JP2004343877A - Coil for rotary electric machine - Google Patents

Coil for rotary electric machine Download PDF

Info

Publication number
JP2004343877A
JP2004343877A JP2003136756A JP2003136756A JP2004343877A JP 2004343877 A JP2004343877 A JP 2004343877A JP 2003136756 A JP2003136756 A JP 2003136756A JP 2003136756 A JP2003136756 A JP 2003136756A JP 2004343877 A JP2004343877 A JP 2004343877A
Authority
JP
Japan
Prior art keywords
coil
iron core
insulator
electric machine
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003136756A
Other languages
Japanese (ja)
Inventor
Norio Yamaguchi
憲隆 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003136756A priority Critical patent/JP2004343877A/en
Publication of JP2004343877A publication Critical patent/JP2004343877A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cool the lead wire of the coil of a rotary electric machine efficiently in simple structure. <P>SOLUTION: The coil 11 of a rotary electric machine is constituted by winding a flat wire 14 in piles into two or more layers at the winding sections 15a and 16a of an insulator 13 covering the periphery of an iron core 12. The space 19 made between the winding sections 15a and 16a of the insulator 13 and the flat wire 14 is charged with varnish 20 through a path made between the grooves 15e, 15f, and 15g of the insulator 13 and the iron core 12. The heat of the rectangular wire 14 is conducted to the iron core 12 via the varnish 20 and the insulator 13, whereby the flat wire 14 can be cooled by making it perform the heat radiation effectively. Besides it can contribute to the cost down since a refrigerant, a pump for circulating it, and others become needless. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉄心の周囲を覆う絶縁部材の巻回部に導線を複数層に重ねて巻回した回転電機のコイルに関する。
【0002】
【従来の技術】
回転電機を運転するとコイルの導線が発熱して温度上昇するが、その導線を充分に冷却しないと回転電機の出力の低下や導線の耐久性の低下が発生することが知られている。特に、鉄心を覆う絶縁部材の四角形断面の巻回部に導線を巻回したとき、導線を正確な四角形に巻回することは困難であり、導線が四角形の頂点部だけに接触して直線部から浮き上がってしまい、そこに隙間が発生することが避けられなかった。そのため、前記隙間が断熱空間として機能することで、導線の熱が絶縁部材を介して鉄心に伝達され難くなり、導線の冷却性が一層低下する問題があった。
【0003】
そこで、回転電機に冷却手段を設けてコイルの冷却を図るものが、下記特許文献により公知である。この回転電機は、アウターコア(ステータ)にコイルの一端を固定して中性点を形成する中性点用ブスバーの内部を中空にして冷却通路を構成し、この冷却通路に絶縁オイルを流通させることでコイルを冷却するようになっている。
【0004】
【特許文献】
特開2000−197311号公報
【0005】
【発明が解決しようとする課題】
しかしながら上記従来のものは、冷却通路に絶縁オイルを流通させるためにオイルタンクやオイルポンプを必要とするため、回転電機が大型化したりコストが上昇したりする問題がある。またアウターコア(ステータ)およびインナーコア(ロータ)の両方が回転するタイプの回転電機では前記オイルタンクやオイルポンプを廃止することができるが、このような回転電機は一般的でないために用途が制限されてしまう問題がある。
【0006】
本発明は前述の事情に鑑みてなされたもので、回転電機のコイルの導線を簡単な構造で効率的に冷却できるようにすることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、鉄心の周囲を覆う絶縁部材の巻回部に導線を複数層に重ねて巻回した回転電機のコイルにおいて、絶縁部材の巻回部と導線との間に形成された隙間に、絶縁部材に形成した流路を通して熱伝導性部材を充填したことを特徴とする回転電機のコイルが提案される。
【0008】
上記構成によれば、鉄心の周囲を覆う絶縁部材の巻回部と、そこに巻回された導線との間に形成された隙間に、絶縁部材に形成した流路を通して熱伝導性部材を充填したので、導線の熱を熱伝導性部材および絶縁部材を介して鉄心に伝達することで、その放熱を効果的に行わせて導線を冷却することができる。しかも冷媒やそれを循環させるポンプ等が不要になるので、コストダウンに寄与することができる。
【0009】
また請求項2に記載された発明によれば、請求項1の構成に加えて、前記流路を、絶縁部材に形成した溝と鉄心の表面との間に形成したことを特徴とする回転電機のコイルが提案される。
【0010】
上記構成によれば、隙間に熱伝導性部材を充填するための流路を絶縁部材に形成した溝と鉄心の表面との間に形成したので、流路を簡単に形成することができる。
【0011】
尚、実施例のインシュレータ13は本発明の絶縁部材に対応し、実施例の平角線14は本発明の導線に対応し、実施例の第1〜第3溝15e,15f,15gは本発明の溝に対応し、実施例のワニス20は本発明の熱伝導性部材に対応する。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0013】
図1〜図6は本発明の一実施例を示すもので、図1は発電電動機のステータの部分正面図、図2は図1の2方向矢視図、図3は図2の3−3線断面図、図4は図2の4方向矢視図、図5はコイルの分解斜視図、図6は発電電動機の各部の温度分布を示すグラフである。
【0014】
図1、図2および図4に示すように、ハイブリッド車両の走行用駆動源として用いられる発電電動機の環状をなすステータ10は、同一構造を有する複数個(実施例では24個)のコイル11…を円周方向に結合してなり、図1には24個のコイル11…のうちの5個が示される。各々のコイル11は、多数の鋼板を積層した鉄心12の外周を絶縁部材としての合成樹脂製のインシュレータ13で覆い、そのインシュレータ13に導線としての平角線14を複数層に巻回してなる。鉄心12の径方向の外端部は、その円周方向の両端部に凸部12aおよび凹部12bを備えており、それらの凸部12aおよび凹部12bが交互に嵌合することで円周方向に結合される。
【0015】
図5に示すように、インシュレータ13は鉄心12の外周に嵌合可能なように第1半体15および第2半体16に2分割されており、組み立てられた第1、第2半体15,16は、平角線14が巻回される長方形断面の巻回部15a,16aと、巻回部15a,16aの径方向外側に連なる概略コ字状の外側フランジ部15b,16bと、巻回部15a,16aの径方向内側に連なる概略コ字状の内側フランジ部15c,16cとを備える。インシュレータ13の第2半体16の内側フランジ部16cには平角線14の巻き始め部分を平角線ホルダ17と協働して係止する2個の切欠16d,16dが形成され、外側フランジ部16bには平角線14の巻き終わり部分を平角線ホルダ18と協働して係止する1個の切欠16eが形成される。
