JP2004344721A - Reforming catalyst for oxygen -containing hydrocarbon, method for producing hydrogen or synthesis gas using it and fuel cell system - Google Patents

Reforming catalyst for oxygen -containing hydrocarbon, method for producing hydrogen or synthesis gas using it and fuel cell system Download PDF

Info

Publication number
JP2004344721A
JP2004344721A JP2003142574A JP2003142574A JP2004344721A JP 2004344721 A JP2004344721 A JP 2004344721A JP 2003142574 A JP2003142574 A JP 2003142574A JP 2003142574 A JP2003142574 A JP 2003142574A JP 2004344721 A JP2004344721 A JP 2004344721A
Authority
JP
Japan
Prior art keywords
component
reforming
oxygen
catalyst
containing hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003142574A
Other languages
Japanese (ja)
Other versions
JP4398670B2 (en
Inventor
Tetsuya Fukunaga
哲也 福永
Satoshi Nakai
敏 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003142574A priority Critical patent/JP4398670B2/en
Publication of JP2004344721A publication Critical patent/JP2004344721A/en
Application granted granted Critical
Publication of JP4398670B2 publication Critical patent/JP4398670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reforming catalyst for oxygen-containing hydrocarbon and a method for efficiently producing hydrogen or a synthesis gas using the reforming catalyst and to provide a fuel cell system using the hydrogen or the synthesis gas produced by a reforming device provided with a catalyst as a fuel. <P>SOLUTION: In the reforming catalyst for oxygen-containing hydrocarbon, a carrier containing manganese oxide carries at least one kind of a component selected from (a) a ruthenium component, a platinum component, a rhodium component, a palladium component and an iridium component, further if necessary (b) at least one kind of a component selected from a cobalt component and/or (c) an alkali metal component, an alkaline earth metal component and a rare earth metal component. The method in which hydrogen or the synthesis gas is produced by carrying out (1) steam reforming, (2) self-heat reforming, (3) partial oxidation reforming or (4) carbon dioxide reforming of oxygen-containing hydrocarbon using the reforming catalyst, and the fuel cell system are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酸素含有炭化水素の改質触媒、それを用いた水素又は合成ガスの製造方法及び燃料電池システムに関し、さらに詳しくは、酸化マンガンを含む担体に活性金属を担持することにより改質活性が大きく向上した酸素含有炭化水素の改質触媒、及びこの改質触媒を用いて酸素含有炭化水素に各種改質を施し、水素又は合成ガスを効率よく製造する方法、並びにこの改質触媒を利用した燃料電池システムに関する。
【0002】
【従来の技術】
合成ガスは、一酸化炭素と水素からなり、メタノール合成、オキソ合成、フィッシャートロプシュ合成などの原料ガスとして用いられるほか、アンモニア合成や各種化学製品の原料として広く用いられている。
この合成ガスは、従来石炭のガス化による方法、あるいは天然ガスなどを原料とする炭化水素類の水蒸気改質法や部分酸化改質法などにより製造されてきた。しかしながら、石炭のガス化方法においては、複雑で高価な石炭ガス化炉が必要である上、大規模なプラントになるなどの問題があった。また、炭化水素類の水蒸気改質法においては、反応が大きな吸熱を伴うため、反応の進行に700〜1200℃程度の高温を必要とし、特殊な改質炉が必要となる上、使用される触媒に高い耐熱性が要求されるなどの問題があった。さらに、炭化水素類の部分酸化改質においても、高温を必要とするために、特殊な部分酸化炉が必要となり、また反応に伴って大量のすすが生成することから、その処理が問題となる上、触媒が劣化しやすいなどの問題があった。
【0003】
そこで、このような問題を解決するために、近年、ジメチルエーテルなどの酸素含有炭化水素を原料として用い、これに各種の改質を施し、合成ガスを製造することが試みられている。
一方、近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目を集めている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換させるものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
この燃料電池の水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のナフサや灯油などの石油系炭化水素の研究がなされている。
【0004】
これらの石油系炭化水素を用いて水素を製造する場合、一般に、該炭化水素に対して、触媒の存在下に水蒸気改質処理や部分酸化改質処理などが施されるが、この場合、前記のような問題が生じる。したがって、水素の製造においても、ジメチルエーテルなどの酸素含有炭化水素を原料として用いる方法が、種々試みられている。
ジメチルエーテルなどの酸素含有炭化水素を原料として、これに各種の改質を施して、水素や合成ガスを製造する際に使用される触媒については、これまで各種のものが開示されている。例えば、Cuを使用する触媒としては、Cu含有触媒を用いて、酸素含有炭化水素と二酸化炭素から合成ガスを製造させる触媒及びそれを用いた合成ガスの製造方法(例えば、特許文献1参照)、固体酸にCuを含む金属が担持されたものからなる酸素含有炭化水素の改質触媒(例えば、特許文献2、特許文献3参照)などが挙げられるが、触媒の耐久性に問題があり、また、反応活性を上げるために温度を上げると、触媒が劣化するという問題がある。
【0005】
また、貴金属系触媒を使用する触媒としては、塩基性を有する金属酸化物にPdを担持した触媒を使用して酸素含有炭化水素の水蒸気又は二酸化改質して合成ガスを得る方法(例えば、特許文献4参照)、貴金属触媒を用いて酸素含有炭化水素を酸素含有ガスと水蒸気とで改質し水素を発生させる方法(例えば、特許文献5参照)などが挙げられるが、高い耐久性は有すものの、活性が低かったり、選択率が低いという問題があった。
さらに、卑金属系を使用する触媒としては、Coを含有する触媒を用いて、酸素含有炭化水素と水蒸気とから合成ガスを製造する方法(例えば、特許文献6参照)、Niを含有することを特徴とする酸素含有炭化水素と水蒸気から合成ガスを製造する触媒と方法(例えば、特許文献7参照)などが挙げられるが、触媒の活性が不十分であった。
【0006】
【特許文献1】
特開平10−174869号公報
【特許文献2】
特開2001−96159号公報
【特許文献3】
特開2001−96160号公報
【特許文献4】
特開平10−174865号公報
【特許文献5】
特表2002−507534号公報
【特許文献6】
特開平10−174871号公報
【特許文献7】
特開平11−300205号公報
【0007】
【発明が解決しようとする課題】
本発明は、このような状況下でなされたもので、耐久性に優れ、かつ活性が大きく向上した酸素含有炭化水素の改質触媒、及びこの改質触媒を用いて酸素含有炭化水素に各種改質を施し、水素又は合成ガスを効率よく製造する方法を提供することを目的とするものである。また、このような優れた改質触媒を備えた改質器と、該改質器により製造される水素又は合成ガスを燃料とする燃料電池とを有する、優れた燃料電池システムを提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、担体の一部又は全部に酸化マンガンを使用することにより、耐久性が高くなると共に、活性が大きく向上した触媒が得られ、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明の要旨は下記のとおりである。
1.酸化マンガンを含む担体に(a)ルテニウム成分、白金成分、ロジウム成分、パラジウム成分及びイリジウム成分から選ばれる少なくとも一種の成分を担持してなる酸素含有炭化水素の改質触媒。
2.更に、(b)コバルト成分及び/又は(c)アルカリ金属成分、アルカリ土類金属成分及び希土類金属成分から選ばれる少なくとも一種の成分を担持してなる上記1記載の酸素含有炭化水素の改質触媒。
3.担体中の酸化マンガンの量が5〜95質量%である上記1又は2に記載の酸素含有炭化水素の改質触媒。
4.担体が酸化マンガンとアルミナからなるものである上記1〜3のいずれかに記載の酸素含有炭化水素の改質触媒。
5.ルテニウム成分、白金成分、ロジウム成分、パラジウム成分及びイリジウム成分から選ばれる少なくとも一種の成分の担持量が、金属換算で、担体100質量部に対して、0.1〜8質量部である上記1〜4のいずれかに記載の酸素含有炭化水素の改質触媒。
6.酸素含有炭化水素が、メタノール、エタノール、ジメチルエーテル及びメチルエチルエーテルから選ばれる少なくとも一種である上記1〜5のいずれかに記載の酸素含有炭化水素の改質触媒。
7.上記1〜6のいずれかに記載の改質触媒を用い、酸素含有炭化水素を水蒸気改質することを特徴とする水素又は合成ガスの製造方法。
8.上記1〜6のいずれかに記載の改質触媒を用い、酸素含有炭化水素を自己熱改質することを特徴とする水素又は合成ガスの製造方法。
9.上記1〜6のいずれかに記載の改質触媒を用い、酸素含有炭化水素を部分酸化改質することを特徴とする水素又は合成ガスの製造方法。
10.上記1〜6のいずれかに記載の改質触媒を用い、酸素含有炭化水素を二酸化炭素改質することを特徴とする水素又は合成ガスの製造方法。
11.上記1〜6のいずれかに記載の改質触媒を備える改質器と、該改質器により製造される水素又は合成ガスを燃料とする燃料電池とを有することを特徴とする燃料電池システム。
【0009】
【発明の実施の形態】
本発明の酸素含有炭化水素の改質触媒は、酸化マンガンを含む担体に(a)ルテニウム、白金成分、ロジウム成分、パラジウム成分及びイリジウム成分から選ばれる少なくとも一種の成分を担持してなり、必要により、更に、(b)コバルト成分及び/又は(c)アルカリ金属成分、アルカリ土類金属成分及び希土類金属成分から選ばれる少なくとも一種の成分を担持してなるものである。
なお、本発明における酸素含有炭化水素としては、メタノール、エタノールなどのアルコール類、ジメチルエーテル、メチルエチルエーテルなどのエーテル類を好ましく挙げることができる。この中でジメチルエーテルが特に好ましい。
まず、上記触媒の製造方法について説明する。
担体の酸化マンガンとして、MnO、Mn、Mn、MnO、MnO、Mn等の各酸化数の酸化マンガンを使用できるが、入手可能な点と安定な点で4価の二酸化マンガン(MnO)が好ましい。このMnOとして、市販の二酸化マンガンを使用できるが、酢酸マンガン〔Mn(CHCOO)・4HO〕、硫酸マンガン〔MnSO・5HO〕、硝酸マンガン〔Mn(NO・6HO〕、塩化マンガン〔MnCl・4HO〕等を焼成して得られるものも使用できる。その酸化マンガン100%のものも担体として使用できるが、触媒の強度の点からアルミナ、シリカ、シリカ−アルミナ、チタニア等の担体を併用するのが好ましい。
【0010】
ここで、担体中の酸化マンガンの量は5〜95質量%が好ましい。5質量%未満であると、酸化マンガンの効果がでない場合があり、95質量%を超えると、担体表面積の低下や触媒強度の低下を引き起こす場合があり好ましくない。
併用する担体のなかでアルミナが特に好ましい。そのアルミナとしては、市販のα、β、γ、η、θ、κ、χのいずれの結晶形態のものも使用できるが、触媒の活性の点でα−アルミナあるいはα−アルミナ相を含むアルミナが好ましい。α−アルミナ以外のアルミナを原料として使用する場合は、後述するように、触媒を調製する段階でα−アルミナに変化させ,α−アルミナ相を含むアルミナにすればよい。
