JP2004344039A - Method for diagnosing risk of type 2 diabetes with calpain 10 gene - Google Patents

Method for diagnosing risk of type 2 diabetes with calpain 10 gene Download PDF

Info

Publication number
JP2004344039A
JP2004344039A JP2003143091A JP2003143091A JP2004344039A JP 2004344039 A JP2004344039 A JP 2004344039A JP 2003143091 A JP2003143091 A JP 2003143091A JP 2003143091 A JP2003143091 A JP 2003143091A JP 2004344039 A JP2004344039 A JP 2004344039A
Authority
JP
Japan
Prior art keywords
diabetes
type
risk
gene
allele
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143091A
Other languages
Japanese (ja)
Inventor
Naoko Iwasaki
直子 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUTAAGEN KK
StaGen Co Ltd
Original Assignee
SUTAAGEN KK
StaGen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUTAAGEN KK, StaGen Co Ltd filed Critical SUTAAGEN KK
Priority to JP2003143091A priority Critical patent/JP2004344039A/en
Publication of JP2004344039A publication Critical patent/JP2004344039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for diagnosing the risk of Japanese type 2 diabetes by the detection of the calpain 10 gene polymorphism of a genome DNA especially originated from human being. <P>SOLUTION: This method for diagnosing the risk of the type 2 diabetes is characterized by measuring the allele of the calpain 10 gene polymorphism SNP 63 of human genome DNA. It is judged that the presence of T allele of the SNP 63 significantly raises the risk of the type 2 diabetes, and the presence is useful for diagnosing the risk of Japanese type 2 diabetes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ヒトゲノムDNAの糖代謝関連遺伝子のCalpain10遺伝子多型を測定する2型糖尿病の診断方法に関する。特にヒト由来ゲノムDNAのCalpain10遺伝子多型の検出による日本人における2型糖尿病のリスクの診断方法に関する。
【0002】
【従来の技術】
糖尿病は、血液中のブドウ糖濃度を一定範囲に維持する恒常性の破綻によりブドウ糖濃度の慢性的な上昇を引き起こす代謝異常であり、遺伝素因を有する個体に発症する。糖尿病の遺伝形式は常染色体優性遺伝により発症するMODY(maturity onset diabetes of the young)やミトコンドリア糖尿病などの単一遺伝と、複数の遺伝因子と肥満、過食、運動不足、ストレスなどの環境因子により発症する1型糖尿病や2型糖尿病の多因子遺伝に大別できる。
【0003】
日本の糖尿病患者数は1997年の厚生省の調査によると約800万人と推定されており(非特許文献1参照)、1962年の調査時と比較して26.5倍に増加している。なかでも2型糖尿病が糖尿病患者全体の95%以上を占めている。この事実は最近35年間に生じた日本における劇的な環境の変化を反映しており、同時に日本人の2型糖尿病に対する易罹患性を示唆している可能性がある。
【0004】
糖尿病の多因子遺伝のうち1型糖尿病はすい臓のインスリンを分泌するランゲルハンス島のβ細胞が破壊されることにより、最終的にはインスリンが完全に欠乏し、この過程で血糖値の上昇が認められるようになる。インスリンの絶対的欠乏により生物は食物より得られたブドウ糖を体内の細胞で利用できなくなり、急速に衰弱し、死に至る従って、完成した1型糖尿病ではインスリンを補うことが唯一の治療法となる。
【0005】
一方で2型糖尿病は、インスリンの相対的不足を特徴とする。つまりインスリンの分泌能力が低下することにより量的な不足状態に陥るインスリン分泌不全の場合、およびインスリンの量的には問題ないが作用が弱まり質的に不足する場合、これをインスリン抵抗性というが、この二つの要因が単独または相互に関連し発症すると考えられている。2型糖尿病において、インスリン分泌不全は主に遺伝因子が関与しており、インスリン抵抗性は遺伝因子と環境因子の両方が関与していると考えられている。これらの2つの要因が単独または相互に関連し糖尿病を発症するといわれている。
【0006】
糖尿病や糖尿病の合併症に関連して発症する生活習慣病は、一旦発症すると慢性的な経過をたどり、生涯を通して闘病生活を強いられるものが多く、その医療費は高度医療や長期にわたる治療によって高額となる。しかも糖尿病性血管合併症に由来して発症する心筋梗塞、冠動脈疾患や脳血管障害などにかかる医療費を含めると、医療費は莫大なものとなり、患者本人、家族ならびに医療行政の経済的基盤を圧迫する。従って、糖尿病の診断・予防方法ならびに根本的な治療方法の確立が強く望まれている。
【0007】
糖尿病の診断にはHbA1cや空腹時と食後の尿糖、血糖の測定や糖負荷試験が行われる。これらは日常において測定される機会がほとんどなく、糖尿病の大多数の症例において、患者に自覚がない状態で健康診断などの機会に発見される。しかし、早期に自らの糖尿病の易罹患性を知り、その予防に努めている場合、糖尿病の発症が避けられることが多い。つまり糖尿病の易罹患性を早期に診断できる方法を確立することが、多くのケースにおいて糖尿病の発症を抑えることにつながる。
【0008】
これらの方法の確立において、糖尿病の遺伝因子を探ることが重要となる。1型糖尿病は免疫細胞であるTリンパ球が、免疫作用の異常によりすい臓のβ細胞を破壊してしまう自己免疫疾患であることから、Tリンパ球の細胞表面に存在する主要組織適合抗原HLA(ヒト白血球抗原)遺伝子が着目された。またインスリン遺伝子も着目され、両者とも1型糖尿病の遺伝因子として相関解析において統計学的に有意な関連が認められた。
【0009】
日本人糖尿病患者の大部分を占める2型糖尿病においては、すい臓のβ細胞のインスリン分泌障害が大きく関わることから、遺伝因子はすい臓のβ細胞機能に関連する遺伝子であると考えられ、現在までにインスリン分泌に関連する遺伝子異常として、インスリン遺伝子、ミトコンドリア遺伝子、MODY遺伝子(1から6まで同定されている)が解析された。しかし、現在までに明らかになっている遺伝子異常による糖尿病は全体の5%にすぎず、1つ1つはそれほど決定的ではなかった。
【0010】