【0016】
図3および図5から明らかなように、インシュレータ13の第1半体15が鉄心12に接する内面に、内側フランジ部15cに開口する流入口15dと、この流入口15dから径方向外向きに延びる第1溝15eと、この第1溝15eの端部から円周方向両側に延びる2本の第2溝15f,15fと、これらの第2溝15f,15fの端部から軸方向に延びる2本の第3溝15g,15gと、これらの第3溝15g,15gの端部を巻回部15aの外面に連通させる2個の流出口15h,15hとが形成される。
【0017】
鉄心12を覆うようにインシュレータ13を装着すると、第1半体15の第1溝15e、第2溝15f,15f、第3溝15g,15gと鉄心12の表面との間に流路が形成される。これらの第1溝15e、第2溝15f,15fおよび第3溝15g,15gは第1半体15を金型成形する際に一体に形成されるため、特別の機械加工を必要とせずに前記流路を容易に構成することができる。
【0018】
図3に示すように、インシュレータ13の巻回部15a,16aに平角線14を巻回すると、平角線14が巻回部15a,16aに完全に密着しないため、巻回部15a,16aと最内層の平角線14との間に隙間19,19が発生する。そこで、インシュレータ13の第1半体15の流入口15dから熱伝導性部材としてのワニス20を注入し、そのワニス20を第1半体15の第1溝15e、第2溝15f,15f、第3溝15g,15gおよび流出口15h,15hを経て前記隙間19,19に充填する。
【0019】
このようにして巻回部15a,16aと最内層の平角線14との間の隙間19,19にワニス20が充填されると、隙間19,19が断熱空間として機能しなくなるため、平角線14の熱がワニス20およびインシュレータ13を経て鉄心12に効率的に伝達されるようになり、平角線14の放熱性を高めて冷却効果を高めることができる。特に、液体のワニス20は前記隙間19,19に隈なく行き渡るので熱伝達効率が高まるだけでなく、インシュレータ13に対する平角線14の密着性を高めることができる。
【0020】
図6のグラフは、平角線14の表面と、鉄心12およびインシュレータ13と、発電電動機のハウジングの表面と、発電電動機を支持するテストベンチとの温度分布を、隙間19,19にワニス20を充填したものと、しないもの(ノーマル)とについて示すものである。
【0021】
ワニス20を充填したものは、しないものに比べて、平角線14の表面の温度が約7℃低下し、ハウジングの表面の温度が約6℃低下しており、特に平角線14の表面の温度低下により発電電動機の性能向上およびコイル11…の耐久性向上を図ることができる。発電電動機を3000rpmで連続運転して性能を比較した結果、ワニス20を充填したものは出力が4.1kW、トルクが13Nmであるのに対し、ワニス20を充填しないものは出力が3.5kW、トルクが11Nmであり、ワニス20の充填による性能向上が確認された。
【0022】
このように、インシュレータ13の巻回部15a,16aと最内層の平角線14との間の隙間19,19にワニス20を充填するだけで簡単な構造で平角線14を効果的に冷却することができるの、冷媒やそれを循環させるポンプ等が不要になってコストダウンに寄与することができる。
【0023】
以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0024】
例えば、本発明のコイル11は、ハイブリッド車両の発電電動機以外の任意の回転電機に対して適用することができ、しかもステータコイルに限定されずにロータコイルにも適用することができる。
【0025】
また導線は実施例の平角線14に限定されず、丸線等の他の導線を使用することができる。
【0026】
また熱伝導性部材は実施例のワニス20に限定されず、シリコン樹脂やグリス等を採用することができる。これらの熱伝導性部材は隙間19,19への注入後にも液体の状態に保持されても良いし固化させても良いが、回転するロータコイルに適用する場合には、漏れを防止するために固化させることが望ましい。ただし、液体の状態に保持される場合には、流入口15dを塞ぐ等の対応が必要である。
【0027】
【発明の効果】
以上のように請求項1に記載された発明によれば、鉄心の周囲を覆う絶縁部材の巻回部と、そこに巻回された導線との間に形成された隙間に、絶縁部材に形成した流路を通して熱伝導性部材を充填したので、導線の熱を熱伝導性部材および絶縁部材を介して鉄心に伝達することで、その放熱を効果的に行わせて導線を冷却することができる。しかも冷媒やそれを循環させるポンプ等が不要になるので、コストダウンに寄与することができる。
【0028】
また請求項2に記載された発明によれば、隙間に熱伝導性部材を充填するための流路を絶縁部材に形成した溝と鉄心の表面との間に形成したので、流路を簡単に形成することができる。
【図面の簡単な説明】
【図1】発電電動機のステータの部分正面図
【図2】図1の2方向矢視図
【図3】図2の3−3線断面図
【図4】図2の4方向矢視図
【図5】コイルの分解斜視図
【図6】発電電動機の各部の温度分布を示すグラフ
【符号の説明】
12 鉄心
13 インシュレータ(絶縁部材)
14 平角線(導線)
15a 巻回部
15e 第1溝(溝)
15f 第2溝(溝)
15g 第3溝(溝)
16a 巻回部
19 隙間
20 ワニス(熱伝導性部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coil of a rotating electric machine in which a conductive wire is wound in a plurality of layers around a winding portion of an insulating member that covers the periphery of an iron core.
[0002]
[Prior art]
It is known that when the rotating electric machine is operated, the conductor of the coil generates heat and the temperature rises. However, if the conductor is not sufficiently cooled, a decrease in the output of the rotating electric machine and a decrease in the durability of the conductor occur. In particular, when a conductor is wound around a rectangular cross-section of an insulating member that covers an iron core, it is difficult to wind the conductor into an accurate square, and the conductor contacts only the apexes of the square to form a straight section. And it was inevitable that there would be a gap there. Therefore, since the gap functions as a heat insulating space, heat of the conductive wire is less likely to be transmitted to the iron core via the insulating member, and there has been a problem that the cooling performance of the conductive wire is further reduced.
[0003]