また、ベーマイト、バイアライト、ギブサイト等のアルミナ水和物を焼成したものも使用できる。この他に、硝酸アルミニウムにpH8〜10のアルカリ緩衝液を加えて水酸化物の沈殿を生成させ、これを焼成したものを使用してもよいし、塩化アルミニウムを焼成してもよい。また、アルミニウムイソプロポキシド等のアルコキシドを2−プロパノール等のアルコールに溶解させ、加水分解用の触媒として塩酸等の無機酸を添加してアルミナゲルを調製し、これを乾燥、焼成するゾル・ゲル法によって調製したものを使用することもできる。
【0011】
酸化マンガンをアルミナと併用する場合には、アルミナと酸化マンガンを混合して使用してもよいが、アルミナに酢酸マンガン〔Mn(CHCOO)・4HO〕、硫酸マンガン〔MnSO・5HO〕、硝酸マンガン〔Mn(NO・6HO〕、塩化マンガン〔MnCl・4HO〕等のマンガン化合物の水溶液を含浸させ後、焼成することにより調製することもできる。
なお、上記マンガン化合物の水溶液をアルミナに含浸させて担持する際には、マンガン化合物を溶解させる水の量を、溶解水量比が0.7〜1.3の範囲になるように調整することが好ましい。
【0012】
上記の溶解水量比は、下記の式(1)で求められる。
溶解水量比=使用した水量(ml)/溶解水量(ml) ・・・(1)
ここで、使用した水量は、マンガン化合物の結晶水からの水も含む値である。また、溶解水量はアルミナ担体の吸水量をいい、下記の式(2)で求められる。
溶解水量(ml)=担体の細孔容積(ml/g)×担体量(g)・・・(2)
ここで、アルミナ担体の細孔容積は水銀圧入法より求めたものである。
なお、マンガン化合物を数回に分けて含浸させるときには、その都度、溶解水量比の範囲は0.7〜1.3であることが好ましい。
【0013】
以上、担体としてアルミナについて述べたが、アルミナ以外の担体、例えば、シリカ、シリカ−アルミナ、チタニアの場合についても、同様なことがいえる。
さらに、前記のアルミナ又はマンガン化合物を担持したアルミナは、600〜1,200℃の温度範囲で焼成するのが触媒活性の点で好ましい。焼成雰囲気は酸素、空気の他、マンガン化合物の種類によっては、窒素、アルゴン等の不活性のガスでもよい。好ましくは、900〜1,000℃の範囲である。すなわち、担体の原料であるアルミナかマンガン化合物担持後のアルミナのどちらかを600〜1,200℃の高温で処理すればよいわけで、両者とも高温で処理してもよいが、経済的には、マンガン化合物担持後のアルミナを高温処理した方がよい。600℃未満であると、触媒活性向上の効果がない場合があり、1,200℃を超えると、担体がシンタリングし過ぎ、表面積が小さくなって、触媒活性が低下する場合がある。
【0014】
なお、原料のアルミナとして、α−アルミナを使用しない場合には、上記の高温処理によって、一部又は全部をα−アルミナとするのが好ましく、下記の条件で触媒の粉末X線回折測定を行い、α−アルミナ相の回折ピークの存在により確認することができる。
サンプル作成:触媒をメノウ乳鉢で粉砕し,ガラス製のホルダーに乗せる
装置:株式会社リガク製RAD−Bシステム
条件:2θ=4〜84deg
管電流、電圧:40kV、40mA(CuKα線)
ステップスキャン方式
ステップ幅:0.02deg
サンプリング時間:1sec
バックグラウンドの除去:なし
【0015】
次いで、上記の酸化マンガンを含む担体に、(a)ルテニウム成分、白金成分、ロジウム成分、パラジウム成分及びイリジウム成分から選ばれる少なくとも一種の成分を担持し、更に、必要により(b)コバルト成分及び/又は(c)アルカリ金属成分、アルカリ土類金属成分及び希土類金属成分から選ばれる少なくとも一種の成分を担持する。
担持操作は、(a)、(b)、(c)成分をそれぞれ溶解させた溶液を用いて、逐次、別々に行ってもよいが、(a)、(b)成分、(a)、(c)成分又は(a)、(b)、(c)成分を溶解させた溶液を使用し、同時に行った方が経済上好ましい。
その担持操作については、加熱含浸法,常温含浸法,真空含浸法,常圧含浸法,含浸乾固法,ポアファイリング法等の各種含浸法、浸漬法、軽度浸潤法、湿式吸着法、スプレー法、塗布法などの各種の方法を採用できるが、含浸法が好ましい。
その担持操作の条件については、従来の場合と同様に、大気圧下または減圧下で好適に行うことができ、その際の操作温度としては特に制限はなく、室温又は室温付近で行うことができるし、必要に応じて加熱又は加温し、例えば室温〜150℃程度の温度で好適に行うことができる。また、接触時間は1分間〜10時間である。
【0016】
(a)成分源のルテニウム化合物として、例えば、RuCl・nHO、Ru(NO、Ru(OH)Cl・7NH・3HO、K(RuCl(HO))、(NH(RuCl(HO))、K(RuCl(NO))、RuBr・nHO、NaRuO、Ru(NO)(NO、(RuO(OAc)(HO))OAc・nHO、K(Ru(CN))・nHO、K(Ru(NO(OH)(NO))、(Ru(NH)Cl、(Ru(NH)Br、(Ru(NH)Cl2、(Ru(NH)Br、(Ru(NH14)Cl・HO、(Ru(NO)(NH)Cl、(Ru(OH)(NO)(NH)(NO、RuCl(PPh、RuCl(PPh、(RuClH(PPh)・C、RuH(PPh、RuClH(CO)(PPh、RuH(CO)(PPh、(RuCl(cod))、Ru(CO)12、Ru(acac)、(Ru(HCOO)(CO)、Ru(p−cymene)などのルテニウム塩を挙げることができる。これらの化合物を一種単独でも、二種以上を併用してもよい。好ましくは、取扱い上の点でRuCl・nHO、Ru(NO、Ru(OH)Cl・7NH・3HOが用いられる。
【0017】
(a)成分源の白金化合物として、PtCl、HPtCl、Pt(NHCl、(NHPtCl、HPtBr、NH〔Pt(C)Cl〕、Pt(NH(OH)、Pt(NH(NOなどを挙げることができる。
(a)成分源のロジウム化合物として、NaRhCl、(NHRhCl、Rh(NHCl、RhClなどを挙げることができる。
(a)成分源のパラジウム化合物として、(NH)2PdCl、(NHPdCl、Pd(NHCl、PdCl、Pd(NOなどを挙げることができる。
【0018】
(a)成分源のイリジウム化合物として、(NHIrCl、IrCl、HIrClなどを挙げることができる。
(b)成分源のコバルト化合物として、Co(NO、Co(OH)、CoCl、CoSO、Co(SO、CoFなどを挙げることができる。
(c)成分のうち、アルカリ金属成分として、カリウム、セシウム、ルビジウム、ナトリウム、リチウムが好適に用いられる。
【0019】
アルカリ金属成分源の化合物としては、例えば、K1016、KBr、KBrO、KCN、KCO3、KCl、KClO、KClO、KF、KHCO、KHF、KHPO、KH(PO、KHSO、KI、KIO、KIO、K、KN、KNO、KNO、KOH、KPF、KPO、KSCN、KSO、KSO、K、K、K、K、K(CHCOO)等のK塩;CsCl、CsClO、CsClO、CsHCO、CsI、CsNO、CsSO、Cs(CHCOO)、CsCO、CsF等のCs塩;Rb1016、RbBr、RbBrO、RbCl、RbClO、PbClO、RbI、RbNO、RbSO、Rb(CHCOO)、RbCO等のRb塩;Na、NaB1016、NaBr、NaBrO、NaCN、NaCO、NaCl、NaClO、NaClO、NaClO、NaF、NaHCO、NaHPO、NaHPO、NaHPO、NaHPO、NaHP、Na、NaI、NaIO、NaIO、NaN、NaNO、NaNO、NaOH、NaPO、NaPO、Na、NaS、NaSCN、NaSO、NaSO、Na、Na、Na(CHCOO)等のNa塩;LiBO、Li、LiBr、LiBrO、LiCO、LiCl、LiClO、LiClO、LiHCO、LiHPO、LiI、LiN、LiNHSO、LiNO、LiNO、LiOH、LiSCN、LiSO、LiVO等のLi塩を挙げることができる。
(c)成分のうちアルカリ土類金属成分として、バリウム、カルシウム、マグネシウム、ストロンチウムが好適に用いられる。
【0020】
アルカリ土類金属成分源の化合物として、BaBr、Ba(BrO、BaCl、Ba(ClO、Ba(ClO、Ba(ClO、BaI、Ba(N、Ba(NO、Ba(NO、Ba(OH)、BaS、BaS、BaS、Ba(SONH等のBa塩;CaBr、CaI、CaCl、Ca(ClO、Ca(IO、Ca(NO、Ca(NO、CaSO、CaS、CaS、Ca(SONH、Ca(CHCOO)、Ca(HPO等のCa塩;MgBr、MgCO、MgCl、Mg(ClO、MgI、Mg(IO、Mg(NO、Mg(NO、MgSO、MgSO、MgS、Mg(CHCOO)、Mg(OH)、Mg(ClO等のMg塩;SrBr、SrCl、SrI、Sr(NO、SrO、SrS、SrS、SrS、Sr(CHCOO)、Sr(OH)等のSr塩を挙げることができる。
(c)成分のうち、希土類金属成分として、イットリウム,ランタン,セリウムが好適に用いられる。
【0021】
希土類金属成分源の化合物として、Y(SO、YCl、Y(OH)、Y(CO、Y(NO、La(SO、La(NO、LaCl、La(OH)、La(CO、La(CHCOO)、Ce(OH)、CeCl、Ce(SO)3、Ce(CO、Ce(NO等を挙げることができる。
【0022】
上記(a)成分のうち、ルテニウム成分、白金成分、ロジウム成分、パラジウム成分及びイリジウム成分から選ばれた少なくとも一種の成分の担持量は、金属換算で、担体100質量部に対して、好ましくは0.1〜8質量部、より好ましくは0.5〜5質量部である。
(b)成分の担持量は、金属換算で、担体100質量部に対して、好ましくは0.1〜20質量部、より好ましくは0.5〜10質量部である。
(c)成分の担持量は、金属換算で、担体100質量部に対して、好ましくは1〜20質量部、より好ましくは2〜10質量部である。
【0023】
上記の担持操作を行った後、乾燥させる。乾燥方法としては、例えば自然乾燥、ロータリーエバポレーターもしくは送風乾燥機による乾燥が行われる。
改質触媒の調製においては、通常、乾燥を行った後焼成を行うが、その場合、触媒活性成分である(a)成分が高温焼成によりその飛散や酸化、更には凝集を引き起こし、触媒活性を低下させる要因になることがあるため、(a)成分が担持された後は焼成を行わない方が好ましい。
【0024】
焼成を行わない場合は、担持した各成分塩の分解工程を新たに組み合わせることが好ましい。これは、塩化物や硝酸化物等として担持された成分が、反応装置内で分解し、流出するのを防ぐためである。その分解工程としては、無酸素雰囲気下(窒素、水素等)で加熱する方法、もしくはアルカリ水溶液と反応させ、担持成分を水酸化物に変える方法等がある。中でも、アルカリ水溶液を用いる方法がより簡便である。その場合、アルカリ水溶液としては、アルカリ性を示すものであれば特に制限はなく、例えば、アンモニア水溶液、アルカリ金属やアルカリ土類金属の水溶液が挙げられる。特に、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物が好ましく用いられる。このアルカリ水溶液での分解工程では、高濃度のアルカリ水溶液を使用することが好ましい。
焼成を行う場合には、空気中または不活性ガス(窒素、アルガン等)中で400〜800℃、好ましくは450〜800℃で、2〜6時間、好ましくは2〜4時間焼成する。
【0025】
このようにして調製される触媒の形状及びサイズとしては、特に制限はなく、例えば、粉末状、球状、粒状、ハニカム状、発泡体状、繊維状、布状、板状、リング状など、一般に使用されている各種の形状及び構造のものが利用可能である。
上記調製された触媒は還元を行わずに使用することもできるが、触媒活性の面では還元処理を行う方が好ましい。この還元処理には、水素を含む気流中で処理する気相還元法と、還元剤で処理する湿式還元法が用いられる。前者の気相還元処理は、通常、水素を含む気流下、500〜800℃、好ましくは600〜700℃の温度で、1〜24時間、好ましくは3〜12時間行うものである。
後者の湿式還元法としては、液体アンモニア/アルコール/Na,液体アンモニア/アルコール/Liを用いるBirch還元、メチルアミン/Li等を用いるBenkeser還元、Zn/HCl,Al/NaOH/HO,NaH,LiAlH及びその置換体、ヒドロシラン類、水素化ホウ素ナトリウム及びその置換体、ジボラン、蟻酸、ホルマリン、ヒドラジン等の還元剤で処理する方法がある。この場合、通常、室温〜100℃で、10分〜24時間、好ましくは、30分〜10時間行うものである。
【0026】
本発明の水素又は合成ガスの製造方法においては、前述の本発明の改質触媒を用いてジメチルエーテルなどの酸素含有炭化水素を、(1)水蒸気改質、(2)自己熱改質、(3)部分酸化改質又は(4)二酸化炭素改質することにより、水素又は合成ガスを製造する。
次に、各改質方法についてジメチルエーテルを用いた場合を例に挙げて説明する。
[水蒸気改質]
本発明の改質触媒を用いる場合、ジメチルエーテルの水蒸気改質は、以下に示す反応式に従って、反応が進行するものと思われる。
CHOCH + HO → 2CHOH ・・・(1)
2CHOH + 2HO → 2CO + 6H ・・・(2)
2CO + 2H → 2CO + 2HO ・・・(3)
したがって、水素を製造する場合には、前記(3)の反応が進行しにくいように、すなわち
CHOCH + 3HO → 2CO + 6H ・・・(4)
の反応が起こるように反応条件を選択すればよい。
【0027】
一方、合成ガスを製造する場合には、前記(1)、(2)及び(3)の反応が生じるように、すなわち
CHOCH + HO → 2CO + 4H ・・・(5)
の反応が起こるように反応条件を選択すればよい。
水素を製造する場合、水蒸気/ジメチルエーテルモル比は、理論的には3であるが、3〜6程度が好ましく、一方、合成ガスを製造する場合、水蒸気/ジメチルエーテルモル比は、理論的には1であるが、1〜2程度が好ましい。
反応温度は、通常200〜500℃、好ましくは250〜450℃の範囲で選定される。この温度が200℃未満ではジメチルエーテルの転化率が低くなるおそれがあり、500℃を超えると触媒の活性劣化が生じる原因となる。GHSV(ガス時空間速度)は、ジメチルエーテル基準で100〜10,000h−1の範囲が好ましい。このGHSVが100h−1未満では生産効率が低く、実用的に好ましくないし、10,000h−1を超えるとジメチルエーテルの転化率が低くなりすぎ、実用的に好ましくない。また、反応圧力は、通常、常圧〜1MPa程度である。この圧力が高すぎるとジメチルエーテルの転化率が低下する傾向がある。
【0028】
[自己熱改質]
自己熱改質反応においては、ジメチルエーテルの酸化反応と水蒸気との反応が同一リアクター内で、又は連続したリアクター内で起こる。この場合、水素製造と合成ガス製造では、反応条件は若干異なるが、一般的には、酸素/ジメチルエーテルモル比は、好ましくは0.1〜1の範囲で選定され、水蒸気/ジメチルエーテルモル比は、好ましくは0.5〜3の範囲で選定される。酸素/ジメチルエーテルモル比が0.1未満では発熱による反応熱の供給が十分にできない場合があり、一方1を超えると完全酸化が生じて水素濃度が低下するおそれが生じる。また、水蒸気/ジメチルエーテルモル比が0.5未満では水素濃度が低下する場合があり、一方3を超えると発熱の供給が足らなくなるおそれが生じる。