また、多くの民族においても2型糖尿病の遺伝因子の解明を目的とした全ゲノムアプローチが行われた。フィンランド西側のボツニア湾に面した地域の住民を対象としたBotnia studyやフィンランド人家系を対象としたFUSION (Finland −United State Investigation of NIDDM genetics Study)や、フランス、アメリカ(Amish, Uta familyなど)の複数チームの報告がある。しかし、いずれも遺伝因子のクローニングには至っていない。
【0011】
一方で、アメリカ先住民族と白人の混血で、2型糖尿病の発症率の高いメキシコ系アメリカ人においてはクローニングが成功し、2型糖尿病の関連遺伝子として唯一Calpain10遺伝子が同定された。Calpain10はカルパイン様のシステイン分解酵素であり、膵臓ランゲルハンス氏島、骨格筋、肝臓などの組織においてあまねく発現している。また、ラットやマウスの膵臓ランゲルハンス氏島細胞や骨格筋、脂肪細胞においてインスリン分泌やインスリン感受性に影響を及ぼすことがわかっている。
【0012】
Calpain10遺伝子は15個のエクソンで構成される。SNP43(SNP:single nucleotide polymorphism)はイントロン3に存在するG/A遺伝子多型であり、SNP19はイントロン6に存在する繰り返しの1単位が32塩基である繰り返し配列(STRP:simple tandem repeat polymorphism)における繰り返し回数に基づいた多型であり、SNP63はイントロン13に存在するC/T遺伝子多型である。
【0013】
なかでもSNP43のG/A多型は、メキシコ系アメリカ人において2型糖尿病と有意に相関し、G/G遺伝子型において2型糖尿病のリスクを高め、この多型単独で連鎖解析において認められた連鎖をすべて説明し得た(非特許文献2,3参照)。また、ピマインディアンにおいては骨格筋におけるCalpain10遺伝子のmRNAレベルがSNP43多型と有意に相関することが示された(非特許文献4,5参照)。さらに、フィンランド人、ドイツ人、イギリス人、インド人においても2型糖尿病のリスクを高め、アフリカ系アメリカ人でもG/G遺伝子型が2型糖尿病疾患感受性を有意に高めることが示された(非特許文献6参照)。一方でデンマーク人単独では2型糖尿病のリスクには影響せず、また糖代謝と関連する遺伝形質とも相関は認められなかったが、程度の差はあるものCalpain10遺伝子が人種を超えて一貫して2型糖尿病の疾患感受性に影響することを示唆していると考えられる。
【0014】
遺伝性疾患において、遺伝素因が人種により異なることは明らかである。しかしながら、アジア民族において、2型糖尿病に対するCalpain10遺伝子の影響はほとんど解明されていない。本発明者らはCalpain10遺伝子の多型と2型糖尿病発症のリスクとの関係を追及したところ驚くべきことに、アジア民族、特に日本人においてはCalpain10遺伝子の遺伝子多型のSNP43のアレルではなく、SNP63のアレルが2型糖尿病の発症のリスクと深い関連があることを見出して本発明を完成した。
【0015】
遺伝子多型とは、DNA(デオキシリボ核酸)の4種類の塩基の組合せからなる配列において個人ごとに塩基が異なる現象及びその部位のことをさす。遺伝子多型のうち、SNPとは個人における1塩基(1遺伝子)の違い及びその部位をいい、このような遺伝子の違いが個人ごとの表現型や疾患のリスクに関わると考えられている。従って、疾患に特異的な遺伝子を見出し、その遺伝子を含む塩基配列を固定したDNAチップなどを作成し、医療の現場で利用することは、個人における疾患のリスクを簡便に検出できる方法として期待される。
【0016】
【非特許文献1】
Office for Lifestyle−Related Disease Control, Ministry of Health and Welfare: Diabetes Survey 1997. Tokyo, Japan, Ministry of Health and Welfere, Government of Japan
【非特許文献2】
A genome−wide search for human non−insulin−diependent(type2) diabetes genes reveals a major susceptibility locus on chromosome2. Net Genet 13:161−166, 1996
【非特許文献3】
Genetic variations in the gene encoding calpain−10 is associated with Type 2 diabetes mellitus. Net Genet 26:163−75, 2000
【非特許文献4】
Calpains play a role in insulin secretion and action. Diabetes 50:2013−2020,2001
【非特許文献5】
A calpain−10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J Clin Invest 106:R69−R73,2000
【非特許文献6】
CAPN 10 is associated with Type 2 diabetes in African−Americans: The Atheloscrelosis Risk in Communities (ARIC) Study. Diabetes51:231−237,2002
【0017】
【本発明が解決しようとする課題】
本発明は、Calpain10遺伝子多型がアジア人種、特に日本人における2型糖尿病のリスクに与える効果を解析し、2型糖尿病に特徴的な遺伝子型を明らかにし、その利用方法を提供することを課題とする。より具体的には、ヒト由来ゲノムDNAのCalpain10遺伝子多型の検出によるアジア民族、特に日本人における2型糖尿病のリスクの診断方法の提供を課題とする。
【0018】
【課題を解決するための手段】
本発明者らは上記課題を解決するために、日本人において2型糖尿病を有する者と正常対照者を対象とし、Calpain10遺伝子多型のケースコントロール解析を行った。また、75g経口ブドウ糖負荷試験で正常型であった対象者に対し、生理的解析を行った。その結果、特に、日本人において特徴的なCalpain10遺伝子多型を同定するとともに、その利用方法を提供するに至った。より具体的には、ヒト由来ゲノムDNAのCalpain10遺伝子多型の検出による2型糖尿病のリスク、特に日本人の2型糖尿病の診断方法である。
【0019】
すなわち、本発明は、次のとおりの2型糖尿病のリスクを診断する方法に関する。
1. ヒトゲノムDNAのCalpain10遺伝子の遺伝子多型SNP63のアレルを測定することを特徴とする2型糖尿病のリスクの診断方法。
2. 前記1の方法において遺伝子多型SNP63のアレルの割合を測定しTアレル(アレル2)を有する個体では2型糖尿病のリスクを有意に上昇させる前記1記載の2型糖尿病のリスクの診断方法。
3. ヒトゲノムDNAが、ヒト体液、特にヒト末梢血白血球から抽出されたものを使用する前記1または2に記載の2型糖尿病のリスクの診断方法。
4. ヒトゲノムDNAがアジア民族のゲノムDNAである請求項1〜3のいずれかに記載の診断方法。
5. ヒトゲノムDNAが日本人のゲノムDNAである前記1〜3のいずれかに記載の2型糖尿病のリスク診断方法。
【0020】
【発明の実施の形態】
以下、実施例をあげて本発明をさらに詳細に説明するが、本発明は、何らこれらに限定されるものではない。
【0021】
【実施例1】
1.ケースコントロール解析
<対象>
ケース(2型糖尿病者) 男性121名・女性84名 合計205名
正常対照者 男性140名・女性68名 合計208名
正常対照者の条件は、解析時に年齢が60歳以上で、2型糖尿病の家族暦がなく、過去に高血糖を指摘されたことがなく、さらにHbA1c(hemoglobin A1c)<5.6%であるという項目をすべて満たすものとした。
ケースである2型糖尿病者は、東京女子医科大学糖尿病センターから、正常対照者は東京女子医科大学附属成人医学センターから収集し、遺伝子解析研究に関わる倫理審査委員会を経た上で本解析を行った。参加者には研究開始時に研究内容を説明して同意を得た。ケース並びに対照者の詳細は表1に示した。
【0022】
【表1】