In order to cool the coil by providing a cooling means in the rotating electric machine, there has been known the following patent document. In this rotating electric machine, one end of a coil is fixed to an outer core (stator) to form a neutral point, and the inside of a neutral point bus bar is hollowed to form a cooling passage, and insulating oil flows through the cooling passage. This cools the coil.
[0004]
[Patent Document]
Japanese Patent Application Laid-Open No. 2000-19731
[Problems to be solved by the invention]
However, the above-mentioned conventional one requires an oil tank or an oil pump to allow the insulating oil to flow through the cooling passage, so that there is a problem that the size of the rotating electric machine is increased and the cost is increased. In the case of a rotating electrical machine in which both the outer core (stator) and the inner core (rotor) rotate, the oil tank and the oil pump can be eliminated. However, such rotating electrical machines are not common and their applications are limited. There is a problem that is done.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to efficiently cool a coil of a rotating electric machine with a simple structure.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a coil of a rotating electrical machine in which a conductive wire is wound in a plurality of layers around a winding portion of an insulating member that covers a periphery of an iron core. A coil for a rotating electric machine, characterized in that a gap formed between a winding part and a conductive wire is filled with a heat conductive member through a flow path formed in an insulating member.
[0008]
According to the above configuration, the gap formed between the wound portion of the insulating member that covers the periphery of the iron core and the conductive wire wound there is filled with the heat conductive member through the flow path formed in the insulating member. Therefore, by transmitting the heat of the conductor to the iron core via the heat conductive member and the insulating member, the heat can be effectively dissipated and the conductor can be cooled. In addition, since a refrigerant and a pump for circulating the refrigerant are not required, it is possible to contribute to cost reduction.
[0009]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, the flow path is formed between a groove formed in the insulating member and a surface of the iron core. Are proposed.
[0010]
According to the above configuration, since the flow path for filling the gap with the heat conductive member is formed between the groove formed in the insulating member and the surface of the iron core, the flow path can be easily formed.
[0011]
Note that the insulator 13 of the embodiment corresponds to the insulating member of the present invention, the flat wire 14 of the embodiment corresponds to the conductor of the present invention, and the first to third grooves 15e, 15f, 15g of the embodiment correspond to the present invention. The varnish 20 of the embodiment corresponds to the groove, and corresponds to the heat conductive member of the present invention.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0013]
1 to 6 show one embodiment of the present invention. FIG. 1 is a partial front view of a stator of a generator motor, FIG. 2 is a view in the direction of arrow 2 in FIG. 1, and FIG. 3 is 3-3 in FIG. FIG. 4 is a view in the direction of the arrows in FIG. 2, FIG. 5 is an exploded perspective view of the coil, and FIG. 6 is a graph showing the temperature distribution of each part of the generator motor.
[0014]
