 26 and the total area of the catalyst inlet for each type. The laminar flow characteristic value KLMF is a value corresponding to the total length of the catalysts 25 and 26, the diameter of the cell, and the cross-sectional area of the catalyst.
[0033]
In step 5, the exhaust pressure PEX is calculated by calculating the square root of the square value PEXSQ of the exhaust pressure PEX calculated in step 4. In the calculation of the exhaust pressure PEX, it is difficult to calculate the square root due to the control configuration. Therefore, the relationship between the square value PEXSQ and the square root PEX is stored in advance as a square root calculation table shown in FIG. The exhaust pressure PEX may be calculated by referring to a table according to PEXSQ.
[0034]
FIG. 6 is a square root calculation table. The horizontal axis indicates the square value PEXSQ of the exhaust pressure PEX, and the vertical axis indicates the exhaust pressure (square root) PEX.
Conventionally, the exhaust pressure PEX is calculated by the sum of the pressure losses of the exhaust system parts. On the other hand, the exhaust gas transitions from a laminar flow state to a turbulent flow state in accordance with an increase in the flow velocity of the exhaust system parts. The loss had to be calculated according to each state, and the calculation was complicated.
[0035]
Therefore, in the present invention, the pressure loss in the catalyst in which laminar flow is dominant and the pressure loss in other exhaust pipes in which turbulent flow is dominant are considered separately, so that the pressure loss in these two states is considered. Is calculated simply and accurately by calculating the pressure loss of the exhaust system by the sum of That is, the exhaust system (downstream from the exhaust valve 6) is divided into two parts: a part (inside of the catalyst) that can approximate a laminar flow state and a part (an exhaust pipe other than the catalyst) that can approximate a turbulent flow state. The exhaust pressure PEX is calculated based on the sum of the pressure loss values calculated as described above.
[0036]
Referring again to FIG. 2, a concept for calculating the exhaust pressure PEX in the vicinity of the exhaust valve 6 from the pressure loss of the exhaust gas passing through the catalysts 25 and 26 disposed in the exhaust passage 8 of the engine 1 will be described.
[0037]
As shown, in the exhaust passage 8, the pressure loss at the inlet of the first catalyst 25 is ΔP1, the pressure loss in the first catalyst 25 is ΔP2, the pressure loss in the second catalyst 26 is ΔP3, and the atmospheric pressure is PPAMB. I do. In this way, the exhaust pressure PEX near the exhaust valve 6 can be approximated by the sum of the pressure losses ΔP1 to ΔP3 and the atmospheric pressure PPAMB as shown in the following equation.
[0038]
PEX ≒ ΔP1 + ΔP2 + Δ3 + PPAMB
Each pressure loss is calculated separately by approximating the inside of the catalysts 25 and 26 in the exhaust passage 8 as a laminar flow state and approximating the other exhaust passages 8 as a turbulent flow state.
[0039]
Pressure loss ΔP in laminar flow area (in catalysts 25 and 26)L(ΔP2, ΔP3) are calculated by the Hagen-Poiseuille equation shown in the following equation.
ΔPL= 32 × μ × Lca/ Dca 2× (Qca’/ Aca)
Here, μ is the kinematic viscosity coefficient (Pa · s) of the exhaust gas, LcaIs the length (m) of the catalyst 25, 26, DcaIs the diameter (m) of the catalyst 25, 26, Qca'Is the exhaust gas volume flow rate (m3/ S), AcaIs the cross-sectional area (m2).
[0040]
On the other hand, pressure loss ΔP in the turbulent flow region (exhaust passage 8 excluding catalysts 25 and 26)T(ΔP1) is calculated by the Darcy-Weibach equation shown in the following equation.
ΔPT= Λ × (Lex/ Dex) × (ρ / 2) × (Qex’/ Aex)2
Where λ is the pipe friction coefficient, LexIs the length (m) of the exhaust passage 8, DexIs the diameter (m) of the exhaust passage 8, and ρ is the density of the exhaust gas (kg / m3), Qex′ Is the exhaust gas volume flow rate (m3/ S), AexIs the sectional area of the exhaust passage 8 (m2).
[0041]
Further, it is difficult to calculate the volume flow rate Q ′ of the exhaust gas in the control configuration. Therefore, the basic principle formula based on the volume flow rate Q ′ is calculated based on the mass flow rate MFEXG shown below for each of the laminar flow region and the turbulent flow region. It is transformed into a calculation formula so as to match the physical quantity of the control input system. P1 indicates a low pressure side (tail side), and P2 indicates a high pressure side (engine side).
[Laminar Basin]
P × dP = 32 × μ × dL / D2× MFEXG × REX × TEVC / A
P22-P12= 32 × μ × L / D2× MFEXG × REX × TEVC / A
P2 = (64 × μ × L / D2× MFEXG × REX × TEVC / A + P12)1/2
[Turbulence region]
P × dP = λ × dL / D × (MFEXG / A)1/2× REX × TEVC / 2
P22-P12= Λ × L / D × (MFEXG / A)1/2× REX × TEVC / 2
P2 = (λ × L / D × (MFEXG / A)1/2× REX × TEVC + P12)1/2
Further, it is considered that the laminar flow is dominant in the catalysts 25 and 26 and the turbulent flow is dominant in the other exhaust pipes with respect to the exhaust pressure loss, so the exhaust pressure PEX is represented by the following equation.
[0042]
(Equation 1)
Figure 2004346865
[0043]
In addition, the pipe friction coefficient λ and the kinematic viscosity coefficient μ are almost constant in a region where these degrees of influence appear largely, that is, in a region where the pressure loss is high. Can be organized by simplified formulas.
[0044]
(Equation 2)
Figure 2004346865
[0045]
FIG. 7 is a diagram for comparing the experimental result with the above-described exhaust pressure calculation result, wherein the horizontal axis represents the exhaust pressure (kPa) of the experimental result and the vertical axis represents the exhaust pressure (kPa) of the calculated result.
[0046]
As shown in the drawing, in a region where the intake fresh air flow rate is large, such as a high rotation speed (6000 rpm or more) and a high load (ηv 80% or more), a pulsation pressure is generated, and the pulsation influence becomes remarkable. Although it is low, it is almost a straight line. Therefore, it can be understood that the exhaust pressure PEX can be calculated (approximately) based on the concept of calculating based on the exhaust pressure loss (turbulent flow and laminar flow) and the atmospheric pressure.
[0047]
FIG. 8 is a diagram illustrating the pressure loss and the volume flow rate, and the horizontal axis represents the volume flow rate Q ′ (m3/ Sec), and the vertical axis indicates the differential pressure ΔP (kPa). (A) shows a case where the pressure losses ΔP2 and ΔP3 in the catalysts 25 and 26 in the exhaust passage 8 are excluded, that is, a pressure loss ΔP1 in a turbulent flow region. (B) shows the pressure loss ΔP2 in the first catalyst 25 (laminar flow region). (C) shows the pressure loss ΔP3 in the second catalyst 26 (laminar flow region). In the figure, ● represents an experimental value (differential pressure between the exhaust pressure ΔP and the atmospheric pressure PPAMB: gauge pressure), and ◇ represents a differential pressure ΔP1 in the exhaust passage 8 excluding the catalysts 25 and 26 in (A). ) Shows the differential pressure ΔP2 at the first catalyst 25, and (c) shows the differential pressure ΔP3 at the second catalyst 26.