Figure 2004344039
【0023】
<ゲノムDNA増幅反応>
ケースおよび正常対照者の末梢血白血球よりゲノムDNAを抽出した。該ゲノムDNAより、SNP43、SNP19、SNP63の各変異部位を含むDNA領域をPCR(polymerase chain reaction)により増幅を行った。SNP43はミスマッチPCRにより、またSNP63はPCR−RFLP(polymerase chain reaction −reaction fragment length polymorphism)により、また、SNP19は単純なPCRにより増幅を行った。
SNP43のPCRプライマーはG/A多型の部位をはさむようにデザインし、5’側のプライマーの配列(配列表配列番号1)と、G塩基検出用の3’側のプライマー(配列表配列番号2)とA塩基検出用の3’側のプライマー(配列表配列番号3)各々1つ作成した。DNA増幅反応は総量25μlの系で行い、2.5μlのEx buffer(宝酒造)、0.2μlのEx Taq(宝酒造)、3.0μlの4mM dNTP、10mMのプライマー各々1μlずつ用いた。PCRの条件は、はじめに95℃で30秒間denatureを行い、続いてannealingは59℃で30秒間、extensionは72℃で30秒間を合計30サイクル行い、最後に72℃、10分間final extensionを行った。
SNP19のPCRプライマーは繰り返しの1単位が32塩基である繰り返し配列の部位をはさむようにデザインし、5’側のプライマー(配列表配列番号4)と3’側のプライマー(配列表配列番号5)を各々1つ作成した。PCRはannealing温度が60℃であること以外はSNP43と同様の条件で行った。
SNP63のPCRプライマーは5’側のプライマー(配列表配列番号6)に切断酵素HhaIで認識される新たな切断部位を導入するために1塩基のミスマッチ配列をもつプライマーを作成した。5’側のプライマーの配列のうち、ミスマッチの個所は大文字のCで表した。正常ではaとなる。3’側のプライマーは配列表配列番号7に示した。PCRはSNP43と同様の条件で行った。
【0024】
<遺伝子型の決定>
該PCRにより増幅した産物は、いずれも2%アガロース泳動分離にて変異の遺伝子型を決定した。SNP43のG/A多型は反応する3’側のプライマーの違いにより遺伝子型を決定した。また、SNP19の2回/3回繰り返し多型は繰り返しの数によってPCR産物が155bpまたは187bpとなることより遺伝子型を決定した。またSNP63のPCR産物は192bpであり、該PCR産物に5μlのBuffer、10μlの10×BSA、0.2μlのHhaIおよび9.8μlのddHOを加えて37℃で2時間の制限酵素処理を行った。SNP63のアレルがGの場合にはPCR産物が162bpと30bpに切断されることより遺伝子型を決定した。
タイピングの誤りを防ぐため、予め塩基配列が確認できているDNAをすべての実験に用いてタイピングの精度管理を行った。
【0025】
<統計学的処理>
アレル、遺伝子型の集団における比較にはχtestを用いた。解析では以下のように各SNPのアレルを数に変換して用いた。SNP43ではGを1、Aを2とした。SNP19では繰り返し配列2回を1とし、3回を2とした。
SNP63ではCを1、Tを2とした。性を独立変数として年齢とBMIを従属変数とした。統計学的な有意水準はp=0.05以下とした。SPSS package(Ver.11.0)とStatView(Ver.5.0)プログラムを用いた。
【0026】
SNP19、SNP43およびSNP63のタイピングはすべてHardy−Weinberg平衡にあった。メキシコ系アメリカ人で2型糖尿病のリスクに関連したSNP43のGアレル(アレル1)の割合は、日本人では2型糖尿病でも正常対照者でも95%であった。今回の対象ではSNP43の遺伝子型がA/A(2/2)の個体は存在せず、また2型糖尿病と正常対照者で何ら差は認められなかった。同様に、SNP19のアレルおよび遺伝子型の割合に差は認められなかった。しかしながら、SNP63においてTアレル(アレル2)の割合が2型糖尿病において有意に高値であることを認めた(p=0.042,OR=1.3604:1.0101−1.9899:95%C.I)。一方、遺伝子型がC/T(1/2)あるいはC/C(1/1)であるものの割合は2型糖尿病と正常対照で差がなかった。ケースコントロール解析の結果は表2に示した。
【0027】
【表2】
Figure 2004344039
【0028】
【実施例2】
2.生理学的解析
<対象>
健康なボランティア 男性146名・女性135名 合計281名
健康なボランティア全員に対して75g経口ブドウ糖負荷試験を行い、1997年のアメリカ糖尿病学会の判定基準により正常型であることを確認した。これらのうち、BMIが25以上であった者は全体の14.2%に過ぎなかった。
このボランティアらは東京女子医科大学糖尿病センター、山口大学医学部附属病院、東京大学医学部附属病院、至誠会第二病院より収集し、遺伝子解析研究に関わる倫理審査委員会を経た上で本解析を行った。対象者には研究開始時に研究内容を説明して同意を得た。この対象者の詳細は表3に示した。
【0029】
【表3】
Figure 2004344039
【0030】
<血漿インスリン値と血糖値の測定および75g経口ブドウ糖負荷試験>
各々の施設において対象者の血漿インスリン値、血糖値を測定した。また75g経口ブドウ糖負荷試験における初期30分のβ細胞反応性の指標としてI.I.(Insulinogenic Index)を用いた。空腹時におけるインスリン抵抗性およびβ細胞からのインスリン分泌能の指標としてHOMA−モデルのHOMA−R(homeostasis model assessment insulin resistance)およびHOMA−β(homeostasis model assessment insulin secretion)を用いた。補正インスリン分泌能 (AISR : adjusted insulin secretory response)の指標としてI.I.をHOMA−Rで除した値を用いた。また、I.I.を含む以下のパラメーターを糖代謝に関する遺伝形質として解析に用いた。I.I.に関しては、分子が負の値をとる個体が存在することから、0分から30分および0分から120分までのインスリン面積(AUC−insulin 0−30、AUC−insulin 0−120 (AUC:area under curve))と血糖値面積(AUC−glucose 0−30、AUC−glucose 0−120)、さらに0分から30分までの血糖面積を0分から30分までのインスリン面積で除した値(AUC(0−30)) 、同様に0分から120分までの両者の比(AUC(0−120))も遺伝形質として用いた。
【0031】
<ゲノムDNA増幅反応>
対象者の末梢血白血球よりゲノムDNAを抽出した。該ゲノムDNAより、実施例1に記載の方法で、SNP43、SNP19、SNP63の各変異部位を含むDNA領域をPCRにより増幅を行った。
【0032】
<遺伝子型の決定>
該PCRにより増幅した産物は、実施例1に記載の方法でいずれも2%アガロース泳動分離を行い、変異の遺伝子型を決定した。
【0033】
<統計学的処理>
アレル、遺伝子型の集団における比較にはχtestを用いた。解析では実施例1と同様に各SNPのアレルを数に変換して用いた。血糖値は正規分布を示したが、血漿インスリン値は正規分布ではなかった。同様に、I.IとAISRおよびHOMA−βも正規分布に従っていなかった。そのため、解析ではこれらの値が平均値の±2SDの範囲から外れた個体は比較の際に除外した。実際に計算に用いられた人数は表4に示した。さらに、血漿インスリン濃度の測定には施設間格差が認められたことから、解析にはANCOVAを用いた。
性を独立変数として年齢とBMIを共変量とした。統計学的な有意水準はp=0.05以下とした。SPSS package(Ver.11.0)とStatView(Ver.5.0)プログラムを用いた。
【0034】
281名のすべてのタイピング結果はHardy−Weinberg平衡にあった。SNP43のGアレル(アレル1)の割合は、0.94であった。同様にSNP19の2回繰り返しアレル(アレル1)の割合は0.39で、SNP63では0.68であった。糖代謝に関連した遺伝形質と体重などの測定値を遺伝子型に1/1型、1/2型および2/2型の3種類の集団別に比較検討した。SNP43では何ら有意の差は認められなかった。また、SNP19においては遺伝子型が3回/3回繰り返し型(2/2型)の集団は(n=112)、ほかの集団と比較して有意に60分のインスリン値が低値であった(p=0.05)が、血糖値は3つの集団で差がなかった。しかしながらSNP63に関しては、Tアレル(アレル2)を有する個体すなわち、T/T型(2/2型)あるいはT/C型(2/1型) (n=25、92)がTアレル(アレル2)を有しない集団と比較して30分と60分の血糖値が有意に高値であり、AUC −glucose 0−30とAUC−glucose 0−120が有意に大きかった(p=0.02, 0.03, 0.05,0.01)。生理学的解析の結果は表4に示した。
【0035】
以上の結果より、Calpain10遺伝子多型のうち、SNP63のTアレル(アレル2)は日本人における2型糖尿病に対し、優性に作用効果を発揮するといえる。さらに、SNP63の遺伝子多型がT/T型(2/2型)と C/T型(1/2型) の集団は、 C/C型(1/1型)である集団と比較して2型糖尿病のリスクを有意に上昇すると考えられる。メキシコ系アメリカ人やその他の人種において2型糖尿病のリスクを高めるNP43の遺伝子多型に関して、2型糖尿病との関連は見出せなかったことから、SNP63のTアレル(アレル2)が2型糖尿病に及ぼす影響は日本人において特徴的に作用すると考えられる。
【0036】
【表4】
Figure 2004344039
【0037】
【実施例3】
3.日本人における2型糖尿病のリスクの診断方法
対象となる日本人の末梢血白血球より抽出したゲノムDNAを試料とし、SNP63の変異部位を含むDNA領域をPCR−RFLPにより増幅し、HhaIによる制限酵素処理後、2%アガロース泳動分離にて変異の遺伝子型を決定する実施例1、2に記載の2型糖尿病のリスクの診断方法を得た。
【0038】
【発明の効果】
本発明は、糖代謝関連Calpain10遺伝子多型のうち日本人の2型糖尿病においてSNP63のTアレル(アレル2)が優性にかつ特徴的に作用効果を発揮することを明確にしたことにより、ゲノムDNAを試料とし、特にアジア民族、なかでも日本人における2型糖尿病のリスクの診断をすることができる。また、この2型糖尿病に特徴的な遺伝子を含む塩基配列を固定したDNAチップなどを作成することで、医療の現場における2型糖尿病のリスクを簡便に検出する方法として利用できる。その結果、2型糖尿病の予防効果を高めることができる。
【配列表】
Figure 2004344039
Figure 2004344039
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for diagnosing type 2 diabetes, which measures a Calpain 10 gene polymorphism of a sugar metabolism-related gene in human genomic DNA. In particular, the present invention relates to a method for diagnosing the risk of type 2 diabetes in Japanese by detecting a polymorphism in the Calpain 10 gene of human-derived genomic DNA.
[0002]
[Prior art]
Diabetes is a metabolic disorder that causes a chronic increase in glucose concentration due to a breakdown in homeostasis that maintains the glucose concentration in the blood within a certain range, and develops in individuals with a genetic predisposition. The inheritance form of diabetes is caused by a single inheritance such as MODY (maturity onset diabetes of the young) and mitochondrial diabetes caused by autosomal dominant inheritance, and by multiple genetic factors and environmental factors such as obesity, overeating, lack of exercise, and stress. Can be roughly divided into multifactorial inheritance of type 1 diabetes and type 2 diabetes.
[0003]
According to a 1997 survey by the Ministry of Health and Welfare, the number of diabetic patients in Japan is estimated to be about 8 million (see Non-Patent Document 1), which is 26.5 times that of the 1962 survey. Type 2 diabetes accounts for more than 95% of all diabetic patients. This fact reflects the dramatic environmental changes in Japan that have occurred over the last 35 years, and may also suggest that Japanese people are susceptible to type 2 diabetes.
[0004]
Among the multifactorial inheritance of diabetes, type 1 diabetes eventually destroys the β-cells of the islet of Langerhans, which secretes insulin in the pancreas, resulting in a complete insulin deficiency and an increase in blood glucose during this process Become like Due to the absolute deficiency of insulin, organisms cannot use glucose from food for cells in the body, rapidly debilitating and dying, so supplementation of insulin is the only treatment in completed type 1 diabetes.
[0005]