反応温度は、通常200〜800℃、好ましくは250〜500℃の範囲で選定される。また、GHSV及び反応圧力については、前記水蒸気改質の場合と同様である。
【0029】
[部分酸化改質]
部分酸化改質反応は、ジメチルエーテルの部分酸化反応が起こり、水素製造と合成ガス製造では、反応条件が若干異なるが、一般的には、酸素/ジメチルエーテルモル比は、好ましくは0.3〜1.5の範囲で選定される。この酸素/ジメチルエーテルモル比が0.3未満ではジメチルエーテルの転化率が十分に高くならない場合があり、一方1.5を超えると完全酸化が起こり、水素濃度が低下する原因となる。反応温度は、通常200〜900℃、好ましくは250〜600℃の範囲で選定される。また、GHSV及び反応圧力については、前記水蒸気改質の場合と同様である。
【0030】
[二酸化炭素改質]
二酸化炭素改質反応は、ジメチルエーテルと二酸化炭素の反応が起こり、水素製造と合成ガス製造では、反応条件は若干異なるが、一般的には、CO/ジメチルエーテルモル比は、好ましくは0.8〜2、より好ましくは0.9〜1.5の範囲で選定される。このCO/ジメチルエーテルモル比が0.8未満ではジメチルエーテルの転化率が十分に高くならないおそれがあり、一方2を超えると生成物中にCOが多く残り、水素の分圧が低下する原因となる上、COの除去が必要な場合があり、好ましくない。この反応では、水蒸気を導入することができ、この導入により水素濃度を高めることが可能となる。また、反応温度、GHSV及び反応圧力については、前記水蒸気改質の場合と同様である。
【0031】
本願の第三発明は、前述の改質触媒を備える改質器と、該改質器により製造される水素又は合成ガスを燃料とする燃料電池とを有することを特徴とする燃料電池システムであり、図1により説明する。
燃料タンク21内の燃料は燃料ポンプ22を経て脱硫器23に導入される。脱硫器23には例えば活性炭、ゼオライト又は金属系の吸着剤などを充填することができる。脱硫器23で脱硫された燃料は水タンクから水ポンプ24を経た水と混合した後気化器1に導入されて気化され、次いで空気ブロアー35から送り出された空気と混合され改質器31に送り込まれる。改質器31には前述の改質触媒が充填されており、改質器31に送り込まれた燃料混合物(酸素含有炭化水素、水蒸気及び酸素を含む混合気)から、前述した改質反応のいずれかによって水素又は合成ガスが製造される。
【0032】
このようにして製造された水素又は合成ガスはCO変成器32、CO選択酸化器33を通じてCO濃度が燃料電池の特性に及ぼさない程度まで低減される。これらの反応器に用いる触媒例としては、CO変成器32には、鉄−クロム系触媒、銅−亜鉛系触媒あるいは貴金属系触媒が挙げられ、CO選択酸化器33には、ルテニウム系触媒、白金系触媒あるいはそれらの混合触媒が挙げられる。
【0033】
燃料電池34は負極34Aと正極34Bとの間に高分子電解質34Cを備えた固体高分子形燃料電池である。負極側には上記の方法で得られた水素リッチガスが、正極側には空気ブロアー35から送られる空気が、それぞれ必要であれば適当な加湿処理を行った後(加湿装置は図示せず)導入される。
この時、負極側では水素ガスがプロトンとなり電子を放出する反応が進行し、正極側では酸素ガスが電子とプロトンを得て水となる反応が進行し、両極34A、34B間に直流電流が発生する。その場合、負極には、白金黒もしくは活性炭担持のPt触媒あるいはPt−Ru合金触媒などが使用され、正極には、白金黒もしくは活性炭担持のPt触媒などが使用される。
【0034】
負極34A側に改質器31のバーナ31Aを接続して余った水素を燃料とすることができる。また、正極34B側に気水分離器36を接続し、正極34B側に供給された空気中の酸素と水素との結合により生じた水と排気ガスとを分離し、水を水蒸気の生成に利用することができる。燃料電池34では発電に伴って熱が発生するため、排熱回収装置37を付設してこの熱を回収して有効利用することができる。排熱回収装置37は、燃料電池34に付設され反応時に生じた熱を奪う熱交換器37Aと、この熱交換器37Aで奪った熱を水と熱交換するための熱交換器37Bと、冷却器37Cと、これら熱交換器37A、37B及び冷却器37Cへ冷媒を循環させるポンプ37Dとを備え、熱交換器37Bにおいて得られる温水は他の設備などで有効に利用することができる。
【0035】
[実施例]
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
〔触媒の調製〕
触媒1
硝酸マンガン〔Mn(NO・6HO、和光純薬工業社製〕4.79gを4.5ミリリットルの蒸留水に溶解させ、これをアルミナ担体(KHO−24、住友化学工業社製、細孔容積;0.42ml/g)20gに含浸させた。その後、乾燥機にて120℃で3時間乾燥させ、さらにその後、マッフル炉にて800℃で3時間焼成し、酸化マンガンを10質量%含有するアルミナ担体を調製した。
次いで、上記で得られた担体から取り出した20gに、塩化ルテニウム(RuCl・nHO、田中貴金属工業社製、Ru含有量39.78質量%)0.75gを7ミリリットルの水に溶解させた水溶液を含浸させ、その後、室温で1時間放置した。続いて、5規定の水酸化ナトリウム溶液20ミリリットル中に、上記の触媒を浸し、1時間含浸させた化合物の分解を行った。その後、触媒を蒸留水でよく洗浄し、乾燥機にて120℃で3時間乾燥させ触媒1を得た。触媒1には、担体100質量部に対し、Ruが金属として1.5質量部含有していた。
【0036】
触媒2
触媒1と同様にして、酸化マンガンを10質量%含有するアルミナ担体を調製した。
次いで、塩化白金酸(HPtCl・6HO、和光純薬工業社製)1gを水で溶かし6ミリリットルの水溶液を調製した。その水溶液を4.85ミリリットル取り、さらに蒸留水を加えて7.4ミリリットルとし、これを上記の担体20gに含浸させ、その後、室温で1時間放置した。続いて、乾燥機にて120℃で3時間乾燥させ、さらに焼成炉にて400℃で3時間焼成し触媒2を得た。触媒2には、担体100質量部に対し、Ptが金属として1.5質量部含有していた。
触媒3
アルミナ担体(KHO−24、住友化学工業社製)20gを焼成炉にて800℃で3時間焼成した。その後、触媒1と同様にして触媒3を得た。触媒3には、担体100質量部に対し、Ruが金属として1.5質量部含有していた。
触媒4
アルミナ担体(KHO−24、住友化学工業社製)20gを焼成炉にて800℃で3時間焼成した。その後、触媒2と同様にして触媒4を得た。触媒4には、担体100質量部に対し、Ptが金属として1.5質量部含有していた。
【0037】
触媒5
オキシ硝酸ジルコニウム〔ZrO(NO・2HO、和光純薬工業社製〕3.89gを7.8ミリリットルの蒸留水に溶解させ、これをアルミナ担体(KHO−24、住友化学工業社製)20gに含浸させた。その後、乾燥機にて120℃で3時間乾燥させ、さらにその後、マッフル炉にて800℃で3時間焼成し、酸化ジルコニウムを8質量%含有するアルミナ担体を調製した。その後、触媒2と同様にして触媒5を得た。触媒5には、担体100質量部に対し、Ptが金属として1.5質量部含有していた。
【0038】
触媒6
商品名:C18・7(ズードーケミー触媒社製、Cu−Zn−Al触媒)を購入し触媒6とした。
触媒7
酢酸マンガン〔Mn(CHCOO)・6HO、和光純薬工業社製〕6.32gを6.7ミリリットルの蒸留水に溶解させ、これをアルミナ担体(KHO−24、住友化学工業社製)20gに含浸させた。その後、乾燥機にて120℃で3時間乾燥させ、さらにその後、マッフル炉にて800℃で3時間焼成し、酸化マンガンを10質量%含有するアルミナ担体を調製した。
次いで、上記で得られた担体から取り出した20gに、塩化ルテニウム(RuCl・nHO、田中貴金属工業社製、Ru含有量39.78質量%)0.75gと硝酸コバルト〔Co(NO・6HO、和光純薬工業社製〕1.02gを7.8ミリリットルの水に溶解させた水溶液を含浸させ、その後、室温で1時間放置した。続いて、5規定の水酸化ナトリウム溶液20ミリリットル中に、上記の触媒を浸し、1時間含浸させた化合物の分解を行った。その後、触媒を蒸留水でよく洗浄し、乾燥機にて120℃で3時間乾燥させ触媒7を得た。触媒7には、担体100質量部に対し、金属としてRuが1.5質量部及びCoが1質量部含有していた。
【0039】
実施例1〜3及び比較例1〜4
球状のまま各触媒2ミリリットルを内径1.7cmの石英反応管に充填した。反応管内で触媒を水素気流中で、300℃(触媒1,3,7)、450℃(触媒2,4,5)、230℃(触媒6)で1.5時間水素還元処理を行った後、市販のジメチルエーテル(以下、DMEともいう。)を原料として用い、GHSV=5,000h−1(Dry−base)、スチーム/カーボン(モル比)=2.5の条件でDME及び水蒸気を導入し、常圧、反応温度400℃で水蒸気改質反応を実施した。1時間後得られたガスをサンプリングして、下記式でDME転化率を求め、結果を第1表に示す。
【0040】
DME転化率(%)=[(出口CO,CO,CHのカーボンモル流量)/(入口DMEのカーボンモル流量)]×100
【0041】
【表1】

Figure 2004344721
【0042】
第1表から分かるように、Mnを含有する触媒はDMEの水蒸気改質において、非常に高いDME転化率を示す。
【0043】
【発明の効果】
本発明によれば、耐久性に優れ、かつ活性が大きく向上した酸素含有炭化水素の改質触媒、及びこの改質触媒を用いて酸素含有炭化水素に各種改質を施し、水素又は合成ガスを効率よく製造する方法を提供することができる。また、このような優れた改質触媒を備えた改質器と、該改質器により製造される水素又は合成ガスを燃料とする燃料電池と有する、優れた燃料電池システムを製造することができる。
【図面の簡単な説明】
【図1】本発明の燃料電池システムの概略の流れ図である。
【符号の説明】
1:気化器
11:水供給管
12:燃料導入管
15:接続管
21:燃料タンク
22:燃料ポンプ
23:脱硫器
24:水ポンプ
31:改質器
31A:改質器のバーナ
32:CO変成器
33:CO選択酸化器
34:燃料電池
34A:燃料電池負極
34B:燃料電池正極
34C:燃料電池高分子電解質
35:空気ブロワー
36:気水分離器
37:排熱回収装置
37A:熱交換器
37B:熱交換器
37C:冷却器
37D:冷媒循環ポンプ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for reforming an oxygen-containing hydrocarbon, a method for producing hydrogen or a synthesis gas using the same, and a fuel cell system. More specifically, the present invention relates to a reforming catalyst by supporting an active metal on a carrier containing manganese oxide. And a method for efficiently producing hydrogen or synthesis gas by performing various reforms on an oxygen-containing hydrocarbon using the reforming catalyst, and utilizing the reforming catalyst To a fuel cell system.
[0002]
[Prior art]
The synthesis gas is composed of carbon monoxide and hydrogen, and is used as a raw material gas for methanol synthesis, oxo synthesis, Fischer-Tropsch synthesis, etc., and is also widely used as a raw material for ammonia synthesis and various chemical products.
This synthesis gas has been conventionally produced by a method of gasifying coal, a steam reforming method or a partial oxidation reforming method of hydrocarbons using natural gas or the like as a raw material. However, the coal gasification method has problems that a complicated and expensive coal gasifier is required and that a large-scale plant is required. Further, in the steam reforming method of hydrocarbons, since the reaction involves a large endotherm, a high temperature of about 700 to 1200 ° C. is required for the progress of the reaction, which requires a special reforming furnace and is used. There have been problems such as a requirement for the catalyst to have high heat resistance. Furthermore, even in the partial oxidation reforming of hydrocarbons, a special partial oxidation furnace is required due to the need for high temperature, and a large amount of soot is generated along with the reaction, so the treatment becomes a problem. Moreover, there has been a problem that the catalyst is easily deteriorated.