As shown in FIGS. 1, 2 and 4, a ring-shaped stator 10 of a generator motor used as a driving source for a hybrid vehicle has a plurality of (24 in the embodiment) coils 11 having the same structure. Are connected in the circumferential direction, and FIG. 1 shows five of the 24 coils 11. Each coil 11 is formed by covering an outer periphery of an iron core 12 formed by laminating a number of steel plates with an insulator 13 made of synthetic resin as an insulating member, and winding a rectangular wire 14 as a conducting wire around the insulator 13 in a plurality of layers. The radial outer end of the iron core 12 is provided with a convex portion 12a and a concave portion 12b at both ends in the circumferential direction, and the convex portion 12a and the concave portion 12b are alternately fitted to each other in the circumferential direction. Be combined.
[0015]
As shown in FIG. 5, the insulator 13 is divided into a first half 15 and a second half 16 so that the insulator 13 can be fitted to the outer periphery of the iron core 12, and the assembled first and second halves 15 are assembled. , 16 are wound portions 15 a, 16 a having a rectangular cross section around which the flat wire 14 is wound, approximately U-shaped outer flange portions 15 b, 16 b continuous radially outside of the wound portions 15 a, 16 a, and There is provided a substantially U-shaped inner flange portion 15c, 16c that continues radially inward of the portion 15a, 16a. Two cutouts 16d, 16d are formed in the inner flange portion 16c of the second half 16 of the insulator 13 to cooperate with the flat wire holder 17 to lock the winding start portion of the flat wire 14, and the outer flange portion 16b Is formed with one notch 16e which locks the winding end portion of the flat wire 14 in cooperation with the flat wire holder 18.
[0016]
As is clear from FIGS. 3 and 5, the first half 15 of the insulator 13 is provided on the inner surface in contact with the iron core 12, the inlet 15 d opening to the inner flange portion 15 c, and extends radially outward from the inlet 15 d. A first groove 15e, two second grooves 15f, 15f extending circumferentially from both ends of the first groove 15e, and two axial grooves extending from the ends of the second grooves 15f, 15f. Are formed, and two outlets 15h, 15h for connecting the ends of the third grooves 15g, 15g to the outer surface of the winding portion 15a.
[0017]
When the insulator 13 is mounted so as to cover the iron core 12, a flow path is formed between the first groove 15 e, the second grooves 15 f, 15 f, and the third grooves 15 g, 15 g of the first half 15 and the surface of the iron core 12. You. Since the first groove 15e, the second grooves 15f, 15f and the third grooves 15g, 15g are formed integrally when the first half 15 is formed by a die, the first groove 15e, the second groove 15f, and the third groove 15g do not require special machining. The channel can be easily configured.
[0018]
As shown in FIG. 3, when the flat wire 14 is wound around the winding portions 15a and 16a of the insulator 13, the flat wire 14 does not completely adhere to the winding portions 15a and 16a. Gaps 19 are formed between the rectangular wire 14 and the inner layer. Then, a varnish 20 as a heat conductive member is injected from the inlet 15d of the first half 15 of the insulator 13, and the varnish 20 is filled with the first groove 15e, the second groove 15f, 15f, and the second groove 15f of the first half 15. The gaps 19, 19 are filled through three grooves 15g, 15g and outlets 15h, 15h.
[0019]
When the varnish 20 fills the gaps 19 between the winding portions 15a and 16a and the innermost rectangular wire 14 in this manner, the gaps 19 and 19 no longer function as heat insulating spaces. Is efficiently transmitted to the iron core 12 via the varnish 20 and the insulator 13, and the heat radiation of the flat wire 14 can be enhanced to enhance the cooling effect. In particular, since the liquid varnish 20 spreads all over the gaps 19, not only the heat transfer efficiency is improved, but also the adhesion of the flat wire 14 to the insulator 13 can be improved.
[0020]