Type 2 diabetes, on the other hand, is characterized by a relative shortage of insulin. In other words, in the case of insulin deficiency in which insulin secretion ability is reduced to a quantitative deficiency state due to a decrease in insulin secretion capacity, and in the case where there is no problem with the quantity of insulin but the action is weakened and qualitatively deficient, this is called insulin resistance. It is thought that these two factors cause symptoms to occur independently or in association with each other. In type 2 diabetes, insulin secretion deficiency is mainly related to genetic factors, and insulin resistance is thought to be related to both genetic factors and environmental factors. It is said that these two factors, alone or in association, cause diabetes.
[0006]
Lifestyle-related diseases that occur in connection with diabetes or complications of diabetes often follow a chronic course once they develop, and they are forced to struggle with illness throughout their lives.The medical expenses are high due to advanced medical care and long-term treatment. It becomes. In addition, including medical expenses related to myocardial infarction, coronary artery disease, cerebrovascular disease, etc. caused by diabetic vascular complications, medical expenses will be enormous, and the economic base of patients, families and medical administration will be huge. Oppress. Therefore, establishment of a method for diagnosing / preventing diabetes and a fundamental treatment method is strongly desired.
[0007]
Diagnosis of diabetes includes measurement of HbA1c, urinary glucose after fasting and after meal, blood glucose, and glucose tolerance test. These are rarely measured on a daily basis, and are found in the majority of cases of diabetes on occasions such as medical examinations without the patient's awareness. However, when one knows the susceptibility of oneself to diabetes at an early stage and tries to prevent it, the onset of diabetes is often avoided. In other words, establishing a method for early diagnosis of susceptibility to diabetes leads to suppression of the onset of diabetes in many cases.
[0008]
In establishing these methods, it is important to search for genetic factors of diabetes. Type 1 diabetes is an autoimmune disease in which T lymphocytes, which are immune cells, destroy pancreatic β cells due to abnormal immunity. Therefore, major histocompatibility antigen HLA ( Attention was focused on the human leukocyte antigen) gene. Attention was also paid to the insulin gene, and both were statistically significant in correlation analysis as genetic factors for type 1 diabetes.
[0009]
In type 2 diabetes, which accounts for the majority of Japanese diabetic patients, impaired insulin secretion of pancreatic β-cells is greatly involved, and genetic factors are thought to be genes related to pancreatic β-cell function. Insulin genes, mitochondrial genes, and MODY genes (identified from 1 to 6) were analyzed as genetic abnormalities related to insulin secretion. However, up to now, only 5% of all diabetes due to genetic abnormalities has been identified, and each one has been less conclusive.
[0010]
In addition, many ethnic groups have taken whole genome approaches to elucidate the genetic factors of type 2 diabetes. Botnia study for residents in the area facing the Gulf of Botnia on the west side of Finland, FUSION for the Finnish descent (Finland-United State Investment of NIDDM Genetics Studies), France, United States (Amish, U.S.A.) There are reports from multiple teams. However, none of them has yet been cloned.
[0011]
On the other hand, cloning was successful in Mexican-Americans with a high incidence of type 2 diabetes in a mixed race of Native Americans and whites, and the Calpain 10 gene was identified as the only gene associated with type 2 diabetes. Calpain 10 is a calpain-like cysteine-degrading enzyme, and is widely expressed in tissues such as pancreatic islets of Langerhans, skeletal muscle, and liver. In addition, it has been found that pancreatic islet cells, skeletal muscle, and adipocytes of rat and mouse affect insulin secretion and insulin sensitivity.
[0012]
The Calpain 10 gene is composed of 15 exons. SNP43 (Single Nucleotide Polymorphism) is a G / A gene polymorphism present in intron 3, and SNP19 in a repeat sequence (STRP: simple tandem repeat polymorphism) in which one unit of repeat present in intron 6 is 32 bases. This is a polymorphism based on the number of repetitions, and SNP63 is a C / T gene polymorphism present in intron 13.
[0013]
Among them, the SNP43 G / A polymorphism significantly correlates with type 2 diabetes in Mexican Americans, increases the risk of type 2 diabetes in the G / G genotype, and was found in linkage analysis by this polymorphism alone. The entire chain could be explained (see Non-Patent Documents 2 and 3). In addition, in Pima Indian, it was shown that the mRNA level of the Calpain 10 gene in skeletal muscle was significantly correlated with the SNP43 polymorphism (see Non-Patent Documents 4 and 5). In addition, Finnish, German, British, and Indians also increased the risk of type 2 diabetes, and African Americans also showed that the G / G genotype significantly increased susceptibility to type 2 diabetes (non- Patent Document 6). On the other hand, Danes alone did not affect the risk of type 2 diabetes and did not correlate with genetic traits related to glucose metabolism, but to a lesser extent, the Calpain 10 gene was consistent across races. Thus, it is suggested that it affects the disease susceptibility of type 2 diabetes.
[0014]
It is clear that in genetic disorders, the genetic predisposition varies from race to race. However, the effect of the Calpain 10 gene on type 2 diabetes in Asian peoples is hardly elucidated. The present inventors have investigated the relationship between the polymorphism of the Calpain 10 gene and the risk of developing type 2 diabetes. Surprisingly, in the Asian people, particularly the Japanese, not the allele of the SNP 43 of the polymorphism of the Calpain 10 gene, The present inventors have found that the allele of SNP63 is closely related to the risk of developing type 2 diabetes, and completed the present invention.
[0015]
The gene polymorphism refers to a phenomenon in which bases are different for each individual in a sequence composed of a combination of four types of bases of DNA (deoxyribonucleic acid) and the site thereof. Among the gene polymorphisms, SNP refers to a difference of one base (one gene) in an individual and its site, and such a difference in the gene is considered to be related to a phenotype and a risk of disease for each individual. Therefore, finding a gene specific to a disease, preparing a DNA chip or the like in which a base sequence containing the gene is fixed, and using it in a medical field is expected as a method that can easily detect the risk of a disease in an individual. You.
[0016]
[Non-patent document 1]
Office for Lifestyle-Related Disease Control, Ministry of Health and Wellare: Diabetes Survey 1997. Tokyo, Japan, Ministry of Health and Welle, Government of Japan
[Non-patent document 2]
A genome-wide search for human non-insulin-dependent (type 2) diabetes geneses reviews a major susceptibility locus on chromosome 2. Net Genet 13: 161-166, 1996.
[Non-Patent Document 3]
Genetic variations in the gene encoding calpain-10 is associated with Type 2 diabetes mellitus. Net Genet 26: 163-75, 2000
[Non-patent document 4]
Calpains play a role in insulin secretion and action. Diabetes 50: 2013-2020, 2001