[0003]
Therefore, in order to solve such a problem, in recent years, an attempt has been made to produce a synthesis gas by using an oxygen-containing hydrocarbon such as dimethyl ether as a raw material and subjecting it to various reforming.
On the other hand, in recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency. In addition, research for practical use has been actively conducted for use in automobiles and the like.
Hydrogen sources for this fuel cell include liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel derived from natural gas, and petroleum naphtha and kerosene. Research on petroleum hydrocarbons has been made.
[0004]
When hydrogen is produced using these petroleum hydrocarbons, the hydrocarbons are generally subjected to a steam reforming treatment or a partial oxidation reforming treatment in the presence of a catalyst. The following problems occur. Therefore, in the production of hydrogen, various methods using an oxygen-containing hydrocarbon such as dimethyl ether as a raw material have been attempted.
Various catalysts used for producing hydrogen and synthesis gas by using oxygen-containing hydrocarbons such as dimethyl ether as raw materials and subjecting them to various reforms have been disclosed. For example, as a catalyst using Cu, a catalyst for producing a synthesis gas from an oxygen-containing hydrocarbon and carbon dioxide using a Cu-containing catalyst and a method for producing a synthesis gas using the same (for example, see Patent Document 1), An oxygen-containing hydrocarbon reforming catalyst comprising a solid acid on which a metal containing Cu is supported (for example, see Patent Documents 2 and 3), but there is a problem in durability of the catalyst, and However, when the temperature is increased to increase the reaction activity, there is a problem that the catalyst is deteriorated.
[0005]
As a catalyst using a noble metal-based catalyst, a method of obtaining a synthesis gas by reforming steam or carbon dioxide of an oxygen-containing hydrocarbon using a catalyst in which Pd is supported on a basic metal oxide (for example, see Patent Literature 4), a method of reforming an oxygen-containing hydrocarbon with an oxygen-containing gas and steam using a noble metal catalyst to generate hydrogen (for example, see Patent Literature 5), but has high durability. However, there are problems that the activity is low and the selectivity is low.
Further, as a catalyst using a base metal, a method of producing a synthesis gas from an oxygen-containing hydrocarbon and water vapor using a catalyst containing Co (see, for example, Patent Document 6), characterized by containing Ni And a method for producing a synthesis gas from an oxygen-containing hydrocarbon and steam (see, for example, Patent Document 7), but the activity of the catalyst was insufficient.
[0006]
[Patent Document 1]
JP-A-10-174869
[Patent Document 2]
JP 2001-96159 A
[Patent Document 3]
JP 2001-96160 A
[Patent Document 4]
JP-A-10-174865
[Patent Document 5]
JP 2002-507534 A
[Patent Document 6]
JP-A-10-174871
[Patent Document 7]
JP-A-11-300205
[0007]
[Problems to be solved by the invention]
The present invention has been made in such a situation, and has been made into various reforming catalysts for oxygen-containing hydrocarbons having excellent durability and greatly improved activity, and oxygen-containing hydrocarbons using the reforming catalysts. It is an object of the present invention to provide a method for producing hydrogen or a synthesis gas efficiently. Further, an object of the present invention is to provide an excellent fuel cell system comprising a reformer equipped with such an excellent reforming catalyst, and a fuel cell using hydrogen or synthesis gas produced by the reformer as a fuel. It is the purpose.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, by using manganese oxide for part or all of the carrier, a catalyst having improved durability and greatly improved activity has been obtained. It has been found that the object can be achieved. The present invention has been completed based on such findings.
That is, the gist of the present invention is as follows.
1. An oxygen-containing hydrocarbon reforming catalyst comprising: (a) at least one component selected from a ruthenium component, a platinum component, a rhodium component, a palladium component, and an iridium component supported on a support containing manganese oxide.
2. 2. The oxygen-containing hydrocarbon reforming catalyst according to the above 1, further comprising (b) a cobalt component and / or (c) at least one component selected from an alkali metal component, an alkaline earth metal component and a rare earth metal component. .
3. 3. The oxygen-containing hydrocarbon reforming catalyst according to 1 or 2, wherein the amount of manganese oxide in the carrier is 5 to 95% by mass.
4. 4. The catalyst for reforming an oxygen-containing hydrocarbon according to any one of the above 1 to 3, wherein the carrier comprises manganese oxide and alumina.
5. The loading amount of at least one component selected from a ruthenium component, a platinum component, a rhodium component, a palladium component and an iridium component is 0.1 to 8 parts by mass relative to 100 parts by mass of the carrier in terms of metal. 5. The reforming catalyst for an oxygen-containing hydrocarbon according to any one of 4.
6. 6. The reforming catalyst for an oxygen-containing hydrocarbon according to any one of the above items 1 to 5, wherein the oxygen-containing hydrocarbon is at least one selected from methanol, ethanol, dimethyl ether and methyl ethyl ether.
7. A method for producing hydrogen or synthesis gas, comprising steam reforming an oxygen-containing hydrocarbon using the reforming catalyst according to any one of the above 1 to 6.
8. 7. A method for producing hydrogen or synthesis gas, comprising subjecting an oxygen-containing hydrocarbon to self-thermal reforming using the reforming catalyst according to any one of 1 to 6 above.
9. 7. A method for producing hydrogen or synthesis gas, comprising partially reforming an oxygen-containing hydrocarbon using the reforming catalyst according to any one of the above 1 to 6.
10. 7. A method for producing hydrogen or synthesis gas, comprising reforming an oxygen-containing hydrocarbon with carbon dioxide using the reforming catalyst according to any one of the above 1 to 6.