[0048]
As shown in FIG. 8A, in the turbulent flow region, the differential pressure ΔP1 is a quadratic curve (see the Darcy-Weibach equation). On the other hand, as shown in FIGS. 8B and 8C, in the laminar flow region, the differential pressures ΔP2 and ΔP3 are substantially straight lines (see the Hagen-Poiseuille equation).
[0049]
FIG. 9 is a diagram showing the calculation result of the total pressure loss, and the horizontal axis represents the volume flow Q ′ (m3/ Sec), and the vertical axis indicates the total pressure loss ΔP (kPa). In the figure, ● indicates an experimental value of pressure loss (differential pressure between exhaust pressure ΔP and atmospheric pressure PPAMB: gauge pressure), and ◇ indicates a total differential pressure (ΔP1 + ΔP2 + ΔP3).
[0050]
As shown in the figure, since the value of the calculation result is close to the experimental value, it can be seen that the exhaust pressure PEX can be calculated from the pressure loss.
FIG. 10 is a diagram showing the Reynolds number Re and the volume flow rate Q ′, and the horizontal axis represents the volume flow rate Q ′ (m3/ Sec), and the vertical axis indicates the Reynolds number Re. The thick line in the figure indicates the critical Reynolds number (about 2300). (A) shows the Reynolds number Re1 of the portion of the exhaust passage 8 excluding the catalysts 25 and 26. (B) shows the Reynolds number Re2 in the first catalyst 25. (C) shows the Reynolds number Re3 in the second catalyst 26.
[0051]
FIG. 11 is a diagram collectively showing (a) to (c) of FIG. 8 and FIG. The horizontal axis indicates the volume mass Q ', and the vertical axis indicates the differential pressure ΔP. In the figure, ● represents the experimental value of the pressure loss of the entire exhaust system, ○ represents the sum of the pressure losses ΔP1 to ΔP3 (ΔP1 + ΔP2 + ΔP3), + represents the pressure loss ΔP1 at the inlet of the first catalyst 25, and × represents the inside of the first catalyst 25. Represents the pressure loss ΔP2, and − represents the pressure loss ΔP3 in the second catalyst 26.
[0052]
FIG. 12 is a diagram collectively showing FIGS. 10A to 10C. The horizontal axis is the volume mass Q '(m3/ Sec), and the vertical axis indicates the Reynolds number Re. Note that the volume flow rate Q 'is shown in the range of 0.001 to 1. In the figure, + indicates the Reynolds number Re1 at the inlet of the first catalyst 25, x indicates the Reynolds number Re2 in the first catalyst 25, and-indicates the Reynolds number Re3 in the second catalyst 26.
[0053]
As described above, as shown in FIGS. 10A and 12, the Reynolds number Re1 is larger than the critical Reynolds number, and pressure loss due to turbulence is dominant. Therefore, in the portion of the exhaust passage 8 excluding the catalysts 25 and 26 (other portions in the exhaust pipe), the pressure loss ΔP1 is regarded as a turbulent flow over substantially the entire region, and the pressure loss ΔP1 is calculated by the above-mentioned Darcy-Weibach equation (pressure loss ΔPT).
[0054]
On the other hand, as shown in FIGS. 10 (b), (c) and FIG. 12, in the catalysts 25 and 26, the Reynolds numbers Re2 and Re3 are smaller than the critical Reynolds number, and the pressure loss due to laminar flow is dominant. Therefore, in the catalysts 25 and 26, the pressure loss ΔP2, ΔP3 is regarded as a laminar flow over almost the entire region, and the pressure loss ΔP2, ΔP3 is calculated by the Hagen-Poazoille equation (pressure loss ΔPL) Can be calculated respectively.
[0055]
The results of calculating and adding the respective pressure losses in the laminar flow and turbulent flow states at each portion are found to be substantially correlated with the experimental values, as shown in FIG. It can be seen that it can be obtained by approximating the calculated value.
[0056]
FIG. 13 is a diagram showing an estimated error rate (absolute pressure) between the exhaust pressure PEX calculated from the sum of the above-described pressure losses ΔP1 to ΔP3 and the exhaust pressure based on experimental values.
As shown in the figure, the probability (%) of the estimation error between -0.2 and 0.2 is close to 30%, the probability of greatly deviating from the experimental value is reduced, and a standard deviation of 0.71% can be realized. is there.
[0057]
According to the present embodiment, the exhaust pressure loss (ΔP1, ΔP2, ΔP3) of the exhaust passage 8 of the internal combustion engine is calculated based on the laminar pressure loss term assuming the laminar state and the turbulent pressure loss assuming the turbulent state. The exhaust pressure PEX in the vicinity of the exhaust valve 6 is calculated based on the exhaust pressure loss (ΔP1 + ΔP2 + ΔP3) and the atmospheric pressure PPAMB calculated using the model (steps 4 and 5). Therefore, the exhaust pressure PEX in the vicinity of the exhaust valve 6 can calculate the pressure loss (ΔP2, ΔP3) in the first catalyst 25 and the second catalyst 26 on the premise of the laminar flow state, while the other exhaust pipes (catalyst 25 , 26, the pressure loss (ΔP1) in the exhaust passage 8) can be calculated on the premise of a turbulent flow state, adaptation can be easily performed, and the number of adaptation steps can be reduced.
[0058]
Further, according to the present embodiment, in the exhaust passage 8 of the internal combustion engine, the inside of the exhaust catalyst carrier (the first catalyst 25 and the second catalyst 26) is approximated to a laminar flow state, and other parts are approximated to a turbulent flow state. Therefore, the exhaust pressure PEX near the exhaust valve 6 can be easily calculated in consideration of each exhaust pressure loss.
[0059]
Further, according to the present embodiment, the laminar pressure loss terms (ΔP2, ΔP3) are obtained by calculating an exhaust gas mass flow rate calculating means (step 1) for calculating an exhaust gas mass flow rate MFEXG, and an exhaust gas composition according to a combustion air-fuel ratio. Gas constant calculating means (step 2) for calculating the gas constant REX, exhaust gas temperature calculating means (step 3) for calculating the exhaust gas temperature TEVC when the exhaust valve is closed, and determined according to the characteristics of laminar flow. And a laminar flow characteristic value calculating means for calculating the predetermined value KLMF, and the turbulent pressure loss term (ΔP1) is calculated by calculating the square value MFEXG of the exhaust gas mass flow rate MFEXG.2, A gas constant calculation means (step 2), an exhaust gas temperature calculation means (step 3), and a turbulence characteristic value calculation for calculating a predetermined value KTBF determined according to turbulence characteristics. And means. For this reason, the pressure loss (ΔP1, ΔP2, ΔP3) between the laminar flow and the turbulent flow can be calculated according to the mass flow rate MFEXG of the exhaust gas, and the exhaust pressure PEX can be calculated accurately in accordance with the change in the density of the exhaust gas. . Then, the adaptation can be made only by changing the operating conditions between at least two levels (between laminar flow and turbulent flow), with only two adaptation constants based on the actual operation.
[0060]
Further, according to the present embodiment, the exhaust gas mass flow rate calculating means (step 1) includes the intake fresh air amount calculating means for calculating the intake fresh air amount MACYL, and the target equivalent ratio calculating means for calculating the target combustion equivalent ratio TFBYA. . Therefore, the exhaust gas mass flow rate MFEXG can be easily calculated using the basic fuel injection amount TP calculated according to the target fuel equivalent ratio TFBYA and the intake fresh air amount MACYL.