[Non-Patent Document 5]
A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J Clin Invest 106: R69-R73, 2000
[Non-Patent Document 6]
Capn 10 is associated with Type 2 diabetes in African-Americans: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes 51: 231-237, 2002
[0017]
[Problems to be solved by the present invention]
The present invention provides an analysis of the effect of the Calpain10 gene polymorphism on the risk of type 2 diabetes in Asians, particularly Japanese, to elucidate the genotype characteristic of type 2 diabetes and to provide a method of using the same. Make it an issue. More specifically, it is an object of the present invention to provide a method for diagnosing the risk of type 2 diabetes in Asian peoples, particularly Japanese people, by detecting Calpain 10 gene polymorphism in human-derived genomic DNA.
[0018]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors conducted case-control analysis of Calpain 10 gene polymorphism in Japanese subjects with type 2 diabetes and normal controls. In addition, physiological analysis was performed on subjects who were normal in the 75 g oral glucose tolerance test. As a result, the present inventors have specifically identified a characteristic Calpain 10 gene polymorphism in Japanese and provided a method of using the same. More specifically, it is a method for diagnosing the risk of type 2 diabetes, particularly the type 2 diabetes in Japanese by detecting the Calpain 10 gene polymorphism in human genomic DNA.
[0019]
That is, the present invention relates to a method for diagnosing the risk of type 2 diabetes as follows.
1. A method for diagnosing the risk of type 2 diabetes, which comprises measuring the allele of the polymorphism SNP63 of the Calpain 10 gene of human genomic DNA.
2. 2. The method for diagnosing the risk of type 2 diabetes according to the above 1, wherein the ratio of the allele of the polymorphism SNP63 is measured in the method of the above 1, and the risk of type 2 diabetes is significantly increased in an individual having the T allele (allele 2).
3. 3. The method for diagnosing the risk of type 2 diabetes as described in 1 or 2 above, wherein the human genomic DNA is extracted from a human body fluid, particularly from human peripheral blood leukocytes.
4. The diagnostic method according to any one of claims 1 to 3, wherein the human genomic DNA is genomic DNA of an Asian ethnic group.
5. 4. The method for diagnosing risk of type 2 diabetes according to any one of the above 1 to 3, wherein the human genomic DNA is Japanese genomic DNA.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0021]
Embodiment 1
1. Case control analysis <target>
Case (Type 2 diabetic) 121 males / 84 females Total of 205 normal controls 140 males / 68 females 208 total of normal controls All the items that have no family history, have not been pointed out in the past with hyperglycemia, and satisfy HbA1c (hemoglobin A1c) <5.6% were satisfied.
Cases of type 2 diabetes were collected from the Tokyo Women's Medical University Diabetes Center and normal controls were collected from the Tokyo Women's Medical University Adult Medical Center, and subjected to this analysis after passing through the Ethics Review Committee on Genetic Analysis Research. Was. Participants were briefed at the start of the study and agreed. Details of cases and controls are shown in Table 1.
[0022]
[Table 1]
Figure 2004344039
[0023]
<Genomic DNA amplification reaction>
Genomic DNA was extracted from peripheral blood leukocytes of case and normal controls. From the genomic DNA, a DNA region containing each mutation site of SNP43, SNP19, and SNP63 was amplified by PCR (polymerase chain reaction). SNP43 was amplified by mismatch PCR, SNP63 was amplified by PCR-RFLP (polymerase chain reaction-reaction fragment length polymorphism), and SNP19 was amplified by simple PCR.
The SNP43 PCR primer was designed so as to sandwich the site of the G / A polymorphism, and the sequence of the 5′-side primer (SEQ ID NO: 1) and the 3′-side primer for G base detection (SEQ ID NO: 2) and one 3′-side primer for detecting the A base (SEQ ID NO: 3 in the Sequence Listing) were each prepared. The DNA amplification reaction was performed in a system having a total volume of 25 μl, and 2.5 μl of Ex buffer (Takara Shuzo), 0.2 μl of Ex Taq (Takara Shuzo), 3.0 μl of 4 mM dNTP, and 1 μl of each of 10 mM primers were used. The PCR conditions were as follows: denaturation was first performed at 95 ° C. for 30 seconds, followed by annealing at 59 ° C. for 30 seconds, extension at 72 ° C. for 30 seconds for a total of 30 cycles, and finally 72 ° C. for 10 minutes final extension. .
The SNP19 PCR primer was designed so as to sandwich a site of a repeating sequence in which one unit of repetition was 32 bases, and a 5′-side primer (SEQ ID NO: 4 in the Sequence Listing) and a 3′-side primer (SEQ ID NO: 5 in the Sequence Listing) Was made one each. PCR was performed under the same conditions as for SNP43 except that the annealing temperature was 60 ° C.
For the SNP63 PCR primer, a primer having a mismatched sequence of one base was prepared in order to introduce a new cleavage site recognized by the cleavage enzyme HhaI into the 5′-side primer (SEQ ID NO: 6 in the Sequence Listing). Among the sequences of the 5′-side primers, mismatched portions are indicated by capital C. Normally, it becomes a. The 3'-side primer is shown in SEQ ID NO: 7 in the sequence listing. PCR was performed under the same conditions as for SNP43.
[0024]
<Determination of genotype>
All the products amplified by the PCR were subjected to 2% agarose electrophoresis to determine the genotype of the mutation. The genotype of the G / A polymorphism of SNP43 was determined based on the difference in the 3'-side primer to be reacted. In addition, the genotype of the SNP19 2/3 repeat polymorphism was determined from the fact that the PCR product became 155 bp or 187 bp depending on the number of repeats. The PCR product of SNP63 is 192 bp. To the PCR product, 5 μl of Buffer, 10 μl of 10 × BSA, 0.2 μl of HhaI and 9.8 μl of ddH 2 O were added, and the restriction enzyme treatment was performed at 37 ° C. for 2 hours. went. When the allele of SNP63 was G, the genotype was determined based on the fact that the PCR product was cleaved into 162 bp and 30 bp.
In order to prevent typing errors, the precision of typing was controlled by using DNA whose base sequence could be confirmed in advance in all experiments.
[0025]
<Statistical processing>
比較2 test was used for comparison between allele and genotype populations. In the analysis, alleles of each SNP were converted into numbers and used as follows. In SNP43, G was 1 and A was 2. In SNP19, the number of repetitive sequences was set to 1 twice, and 3 times to 2.
In SNP63, C was 1 and T was 2. Gender was the independent variable and age and BMI were the dependent variables. The statistical significance level was p = 0.05 or less. The SPSS package (Ver. 11.0) and StatView (Ver. 5.0) programs were used.
[0026]