11. 7. A fuel cell system comprising: a reformer provided with the reforming catalyst according to any one of the above 1 to 6; and a fuel cell using hydrogen or synthesis gas produced by the reformer as a fuel.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The oxygen-containing hydrocarbon reforming catalyst of the present invention comprises (a) at least one component selected from ruthenium, a platinum component, a rhodium component, a palladium component, and an iridium component supported on a support containing manganese oxide. And (c) at least one component selected from the group consisting of a cobalt component and / or (c) an alkali metal component, an alkaline earth metal component and a rare earth metal component.
In addition, as the oxygen-containing hydrocarbon in the present invention, alcohols such as methanol and ethanol, and ethers such as dimethyl ether and methyl ethyl ether can be preferably exemplified. Of these, dimethyl ether is particularly preferred.
First, a method for producing the catalyst will be described.
As the manganese oxide of the carrier, MnO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 , MnO 3 , Mn 2 O 7 Can be used, but tetravalent manganese dioxide (MnO 2) is available and stable. 2 Is preferred. This MnO 2 Commercially available manganese dioxide can be used, but manganese acetate [Mn (CH 3 COO) 2 ・ 4H 2 O], manganese sulfate [MnSO 4 ・ 5H 2 O], manganese nitrate [Mn (NO 3 ) 2 ・ 6H 2 O], manganese chloride [MnCl 2 ・ 4H 2 O] etc. can be used. A manganese oxide of 100% can be used as a carrier, but it is preferable to use a carrier such as alumina, silica, silica-alumina and titania in combination from the viewpoint of the strength of the catalyst.
[0010]
Here, the amount of manganese oxide in the carrier is preferably from 5 to 95% by mass. If the amount is less than 5% by mass, the effect of manganese oxide may not be obtained. If the amount exceeds 95% by mass, the surface area of the carrier and the strength of the catalyst may be undesirably reduced.
Among the carriers used together, alumina is particularly preferred. As the alumina, any of commercially available α, β, γ, η, θ, κ, and χ crystal forms can be used, but α-alumina or alumina containing an α-alumina phase is preferred in terms of the activity of the catalyst. preferable. When an alumina other than α-alumina is used as a raw material, as described later, the catalyst may be changed to α-alumina at the stage of preparing the catalyst to obtain alumina containing an α-alumina phase.
Further, those obtained by calcining alumina hydrates such as boehmite, vialite, and gibbsite can also be used. In addition, an alkaline buffer solution having a pH of 8 to 10 may be added to aluminum nitrate to form a precipitate of hydroxide, and the precipitate may be calcined, or aluminum chloride may be calcined. In addition, a sol-gel obtained by dissolving an alkoxide such as aluminum isopropoxide in an alcohol such as 2-propanol and adding an inorganic acid such as hydrochloric acid as a catalyst for hydrolysis to prepare an alumina gel, and drying and calcining the alumina gel. Those prepared by the method can also be used.
[0011]
When manganese oxide is used in combination with alumina, alumina and manganese oxide may be mixed and used, but manganese acetate [Mn (CH 3 COO) 2 ・ 4H 2 O], manganese sulfate [MnSO 4 ・ 5H 2 O], manganese nitrate [Mn (NO 3 ) 2 ・ 6H 2 O], manganese chloride [MnCl 2 ・ 4H 2 O] or the like, and then impregnated with an aqueous solution of a manganese compound, followed by baking.
When the aqueous solution of the manganese compound is impregnated and supported on alumina, the amount of water for dissolving the manganese compound may be adjusted so that the ratio of the amount of dissolved water is in the range of 0.7 to 1.3. preferable.
[0012]
The above-mentioned ratio of the amount of dissolved water is determined by the following equation (1).
Dissolved water ratio = amount of water used (ml) / amount of dissolved water (ml) (1)
Here, the amount of water used is a value including water from crystallization water of the manganese compound. The amount of dissolved water refers to the amount of water absorbed by the alumina carrier, and can be determined by the following equation (2).
Dissolved water amount (ml) = pore volume of carrier (ml / g) x carrier amount (g) (2)
Here, the pore volume of the alumina carrier was determined by a mercury intrusion method.
When the manganese compound is impregnated several times, the range of the dissolved water amount ratio is preferably 0.7 to 1.3 each time.
[0013]
Although alumina has been described above as a carrier, the same can be said for carriers other than alumina, for example, silica, silica-alumina, and titania.
Further, the above alumina or alumina supporting a manganese compound is preferably calcined in a temperature range of 600 to 1,200 ° C. from the viewpoint of catalytic activity. The firing atmosphere may be oxygen, air, or an inert gas such as nitrogen or argon depending on the type of manganese compound. Preferably, it is in the range of 900 to 1,000 ° C. That is, either the alumina as the raw material of the carrier or the alumina after supporting the manganese compound may be treated at a high temperature of 600 to 1,200 ° C., and both may be treated at a high temperature. It is better to treat the alumina after supporting the manganese compound at a high temperature. If the temperature is lower than 600 ° C., the effect of improving the catalytic activity may not be obtained. If the temperature exceeds 1,200 ° C., the carrier may be excessively sintered, the surface area may be reduced, and the catalytic activity may be reduced.
[0014]
In addition, when α-alumina is not used as the raw material alumina, it is preferable to partially or entirely convert the catalyst to α-alumina by the above-described high-temperature treatment, and perform powder X-ray diffraction measurement of the catalyst under the following conditions. , Α-alumina phase.
Sample preparation: The catalyst is crushed in an agate mortar and placed on a glass holder
Equipment: Rigaku RAD-B system
Condition: 2θ = 4 to 84 deg
Tube current, voltage: 40 kV, 40 mA (CuKα ray)
Step scan method
Step width: 0.02deg
Sampling time: 1 sec
Background Removal: None
[0015]
Next, the carrier containing manganese oxide supports (a) at least one component selected from the group consisting of a ruthenium component, a platinum component, a rhodium component, a palladium component, and an iridium component, and (b) a cobalt component and / or Or (c) carrying at least one component selected from an alkali metal component, an alkaline earth metal component and a rare earth metal component.
The loading operation may be performed sequentially and separately using a solution in which the components (a), (b), and (c) are dissolved, but the components (a), (b), (a), ( It is economically preferable to use the component c) or a solution in which the components (a), (b), and (c) are dissolved and to carry out the reaction simultaneously.
The loading operation includes various impregnation methods such as heating impregnation method, room temperature impregnation method, vacuum impregnation method, atmospheric pressure impregnation method, impregnation drying method, pore filing method, immersion method, mild infiltration method, wet adsorption method, and spray method. Although various methods such as a coating method and the like can be adopted, an impregnation method is preferable.
About the conditions of the loading operation, similarly to the conventional case, the loading operation can be suitably performed under atmospheric pressure or reduced pressure, and the operating temperature at that time is not particularly limited, and can be performed at room temperature or near room temperature. Then, heating or heating is performed as necessary, for example, at a temperature of about room temperature to about 150 ° C. The contact time is 1 minute to 10 hours.
[0016]
(A) As a ruthenium compound as a component source, for example, RuCl 3 ・ NH 2 O, Ru (NO 3 ) 3 , Ru 2 (OH) 2 Cl 4 ・ 7NH 3 ・ 3H 2 O, K 2 (RuCl 5 (H 2 O)), (NH 4 ) 2 (RuCl 5 (H 2 O)), K 2 (RuCl 5 (NO)), RuBr 3 ・ NH 2 O, Na 2 RuO 4 , Ru (NO) (NO 3 ) 3 , (Ru 3 O (OAc) 6 (H 2 O) 3 ) OAc ・ nH 2 O, K 4 (Ru (CN) 6 ) · NH 2 O, K 2 (Ru (NO 2 ) 4 (OH) (NO)), (Ru (NH) 3 ) 6 ) Cl 3 , (Ru (NH 3 ) 6 ) Br 3 , (Ru (NH 3 ) 6 ) Cl2, (Ru (NH 3 ) 6 ) Br 2 , (Ru 3 O 2 (NH 3 ) 14 ) Cl 6 ・ H 2 O, (Ru (NO) (NH 3 ) 5 ) Cl 3 , (Ru (OH) (NO) (NH 3 ) 4 ) (NO 3 ) 2 , RuCl 2 (PPh 3 ) 3 , RuCl 2 (PPh 3 ) 4 , (RuClH (PPh 3 ) 3 ) ・ C 7 H 8 , RuH 2 (PPh 3 ) 4 , RuClH (CO) (PPh 3 ) 3 , RuH 2 (CO) (PPh 3 ) 3 , (RuCl 2 (Cod)) n , Ru (CO) 12 , Ru (acac) 3 , (Ru (HCOO) (CO) 2 ) n , Ru 2 I 4 (P-cymene) 2 And the like. These compounds may be used alone or in combination of two or more. Preferably, the handling of RuCl 3 ・ NH 2 O, Ru (NO 3 ) 3 , Ru 2 (OH) 2 Cl 4 ・ 7NH 3 ・ 3H 2 O is used.
[0017]
(A) PtCl as a platinum compound as a component source 4 , H 2 PtCl 6 , Pt (NH 3 ) 4 Cl 2 , (NH 4 ) 2 PtCl 2 , H 2 PtBr 6 , NH 4 [Pt (C 2 H 4 ) Cl 3 ], Pt (NH 3 ) 4 (OH) 2 , Pt (NH 3 ) 2 (NO 2 ) 2 And the like.
(A) Na as a rhodium compound as a component source 3 RhCl 6 , (NH 4 ) 2 RhCl 6 , Rh (NH 3 ) 5 Cl 3 , RhCl 3 And the like.
(A) As a palladium compound as a component source, (NH 4 ) 2PdCl 6 , (NH 4 ) 2 PdCl 4 , Pd (NH 3 ) 4 Cl 2 , PdCl 2 , Pd (NO 3 ) 2 And the like.
[0018]
(A) As an iridium compound as a component source, (NH) 4 ) 2 IrCl 6 , IrCl 3 , H 2 IrCl 6 And the like.
(B) Co (NO) 3 ) 2 , Co (OH) 2 , CoCl 2 , CoSO 4 , Co 2 (SO 4 ) 3 , CoF 3 And the like.
Among the components (c), potassium, cesium, rubidium, sodium and lithium are preferably used as alkali metal components.