[0061]
According to the present embodiment, the exhaust pressure PEX is calculated by adding the square value PPAMB of the atmospheric pressure PPAMB to the exhaust pressure loss term (ΔP1 + ΔP2 + ΔP3).2Are added (step 4), and the square root of the added value is calculated (step 5). Therefore, the exhaust pressure PEX can be simply calculated.
[0062]
Next, estimation of the internal EGR amount MRES using the above-described exhaust pressure PEX will be described.
The internal EGR amount MRES is used to set the ignition timing, the fuel injection amount, the valve opening / closing timing, and the like, and the exhaust pressure PEX is required to calculate the internal EGR amount MRES.
[0063]
FIG. 14 shows a control configuration diagram of the ignition timing and the fuel injection amount based on the exhaust pressure PEX.
As shown in the figure, the exhaust pressure PEX in the operating state of the engine 1 is calculated by the exhaust pressure calculating means (the above-described exhaust pressure estimating device), and based on the calculated exhaust pressure PEX, the internal EGR rate MRESFR and the external EGR rate are calculated. The ignition timing and the fuel injection amount are calculated.
[0064]
Here, regarding the calculation of the internal EGR rate MRESFR (the ratio of the internal EGR amount to the total gas amount per cylinder), the control configuration diagram of the internal EGR rate calculation means in FIG. 15 and the internal EGR rate MRESFR calculation flow in FIG. This will be described with reference to FIG.
[0065]
The intake fresh air amount calculating means shown in FIG. 15 calculates the intake fresh air amount (fresh air mass) MACYL, the target combustion equivalent ratio calculating means calculates the target combustion equivalent ratio TFBYA, and the internal EGR amount calculating means calculates the internal EGR amount MRES. Based on these calculated values, the internal EGR rate calculation means calculates the internal EGR rate MRESFR.
[0066]
In step 11 of FIG. 21, the intake fresh air amount MACYL per cylinder is calculated based on the intake fresh air amount measured by the air flow meter 9.
In step 12, the engine speed NRPM detected based on the signal of the crank angle sensor 14, the accelerator opening detected based on the signal of the accelerator opening sensor 18, and the signal detected from the water temperature sensor 15 are detected. The target combustion equivalence ratio TFBYA determined according to the cooling water temperature is calculated.
[0067]
In step 13, the internal EGR amount MRES per cylinder is calculated according to the flowchart of FIG.
In step 14, the internal EGR rate MRESFR is calculated by the following equation, and the process ends.
[0068]
MRESFR = MRES / {MRES + MACYL × (1 + TFBYA / 14.7)}
Here, the calculation of the internal EGR amount MRES in step 13 will be described with reference to the control configuration diagram of the internal EGR amount calculation means in FIG. 16 and the internal EGR amount calculation flow in FIG.
[0069]
When the exhaust valve shown in FIG. 16 is closed (shown as “EVC” in the figure), the in-cylinder gas amount calculation means calculates the in-cylinder gas amount MRESCYL and overlaps the intake valve 5 and the exhaust valve 6 (“O / L)), the return gas amount calculating means calculates the return gas amount MRESOL, respectively, and the internal EGR amount calculating means calculates the internal EGR amount MRES based on these calculated values.
[0070]
In step 15 of FIG. 22, an in-cylinder exhaust gas amount MRESCYL when the exhaust valve is closed, which is an amount of gas remaining in the cylinder when the exhaust valve is closed, is calculated according to a flowchart of FIG.
[0071]
In step 16, according to the flowchart of FIG. 24 described later, an overlapped blowback gas amount MRESOL, which is a gas amount blown back from the exhaust side to the intake side during overlap, is calculated.
[0072]
In step 17, as shown in the following equation, the internal EGR amount MRES is calculated by adding the in-cylinder gas amount MRESCYL when the exhaust valve is closed and the blowback gas amount MRESOL during the overlap.
[0073]
MRES = MRESCYL + MRESOL
Here, regarding the calculation of the in-cylinder gas amount MRESCYL when the exhaust valve is closed in step 15, the control configuration of the in-cylinder gas amount calculation means when the exhaust valve is closed in FIG. 17 and the in-cylinder gas amount when the exhaust valve is closed in FIG. A description will be given using a gas amount MRESCYL calculation flow.
[0074]
The target combustion equivalence ratio calculation means shown in FIG. 17 calculates the target combustion equivalence ratio TFBYA of the exhaust gas, and based on this value, the exhaust gas constant calculation means calculates the gas constant REX. The exhaust valve closing cylinder volume calculating means calculates the cylinder volume VEVC, the exhaust valve closing cylinder temperature calculating means calculates the cylinder temperature TEVC, and the exhaust valve closing pressure calculating means calculates the cylinder pressure PEVC. Then, based on these calculated values, the in-cylinder gas amount calculation means when the exhaust valve is closed calculates the in-cylinder gas amount MRESCYL.
[0075]
In step 18 in FIG. 23, the in-cylinder volume VEVC when the exhaust valve is closed is obtained from the table shown in FIG. FIG. 30 is a calculation table of the in-cylinder volume VEVC when the exhaust valve is closed, in which the horizontal axis indicates the exhaust valve opening / closing timing change amount VTCNOWE and the vertical axis indicates the in-cylinder volume VEVC when the exhaust valve is closed.
[0076]
Here, in an engine having a mechanism for changing the exhaust valve closing timing, the exhaust valve shown in FIG. 30 is changed according to the exhaust valve opening / closing timing change amount VTCNOWE detected based on the signal of the exhaust-side cam angle sensor 17. The in-cylinder volume VEVC when the valve is closed is obtained from a table.
[0077]
In an engine having a mechanism for changing the compression ratio, the in-cylinder volume VEVC when the exhaust valve is closed according to the amount of change in the compression ratio is obtained from a table.
Further, in an engine having a mechanism for simultaneously changing the exhaust valve closing timing and the compression ratio, the exhaust valve closing cylinder volume VEVC according to the exhaust valve closing timing and the compression ratio change amount is obtained from a table. .
[0078]
In step 19 of FIG. 23, the gas constant REX of the exhaust gas corresponding to the target combustion equivalent ratio TFBYA is obtained from the table shown in FIG.
In step 20, the in-cylinder temperature TEVC when the exhaust valve is closed is estimated based on the exhaust gas temperature detected based on the signal of the exhaust gas temperature sensor 12. Since the in-cylinder temperature TEVC at the time of closing the exhaust valve changes depending on the amount of heat corresponding to the fuel injection amount of the injector 20, it may be obtained from a table utilizing such characteristics.
[0079]
In step 21, the in-cylinder pressure PEVC when the exhaust valve is closed is calculated based on the exhaust pressure PEX calculated by the above calculation. Note that the exhaust pressure PEX and the in-cylinder pressure PEVC may be approximated, or the exhaust pressure PEX and the in-cylinder pressure PEVC may be obtained in advance using a map, and the in-cylinder pressure PEVC corresponding to the exhaust pressure PEX may be determined. You may refer to it.
[0080]
In step 22, calculated values of the exhaust valve closing cylinder volume VEVC, the exhaust gas gas constant REX, the exhaust valve closing cylinder temperature TEVC, and the exhaust valve closing cylinder pressure PEVC calculated in steps 18 to 21 are calculated. From this, the in-cylinder gas amount MRESCYL when the exhaust valve is closed remaining inside the cylinder when the exhaust valve is closed is calculated by the following equation.