The typing of SNP19, SNP43 and SNP63 were all in Hardy-Weinberg equilibrium. The percentage of SNP43 G alleles (allele 1) related to the risk of type 2 diabetes in Mexican Americans was 95% in Japanese both type 2 diabetes and normal controls. In this study, there was no individual whose SNP43 genotype was A / A (2/2), and no difference was observed between type 2 diabetes and normal controls. Similarly, no differences were found in the proportion of alleles and genotypes of SNP19. However, in SNP63, the proportion of the T allele (allele 2) was found to be significantly higher in type 2 diabetes (p = 0.042, OR = 1.3604: 1.0101-1.9899: 95% C .I). On the other hand, the ratio of those whose genotype was C / T (1/2) or C / C (1/1) was not different between type 2 diabetes and normal controls. Table 2 shows the results of the case control analysis.
[0027]
[Table 2]
Figure 2004344039
[0028]
Embodiment 2
2. Physiological analysis <subject>
Healthy volunteers 146 males and 135 females A total of 281 healthy volunteers were subjected to a 75 g oral glucose tolerance test and confirmed to be normal by the 1997 American Diabetes Association criteria. Of these, only 14.2% had a BMI of 25 or more.
These volunteers collected from Tokyo Women's Medical University Diabetes Center, Yamaguchi University School of Medicine Hospital, University of Tokyo Hospital, and Shinseikai Second Hospital, and performed this analysis after passing through the ethics review committee on genetic analysis research. . At the beginning of the study, the subjects explained and agreed with the study. The details of this subject are shown in Table 3.
[0029]
[Table 3]
Figure 2004344039
[0030]
<Measurement of plasma insulin level and blood glucose level and 75 g oral glucose tolerance test>
At each facility, the subject's plasma insulin level and blood glucose level were measured. As an indicator of β-cell reactivity in the initial 30 minutes in the 75 g oral glucose tolerance test, I.P. I. (Insulinogenic Index) was used. HOMA-R (homeostasis model assessment insulin resistance) and HOMA-β (homeostasis model insulin isolation) were used as indicators of insulin resistance and insulin secretion ability from β-cells in the fasted state. As an index of corrected insulin secretory response (AISR), I.R. I. Was divided by HOMA-R. In addition, I. I. The following parameters were used in the analysis as genetic traits relating to glucose metabolism. I. I. With respect to, the presence of an individual whose molecule takes a negative value, the insulin area from 0 to 30 minutes and from 0 to 120 minutes (AUC-insulin 0-30, AUC-insulin 0-120 (AUC: area under curve) ))) And the blood glucose level area (AUC-glucose 0-30, AUC-glucose 0-120), and the value obtained by dividing the blood glucose area from 0 to 30 minutes by the insulin area from 0 to 30 minutes (AUC (0-30) )) Similarly, the ratio of both (AUC (0-120)) from 0 minutes to 120 minutes was also used as a genetic trait.
[0031]
<Genomic DNA amplification reaction>
Genomic DNA was extracted from the peripheral blood leukocytes of the subject. From the genomic DNA, a DNA region containing each mutation site of SNP43, SNP19 and SNP63 was amplified by PCR according to the method described in Example 1.
[0032]
<Determination of genotype>
All the products amplified by the PCR were subjected to 2% agarose electrophoresis according to the method described in Example 1 to determine the genotype of the mutation.
[0033]
<Statistical processing>
比較2 test was used for comparison between allele and genotype populations. In the analysis, alleles of each SNP were converted into numbers and used as in Example 1. Blood glucose levels showed a normal distribution, whereas plasma insulin levels did not. Similarly, I. I and AISR and HOMA-β also did not follow a normal distribution. Therefore, in the analysis, individuals whose values were out of the range of ± 2 SD of the average value were excluded during the comparison. Table 4 shows the numbers actually used for the calculation. Furthermore, since there was a difference between facilities in measuring the plasma insulin concentration, ANCOVA was used for the analysis.
Age and BMI were covariates with gender as the independent variable. The statistical significance level was p = 0.05 or less. The SPSS package (Ver. 11.0) and StatView (Ver. 5.0) programs were used.
[0034]
All typing results for the 281 were in Hardy-Weinberg equilibrium. The ratio of the G allele (allele 1) of SNP43 was 0.94. Similarly, the ratio of the double repetition allele (allele 1) of SNP19 was 0.39, and that of SNP63 was 0.68. The measured values of the genetic traits related to glucose metabolism and body weight were compared and examined for three types of genotypes, namely 1/1, 1/2 and 2/2. No significant difference was observed for SNP43. In addition, in SNP19, the group whose genotype was repeated 3/3 times (type 2/2) (n = 112) had a significantly lower insulin value for 60 minutes than the other groups. (P = 0.05), but blood glucose levels did not differ between the three populations. However, as for SNP63, an individual having a T allele (allele 2), that is, T / T type (2/2 type) or T / C type (2/1 type) (n = 25, 92) has a T allele (allele 2). ) Were significantly higher at 30 and 60 minutes compared to the group without AUC-glucose 0-30 and AUC-glucose 0-120 were significantly higher (p = 0.02,0). .03, 0.05, 0.01). The results of the physiological analysis are shown in Table 4.
[0035]
From the above results, it can be said that among the Calpain10 gene polymorphisms, the T allele of SNP63 (allele 2) exerts a dominant effect on type 2 diabetes in Japanese. Furthermore, the SNP63 gene polymorphism T / T type (2/2 type) and C / T type (1/2 type) populations are compared with the C / C type (1/1 type) population. It is believed that the risk of type 2 diabetes is significantly increased. Because no association with type 2 diabetes could be found for NP43 gene polymorphisms that increase the risk of type 2 diabetes in Mexican Americans and other races, the T allele of SNP63 (allele 2) became type 2 diabetes The effect is thought to be characteristic in Japanese.
[0036]
[Table 4]
Figure 2004344039
[0037]
Embodiment 3
3. Method of diagnosing risk of type 2 diabetes in Japanese Using genomic DNA extracted from peripheral blood leukocytes of Japanese as a sample, a DNA region containing a mutation site of SNP63 is amplified by PCR-RFLP, and HhaI After the treatment with the restriction enzyme, the genotype of the mutation was determined by 2% agarose electrophoresis, and the method for diagnosing the risk of type 2 diabetes described in Examples 1 and 2 was obtained.
[0038]
【The invention's effect】
The present invention has clarified that the T allele of SNP63 (allele 2) exerts a dominant and characteristic action effect in Japanese type 2 diabetes among the sugar metabolism-related Calpain 10 gene polymorphisms. , The risk of type 2 diabetes in Asian peoples, especially Japanese, can be diagnosed. Further, by preparing a DNA chip or the like in which a base sequence containing a gene characteristic of type 2 diabetes is fixed, it can be used as a method for easily detecting the risk of type 2 diabetes in a medical setting. As a result, the effect of preventing type 2 diabetes can be enhanced.
[Sequence list]
Figure 2004344039
Figure 2004344039