The graph of FIG. 6 shows the temperature distribution of the surface of the flat wire 14, the iron core 12 and the insulator 13, the surface of the housing of the generator motor, and the test bench supporting the generator motor. This is shown with respect to what was done and what was not (normal).
[0021]
When the varnish 20 is filled, the temperature of the surface of the flat wire 14 is reduced by about 7 ° C. and the temperature of the surface of the housing is reduced by about 6 ° C. Due to the decrease, it is possible to improve the performance of the generator motor and the durability of the coils 11. As a result of comparing the performance by continuously operating the generator motor at 3000 rpm, the output with the varnish 20 was 4.1 kW and the torque was 13 Nm, whereas the output without the varnish 20 was 3.5 kW. The torque was 11 Nm, and the performance improvement by filling the varnish 20 was confirmed.
[0022]
As described above, the rectangular wire 14 can be effectively cooled with a simple structure by merely filling the varnish 20 in the gaps 19 between the winding portions 15a, 16a of the insulator 13 and the innermost rectangular wire 14. This eliminates the need for a refrigerant, a pump for circulating the refrigerant, and the like, thereby contributing to cost reduction.
[0023]
The embodiments of the present invention have been described above. However, various design changes can be made in the present invention without departing from the gist thereof.
[0024]
For example, the coil 11 of the present invention can be applied to any rotating electric machine other than the generator motor of the hybrid vehicle, and can be applied not only to the stator coil but also to the rotor coil.
[0025]
The conductor is not limited to the rectangular wire 14 of the embodiment, and other conductors such as a round wire can be used.
[0026]
Further, the heat conductive member is not limited to the varnish 20 of the embodiment, but may be a silicone resin, grease, or the like. These heat conductive members may be maintained in a liquid state even after being injected into the gaps 19, 19, or may be solidified. However, when applied to a rotating rotor coil, in order to prevent leakage, It is desirable to solidify. However, when the liquid is kept in a liquid state, it is necessary to take measures such as closing the inflow port 15d.
[0027]
【The invention's effect】
As described above, according to the first aspect of the present invention, the insulating member is formed in the gap formed between the winding portion of the insulating member that covers the periphery of the iron core and the conductive wire wound therearound. Since the heat conductive member is filled through the flow path, the heat of the conductive wire is transmitted to the iron core through the heat conductive member and the insulating member, so that the heat can be effectively dissipated and the conductive wire can be cooled. . In addition, since a refrigerant and a pump for circulating the refrigerant are not required, it is possible to contribute to cost reduction.
[0028]
According to the second aspect of the present invention, the flow path for filling the gap with the heat conductive member is formed between the groove formed in the insulating member and the surface of the iron core. Can be formed.
[Brief description of the drawings]
FIG. 1 is a partial front view of a stator of a generator motor. FIG. 2 is a sectional view taken in the direction of arrow 2 in FIG. 1. FIG. 3 is a sectional view taken along line 3-3 in FIG. FIG. 5 is an exploded perspective view of the coil. FIG. 6 is a graph showing a temperature distribution of each part of the generator motor.
12 Iron core 13 Insulator (insulating member)
14 Flat wire (conductor)
15a Winding part 15e First groove (groove)
15f 2nd groove (groove)
15g 3rd groove (groove)
16a winding part 19 gap 20 varnish (heat conductive member)