[0081]
MRESCYL = (PEVC × VEVC) / (REX × TEVC)
Here, regarding the calculation of the gas amount MRESOL to be blown back from the exhaust side to the intake side during the overlap in step 16 in FIG. 22, the control configuration diagram of the calculation of the gas amount to be blown back during the overlap in FIG. This will be described with reference to a gas amount MRESOL calculation flow.
[0082]
The opening / closing timing change amount calculation means for the exhaust valve and the intake valve shown in FIG. 18 calculates the overlap change amount VTCOL from the opening / closing timing change amounts VTCNOW and VTCNOWE between the intake valve and the exhaust valve. The in-lap integrated effective area calculation means calculates an integrated effective area ASUMOL. The target combustion equivalence ratio calculation means calculates the equivalence ratio TFBYA, and based on the calculated value, the exhaust gas gas constant calculation means calculates the gas constant REX. Then, these calculated values are compared with the engine speed calculating means, the exhaust gas specific heat ratio calculating means, the in-cylinder temperature calculating means when the exhaust valve is closed, the in-cylinder pressure calculating means when the exhaust valve is closed, the intake pressure calculating means, On the basis of the values calculated by the supply determination calculating means, the blowback gas amount calculating means during the overlap calculates the blowback gas amount MRESOL.
[0083]
In step 23 of FIG. 24, the intake valve opening / closing timing change amount VTCNOW detected based on the signal of the cam angle sensor 16 detecting the phase of the intake cam, and the signal of the cam angle sensor 17 detecting the phase of the exhaust cam. Is added to the exhaust valve opening / closing timing change amount VTCNOWE detected based on the above equation to calculate the overlap change amount VTCOL.
[0084]
VTCOL = VTCNOW + VTCNOWE
In step 24, the integrated effective area ASUMOL during the overlap is obtained from the table shown in FIG. 31 according to the overlap change amount VTCOL.
[0085]
FIG. 31 is a table for calculating the integrated effective area during the overlap. The horizontal axis indicates the overlap change amount VTCOL, and the vertical axis indicates the integrated effective area ASUMOLL during the overlap. As the overlap change amount VTCOL increases, the integrated effective area ASUMOL increases.
[0086]
Here, FIG. 32 is an explanatory diagram of the integrated effective area ASUMOL during the overlap, the horizontal axis represents the crank angle, and the vertical axis represents the opening area of each of the intake valve 5 and the exhaust valve 6. The effective opening area at a certain point during the overlap is the smaller of the exhaust valve opening area and the intake valve opening area. That is, the integrated effective area ASAMOL for the entire period during the overlap is shown as an integrated value (the hatched portion in the figure) during the period when the intake valve 5 and the exhaust valve 6 are open.
[0087]
By calculating the integrated effective area ASAMOL during the overlap in this manner, the amount of overlap between the intake valve 5 and the exhaust valve 6 can be simulated as one orifice (outflow hole), and the state of the exhaust system and the state of the intake system From this, the flow rate passing through this orifice is simply calculated.
[0088]
In step 25 of FIG. 24, the engine speed NRPM is calculated based on the signal of the crank angle sensor 14.
In step 26, the exhaust gas specific heat ratio SEATR is calculated from the map shown in FIG. This control configuration is shown in FIG.
[0089]
The target combustion equivalence ratio calculation means shown in FIG. 19 calculates the target combustion equivalence ratio TFBYA, and the in-cylinder temperature when exhaust valve is closed valve calculation means calculates the in-cylinder temperature TEVC, respectively. Calculates the exhaust gas specific heat ratio SHEATR.
[0090]
FIG. 33 is an exhaust gas specific heat ratio calculation map, in which the horizontal axis indicates the target combustion equivalent ratio TFBYA, and the vertical axis indicates the exhaust gas specific heat ratio SHEATR. The dotted line in the figure indicates the position of stoichiometry. When the target combustion equivalent ratio TFBYA is near stoichiometry, the exhaust gas specific heat ratio SHEATR decreases, and when the target combustion equivalent ratio TFBYA becomes rich or lean, the specific heat ratio SHEATR increases. Then, the case where the in-cylinder temperature TEVC at the time of closing the exhaust valve changes is indicated by a thick arrow. Here, the exhaust gas specific heat ratio SHEATR is determined according to the target combustion equivalent ratio TFBYA calculated in step 12 of FIG. 21 and the exhaust valve closing cylinder temperature TEVC calculated in step 20 of FIG.
[0091]
Referring again to FIG. 24, in step 27, the supercharging determination TBCRG and the choke are performed according to the control configuration diagram of the supercharging / choke determining means of FIG. 20 described later and the supercharging determination TBCRG / choke determination CHOKE flow of FIG. 25. A determination CHOKE is performed.
[0092]
In step 28, it is determined whether or not the supercharging determination flag TBCRG in step 27 is 0, that is, the supercharging state is determined. When the supercharging determination flag TBCRG is 0, the process proceeds to step 29. When the supercharging determination flag TBCRG is not 0, the process proceeds to step 32.
[0093]
In step 29, it is determined whether or not the choke determination flag CHOKE in step 27 is 0, that is, the choke state is determined.
If the choke determination flag CHOKE is 0, the routine proceeds to step 30, where the average blowback gas flow rate MRESOLtmp during overlap without supercharging and without choke is calculated from the flow of FIG.
[0094]
On the other hand, if it is determined in step 29 that the choke determination flag CHOKE in step 27 is not 0, the process proceeds to step 31 and, from the flow of FIG. 27 described later, the blowback gas flow rate MRESOLtmp during the overlap without supercharging and with the choke. Is calculated.
[0095]
In step 28, if the supercharging determination flag TBCRG in step 27 is 1, that is, it is in a supercharging state, and if the choke determination flag CHOKE is 0 in step 32, the process proceeds to step 33, and the flow of FIG. The average blowback gas flow rate MRESOLtmp during the overlap with the supercharge and without the choke is calculated.
[0096]
On the other hand, if the choke determination flag CHOKE in step 27 is 1 in step 32, the process proceeds to step 34, and the blowback gas flow rate MRESOLtmp at the time of supercharging and choking is calculated from the flow of FIG.
[0097]
After calculating the blowback gas flow rate MRESOLtmp in steps 30, 31, 33, and 34, the process proceeds to step 35.
In step 35, the blow-back gas flow rate MRESOL during the overlap is calculated by integrating the blow-back gas flow rate MRESOLtmp and the integrated effective area ASAMOL during the overlap period in accordance with the state of the presence or absence of the supercharging and the presence or absence of the choke. It is calculated by the formula.
[0098]
MRESOL = (MRESOLtmp × ASUMOL × 60) / (NRPM × 360)
Here, the supercharging / choke determination in step 27 will be described with reference to the control configuration diagram of the supercharging / choke determining means of FIG. 20 and the supercharging determination TBCRG / choke determination CHOKE flow of FIG.
[0099]
As shown in FIG. 20, based on the calculated values of the exhaust gas specific heat ratio calculation means, the in-cylinder pressure calculation means for closing the exhaust valve, and the intake pressure calculation means, the supercharging / choke determining means determines the supercharging determination TBCRG and the choke determination CHOKE. And do.
[0100]
In step 36 of FIG. 25, the ratio between the intake pressure PIN detected based on the signal of the intake pressure sensor 10 and the in-cylinder pressure PEVC when the exhaust valve is closed calculated in step 21 of FIG. The ratio PINBYEX is calculated by the following equation.
[0101]
PINBYEX = PIN / PEVC
In step 37, it is determined whether the intake / exhaust pressure ratio PINBYEX is equal to or less than 1 (PINBYEX ≦ 1), that is, a supercharging state is determined.
[0102]
If the intake / exhaust pressure ratio PINBYEX is 1 or less (PINBYEX ≦ 1), that is, if there is no supercharging, the routine proceeds to step 38, where the supercharging determination flag TBCRG = 0 is set to 0, and the routine proceeds to step 41.
[0103]
On the other hand, if the intake / exhaust pressure ratio PINBYEX is larger than 1 (PINBYEX> 1), that is, if there is supercharging, the routine proceeds to step 39, where the supercharging determination flag TBCRG is set to 1, and the routine proceeds to step 40, where FIG. The exhaust gas specific heat ratio SHEATR calculated in step 26 is defined as a mixture specific heat ratio MIXAIRSHR of air and fuel obtained from the table shown in FIG.
[0104]
FIG. 34 is a mixture specific heat ratio MIXAIRSHR calculation table. The horizontal axis indicates the target combustion equivalence ratio TFBYA, and the vertical axis indicates the mixture specific heat ratio MIXAIRSHR. Note that the dotted line in the figure indicates stoichiometry, and the specific heat ratio MIXAIRSHR is large on the lean side and small on the rich side. Then, the mixture specific heat ratio MIXAIRSHR corresponding to the target combustion equivalent ratio TFBYA calculated in step 12 of FIG. 21 is obtained from the table.
[0105]
Then, in step 40, the gas flow during the overlap at the time of supercharging such as turbocharging or inertia supercharging is directed from the intake system to the exhaust system by replacing the exhaust gas specific heat ratio SHEATR with the mixture gas specific heat ratio MIXAIRSHR ( Even at the time of blow-through, by changing the specific heat ratio of the gas passing through the orifice from the specific heat ratio of the exhaust gas to the specific heat ratio of the intake air-fuel mixture, the amount of gas flowing through is accurately estimated, and the internal EGR amount is accurately calculated. .
[0106]
In step 41, the minimum and maximum choke determination thresholds SLCHOKEEL and SLCHOKEH are calculated by the following equation based on the exhaust gas specific heat ratio SHEATR calculated in step 26 or step 40.
[0107]
SLCHOKEL = {2 / (SHEATR + 1)} SHEATR / (SHEATR-1)}
SLCHOKEH = {2 / (SHEATR + 1)}-SHEATR / (SHEATR-1)}
The choke determination threshold values SLCHOKEEL and SLCHOKEH are calculated as choke limit values.
[0108]
In step 41, if it is difficult to calculate the exponentiation due to the control configuration, these calculation results are stored in advance as a minimum choke determination threshold SLCHOKEL table and a maximum choke determination threshold SLCHOKEH table. It may be determined according to the gas specific heat ratio SHEATR.
[0109]
In step 42, it is determined whether or not the intake / exhaust pressure ratio PINBYEX calculated in step 36 is in the range of not less than the minimum choke determination threshold value SLCHOKEEL and not more than the maximum choke determination threshold value SLCHOKEH, that is, a choke state is determined.
[0110]
When the intake / exhaust pressure ratio PINBYEX is within the range, that is, when it is determined that there is no choke, the process proceeds to step 43, and the choke determination flag CHOKE is set to 0.
[0111]
On the other hand, if the intake / exhaust pressure ratio PINBYEX is not within the range, that is, if it is determined that there is a choke, the process proceeds to step 44, and the choke determination flag CHOKE is set to 1.
[0112]
The calculation of the blowback gas flow rate MRESOLtmp in step 30 of FIG. 24 will be described with reference to the flow chart of FIG.
[0113]
In step 45, the gas flow rate calculation equation density term MRSOLD is calculated based on the gas constant REX of the exhaust gas calculated in step 19 in FIG. 23 and the in-cylinder temperature TEVC when the exhaust valve is closed calculated in step 20. It is calculated by the formula.
[0114]
MRSOLD = SQRT {1 / (REX × TEVC)}
Here, SQRT is a coefficient relating to temperature and gas constant. When it is difficult to calculate the density term MRSOLD in the gas flow rate calculation equation due to the control configuration, the calculation result may be stored in advance as a map and may be obtained according to the exhaust gas gas constant REX and the in-cylinder temperature TEVC. .
[0115]
In step 46, based on the exhaust gas specific heat ratio SHEATR calculated in step 26 in FIG. 24 and the intake / exhaust pressure ratio PINBYEX calculated in step 36 in FIG. 25, the gas flow rate calculation equation pressure difference term MRSOLP is calculated by the following equation. calculate.
[0116]
MRSOLP = SQRT [SHEATR / (SHEATR-1) × {PINBYEX} (2 / SHEATR) -PINBYEX} ((SHEATR + 1) / SHEATR)}
In step 47, the exhaust valve closing cylinder pressure PEVC calculated in step 21 of FIG. 23, the gas flow rate calculation formula density term MRSOLD and the gas flow rate calculation pressure calculated in steps 45 and 46 of FIG. Based on the difference term MRSOLP, a blowback flow rate MRESOLtmp during overlap without supercharging and no choke is calculated by the following equation.
[0117]
MRESOLtmp = 1.4 × PEVC × MRSOLD × MRSOLP
The blow-back gas flow rate MRESOLtmp in step 31 will be described with reference to the flow chart of FIG. 27 for calculating the blow-back gas flow rate when there is no supercharging and there is a choke.
[0118]
In step 48, similarly to step 45 in FIG. 26, the gas flow rate calculation equation density term MRSOLD is calculated from the above equation.
In step 49, the choke pressure difference term MRSOLPC is calculated by the following equation based on the exhaust gas specific heat ratio SHEATR calculated in step 26 of FIG.
[0119]
MRSOLPC = SQRT [SHEATR × {2 / (SHEATR + 1)} (SHEATR + 1) / (SHEATR-1)}
If the power calculation is difficult due to the control configuration, the calculation result of this equation is stored in advance as a gas flow rate calculation equation choke-time pressure difference term MRSOLPC map, and is calculated according to the exhaust gas specific heat ratio SHEATR. Is also good.
[0120]
In step 50, the in-cylinder pressure PEVC when the exhaust valve is closed calculated in step 21 in FIG. 23, the gas flow rate calculation equation density term MRSOLD calculated in step 48 in FIG. 27, and the choke time calculated in step 49. Based on the pressure difference term MRSOLPC, the overlap return flow rate MRESOLtmp when there is no supercharging and there is a choke is calculated by the following equation.
[0121]
MRESOLtmp = PEVC × MRSOLD × MRSOLPC
Further, the calculation of the average blowback gas flow rate MRESOLtmp during the overlap in step 33 will be described with reference to the flow chart of FIG.
[0122]
In step 51, based on the exhaust gas specific heat ratio SHEATR calculated in step 40 of FIG. 25 and the intake / exhaust pressure ratio PINBYEX calculated in step 36, a gas flow rate calculation type supercharging pressure difference term MRSOLPT is calculated by the following equation. Ask.
[0123]
MRSOLPT = SQRT [SHEATR / (SHEATR-1) × {PINBYEX} (− 2 / SHEATR) −PINBYEX} (− (SHEATR + 1) / SHEATR)}
If the power calculation is difficult due to the configuration of the control, the calculation result of this equation is stored in advance as a gas flow rate calculation equation supercharged pressure difference term MRSOLPT map, and the exhaust gas specific heat ratio SHEATR and the intake exhaust pressure It may be determined according to the ratio PINBYEX.
[0124]
In step 52, based on the intake pressure PIN detected based on the signal of the intake pressure sensor 10 and the pressure difference term MRSOLPT during supercharging calculated in step 51, blow back during the overlap with supercharge and without choke The gas flow rate MRESOLtmp is calculated by the following equation.
[0125]
MRESOLtmp = −0.152 × PIN × MRSOLPT
Here, when the blowback gas flow rate MRESOLtmp indicates a negative value, the flow rate of gas flowing through the intake system to the exhaust system during the overlap can be represented, and the internal EGR amount is reduced based on this.
[0126]
The calculation of the blowback gas flow rate MRESOLtmp in step 34 will be described with reference to the flow chart of FIG.
[0127]
In step 53, similarly to step 49 in FIG. 27, the gas flow rate calculation equation choke-time pressure difference term MRSOLPC is obtained from the aforementioned equation or map.
In step 54, based on the intake pressure PIN and the gas flow rate calculation type choke-time pressure difference term MRSOLPC, the overlap blowback gas flow rate MRESOLtmp when there is supercharging and choke is calculated by the following equation.
[0128]
MRESOLtmp = −0.108 × PIN × MRSOLPC
Here, when the blowback gas flow rate MRESOLtmp indicates a negative value, the flow rate of the gas flowing from the intake side to the exhaust side during the overlap can be represented, and the internal EGR amount is reduced.
[0129]
Here, in steps 30, 31, 33, and 34, the blowback gas flow rate MRESOLtmp is calculated according to the state of the presence or absence of the supercharging and the presence or absence of the choke. Then, after calculating the amount MRESOL of the blown-back gas during the overlap in the above-described step 35, the process proceeds from step 16 to step 17 in FIG. 22, and in step 17 described above, the internal EGR amount MRES is calculated. Then, the process proceeds from step 13 to step 14 in FIG. 21 to calculate the above-mentioned internal EGR rate MRESFR, and ends the processing.
[0130]
According to the present embodiment, the exhaust pressure estimating device described above, means for calculating the in-cylinder pressure PEVC when the exhaust valve is closed based on the exhaust pressure PEX calculated based on the device (step 21), Exhaust gas temperature calculating means (step 20) for calculating the exhaust gas temperature TEVC at the time of the valve; gas constant calculating means (step 19) for calculating the gas constant REX of the exhaust gas composition according to the combustion air-fuel ratio; Means (step 22) for calculating the in-cylinder gas amount MRESCYL when the exhaust valve is closed based on the internal pressure PEVC, the exhaust gas temperature TEVC, and the gas constant REX, and an overlap between the exhaust valve open period and the intake valve open period. Means (step 35) for calculating the inside blow-back gas amount MRESOL, and the in-cylinder gas amount MRESCYL and the blow-back gas amount MR. Based on the SOL, it calculates the internal EGR quantity MRES (step 17). For this reason, the internal EGR amount MRES can be calculated more accurately using the calculated exhaust pressure PEX, and operability and exhaust can be improved. Also, in the control construction including the multidimensional parameters, the internal EGR amount MRES is calculated based on the physical equation according to each parameter, so that the construction can be easily performed and the adaptation can be easily performed.
[0131]
Further, according to the present embodiment, the exhaust gas amount calculating means during the overlap includes the exhaust gas temperature calculating means (Step 20), the in-cylinder pressure calculating means (Step 21), the gas constant calculating means (Step 19), Means for calculating the intake pressure PIN (step 36); means for calculating the specific heat ratio SHEATR corresponding to the change in the exhaust gas composition (step 26); and effective integration during the overlap between the exhaust valve open period and the intake valve open period. A means for calculating the area ASUMOL (step 24), a means for calculating the engine speed NRPM (step 25), and a means for determining the presence or absence of supercharging and choke (step 27) are configured. Based on the calculated value, the exhaust gas temperature TEVC, the in-cylinder pressure PEVC, and the gas constant REX, the blowback gas amount during the overlap Calculating the RESOL (step 35). For this reason, it is possible to cope with a change in density or a change in volume flow through the orifice due to a change in state quantity, and it is possible to accurately calculate the internal EGR amount MRES in any operating state.
[0132]
Further, according to the present embodiment, the supercharging and choke determining means (steps 37 and 42) calculates the intake / exhaust pressure ratio PINBYEX based on the intake pressure PIN and the in-cylinder pressure PEVC when the exhaust valve is closed. (Step 36), and the specific heat ratio SHEATR corresponding to the change in the exhaust gas composition is set when the supercharge determination means (Step 48) determines that there is supercharge. Therefore, even when the inertia supercharging in the full-open operation or the supercharging by the supercharger is performed, it is possible to accurately calculate the blowback gas amount MRESOL during the overlap, and to accurately calculate the internal EGR amount even when a choke occurs during the idling operation. MRES can be calculated.
[0133]
According to the present embodiment, the integrated effective area during overlap calculating means (step 24) calculates the amount of overlap from the means for calculating the intake valve opening / closing timing and the means for calculating the exhaust valve opening / closing timing, An integrated value ASUMOL of the effective area is determined according to the overlap amount. Therefore, the integrated effective area ASUMOL can be calculated based on the overlap amount, and the calculation using a physical equation can be simplified.
[0134]
According to the present embodiment, the integrated effective area during overlap calculating means (step 24) integrates one of the minimum values of the opening area during the intake valve lift and the opening area during the exhaust valve lift, The integrated effective area ASUMOL is calculated. For this reason, the integrated effective area ASUMOLL of the overlap period can be simulated as one orifice, and the flow rate passing through the orifice can be simply calculated from the state of the exhaust system and the state of the intake system.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an exhaust pressure estimation device and an internal EGR amount estimation device.
FIG. 2 is a diagram showing an exhaust pressure estimation model.
FIG. 3 is a control configuration diagram of exhaust pressure calculation.
FIG. 4 is a flowchart for calculating an exhaust pressure.
FIG. 5 is an exhaust gas constant calculation table.
FIG. 6 is a square root calculation table
FIG. 7 is a comparison diagram between experimental results and exhaust pressure calculation results.
FIG. 8 is a diagram showing a pressure loss and a volume flow rate;
FIG. 9 is a diagram showing a calculation result of a total pressure loss.
FIG. 10 is a diagram showing Reynolds number and volume flow rate.
FIG. 11 is a diagram showing parameters.
FIG. 12 is a diagram showing the Reynolds number of each part.
FIG. 13 is a diagram showing an estimated error rate between a calculated exhaust pressure and an exhaust pressure based on an experimental value.
FIG. 14 is a control configuration diagram of ignition timing and fuel injection amount based on exhaust pressure.
FIG. 15 is a control configuration diagram of an internal EGR rate calculation means.
FIG. 16 is a control configuration diagram of an internal EGR amount calculation unit.
FIG. 17 is a control configuration diagram of an in-cylinder gas flow rate calculation means when the exhaust valve is closed.
FIG. 18 is a control configuration diagram of a back-flow gas amount calculating means during the overlap;
FIG. 19 is a control configuration diagram of an exhaust gas specific heat ratio calculation means.
FIG. 20 is a control configuration diagram of a supercharging / choke determining unit.
FIG. 21 is a flowchart for calculating an internal EGR rate.
FIG. 22 is a flowchart for calculating an internal EGR amount;
FIG. 23 is a flowchart for calculating the in-cylinder gas amount when the exhaust valve is closed.
FIG. 24 is a flowchart for calculating the amount of gas blown back during the overlap.
FIG. 25 is a flowchart of a supercharging determination / choke determination.
FIG. 26 is a flow chart for calculating the flow rate of blow-back gas during overlap when there is no supercharging and no choke.
FIG. 27 is a flow chart for calculating the flow rate of gas to be blown back during overlap when there is no supercharging and there is a choke.
FIG. 28 is a flow chart for calculating the flow rate of gas to be blown back during overlap when there is supercharging and no choke.
FIG. 29 is a flow chart for calculating the flow rate of blow-back gas during overlap when there is supercharging or choke.
FIG. 30 is a cylinder internal volume calculation table when the exhaust valve is closed.
FIG. 31 is a table for calculating an accumulated effective area during overlap;
FIG. 32 is an explanatory diagram of an accumulated effective area during overlap.
FIG. 33: Exhaust gas specific heat ratio calculation table
FIG. 34: Air-fuel ratio specific heat ratio calculation table
[Explanation of symbols]
1 engine
5 Intake valve
6 Exhaust valve
10 Intake pressure sensor
12 Exhaust gas temperature sensor
13 O2 sensor
14 Crank angle sensor
15 Water temperature sensor
16 Intake side cam angle sensor
17 Exhaust cam angle sensor
18 Accelerator opening sensor
25 First catalyst
26 Second catalyst
27 Atmospheric pressure sensor
30 ECU

Claims (10)

内燃機関の排気通路の排気圧力損失を、層流状態を前提とする層流圧力損失項と乱流状態を前提とする乱流圧力損失項との合計としてモデル化し、このモデルにより算出した排気圧力損失と大気圧とに基づいて、排気バルブ付近の排気圧力を算出することを特徴とする内燃機関の排気圧力推定装置。The exhaust pressure loss of the exhaust passage of the internal combustion engine is modeled as the sum of a laminar pressure loss term assuming a laminar flow state and a turbulent pressure loss term assuming a turbulent state, and the exhaust pressure calculated by this model An exhaust pressure estimating device for an internal combustion engine, wherein an exhaust pressure near an exhaust valve is calculated based on a loss and an atmospheric pressure. 前記内燃機関の排気通路のうち、排気触媒担体内を層流状態と近似し、これ以外を乱流状態と近似することを特徴とする請求項1記載の内燃機関の排気圧力推定装置。2. The exhaust pressure estimating device for an internal combustion engine according to claim 1, wherein, in the exhaust passage of the internal combustion engine, the inside of the exhaust catalyst carrier is approximated to a laminar flow state, and the rest is approximated to a turbulent flow state. 前記層流圧力損失項は、
排気ガスの質量流量を算出する排気ガス質量流量算出手段と、
燃焼空燃比に応じた排気ガス組成のガス定数を算出するガス定数算出手段と、
排気バルブ閉弁時の排気ガスの温度を算出する排気ガス温度算出手段と、
層流の特性に応じて決まる所定値を算出する層流特性値算出手段と、に基づいて算出され、
前記乱流圧力損失項は、
排気ガス質量流量の2乗値を算出する2乗値算出手段と、
前記ガス定数算出手段と、
前記排気ガス温度算出手段と、
乱流の特性に応じて決まる所定値を算出する乱流特性値算出手段と、に基づいて算出されることを特徴とする請求項1または請求項2記載の内燃機関の排気圧力推定装置。
The laminar pressure loss term is
Exhaust gas mass flow rate calculating means for calculating the mass flow rate of the exhaust gas,
Gas constant calculation means for calculating the gas constant of the exhaust gas composition according to the combustion air-fuel ratio,
Exhaust gas temperature calculating means for calculating the temperature of the exhaust gas when the exhaust valve is closed,
Laminar flow characteristic value calculating means for calculating a predetermined value determined according to the characteristics of the laminar flow,
The turbulent pressure loss term is
A square value calculating means for calculating a square value of the exhaust gas mass flow rate;
The gas constant calculation means,
The exhaust gas temperature calculating means,
The exhaust pressure estimating device for an internal combustion engine according to claim 1 or 2, wherein the exhaust pressure is calculated based on turbulence characteristic value calculating means for calculating a predetermined value determined according to characteristics of the turbulent flow.
前記排気ガス質量流量算出手段は、
吸入新気量を算出する吸入新気量算出手段と、
目標燃焼当量比を算出する目標燃焼当量比算出手段と、
を含んで構成されることを特徴とする請求項3記載の内燃機関の排気圧力推定装置。
The exhaust gas mass flow rate calculation means,
An intake fresh air amount calculating means for calculating an intake fresh air amount,
Target combustion equivalent ratio calculating means for calculating a target combustion equivalent ratio,
The exhaust pressure estimating device for an internal combustion engine according to claim 3, characterized in that:
前記排気圧力は、前記排気圧力損失項に前記大気圧力の2乗値を加算し、その加算値の平方根で算出することを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の排気圧力推定装置。The exhaust gas pressure is calculated by adding a square value of the atmospheric pressure to the exhaust gas pressure loss term and calculating a square root of the added value. An exhaust pressure estimation device for an internal combustion engine. 請求項1〜請求項5のいずれか1つに記載の排気圧力推定装置と、
排気圧力装置に基づいて算出された排気圧力により排気バルブ閉弁時の筒内圧力を算出する手段と、
排気バルブ閉弁時の排気ガスの温度を算出する排気ガス温度算出手段と、
燃焼空燃比に応じた排気ガス組成のガス定数を算出するガス定数算出手段と、少なくとも前記筒内圧力、前記排気ガス温度、及び前記ガス定数に基づいて排気バルブ閉弁時の筒内ガス量を算出する手段と、
排気バルブ開期間と吸気バルブ開期間とのオーバーラップ中の吹き返しガス量を算出する手段と、を備え、
前記筒内ガス量と前記吹き返しガス量とに基づいて、内部EGR量を算出することを特徴とする内燃機関の内部EGR量推定装置。
An exhaust pressure estimation device according to any one of claims 1 to 5,
Means for calculating the in-cylinder pressure at the time of closing the exhaust valve based on the exhaust pressure calculated based on the exhaust pressure device,
Exhaust gas temperature calculating means for calculating the temperature of the exhaust gas when the exhaust valve is closed,
Gas constant calculating means for calculating a gas constant of an exhaust gas composition according to a combustion air-fuel ratio; Means for calculating,
Means for calculating a blowback gas amount during an overlap between the exhaust valve open period and the intake valve open period,
An internal EGR amount estimating device for an internal combustion engine, wherein an internal EGR amount is calculated based on the in-cylinder gas amount and the blowback gas amount.