Claims (5)

ヒトゲノムDNAのCalpain10遺伝子多型SNP63のアレルを測定することを特徴とする2型糖尿病のリスク診断方法。A method for diagnosing a risk of type 2 diabetes, comprising measuring an allele of Calpain 10 gene polymorphism SNP63 in human genomic DNA. 遺伝子多型Tアレル(アレル2)が2型糖尿病のリスクを有意に上昇させる請求項1記載の診断方法。The diagnostic method according to claim 1, wherein the polymorphic T allele (allele 2) significantly increases the risk of type 2 diabetes. ヒトゲノムDNAがヒト末梢血白血球より抽出されたものである請求項1または2記載の診断方法。3. The diagnostic method according to claim 1, wherein the human genomic DNA is extracted from human peripheral blood leukocytes. ヒトゲノムDNAがアジア民族のゲノムDNAである請求項1〜3のいずれかに記載の診断方法。The diagnostic method according to any one of claims 1 to 3, wherein the human genomic DNA is genomic DNA of an Asian ethnic group. ヒトゲノムDNAが日本人のゲノムDNAである請求項1〜3のいずれかに記載の診断方法。The diagnostic method according to any one of claims 1 to 3, wherein the human genomic DNA is Japanese genomic DNA.
JP2003143091A 2003-05-21 2003-05-21 Method for diagnosing risk of type 2 diabetes with calpain 10 gene Pending JP2004344039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143091A JP2004344039A (en) 2003-05-21 2003-05-21 Method for diagnosing risk of type 2 diabetes with calpain 10 gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143091A JP2004344039A (en) 2003-05-21 2003-05-21 Method for diagnosing risk of type 2 diabetes with calpain 10 gene