[0019]
As the compound of the alkali metal component source, for example, K 2 B 10 O 16 , KBr, KBrO 3 , KCN, K 2 CO3, KCl, KCLO 3 , KCLO 4 , KF, KHCO 3 , KHF 2 , KH 2 PO 4 , KH 5 (PO 4 ) 2 , KHSO 4 , KI, KIO 3 , KIO 4 , K 4 I 2 O 9 , KN 3 , KNO 2 , KNO 3 , KOH, KPF 6 , K 3 PO 4 , KSCN, K 2 SO 3 , K 2 SO 4 , K 2 S 2 O 3 , K 2 S 2 O 5 , K 2 S 2 O 6 , K 2 S 2 O 8 , K (CH 3 Ks such as COO); CsCl, CsClO 3 , CsCLO 4 , CsHCO 3 , CsI, CsNO 3 , Cs 2 SO 4 , Cs (CH 3 COO), Cs 2 CO 3 , CsF and other Cs salts; Rb 2 B 10 O 16 , RbBr, RbBrO 3 , RbCl, RbClO 3 , PbCLO 4 , RbI, RbNO 3 , Rb 2 SO 4 , Rb (CH 3 COO) 2 , Rb 2 CO 3 Rb salt; Na 2 B 4 O 7 , NaB 10 O 16 , NaBr, NaBrO 3 , NaCN, Na 2 CO 3 , NaCl, NaClO, NaClO 3 , NaClO 4 , NaF, NaHCO 3 , NaHPO 3 , Na 2 HPO 3 , Na 2 HPO 4 , NaH 2 PO 4 , Na 3 HP 2 O 6 , Na 2 H 2 P 2 O 7 , NaI, NaIO 3 , NaIO 4 , NaN 3 , NaNO 2 , NaNO 3 , NaOH, Na 2 PO 3 , Na 3 PO 4 , Na 4 P 2 O 7 , Na 2 S, NaSCN, Na 2 SO 3 , Na 2 SO 4 , Na 2 S 2 O 5 , Na 2 S 2 O 6 , Na (CH 3 Na salt such as COO); LiBO 2 , Li 2 B 4 O 7 , LiBr, LiBrO 3 , Li 2 CO 3 , LiCl, LiClO 3 , LiClO 4 , LiHCO 3 , Li 2 HPO 3 , LiI, LiN 3 , LiNH 4 SO 4 , LiNO 2 , LiNO 3 , LiOH, LiSCN, Li 2 SO 4 , Li 3 VO 4 And the like.
Barium, calcium, magnesium, and strontium are preferably used as the alkaline earth metal component of the component (c).
[0020]
As a compound of the alkaline earth metal component source, BaBr 2 , Ba (BrO 3 ) 2 , BaCl 2 , Ba (ClO 2 ) 2 , Ba (ClO 3 ) 2 , Ba (ClO 4 ) 2 , BaI 2 , Ba (N 3 ) 2 , Ba (NO 2 ) 2 , Ba (NO 3 ) 2 , Ba (OH) 2 , BaS, BaS 2 O 6 , BaS 4 O 6 , Ba (SO 3 NH 2 ) 2 Such as Ba salt; CaBr 2 , CaI 2 , CaCl 2 , Ca (ClO 3 ) 2 , Ca (IO 3 ) 2 , Ca (NO 2 ) 2 , Ca (NO 3 ) 2 , CaSO 4 , CaS 2 O 3 , CaS 2 O 6 , Ca (SO 3 NH 2 ) 2 , Ca (CH 3 COO) 2 , Ca (H 2 PO 4 ) 2 Ca salt such as MgBr 2 , MgCO 3 , MgCl 2 , Mg (ClO 3 ) 2 , MgI 2 , Mg (IO 3 ) 2 , Mg (NO 2 ) 2 , Mg (NO 3 ) 2 , MgSO 3 , MgSO 4 , MgS 2 O 6 , Mg (CH 3 COO) 2 , Mg (OH) 2 , Mg (ClO 4 ) 2 Etc .; SrBr 2 , SrCl 2 , SrI 2 , Sr (NO 3 ) 2 , SrO, SrS 2 O 3 , SrS 2 O 6 , SrS 4 O 6 , Sr (CH 3 COO) 2 , Sr (OH) 2 And the like.
Among the components (c), yttrium, lanthanum, and cerium are preferably used as the rare earth metal component.
[0021]
As a compound of a rare earth metal component source, Y 2 (SO 4 ) 3 , YCl 3 , Y (OH) 3 , Y 2 (CO 3 ) 3 , Y (NO 3 ) 3 , La 2 (SO 4 ) 3 , La (NO 3 ) 3 , LaCl 3 , La (OH) 3 , La 2 (CO 3 ) 3 , La (CH 3 COO) 3 , Ce (OH) 3 , CeCl 3 , Ce 2 (SO 4 ) 3, Ce 2 (CO 3 ) 3 , Ce (NO 3 ) 3 And the like.
[0022]
Among the above components (a), the amount of at least one component selected from the group consisting of a ruthenium component, a platinum component, a rhodium component, a palladium component and an iridium component is preferably 0 to 100 parts by mass of the carrier in terms of metal. 0.1 to 8 parts by mass, more preferably 0.5 to 5 parts by mass.
The amount of the component (b) to be carried is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, per 100 parts by mass of the carrier in terms of metal.
The amount of the component (c) to be carried is preferably 1 to 20 parts by mass, more preferably 2 to 10 parts by mass, per 100 parts by mass of the carrier in terms of metal.
[0023]
After performing the above-mentioned supporting operation, the support is dried. As a drying method, for example, natural drying, drying using a rotary evaporator or a blow dryer is performed.
In the preparation of the reforming catalyst, calcination is usually performed after drying. In this case, the component (a), which is a catalytically active component, is scattered, oxidized, and further agglomerated by high-temperature calcination, and the catalytic activity is reduced. After the component (a) is carried, it is preferable not to perform sintering because it may cause a reduction.
[0024]
When calcination is not performed, it is preferable to newly combine the decomposition steps of the supported component salts. This is to prevent components carried as chlorides, nitroxides and the like from decomposing in the reactor and flowing out. As the decomposition step, there is a method of heating under an oxygen-free atmosphere (nitrogen, hydrogen, or the like), or a method of reacting with an aqueous alkali solution to change the supported component to hydroxide. Among them, a method using an alkaline aqueous solution is more convenient. In this case, the alkaline aqueous solution is not particularly limited as long as it exhibits alkalinity, and examples thereof include an aqueous ammonia solution and aqueous solutions of alkali metals and alkaline earth metals. In particular, alkali metal hydroxides such as potassium hydroxide and sodium hydroxide are preferably used. In the decomposition step using an alkaline aqueous solution, it is preferable to use a high-concentration alkaline aqueous solution.
When calcination is performed, calcination is performed in air or an inert gas (nitrogen, argan, or the like) at 400 to 800 ° C, preferably 450 to 800 ° C, for 2 to 6 hours, preferably 2 to 4 hours.
[0025]
The shape and size of the catalyst prepared in this way are not particularly limited, and are, for example, generally powdery, spherical, granular, honeycomb, foam, fibrous, cloth, plate, ring, and the like. Various shapes and structures used are available.
Although the prepared catalyst can be used without reduction, it is preferable to perform reduction treatment in terms of catalytic activity. For this reduction treatment, a gas phase reduction method in which the treatment is performed in an air stream containing hydrogen and a wet reduction method in which the treatment is performed with a reducing agent are used. The former gas phase reduction treatment is usually performed in a gas stream containing hydrogen at a temperature of 500 to 800 ° C., preferably 600 to 700 ° C., for 1 to 24 hours, preferably 3 to 12 hours.
The latter wet reduction methods include Birch reduction using liquid ammonia / alcohol / Na, liquid ammonia / alcohol / Li, Benkeser reduction using methylamine / Li, etc., Zn / HCl, Al / NaOH / H. 2 O, NaH, LiAlH 4 And its substituted products, hydrosilanes, sodium borohydride and its substituted products, diborane, formic acid, formalin, hydrazine and other reducing agents. In this case, the reaction is usually performed at room temperature to 100 ° C. for 10 minutes to 24 hours, preferably for 30 minutes to 10 hours.
[0026]
In the method for producing hydrogen or synthesis gas of the present invention, the above-mentioned reforming catalyst of the present invention is used to convert an oxygen-containing hydrocarbon such as dimethyl ether into (1) steam reforming, (2) autothermal reforming, (3) ) Hydrogen or synthesis gas is produced by partial oxidation reforming or (4) carbon dioxide reforming.
Next, each of the reforming methods will be described using a case where dimethyl ether is used as an example.
[Steam reforming]
When the reforming catalyst of the present invention is used, the reaction of dimethyl ether steam reforming is considered to proceed according to the following reaction formula.
CH 3 OCH 3 + H 2 O → 2CH 3 OH (1)
2CH 3 OH + 2H 2 O → 2CO 2 + 6H 2 ... (2)
2CO 2 + 2H 2 → 2CO + 2H 2 O ... (3)
Therefore, in the case of producing hydrogen, the reaction (3) is performed so that the reaction does not easily proceed,
CH 3 OCH 3 + 3H 2 O → 2CO 2 + 6H 2 ... (4)
Reaction conditions may be selected so that the above reaction occurs.
[0027]
On the other hand, when syngas is produced, the reactions (1), (2) and (3) occur so that
CH 3 OCH 3 + H 2 O → 2CO + 4H 2 ... (5)
Reaction conditions may be selected so that the above reaction occurs.
When producing hydrogen, the steam / dimethyl ether molar ratio is theoretically 3, but preferably about 3 to 6. On the other hand, when producing synthesis gas, the vapor / dimethyl ether molar ratio is theoretically 1 to 1. However, about 1-2 is preferable.
The reaction temperature is selected in the range of usually 200 to 500 ° C, preferably 250 to 450 ° C. If the temperature is lower than 200 ° C., the conversion of dimethyl ether may be low. If the temperature is higher than 500 ° C., the catalyst may be degraded in activity. GHSV (gas hourly space velocity) is 100 to 10,000 hours based on dimethyl ether. -1 Is preferable. This GHSV is 100h -1 If it is less than 10,000 hours, the production efficiency is low and is not practically preferable. -1 If it exceeds, the conversion of dimethyl ether becomes too low, which is not practically preferable. The reaction pressure is usually from normal pressure to about 1 MPa. If the pressure is too high, the conversion of dimethyl ether tends to decrease.
[0028]
[Autothermal reforming]
In the autothermal reforming reaction, the oxidation reaction of dimethyl ether and the reaction with steam occur in the same reactor or in a continuous reactor. In this case, the reaction conditions for hydrogen production and synthesis gas production are slightly different, but in general, the oxygen / dimethyl ether molar ratio is preferably selected in the range of 0.1 to 1, and the steam / dimethyl ether molar ratio is preferably Preferably, it is selected in the range of 0.5 to 3. If the oxygen / dimethyl ether molar ratio is less than 0.1, the supply of reaction heat due to heat generation may not be sufficiently performed. On the other hand, if it exceeds 1, complete oxidation may occur and the hydrogen concentration may decrease. If the water vapor / dimethyl ether molar ratio is less than 0.5, the hydrogen concentration may decrease. On the other hand, if it exceeds 3, the supply of heat may be insufficient.
The reaction temperature is selected in the range of usually 200 to 800C, preferably 250 to 500C. The GHSV and the reaction pressure are the same as in the case of the steam reforming.
[0029]
[Partial oxidation reforming]
In the partial oxidation reforming reaction, a partial oxidation reaction of dimethyl ether occurs, and the reaction conditions are slightly different between hydrogen production and synthesis gas production. However, in general, the oxygen / dimethyl ether molar ratio is preferably 0.3 to 1. 5 is selected. If the oxygen / dimethyl ether molar ratio is less than 0.3, the conversion of dimethyl ether may not be sufficiently high, while if it exceeds 1.5, complete oxidation occurs, causing a decrease in the hydrogen concentration. The reaction temperature is selected in the range of usually 200 to 900C, preferably 250 to 600C. The GHSV and the reaction pressure are the same as in the case of the steam reforming.