Claims (2)

鉄心(12)の周囲を覆う絶縁部材(13)の巻回部(15a,16a)に導線(14)を複数層に重ねて巻回した回転電機のコイルにおいて、
絶縁部材(13)の巻回部(15a,16a)と導線(14)との間に形成された隙間(19)に、絶縁部材(13)に形成した流路を通して熱伝導性部材(20)を充填したことを特徴とする回転電機のコイル。
In a coil of a rotating electrical machine, a conductive wire (14) is wound in multiple layers on a wound portion (15a, 16a) of an insulating member (13) covering the periphery of an iron core (12).
A heat conductive member (20) is inserted into a gap (19) formed between the winding portions (15a, 16a) of the insulating member (13) and the conductor (14) through a flow path formed in the insulating member (13). A coil of a rotating electric machine characterized by being filled with:
前記流路を、絶縁部材(13)に形成した溝(15e,15f,15g)と鉄心(12)の表面との間に形成したことを特徴とする、請求項1に記載の回転電機のコイル。The coil of a rotary electric machine according to claim 1, wherein the flow path is formed between grooves (15e, 15f, 15g) formed in the insulating member (13) and a surface of the iron core (12). .
JP2003136756A 2003-05-15 2003-05-15 Coil for rotary electric machine Pending JP2004343877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136756A JP2004343877A (en) 2003-05-15 2003-05-15 Coil for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136756A JP2004343877A (en) 2003-05-15 2003-05-15 Coil for rotary electric machine