Publications (1)

Publication Number Publication Date
JP2004344039A true JP2004344039A (en) 2004-12-09

Family

ID=33530969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143091A Pending JP2004344039A (en) 2003-05-21 2003-05-21 Method for diagnosing risk of type 2 diabetes with calpain 10 gene

Country Status (1)

Country Link
JP (1) JP2004344039A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088308A1 (en) * 2005-02-15 2006-08-24 Samsung Electronics Co., Ltd. Method of diagnosing type ii diabetes mellitus using multilocus marker, polynucleotide including marker associated with type ii diabetes mellitus, and microarray and diagnostic kit including the polynucleotide
JP2007267728A (en) * 2006-03-10 2007-10-18 Mie Univ Method for detecting hereditary risk of type 2 diabetes
WO2007135976A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Zoom microscope
WO2008047824A1 (en) * 2006-10-19 2008-04-24 Dna Chip Research Inc. Method for determining presence or absence diabetes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088308A1 (en) * 2005-02-15 2006-08-24 Samsung Electronics Co., Ltd. Method of diagnosing type ii diabetes mellitus using multilocus marker, polynucleotide including marker associated with type ii diabetes mellitus, and microarray and diagnostic kit including the polynucleotide
JP2007267728A (en) * 2006-03-10 2007-10-18 Mie Univ Method for detecting hereditary risk of type 2 diabetes
WO2007135976A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Zoom microscope
WO2008047824A1 (en) * 2006-10-19 2008-04-24 Dna Chip Research Inc. Method for determining presence or absence diabetes

Similar Documents

Publication Publication Date Title
Horikawa et al. Genetic variations in calpain-10 gene are not a major factor in the occurrence of type 2 diabetes in Japanese
Bodhini et al. The rs12255372 (G/T) and rs7903146 (C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians
Siddiq et al. A synonymous coding polymorphism in the α2-Heremans-Schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians
Roussel et al. The N363S polymorphism in the glucocorticoid receptor gene is associated with overweight in subjects with type 2 diabetes mellitus
Bell et al. Genome-wide linkage analysis for severe obesity in french caucasians finds significant susceptibility locus on chromosome 19q
Zadjali et al. Association of adiponectin promoter variants with traits and clusters of metabolic syndrome in Arabs: family-based study
Tupikowska-Marzec et al. The influence of FTO polymorphism rs9939609 on obesity, some clinical features, and disturbance of carbohydrate metabolism in patients with psoriasis
Vendramini et al. Association of genetic variants in the adiponectin encoding gene (ADIPOQ) with type 2 diabetes in Japanese Brazilians
Malecki et al. Vitamin D binding protein gene and genetic susceptibility to type 2 diabetes mellitus in a Polish population
Østergård et al. Influence of the PPAR-γ2 Pro12Ala and ACE I/D polymorphisms on insulin sensitivity and training effects in healthy offspring of type 2 diabetic subjects
Haghani et al. The study on the relationship between IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes in the Kurdish ethnic group in West Iran
Dong et al. T594M and G442V polymorphisms of the sodium channel β subunit and hypertension in a black population
EP2510115B9 (en) Single nucleotide polymorphisms associated with dietary weight loss
Kishimoto et al. eNOS Glu298Asp polymorphism and hypertension in a cohort study in Japanese
Foucan et al. Influence of K656N polymorphism of the leptin receptor gene on obesity-related traits in nondiabetic Afro-Caribbean individuals
Gutierrez et al. GLUT1 gene polymorphism in non-insulin-dependent diabetes mellitus: genetic susceptibility relationship with cardiovascular risk factors and microangiopathic complications in a Mediterranean population
Nikitin et al. The heteroplasmic 15059G> A mutation in the mitochondrial cytochrome b gene and essential hypertension in type 2 diabetes
Zhao et al. Evaluation of the associations of GC and CYP2R1 genes and gene-obesity interactions with type 2 diabetes risk in a Chinese rural population
Biery et al. The β3-adrenergic receptor TRP64ARG polymorphism and obesity in Alaskan Eskimos
Mielcarska et al. Influence of the FTO polymorphism rs17817449 on the risk of obesity, type 2 diabetes, and cardiovascular diseases in Upper Silesian population—a preliminary, cross-sectional study
Sarecka-Hujar et al. Original article Carrier-state of two or three polymorphic variants of MTHFR, IL-6 and ICAM1 genes increases the risk of coronary artery disease
US20070299025A1 (en) Method for Detecting the Risk of Cardiovascular Diseases Such as Acute Myocardial Infarction and Coronary Heart Disease By Analysing Defesin
JP2004344039A (en) Method for diagnosing risk of type 2 diabetes with calpain 10 gene
Pérez-Bravo et al. Lack of association between the fatty acid binding protein 2 (FABP2) polymorphism with obesity and insulin resistance in two aboriginal populations from Chile
Teran-Garcia et al. FTO genotype is associated with body mass index and waist circumference in Mexican young adults

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A131 Notification of reasons for refusal

Effective date: 20081119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090312