[0030]
[Carbon dioxide reforming]
In the carbon dioxide reforming reaction, a reaction between dimethyl ether and carbon dioxide occurs, and the reaction conditions are slightly different between hydrogen production and synthesis gas production. 2 The / dimethylether molar ratio is selected in the range of preferably 0.8 to 2, more preferably 0.9 to 1.5. This CO 2 If the / dimethylether molar ratio is less than 0.8, the conversion of dimethylether may not be sufficiently high, while if it exceeds 2, CO2 may be contained in the product. 2 Remains, causing a decrease in the partial pressure of hydrogen and CO 2 2 May be required, which is not preferable. In this reaction, steam can be introduced, and this introduction can increase the hydrogen concentration. The reaction temperature, GHSV and reaction pressure are the same as in the case of the steam reforming.
[0031]
A third invention of the present application is a fuel cell system comprising a reformer provided with the above-described reforming catalyst, and a fuel cell using hydrogen or synthesis gas produced by the reformer as a fuel. This will be described with reference to FIG.
The fuel in the fuel tank 21 is introduced into the desulfurizer 23 via the fuel pump 22. The desulfurizer 23 can be filled with, for example, activated carbon, zeolite, or a metal-based adsorbent. The fuel desulfurized in the desulfurizer 23 is mixed with water from the water tank through the water pump 24, introduced into the vaporizer 1 and vaporized, and then mixed with air sent from the air blower 35 and sent to the reformer 31. It is. The reformer 31 is filled with the above-mentioned reforming catalyst, and the fuel mixture (the mixture containing oxygen-containing hydrocarbon, steam and oxygen) fed into the reformer 31 is used for any of the above-described reforming reactions. This produces hydrogen or synthesis gas.
[0032]
The hydrogen or the synthesis gas produced in this way is reduced through the CO converter 32 and the CO selective oxidizer 33 so that the CO concentration does not affect the characteristics of the fuel cell. Examples of catalysts used in these reactors include an iron-chromium-based catalyst, a copper-zinc-based catalyst and a noble metal-based catalyst in the CO shift converter 32, and a ruthenium-based catalyst and a platinum-based catalyst in the CO selective oxidizer 33. System catalyst or a mixed catalyst thereof.
[0033]
The fuel cell 34 is a polymer electrolyte fuel cell including a polymer electrolyte 34C between a negative electrode 34A and a positive electrode 34B. The hydrogen-rich gas obtained by the above-described method is supplied to the negative electrode side, and the air sent from the air blower 35 is supplied to the positive electrode side after performing appropriate humidification treatment, if necessary (humidifier is not shown). Is done.
At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds on the negative electrode side, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds on the positive electrode side, and a direct current is generated between both electrodes 34A and 34B. I do. In this case, a platinum black or activated carbon-supported Pt catalyst or Pt-Ru alloy catalyst is used for the negative electrode, and a platinum black or activated carbon-supported Pt catalyst or the like is used for the positive electrode.
[0034]
By connecting the burner 31A of the reformer 31 to the negative electrode 34A side, surplus hydrogen can be used as fuel. In addition, the water / water separator 36 is connected to the positive electrode 34B side to separate water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side, and use the water to generate steam. can do. Since heat is generated by the power generation in the fuel cell 34, an exhaust heat recovery device 37 can be provided to recover and effectively use the heat. The exhaust heat recovery device 37 includes a heat exchanger 37A attached to the fuel cell 34 for removing heat generated during the reaction, a heat exchanger 37B for exchanging the heat taken by the heat exchanger 37A with water, and cooling. A heat exchanger 37C is provided with a pump 37D for circulating the refrigerant to the heat exchangers 37A and 37B and the cooler 37C, and the hot water obtained in the heat exchanger 37B can be effectively used in other facilities.
[0035]
[Example]
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Preparation of catalyst)
Catalyst 1
Manganese nitrate [Mn (NO 3 ) 2 ・ 6H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.] 4.79 g was dissolved in 4.5 ml of distilled water, and 20 g of alumina carrier (KHO-24, manufactured by Sumitomo Chemical Co., Ltd., pore volume: 0.42 ml / g) was dissolved. Was impregnated. Then, it was dried in a dryer at 120 ° C. for 3 hours, and then calcined in a muffle furnace at 800 ° C. for 3 hours to prepare an alumina carrier containing 10% by mass of manganese oxide.
Next, ruthenium chloride (RuCl 2) was added to 20 g taken out of the carrier obtained above. 3 ・ NH 2 O, manufactured by Tanaka Kikinzoku Kogyo KK, Ru content: 39.78% by mass) was impregnated with an aqueous solution obtained by dissolving 0.75 g in 7 ml of water, and then allowed to stand at room temperature for 1 hour. Subsequently, the catalyst was immersed in 20 ml of a 5N sodium hydroxide solution, and the compound impregnated for 1 hour was decomposed. Thereafter, the catalyst was thoroughly washed with distilled water and dried in a dryer at 120 ° C. for 3 hours to obtain Catalyst 1. Catalyst 1 contained 1.5 parts by mass of Ru as a metal based on 100 parts by mass of the carrier.
[0036]
Catalyst 2
An alumina carrier containing 10% by mass of manganese oxide was prepared in the same manner as in Catalyst 1.
Then, chloroplatinic acid (H 2 PtCl 6 ・ 6H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in water to prepare a 6 ml aqueous solution. 4.85 ml of the aqueous solution was taken, and 7.4 ml was further added with distilled water. The resultant was impregnated with 20 g of the above carrier, and then left at room temperature for 1 hour. Subsequently, drying was performed at 120 ° C. for 3 hours using a dryer, and further firing was performed at 400 ° C. for 3 hours in a firing furnace to obtain Catalyst 2. Catalyst 2 contained 1.5 parts by mass of Pt as a metal with respect to 100 parts by mass of the carrier.
Catalyst 3
20 g of an alumina carrier (KHO-24, manufactured by Sumitomo Chemical Co., Ltd.) was fired in a firing furnace at 800 ° C. for 3 hours. Thereafter, a catalyst 3 was obtained in the same manner as the catalyst 1. Catalyst 3 contained 1.5 parts by mass of Ru as a metal with respect to 100 parts by mass of the carrier.
Catalyst 4
20 g of an alumina carrier (KHO-24, manufactured by Sumitomo Chemical Co., Ltd.) was fired in a firing furnace at 800 ° C. for 3 hours. Thereafter, a catalyst 4 was obtained in the same manner as the catalyst 2. The catalyst 4 contained 1.5 parts by mass of Pt as a metal based on 100 parts by mass of the carrier.
[0037]
Catalyst 5
Zirconium oxynitrate [ZrO (NO 3 ) 2 ・ 2H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.] was dissolved in 7.8 ml of distilled water, and impregnated with 20 g of an alumina carrier (KHO-24, manufactured by Sumitomo Chemical Co., Ltd.). Then, it was dried at 120 ° C. for 3 hours in a drier, and then calcined at 800 ° C. for 3 hours in a muffle furnace to prepare an alumina carrier containing 8% by mass of zirconium oxide. Thereafter, a catalyst 5 was obtained in the same manner as the catalyst 2. The catalyst 5 contained 1.5 parts by mass of Pt as a metal with respect to 100 parts by mass of the carrier.
[0038]
Catalyst 6
Trade name: C18.7 (Cu-Zn-Al catalyst, manufactured by Sudo Chemie Catalysts Co., Ltd.) was purchased and used as Catalyst 6.
Catalyst 7
Manganese acetate [Mn (CH 3 COO) 2 ・ 6H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.] was dissolved in 6.7 ml of distilled water and impregnated with 20 g of an alumina carrier (KHO-24, manufactured by Sumitomo Chemical Co., Ltd.). Then, it was dried in a dryer at 120 ° C. for 3 hours, and then calcined in a muffle furnace at 800 ° C. for 3 hours to prepare an alumina carrier containing 10% by mass of manganese oxide.
Next, ruthenium chloride (RuCl 2) was added to 20 g taken out of the carrier obtained above. 3 ・ NH 2 O, manufactured by Tanaka Kikinzoku Kogyo KK, with a Ru content of 39.78% by mass) 0.75 g and cobalt nitrate [Co (NO 3 ) 2 ・ 6H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.] was impregnated with an aqueous solution obtained by dissolving 1.02 g in 7.8 ml of water, and then allowed to stand at room temperature for 1 hour. Subsequently, the catalyst was immersed in 20 ml of a 5N sodium hydroxide solution, and the compound impregnated for 1 hour was decomposed. Thereafter, the catalyst was thoroughly washed with distilled water, and dried in a dryer at 120 ° C. for 3 hours to obtain Catalyst 7. The catalyst 7 contained 1.5 parts by mass of Ru and 1 part by mass of Co as a metal with respect to 100 parts by mass of the support.
[0039]
Examples 1-3 and Comparative Examples 1-4
2 ml of each catalyst was filled into a quartz reaction tube having an inner diameter of 1.7 cm while remaining spherical. After performing a hydrogen reduction treatment at 300 ° C. (catalysts 1, 3, and 7), 450 ° C. (catalysts 2, 4, and 5), and 230 ° C. (catalyst 6) for 1.5 hours in a hydrogen stream in the reaction tube. Using commercially available dimethyl ether (hereinafter also referred to as DME) as a raw material, DME and steam were introduced under the conditions of GHSV = 5,000 h-1 (Dry-base) and steam / carbon (molar ratio) = 2.5. The steam reforming reaction was performed at a normal pressure and a reaction temperature of 400 ° C. After one hour, the gas obtained was sampled, and the DME conversion was determined by the following equation. The results are shown in Table 1.
[0040]
DME conversion (%) = [(exit CO, CO 2 , CH 4 Carbon mole flow rate) / (carbon mole flow rate at inlet DME)] × 100
[0041]
[Table 1]
Figure 2004344721
[0042]
As can be seen from Table 1, the catalyst containing Mn shows very high DME conversion in steam reforming of DME.
[0043]
【The invention's effect】
According to the present invention, an oxygen-containing hydrocarbon reforming catalyst having excellent durability and greatly improved activity, and performing various reforming on the oxygen-containing hydrocarbon using the reforming catalyst to convert hydrogen or synthesis gas An efficient manufacturing method can be provided. In addition, it is possible to manufacture an excellent fuel cell system having a reformer equipped with such an excellent reforming catalyst and a fuel cell using hydrogen or synthesis gas produced by the reformer as a fuel. .
[Brief description of the drawings]
FIG. 1 is a schematic flowchart of a fuel cell system of the present invention.