Publications (1)

Publication Number Publication Date
JP2004343877A true JP2004343877A (en) 2004-12-02

Family

ID=33526591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136756A Pending JP2004343877A (en) 2003-05-15 2003-05-15 Coil for rotary electric machine

Country Status (1)

Country Link
JP (1) JP2004343877A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705508B2 (en) 2006-05-10 2010-04-27 Pratt & Whitney Canada Crop. Cooled conductor coil for an electric machine and method
DE112008001594T5 (en) 2007-06-13 2010-04-29 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Cooling structure for a rotary electric machine
JP2010200492A (en) * 2009-02-25 2010-09-09 Toyota Motor Corp Insulator, stator and motor
JP2010252507A (en) * 2009-04-15 2010-11-04 Nissan Motor Co Ltd Stator of rotary electric machine, and method of cooling the same
CN102280980A (en) * 2010-06-08 2011-12-14 天津市松正电动科技有限公司 Stator winding framework and method for measuring number of turns of stator coils
JP2013013192A (en) * 2011-06-28 2013-01-17 Nissan Motor Co Ltd Stator and insulator
JP2013255319A (en) * 2012-06-06 2013-12-19 Toyota Motor Corp Insulation member of electric device
JP2014007836A (en) * 2012-06-22 2014-01-16 Mitsubishi Electric Corp Stator of rotary electric machine
JP2020036411A (en) * 2018-08-28 2020-03-05 株式会社日立産機システム Electric motor
CN111711287A (en) * 2020-06-29 2020-09-25 苏州炽优装备科技有限公司 Efficient heat dissipation method for motor and motor applied by efficient heat dissipation method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705508B2 (en) 2006-05-10 2010-04-27 Pratt & Whitney Canada Crop. Cooled conductor coil for an electric machine and method
DE112008001594T5 (en) 2007-06-13 2010-04-29 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Cooling structure for a rotary electric machine
US8093769B2 (en) 2007-06-13 2012-01-10 Toyota Jidosha Kabushiki Kaisha Cooling structure for rotating electric machine
JP2010200492A (en) * 2009-02-25 2010-09-09 Toyota Motor Corp Insulator, stator and motor
JP2010252507A (en) * 2009-04-15 2010-11-04 Nissan Motor Co Ltd Stator of rotary electric machine, and method of cooling the same
CN102280980A (en) * 2010-06-08 2011-12-14 天津市松正电动科技有限公司 Stator winding framework and method for measuring number of turns of stator coils
JP2013013192A (en) * 2011-06-28 2013-01-17 Nissan Motor Co Ltd Stator and insulator
JP2013255319A (en) * 2012-06-06 2013-12-19 Toyota Motor Corp Insulation member of electric device
JP2014007836A (en) * 2012-06-22 2014-01-16 Mitsubishi Electric Corp Stator of rotary electric machine
JP2020036411A (en) * 2018-08-28 2020-03-05 株式会社日立産機システム Electric motor
JP7032267B2 (en) 2018-08-28 2022-03-08 株式会社日立産機システム Electric motor
CN111711287A (en) * 2020-06-29 2020-09-25 苏州炽优装备科技有限公司 Efficient heat dissipation method for motor and motor applied by efficient heat dissipation method

Similar Documents

Publication Publication Date Title
US6700236B2 (en) Liquid-cooled vehicle rotary electric machine
EP3579385B1 (en) Cooling structure for dynamo-electric machine
US9887596B2 (en) Rotating electric machine
JP5088577B2 (en) Rotating electric machine
US8519579B2 (en) Electric motor
EP3337011B1 (en) Direct-cooling driving motor for vehicle
JP7470507B2 (en) Electrical machines, especially for vehicles
US8853910B2 (en) Three-phase rotary electrical machine and manufacturing method thereof
JP7062690B2 (en) Electrical machinery
US20100270094A1 (en) Rotating Electric Machine for Driving a Vehicle and Vehicle Equipped with the Same
US20160105065A1 (en) Rotating electric machine for vehicle
JP5531142B2 (en) Rotating electric machine stator and rotating electric machine using the same
JP2020120470A (en) Rotary electric machine
JP2004343877A (en) Coil for rotary electric machine
JP5240131B2 (en) Motor cooling structure
JP2009027836A (en) Rotary electric machine
JP6374797B2 (en) Cooling structure of rotating electric machine
JP2010226841A (en) Rotary electric machine
JP2008312324A (en) Cooling structure for stator
JP3594007B2 (en) Rotating electric machine
JP5997598B2 (en) Rotating electric machine
JP5330860B2 (en) Rotating electric machine
JP7030961B2 (en) Stator and rotary machine
JP2010172083A (en) Claw pole type motor
JP2014100038A (en) Stator of rotary electric machine