前記オーバーラップ中吹き返しガス量算出手段は、
前記排気ガス温度算出手段と、
前記筒内圧力算出手段と、
前記ガス定数算出手段と、
吸気圧力を算出する手段と、
排気ガス組成変化に対応した比熱比を算出する手段と、
排気バルブ開期間と吸気バルブ開期間とのオーバーラップ中の積算有効面積を算出する手段と、
機関回転数を算出する手段と、
過給及びチョークの有無を判定する手段と、
を含んで構成され、これらの算出値と、前記排気ガス温度、前記筒内圧力、及び前記ガス定数とに基づいて、オーバーラップ中の吹き返しガス量を算出することを特徴とする請求項6記載の内燃機関の内部EGR量推定装置。
The overlapped blow-back gas amount calculating means,
The exhaust gas temperature calculating means,
The in-cylinder pressure calculating means,
The gas constant calculation means,
Means for calculating the intake pressure;
Means for calculating a specific heat ratio corresponding to the exhaust gas composition change,
Means for calculating an integrated effective area during the overlap between the exhaust valve open period and the intake valve open period,
Means for calculating the engine speed;
Means for determining the presence or absence of supercharging and chalk;
7. The blow-back gas amount during the overlap is calculated based on these calculated values and the exhaust gas temperature, the in-cylinder pressure, and the gas constant. Internal EGR amount estimating apparatus for an internal combustion engine.
前記過給及びチョークの判定手段は、
前記吸気圧力と前記排気バルブ閉弁時筒内圧力とに基づいて、吸気排気圧力比を算出する手段を備え、
前記排気ガス組成変化に対応した比熱比を、前記過給判定手段が過給有りとした場合に設定することを特徴とする請求項7記載の内燃機関の内部EGR量推定装置。
The supercharging and chalk determining means,
Means for calculating an intake / exhaust pressure ratio based on the intake pressure and the in-cylinder pressure when the exhaust valve is closed,
8. The internal EGR amount estimating device for an internal combustion engine according to claim 7, wherein the specific heat ratio corresponding to the change in the exhaust gas composition is set when the supercharging determination unit determines that there is supercharging.
前記オーバーラップ中積算有効面積算出手段は、
吸気バルブ開閉タイミングを算出する手段と、
排気バルブ開閉タイミングを算出する手段と、
からオーバーラップ量を算出し、
このオーバーラップ量に応じて有効面積の積算値を求めることを特徴とする請求項7または請求項8記載の内燃機関の内部EGR量推定装置。
The overlapping effective area calculating means during the overlap,
Means for calculating the intake valve opening / closing timing;
Means for calculating the exhaust valve opening / closing timing;
Calculate the overlap amount from
9. The internal EGR amount estimating device for an internal combustion engine according to claim 7, wherein an integrated value of the effective area is obtained according to the overlap amount.
前記オーバーラップ中積算有効面積算出手段は、
吸気バルブリフト中の開口面積と排気バルブリフト中の開口面積とのいずれか一方の最小値を積分して、積算有効面積を算出することを特徴とする請求項7または請求項8記載の内燃機関の内部EGR量推定装置。
The overlapping effective area calculating means during the overlap,
9. The internal combustion engine according to claim 7, wherein a minimum value of one of an opening area during an intake valve lift and an opening area during an exhaust valve lift is integrated to calculate an integrated effective area. Internal EGR amount estimating device.
JP2003146379A 2003-05-23 2003-05-23 Exhaust pressure estimation device for internal combustion engine and internal EGR amount estimation device using the same Expired - Lifetime JP4148024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146379A JP4148024B2 (en) 2003-05-23 2003-05-23 Exhaust pressure estimation device for internal combustion engine and internal EGR amount estimation device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146379A JP4148024B2 (en) 2003-05-23 2003-05-23 Exhaust pressure estimation device for internal combustion engine and internal EGR amount estimation device using the same

Publications (2)

Publication Number Publication Date
JP2004346865A true JP2004346865A (en) 2004-12-09
JP4148024B2 JP4148024B2 (en) 2008-09-10

Family

ID=33533246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146379A Expired - Lifetime JP4148024B2 (en) 2003-05-23 2003-05-23 Exhaust pressure estimation device for internal combustion engine and internal EGR amount estimation device using the same

Country Status (1)

Country Link
JP (1) JP4148024B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077970A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Cylinder intake fresh air amount estimating device for internal combustion engine
JP2010203425A (en) * 2009-03-06 2010-09-16 Toyota Motor Corp Control device of internal combustion engine
US7854113B2 (en) * 2006-05-19 2010-12-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Catalyst temperature estimation device
JP2014020241A (en) * 2012-07-17 2014-02-03 Honda Motor Co Ltd Scavenged gas amount calculation device for internal combustion engine and internal egr amount calculation device
JP2015218688A (en) * 2014-05-20 2015-12-07 マツダ株式会社 Control device for engine with turbosupercharger
CN115013172A (en) * 2022-06-15 2022-09-06 东风汽车集团股份有限公司 Method for processing abnormal pressure signal of inlet of EGR valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077970A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Cylinder intake fresh air amount estimating device for internal combustion engine
JP4544110B2 (en) * 2005-09-16 2010-09-15 トヨタ自動車株式会社 In-cylinder intake fresh air volume estimation device for internal combustion engine
US7854113B2 (en) * 2006-05-19 2010-12-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Catalyst temperature estimation device
JP2010203425A (en) * 2009-03-06 2010-09-16 Toyota Motor Corp Control device of internal combustion engine
JP2014020241A (en) * 2012-07-17 2014-02-03 Honda Motor Co Ltd Scavenged gas amount calculation device for internal combustion engine and internal egr amount calculation device
JP2015218688A (en) * 2014-05-20 2015-12-07 マツダ株式会社 Control device for engine with turbosupercharger
CN115013172A (en) * 2022-06-15 2022-09-06 东风汽车集团股份有限公司 Method for processing abnormal pressure signal of inlet of EGR valve

Also Published As

Publication number Publication date
JP4148024B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4321294B2 (en) Cylinder intake air amount calculation device for internal combustion engine
JP5379918B1 (en) Control device for internal combustion engine
JP5545654B2 (en) Turbocharged internal combustion engine
RU2009118213A (en) METHOD FOR CONTROL VALVE OF EXHAUST GASES AND THROTTLE BODY IN THE INTERNAL COMBUSTION ENGINE
JP6827974B2 (en) Internal combustion engine control device
JP4154972B2 (en) Internal EGR amount estimation device for internal combustion engine
JP2007162527A (en) Premixed compression ignition engine
JP2009203918A (en) Operation control method of gasoline engine
JP2017066934A (en) Engine control device
JP4148024B2 (en) Exhaust pressure estimation device for internal combustion engine and internal EGR amount estimation device using the same
JP5099263B2 (en) EGR control system for internal combustion engine
JP2005069020A (en) Control device of internal combustion engine
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
JP4946904B2 (en) Internal combustion engine control system
JP4412216B2 (en) Engine control apparatus and control method
EP2354501B1 (en) Control apparatus for internal combustion engine
JP2011157942A (en) Egr control device of internal combustion engine
JP4086647B2 (en) Control device for internal combustion engine
JP2007009768A (en) Controller of spark-ignition direct injection internal combustion engine
JP3726588B2 (en) Control device for internal combustion engine
JP3988035B2 (en) EGR rate estimation device for internal combustion engine
JP5911272B2 (en) Control device for internal combustion engine
JP2007255194A (en) Control device of internal combustion engine
JP2010024995A (en) Control device for internal combustion engine
JP2010101259A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4148024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

EXPY Cancellation because of completion of term