[Explanation of symbols]
1: vaporizer
11: Water supply pipe
12: Fuel introduction pipe
15: Connecting pipe
21: Fuel tank
22: Fuel pump
23: Desulfurizer
24: Water pump
31: Reformer
31A: Reformer burner
32: CO transformer
33: CO selective oxidizer
34: Fuel cell
34A: fuel cell negative electrode
34B: Fuel cell positive electrode
34C: Fuel cell polymer electrolyte
35: Air blower
36: Steam-water separator
37: Waste heat recovery device
37A: Heat exchanger
37B: Heat exchanger
37C: Cooler
37D: Refrigerant circulation pump

Claims (10)

酸化マンガンを含む担体に(a)ルテニウム成分、白金成分、ロジウム成分、パラジウム成分及びイリジウム成分から選ばれる少なくとも一種の成分を担持してなる酸素含有炭化水素の改質触媒。An oxygen-containing hydrocarbon reforming catalyst comprising: (a) at least one component selected from a ruthenium component, a platinum component, a rhodium component, a palladium component, and an iridium component supported on a carrier containing manganese oxide. 更に、(b)コバルト成分及び/又は(c)アルカリ金属成分、アルカリ土類金属成分及び希土類金属成分から選ばれる少なくとも一種の成分を担持してなる請求項1記載の酸素含有炭化水素の改質触媒。The oxygen-containing hydrocarbon reforming according to claim 1, further comprising (b) a cobalt component and / or (c) at least one component selected from an alkali metal component, an alkaline earth metal component, and a rare earth metal component. catalyst. 担体中の酸化マンガンの量が5〜95質量%である請求項1又は2に記載の酸素含有炭化水素の改質触媒。The oxygen-containing hydrocarbon reforming catalyst according to claim 1 or 2, wherein the amount of manganese oxide in the carrier is 5 to 95% by mass. 担体が酸化マンガンとアルミナからなるものである請求項1〜3のいずれかに記載の酸素含有炭化水素の改質触媒。The catalyst for reforming an oxygen-containing hydrocarbon according to any one of claims 1 to 3, wherein the carrier comprises manganese oxide and alumina. ルテニウム成分、白金成分、ロジウム成分、パラジウム成分及びイリジウム成分から選ばれる少なくとも一種の成分の担持量が、金属換算で、担体100質量部に対して、0.1〜8質量部である請求項1〜4のいずれかに記載の酸素含有炭化水素の改質触媒。【請求項6】酸素含有炭化水素が、メタノール、エタノール、ジメチルエーテル及びメチルエチルエーテルから選ばれる少なくとも一種である請求項1〜5のいずれかに記載の酸素含有炭化水素の改質触媒。The amount of the at least one component selected from the group consisting of a ruthenium component, a platinum component, a rhodium component, a palladium component and an iridium component is 0.1 to 8 parts by mass, based on 100 parts by mass of the carrier, in terms of metal. 5. The reforming catalyst for an oxygen-containing hydrocarbon according to any one of claims 1 to 4. 6. The reforming catalyst for an oxygen-containing hydrocarbon according to claim 1, wherein the oxygen-containing hydrocarbon is at least one selected from methanol, ethanol, dimethyl ether and methyl ethyl ether. 請求項1〜6のいずれかに記載の改質触媒を用い、酸素含有炭化水素を水蒸気改質することを特徴とする水素又は合成ガスの製造方法。A method for producing hydrogen or synthesis gas, comprising steam reforming an oxygen-containing hydrocarbon using the reforming catalyst according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載の改質触媒を用い、酸素含有炭化水素を自己熱改質することを特徴とする水素又は合成ガスの製造方法。A method for producing hydrogen or synthesis gas, wherein the reforming catalyst according to claim 1 is used for autothermal reforming of an oxygen-containing hydrocarbon. 請求項1〜6のいずれかに記載の改質触媒を用い、酸素含有炭化水素を部分酸化改質することを特徴とする水素又は合成ガスの製造方法。A method for producing hydrogen or synthesis gas, comprising partially oxidizing and reforming an oxygen-containing hydrocarbon using the reforming catalyst according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載の改質触媒を用い、酸素含有炭化水素を二酸化炭素改質することを特徴とする水素又は合成ガスの製造方法。A method for producing hydrogen or synthesis gas, comprising reforming an oxygen-containing hydrocarbon with carbon dioxide using the reforming catalyst according to claim 1. 請求項1〜6のいずれかに記載の改質触媒を備える改質器と、該改質器により製造される水素又は合成ガスを燃料とする燃料電池とを有することを特徴とする燃料電池システム。A fuel cell system comprising: a reformer provided with the reforming catalyst according to claim 1; and a fuel cell using hydrogen or synthesis gas produced by the reformer as a fuel. .
JP2003142574A 2003-05-20 2003-05-20 Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system Expired - Fee Related JP4398670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142574A JP4398670B2 (en) 2003-05-20 2003-05-20 Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142574A JP4398670B2 (en) 2003-05-20 2003-05-20 Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system

Publications (2)

Publication Number Publication Date
JP2004344721A true JP2004344721A (en) 2004-12-09
JP4398670B2 JP4398670B2 (en) 2010-01-13

Family

ID=33530622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142574A Expired - Fee Related JP4398670B2 (en) 2003-05-20 2003-05-20 Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system

Country Status (1)

Country Link
JP (1) JP4398670B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174704A (en) * 2003-12-10 2005-06-30 National Institute Of Advanced Industrial & Technology Reformer for fuel cell, fuel cell and method of operating fuel cell
JP2006346598A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Steam reforming catalyst
WO2007075476A2 (en) * 2005-12-21 2007-07-05 Virent Energy Systems Inc. Catalysts and methods for reforming oxygenated compounds
JP2007534114A (en) * 2003-11-17 2007-11-22 フォード モーター カンパニー Direct operation of low-temperature solid oxide fuel cells using oxygenated fuel
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide
US7977517B2 (en) 2007-03-08 2011-07-12 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
KR101166074B1 (en) * 2010-08-17 2012-07-23 한국화학연구원 Manganese based Catalysts for Carbon dioxide reforming of Methane, Preparing method thereof, and Preparing method of Syngas using the same
US8350108B2 (en) 2008-08-27 2013-01-08 Virent, Inc. Synthesis of liquid fuels from biomass
US8834587B2 (en) 2006-12-20 2014-09-16 Virent, Inc. Method of producing gaseous products using a downflow reactor
KR20190135801A (en) * 2018-05-29 2019-12-09 한국화학연구원 Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
CN112717922A (en) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Tert-butyl alcohol pretreatment catalyst and preparation method and application thereof
CN114314508A (en) * 2021-11-30 2022-04-12 西安交通大学 Poly-generation method and system for coupling biomass baking and chemical chain conversion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102186058B1 (en) 2018-05-29 2020-12-03 한국화학연구원 Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534114A (en) * 2003-11-17 2007-11-22 フォード モーター カンパニー Direct operation of low-temperature solid oxide fuel cells using oxygenated fuel
US7482075B2 (en) 2003-12-10 2009-01-27 National Institute Of Advanced Industrial Science And Technology Reforming apparatus for fuel cell, fuel cell and operation method of fuel cell
JP2005174704A (en) * 2003-12-10 2005-06-30 National Institute Of Advanced Industrial & Technology Reformer for fuel cell, fuel cell and method of operating fuel cell
JP4555961B2 (en) * 2003-12-10 2010-10-06 独立行政法人産業技術総合研究所 FUEL CELL AND METHOD OF OPERATING FUEL CELL
JP2006346598A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Steam reforming catalyst
AU2006332008B2 (en) * 2005-12-21 2012-09-06 Virent, Inc. Catalysts and methods for reforming oxygenated compounds
US8231857B2 (en) 2005-12-21 2012-07-31 Virent, Inc. Catalysts and methods for reforming oxygenated compounds
WO2007075476A3 (en) * 2005-12-21 2008-03-20 Virent Energy Systems Inc Catalysts and methods for reforming oxygenated compounds
AU2006332008C1 (en) * 2005-12-21 2014-02-20 Virent, Inc. Catalysts and methods for reforming oxygenated compounds
KR101364280B1 (en) 2005-12-21 2014-02-18 바이렌트, 아이엔씨. Catalysts and methods for reforming oxygenated compounds
CN101346302A (en) * 2005-12-21 2009-01-14 维仁特能源***公司 Catalysts and methods for reforming oxygenated compounds
WO2007075476A2 (en) * 2005-12-21 2007-07-05 Virent Energy Systems Inc. Catalysts and methods for reforming oxygenated compounds
US8834587B2 (en) 2006-12-20 2014-09-16 Virent, Inc. Method of producing gaseous products using a downflow reactor
US8053615B2 (en) 2007-03-08 2011-11-08 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US7977517B2 (en) 2007-03-08 2011-07-12 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US8933281B2 (en) 2007-03-08 2015-01-13 Virent, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US8362307B2 (en) 2007-03-08 2013-01-29 Virent, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US8367882B2 (en) 2007-03-08 2013-02-05 Virent, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US8455705B2 (en) 2007-03-08 2013-06-04 Virent, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US8017818B2 (en) 2007-03-08 2011-09-13 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
US8350108B2 (en) 2008-08-27 2013-01-08 Virent, Inc. Synthesis of liquid fuels from biomass
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide
KR101166074B1 (en) * 2010-08-17 2012-07-23 한국화학연구원 Manganese based Catalysts for Carbon dioxide reforming of Methane, Preparing method thereof, and Preparing method of Syngas using the same
KR20190135801A (en) * 2018-05-29 2019-12-09 한국화학연구원 Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
KR102186052B1 (en) * 2018-05-29 2020-12-03 한국화학연구원 Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
CN112717922A (en) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Tert-butyl alcohol pretreatment catalyst and preparation method and application thereof
CN112717922B (en) * 2019-10-28 2023-01-10 中国石油化工股份有限公司 Tert-butyl alcohol pretreatment catalyst and preparation method and application thereof
CN114314508A (en) * 2021-11-30 2022-04-12 西安交通大学 Poly-generation method and system for coupling biomass baking and chemical chain conversion
CN114314508B (en) * 2021-11-30 2023-07-11 西安交通大学 Poly-generation method and system for coupling biomass baking and chemical chain conversion

Also Published As

Publication number Publication date
JP4398670B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
KR101280200B1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
JP5080319B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JPWO2002038268A1 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming method using the same
JP2008149313A (en) Catalyst for fuel reforming reaction and method for manufacturing hydrogen using the same
Matus et al. Hydrogen production through autothermal reforming of CH4: Efficiency and action mode of noble (M= Pt, Pd) and non-noble (M= Re, Mo, Sn) metal additives in the composition of Ni-M/Ce0. 5Zr0. 5O2/Al2O3 catalysts
JP4398670B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP4460126B2 (en) Method for removing carbon monoxide from hydrogen-containing gas
JP4620230B2 (en) Carbon monoxide removal catalyst in hydrogen-containing gas and method for removing carbon monoxide in hydrogen-containing gas using the catalyst
JP2004230312A (en) Hydrocarbon reforming catalyst
JP4478280B2 (en) Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
EP1852181A1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
JPH09131531A (en) Catalyst for removal of co in hydrogen-containing gas and method for removing co in hydrogen-containing gas with same
JP5164297B2 (en) CO oxidation catalyst and method for producing hydrogen-containing gas
JP4478281B2 (en) Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP4316181B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JP4252783B2 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming method using the same
JP2006043587A (en) Reforming catalyst of oxygen-containing hydrocarbon, reforming method of oxygen-containing hydrocarbon using it, and fuel cell system
JP4463914B2 (en) Method for producing hydrogen-containing gas for fuel cell
JP2005185989A (en) Reforming catalyst of oxygen containing hydrocarbon, method for manufacturing hydrogen or synthetic gas using the same and fuel cell system
JP2002273225A (en) Method for manufacturing co removing catalyst
JP2001213612A (en) Process of producing hydrogen containing gas for fuel cell
JP2002273222A (en) Catalyst for removing co
JP2006314870A (en) Shift catalyst
JP2006043608A (en) Shift catalyst and method for producing it
JP2003170048A (en) Methanol modifying catalyst and method for manufacturing hydrogen-containing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees