JP2004340731A - Load sensor - Google Patents

Load sensor Download PDF

Info

Publication number
JP2004340731A
JP2004340731A JP2003137249A JP2003137249A JP2004340731A JP 2004340731 A JP2004340731 A JP 2004340731A JP 2003137249 A JP2003137249 A JP 2003137249A JP 2003137249 A JP2003137249 A JP 2003137249A JP 2004340731 A JP2004340731 A JP 2004340731A
Authority
JP
Japan
Prior art keywords
load
sensor body
sensor
deformation
conductive rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003137249A
Other languages
Japanese (ja)
Inventor
Takahiro Shimada
貴弘 島田
Itaru Iwasaki
到 岩崎
Fusashi Kanayama
維史 金山
Akihiro Kashiwazaki
昭宏 柏崎
Koji Tanida
宏次 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003137249A priority Critical patent/JP2004340731A/en
Publication of JP2004340731A publication Critical patent/JP2004340731A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Push-Button Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a load sensor in which the linearity of load and a direction of load applied is improved. <P>SOLUTION: A sensor 1 is formed by conductive rubber whose electric resistance changes corresponding to the deformation thereof, and electrodes 2, 2 are provided on the sensor 1 to detect the electric resistance of the direction where the load is applied. An enclosure member 3 is provided around the sensor 1 to prevent the deformation of the sensor in a direction different from the direction where the load is not applied. Therefore, the load and deformation in the direction of the load applied becomes liner in the sensor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、導電ゴムを利用した荷重センサに係り、特に、線形性を改善した荷重センサに関するものである。
【0002】
【従来の技術】
シリコンゴム等のゴム樹脂材料中に導電性微粒子を含有させた導電ゴムは長さ当たりの抵抗値が一定であり、変形により長さが変化すると電気抵抗が変化する。即ち、導電ゴムは、力を加えるとその力によって歪み、その歪みに応じて電気抵抗が変化する性質を持つため、人や物によって押されたかどうかでオン/オフするスイッチ素子を構成することができる。このような、導電ゴムによるスイッチ素子は電子機器に広く利用されている。
【0003】
また、電気抵抗の大きさから加わった力の大きさを求めるアナログ的なセンサとしても導電ゴムを利用できる。例えば、被測定物の荷重が荷重支持物へ作用する場所に導電ゴムを介在させ、導電ゴムに荷重が加わるようにすると、その荷重の方向の電気抵抗を測ることで荷重を求めることができる。
【0004】
【特許文献1】
特開2003−050165号公報
【特許文献2】
特開平06−074848号公報
【特許文献3】
特開平05−099766号公報
【0005】
【発明が解決しようとする課題】
しかし、導電ゴムは、非圧縮性かつ柔軟であるため、機械的特性に幾何学的非線形特性が生じやすい。即ち、大きな荷重を受けた導電ゴムは、大変形した後、荷重を取り去っても変形が残留するというヒステリシス性或いはクリープ性を有する。また、変形により厚みが減少するとき、同時に面が広がるため、荷重を受ける面積が増加する。図4(a)に示した荷重を受けない導電ゴム41の面積Sに対し、図4(b)に示した荷重を受けた導電ゴム41の面積S1は大きい。その結果、単位面積当たりの荷重が相対的に減少し、見掛け上の剛性が増加する。これらの性質は、荷重と電気抵抗との関係を非線形にする。このため、導電ゴムで構成した荷重センサは、荷重−電気抵抗特性の非線形性が強く、使用しにくい。図4(c)に、導電ゴム単体に荷重をかけた場合の荷重−変位特性を示す(ここでいう変位は厚みの減少分のこと)。図示のように、荷重が大きいと見掛け上の剛性が増加する。この結果、荷重−電気抵抗特性が非線形になる。
【0006】
また、導電ゴムは柔軟であるため、大きな荷重をかけると、厚みがほとんどなくなるほど歪みが大きくなるため、その厚み方向の電気抵抗がほぼゼロ(導通)にまでなってしまい、荷重計測が不可能になってしまう。図5に、荷重−電気抵抗特性を示す。図示のように、ある荷重以上では導電ゴムがほとんど導体となってしまい、電気抵抗の値が電気抵抗計測の計測誤差の程度になってしまう。
【0007】
また、導電ゴムは、電気抵抗が歪みの分布(受圧面上の分布)に依存するので、荷重を作用させる面に凹凸があると、その凹凸によって電気抵抗が違ってくるという問題がある。即ち、図6に示されるように、被測定物又は荷重支持物に凹凸42があると、導電ゴム41がその凹凸42に倣って変形するため、距離(厚み)が際立って短い箇所ができ、この箇所での電気抵抗が支配的になり、導電ゴム全体での電気抵抗の計測を誤らせてしまう。
【0008】
そこで、本発明の目的は、上記課題を解決し、線形性を改善した荷重センサを提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明は、変形に応じて電気抵抗が変化する導電ゴムでセンサ体が形成され、このセンサ体に荷重を受ける方向の電気抵抗を取り出す電極が取り付けられ、このセンサ体の周囲に荷重を受ける方向と異なる方向への該センサ体の変形を拘束する囲み部材が設けられているものである。
【0010】
上記センサ体に臨ませて被測定物の荷重を受けて上記センサ体を押圧する押し板が設けられてもよい。
【0011】
上記センサ体を荷重による反力で支持する底部が上記囲み部材と一体的に形成されてもよい。
【0012】
上記センサ体は、導電ゴムを絶縁体ゴムで被覆して形成されてもよい。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて詳述する。
【0014】
図1及び図2に示されるように、本発明に係る荷重センサは、変形に応じて電気抵抗が変化する導電ゴムにより、荷重による圧力を受ける表裏の平面を有するセンサ体1が形成され、このセンサ体1にセンサ体1が荷重を受ける方向(厚み方向)におけるセンサ体1の電気抵抗を取り出すための2つの電極2,2が取り付けられ、このセンサ体1の周囲に荷重を受ける方向と異なる方向へのセンサ体1の変形を拘束する囲み部材3が設けられているものである。
【0015】
センサ体1は、円盤状に形成されている。センサ体1の表裏の平面上の互いに対向する箇所にそれぞれ電極2,2が設けられている。各電極2はセンサ体1の表平面、裏平面を覆う薄板状に形成するとよい。また、この実施形態では、センサ体1は絶縁体ゴムからなる被覆体4で被覆されている。被覆体4は、下板4aと上板4bとに分割形成されている。下板4aは、センサ体1より径も厚みも大きい円盤状に形成され、センサ体1を嵌め込むための底のある穴を有する。上板4bは、下板4aと同径の円盤状に形成されている。センサ体1を嵌め込んだ下板4aに上板4bを被せることで、円盤状を呈する被覆体4の中に円盤状のセンサ体1が組み込まれた構造ができる。
【0016】
本発明に係る荷重センサには、センサ体1の表平面に臨ませて被測定物5の荷重を受けてセンサ体1を押圧する押し板6が設けられている。この実施形態では、センサ体1が被覆体4で被覆されているので、押し板6は上板4bの上に重ねて設けられる。押し板6は、被覆体4と同径の円盤状に形成されている。押し板6は、剛性の高い金属や樹脂で構成される。
【0017】
囲み部材3は、剛性の高い金属や樹脂で構成される。図1では、囲み部材3の外径は直方体として示されているが、これに限定されることはなく、荷重を受ける方向と異なる方向へのセンサ体1の変形(図示例では被覆体4の変形)を拘束することができればよい。この目的で、囲み部材3には、被覆体4を嵌め込むために被覆体4とほぼ同径の穴7が形成されている。この穴7の内周が被覆体4の外周に接していることにより、被覆体4の径方向への変形が拘束されている。
【0018】
また、この穴7は、被覆体4の裏平面に接してセンサ体1を荷重の反力で荷重の反対方向から支持する底部8で塞がれている。この実施形態では、穴7の深さを囲み部材3の厚みより浅くすることで、底部8は囲み部材3と一体的に形成されている。
【0019】
穴7の深さは、被覆体4の厚みより深く形成されている。穴7内に被覆体4を嵌め込んだ上に押し板6を嵌め込むようになっている。押し板6は、囲み部材3の上面より上に出ている。そして、この押し板6の上に被測定物5が乗ることになる。
【0020】
センサ体1には、表平面と裏平面とにそれぞれ電極2が設けられ、これらの電極2に導通するリード線9,9が絶縁体ゴム4の外へ引き出されている。これにより、リード線9,9間にはセンサ体1が被測定物5によって受けた荷重に応じたセンサ体1の電極2,2間の電気抵抗が現れることになる。
【0021】
図3に、センサ体1の電気抵抗を計測する回路を2種類示す。図3(a)の回路は、センサ体1の電気抵抗R に対して直列抵抗R を接続したものに定電圧Eを印加し、直列抵抗R の両端間電圧Vを計測するものである。図3(b)の回路は、センサ体1の電気抵抗R に対して直列抵抗R を接続したものに定電圧Eを印加し、この閉回路に流れる電流Aを計測するものである。
【0022】
図2を用いて本発明の荷重センサの作用を説明する。
【0023】
被測定物5の荷重が押し板6の上面にかかることにより、押し板6の下面が被覆体4を押圧する。この力に応じてセンサ体1を含む被覆体4の全体が変形する(体積弾性挙動)。しかし、被覆体4は、囲み部材3によって径方向への変形が拘束されているので、荷重の印加方向である厚み方向のみに変形する。被覆体4が径方向に変形しないことにより、センサ体1も径方向に変形しない。従って、大きな荷重が加わったときでも、導電ゴム単体で見られた面積の増加はなくなり、荷重と変位との関係が線形に保たれる。また、径方向への変形が拘束されている導電ゴムは、厚みがほとんどなくなるほどの変形はしないので、厚み方向の電気抵抗がゼロ近くにまで減少することがない。
【0024】
本発明の荷重センサによれば、荷重を受ける方向と異なる方向への変形が拘束されたセンサ体1の変形には、せん断変形がほとんどないため、導電ゴム内の内部摩擦によるヒステリシスが小さくなる。また、大荷重が印加されたときでも、上記拘束の効果により見掛け上の剛性が高くなるため、変形が小さくなる。このため、荷重−変位特性の直線性がよくなり、荷重−電気抵抗特性の線形性がよくなる。
【0025】
また、センサ体1を被覆体4の中に埋め込んだ構造にしたことにより、仮に押し板6や底部8に凹凸があっても、その凹凸がセンサ体1に及びにくい。そして、押し板6及び底部8を平坦に加工してあることにより、被覆体4に凹凸が形成されにくい。被測定物5に凹凸がある場合でも、上記押し板6及び底部8を平坦にした効果及びセンサ体1を被覆体4の中に埋め込んだ効果により、センサ体1には凹凸が生じない。よって、電気抵抗の計測が凹凸により影響されなくなり、荷重を正確に計測することが可能になる。
【0026】
なお、上記実施形態では、センサ体1は絶縁体ゴムからなる被覆体4で被覆したが、被覆体4を設けずセンサ体1を被覆体4の大きさにして穴7に嵌め込んでもよい。この場合、囲み部材3は絶縁体であることが求められる。
【0027】
また、囲み部材3は剛性の高い材料で構成したが、囲み部材3の剛性を適宜に選択することにより、センサ体1の径方向の変形を弾性的に拘束するようにしてもよい。
【0028】
例えば、図7に示すように、囲み部材3が非常に高い剛性を有する剛体である場合、センサ体1及び被覆体4を構成するゴムに上面から鉛直に荷重(圧縮力)がかかると、ゴムの変形に対しては体積弾性率(体積変化に対する剛性)が支配的となる。ゴムは体積に関してほぼ非圧縮であり、体積弾性率が非常に大きい。このため、囲み部材3が存在しないときの自由なゴムの鉛直剛性に比べて、見掛けの鉛直剛性(圧縮力/鉛直変形量)は非常に大きくなる。言い換えると、ゴムの変形(厚み方向の変位)は非常に小さくなる。従って、大荷重を計測するには有利となるが、中〜小荷重を計測したい場合には、センサとしての敏感性(精度・分解能)が不十分になる可能性がある。
【0029】
これに対し、図8に示すように、囲み部材3が適当に変形できる程度に囲み部材3の剛性を選択すると、囲み部材3も荷重を受けている鉛直方向とは異なる方向に変形することができる。例えば、破線で示した無負荷時のところから実線のところまで、幅が若干広がる。この変形分81に応じて穴7も若干広がり、被覆体4のはみ出し82を許容できるようになる。この場合、見掛けの鉛直剛性(圧縮力/鉛直変形量)が囲み部材3の剛性にも依存するようになり、図7の場合よりもゴムが変形(厚み方向の変位)しやすくなるので、センサとしての敏感性が高まり、中〜小荷重の計測に対応できるようになる。
【0030】
囲み部材3の剛性の選択は、囲み部材3の材料の選択により可能である。よって、囲み部材3の材料を選択すれば、計測しようとする荷重に合わせたセンサの敏感性を得ることができる。
【0031】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0032】
(1)線形性を改善することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す荷重センサの分解構造図である。
【図2】本発明の一実施形態を示す荷重センサの断面図である。
【図3】本発明の荷重センサのための電気抵抗計測回路の回路図である。
【図4】導電ゴムの荷重−変位特性及びその特性の測定方法を示す図である。
【図5】導電ゴムの荷重−電気抵抗特性を示す図である。
【図6】受圧面に凹凸がある導電ゴムの断面図である。
【図7】本発明の一実施形態を示す荷重センサの断面図である。
【図8】本発明の一実施形態を示す荷重センサの断面図である。
【符号の説明】
1 導電ゴム
2 電極
3 囲み部材
4 絶縁体ゴム
5 被測定物
6 押し板
7 穴
8 底部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a load sensor using conductive rubber, and more particularly to a load sensor with improved linearity.
[0002]
[Prior art]
A conductive rubber in which conductive fine particles are contained in a rubber resin material such as silicon rubber has a constant resistance value per length, and the electrical resistance changes as the length changes due to deformation. That is, since conductive rubber is distorted by a force when applied, and its electrical resistance changes in accordance with the distortion, it is possible to constitute a switch element that is turned on / off depending on whether it is pressed by a person or an object. it can. Such a switch element made of conductive rubber is widely used in electronic devices.
[0003]
Further, the conductive rubber can also be used as an analog sensor for obtaining the magnitude of the applied force from the magnitude of the electric resistance. For example, when a conductive rubber is interposed in a place where the load of the object to be measured acts on the load support, and the load is applied to the conductive rubber, the load can be obtained by measuring the electric resistance in the direction of the load.
[0004]
[Patent Document 1]
JP 2003-050165 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 06-074848 [Patent Document 3]
Japanese Patent Application Laid-Open No. 05-099766
[Problems to be solved by the invention]
However, since the conductive rubber is incompressible and flexible, the mechanical characteristics tend to have geometrical nonlinear characteristics. That is, the conductive rubber subjected to a large load has a hysteresis property or a creep property that the deformation remains after the load is removed after the large deformation. Further, when the thickness is reduced by the deformation, the surface is also widened at the same time, so that the area receiving the load increases. The area S1 of the conductive rubber 41 subjected to the load illustrated in FIG. 4B is larger than the area S1 of the conductive rubber 41 not subjected to the load illustrated in FIG. As a result, the load per unit area relatively decreases, and the apparent rigidity increases. These properties make the relationship between load and electrical resistance non-linear. For this reason, a load sensor made of conductive rubber has a strong non-linear load-electric resistance characteristic and is difficult to use. FIG. 4C shows a load-displacement characteristic when a load is applied to the conductive rubber alone (the displacement referred to here is a decrease in thickness). As shown, when the load is large, the apparent rigidity increases. As a result, the load-electric resistance characteristics become non-linear.
[0006]
In addition, since conductive rubber is flexible, when a large load is applied, the strain increases as the thickness almost disappears, and the electrical resistance in the thickness direction becomes almost zero (conduction), making it impossible to measure the load. Become. FIG. 5 shows load-electric resistance characteristics. As shown in the figure, when the load is more than a certain value, the conductive rubber becomes almost a conductor, and the value of the electric resistance becomes a measurement error of electric resistance measurement.
[0007]
In addition, since the electrical resistance of the conductive rubber depends on the distribution of strain (distribution on the pressure receiving surface), there is a problem that if the surface on which the load is applied has irregularities, the electric resistance varies depending on the irregularities. That is, as shown in FIG. 6, if the measured object or the load support has the irregularities 42, the conductive rubber 41 is deformed following the irregularities 42, so that a portion where the distance (thickness) is remarkably short is formed. The electrical resistance at this point becomes dominant, and erroneously measures the electrical resistance of the entire conductive rubber.
[0008]
Then, an object of the present invention is to solve the above-mentioned problems and to provide a load sensor with improved linearity.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a sensor body is formed of conductive rubber whose electric resistance changes according to deformation, and an electrode for extracting electric resistance in a direction receiving a load is attached to the sensor body. And a surrounding member for restricting the deformation of the sensor body in a direction different from the direction in which the load is applied.
[0010]
A push plate that receives the load of the object to be measured and presses the sensor body may be provided facing the sensor body.
[0011]
A bottom portion supporting the sensor body by a reaction force due to a load may be formed integrally with the surrounding member.
[0012]
The sensor body may be formed by covering a conductive rubber with an insulating rubber.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0014]
As shown in FIGS. 1 and 2, in the load sensor according to the present invention, a sensor body 1 having front and back planes which receive pressure due to a load is formed by conductive rubber whose electric resistance changes according to deformation. Two electrodes 2 and 2 are attached to the sensor body 1 for taking out the electrical resistance of the sensor body 1 in the direction in which the sensor body 1 receives a load (thickness direction). An enclosing member 3 for restricting the deformation of the sensor body 1 in the direction is provided.
[0015]
The sensor body 1 is formed in a disk shape. Electrodes 2 and 2 are provided at opposing locations on the front and back planes of the sensor body 1, respectively. Each electrode 2 may be formed in a thin plate shape that covers the front and back surfaces of the sensor body 1. In this embodiment, the sensor body 1 is covered with a cover 4 made of insulating rubber. The cover 4 is divided into a lower plate 4a and an upper plate 4b. The lower plate 4a is formed in a disk shape having a diameter and a thickness larger than that of the sensor body 1, and has a hole with a bottom for fitting the sensor body 1. The upper plate 4b is formed in a disk shape having the same diameter as the lower plate 4a. By covering the upper plate 4b on the lower plate 4a in which the sensor body 1 is fitted, a structure in which the disc-shaped sensor body 1 is incorporated in the disc-shaped covering body 4 can be obtained.
[0016]
The load sensor according to the present invention is provided with a push plate 6 that faces the surface of the sensor body 1 and receives the load of the measured object 5 and presses the sensor body 1. In this embodiment, since the sensor body 1 is covered with the covering body 4, the push plate 6 is provided so as to overlap the upper plate 4b. The push plate 6 is formed in a disk shape having the same diameter as the cover 4. The push plate 6 is made of a highly rigid metal or resin.
[0017]
The surrounding member 3 is made of a highly rigid metal or resin. In FIG. 1, the outer diameter of the surrounding member 3 is shown as a rectangular parallelepiped, but is not limited to this, and the sensor body 1 is deformed in a direction different from the direction in which the load is received (in the illustrated example, the cover 4 is not covered). Deformation) may be restricted. For this purpose, a hole 7 having substantially the same diameter as the cover 4 is formed in the surrounding member 3 for fitting the cover 4. Since the inner periphery of the hole 7 is in contact with the outer periphery of the coating 4, the deformation of the coating 4 in the radial direction is restricted.
[0018]
The hole 7 is closed by a bottom portion 8 that is in contact with the back surface of the cover 4 and supports the sensor body 1 from the opposite direction of the load by the reaction force of the load. In this embodiment, the bottom 8 is formed integrally with the surrounding member 3 by making the depth of the hole 7 smaller than the thickness of the surrounding member 3.
[0019]
The depth of the hole 7 is formed larger than the thickness of the cover 4. The push plate 6 is fitted on the cover 4 in the hole 7. The push plate 6 protrudes above the upper surface of the surrounding member 3. Then, the measured object 5 rides on the push plate 6.
[0020]
The sensor body 1 is provided with electrodes 2 on the front surface and the back surface, respectively, and lead wires 9, 9 that are connected to these electrodes 2 are drawn out of the insulating rubber 4. As a result, the electrical resistance between the electrodes 2 and 2 of the sensor body 1 corresponding to the load received by the sensor body 1 on the sensor body 1 appears between the lead wires 9 and 9.
[0021]
FIG. 3 shows two types of circuits for measuring the electric resistance of the sensor body 1. The circuit of FIG. 3A applies a constant voltage E to a connection of a series resistor RS to the electrical resistor RG of the sensor body 1 and measures a voltage V between both ends of the series resistor RS. is there. The circuit shown in FIG. 3B applies a constant voltage E to the connection of the series resistance RS to the electric resistance RG of the sensor body 1 and measures the current A flowing through this closed circuit.
[0022]
The operation of the load sensor of the present invention will be described with reference to FIG.
[0023]
When the load of the DUT 5 is applied to the upper surface of the push plate 6, the lower surface of the push plate 6 presses the cover 4. In response to this force, the entire cover 4 including the sensor body 1 is deformed (bulk elastic behavior). However, since the deformation in the radial direction is restricted by the surrounding member 3, the cover 4 deforms only in the thickness direction, which is the direction in which the load is applied. Since the cover 4 does not deform in the radial direction, the sensor body 1 also does not deform in the radial direction. Therefore, even when a large load is applied, the increase in the area seen with the conductive rubber alone is eliminated, and the relationship between the load and the displacement is kept linear. In addition, since the conductive rubber whose radial deformation is constrained does not deform so as to have almost no thickness, the electrical resistance in the thickness direction does not decrease to near zero.
[0024]
According to the load sensor of the present invention, since the deformation of the sensor body 1 in which the deformation in the direction different from the direction in which the load is received is restricted, there is almost no shear deformation, so the hysteresis due to internal friction in the conductive rubber is reduced. In addition, even when a large load is applied, the apparent rigidity is increased by the effect of the restraint, so that the deformation is reduced. Therefore, the linearity of the load-displacement characteristic is improved, and the linearity of the load-electric resistance characteristic is improved.
[0025]
In addition, since the sensor body 1 is embedded in the cover 4, even if the push plate 6 and the bottom 8 have irregularities, the irregularities hardly reach the sensor body 1. And since the press plate 6 and the bottom part 8 are processed flat, irregularities are not easily formed on the cover 4. Even when the measured object 5 has irregularities, the sensor body 1 does not have irregularities due to the effect of flattening the push plate 6 and the bottom 8 and the effect of embedding the sensor body 1 in the cover 4. Therefore, the measurement of the electric resistance is not affected by the unevenness, and the load can be accurately measured.
[0026]
In the above-described embodiment, the sensor body 1 is covered with the cover 4 made of insulating rubber. However, the sensor body 1 may be the size of the cover 4 and fitted into the hole 7 without providing the cover 4. In this case, the surrounding member 3 is required to be an insulator.
[0027]
Although the surrounding member 3 is made of a material having high rigidity, the deformation of the sensor body 1 in the radial direction may be elastically restricted by appropriately selecting the rigidity of the surrounding member 3.
[0028]
For example, as shown in FIG. 7, when the surrounding member 3 is a rigid body having extremely high rigidity, when a load (compression force) is vertically applied to the rubber constituting the sensor body 1 and the covering body 4 from the upper surface, The bulk modulus (rigidity against volume change) becomes dominant for the deformation of. Rubber is almost incompressible in volume and has a very high bulk modulus. For this reason, the apparent vertical rigidity (compression force / vertical deformation amount) becomes extremely large as compared with the vertical rigidity of the free rubber when the surrounding member 3 is not present. In other words, the deformation (displacement in the thickness direction) of the rubber becomes very small. Therefore, although it is advantageous for measuring a large load, when it is desired to measure a medium to small load, the sensitivity (accuracy / resolution) as a sensor may be insufficient.
[0029]
On the other hand, as shown in FIG. 8, if the rigidity of the enclosing member 3 is selected to such an extent that the enclosing member 3 can be appropriately deformed, the enclosing member 3 can also be deformed in a direction different from the vertical direction in which the load is applied. it can. For example, the width is slightly widened from a no-load position indicated by a broken line to a solid line. The hole 7 is slightly widened according to the deformation 81, and the protrusion 82 of the cover 4 can be allowed. In this case, the apparent vertical rigidity (compression force / vertical deformation amount) also depends on the rigidity of the surrounding member 3, and the rubber is more likely to deform (displace in the thickness direction) than in the case of FIG. , And can respond to measurement of medium to small loads.
[0030]
The rigidity of the surrounding member 3 can be selected by selecting the material of the surrounding member 3. Therefore, if the material of the surrounding member 3 is selected, the sensitivity of the sensor according to the load to be measured can be obtained.
[0031]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0032]
(1) The linearity can be improved.
[Brief description of the drawings]
FIG. 1 is an exploded structural view of a load sensor showing one embodiment of the present invention.
FIG. 2 is a sectional view of a load sensor showing one embodiment of the present invention.
FIG. 3 is a circuit diagram of an electric resistance measurement circuit for a load sensor according to the present invention.
FIG. 4 is a diagram showing a load-displacement characteristic of a conductive rubber and a method for measuring the characteristic.
FIG. 5 is a diagram showing a load-electric resistance characteristic of a conductive rubber.
FIG. 6 is a cross-sectional view of a conductive rubber having irregularities on a pressure receiving surface.
FIG. 7 is a sectional view of a load sensor showing one embodiment of the present invention.
FIG. 8 is a sectional view of a load sensor showing one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conductive rubber 2 Electrode 3 Enclosure member 4 Insulator rubber 5 DUT 6 Push plate 7 Hole 8 Bottom

Claims (4)

変形に応じて電気抵抗が変化する導電ゴムでセンサ体が形成され、このセンサ体に荷重を受ける方向の電気抵抗を取り出す電極が取り付けられ、このセンサ体の周囲に荷重を受ける方向と異なる方向への該センサ体の変形を拘束する囲み部材が設けられていることを特徴とする荷重センサ。A sensor body is formed of conductive rubber whose electric resistance changes according to the deformation, and an electrode for extracting the electric resistance in the direction of receiving the load is attached to the sensor body, and a direction different from the direction of receiving the load around the sensor body is attached. A load member provided with a surrounding member for restraining deformation of the sensor body. 上記センサ体に臨ませて被測定物の荷重を受けて上記センサ体を押圧する押し板が設けられていることを特徴とする請求項1記載の荷重センサ。The load sensor according to claim 1, further comprising a push plate that receives the load of the object to be measured and presses the sensor body while facing the sensor body. 上記センサ体を荷重による反力で支持する底部が上記囲み部材と一体的に形成されていることを特徴とする請求項1又は2記載の荷重センサ。The load sensor according to claim 1, wherein a bottom portion that supports the sensor body by a reaction force due to a load is formed integrally with the surrounding member. 上記センサ体は、導電ゴムを絶縁体ゴムで被覆して形成されることを特徴とする請求項1〜3いずれか記載の荷重センサ。The load sensor according to any one of claims 1 to 3, wherein the sensor body is formed by covering a conductive rubber with an insulating rubber.
JP2003137249A 2003-05-15 2003-05-15 Load sensor Pending JP2004340731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137249A JP2004340731A (en) 2003-05-15 2003-05-15 Load sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137249A JP2004340731A (en) 2003-05-15 2003-05-15 Load sensor

Publications (1)

Publication Number Publication Date
JP2004340731A true JP2004340731A (en) 2004-12-02

Family

ID=33526959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137249A Pending JP2004340731A (en) 2003-05-15 2003-05-15 Load sensor

Country Status (1)

Country Link
JP (1) JP2004340731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298431A (en) * 2006-05-01 2007-11-15 Yokohama Rubber Co Ltd:The Pressure-sensitive sensor for pressure measurement of plastic material
JP2008292410A (en) * 2007-05-28 2008-12-04 Hitachi Metals Ltd Pressure-sensitive body, pressure-sensitive element and pressure-detecting method using the same
JP2010204014A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Pressure sensor, method of manufacturing the same, and steering device
US8875584B2 (en) 2011-12-09 2014-11-04 Canon Kabushiki Kaisha Pressure-sensitive sensor, and grip apparatus and robot manipulator equipped with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298431A (en) * 2006-05-01 2007-11-15 Yokohama Rubber Co Ltd:The Pressure-sensitive sensor for pressure measurement of plastic material
JP2008292410A (en) * 2007-05-28 2008-12-04 Hitachi Metals Ltd Pressure-sensitive body, pressure-sensitive element and pressure-detecting method using the same
JP2010204014A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Pressure sensor, method of manufacturing the same, and steering device
US8875584B2 (en) 2011-12-09 2014-11-04 Canon Kabushiki Kaisha Pressure-sensitive sensor, and grip apparatus and robot manipulator equipped with the same

Similar Documents

Publication Publication Date Title
US8371174B2 (en) Micro-deformable piezoresistive material and manufacturing method thereof and pressure sensor using the same
JP6195011B2 (en) Improved pressure sensor structure
KR101404268B1 (en) Highly sensitive piezoresistive element
KR101004941B1 (en) Tactile sensor
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
USRE45883E1 (en) Tubular sensor with an inner projection
JP2004340731A (en) Load sensor
US11976994B2 (en) Sensor for detecting pressure, filling level, density, temperature, mass and/or flow rate including nanowires arranged on coupling section
US6435034B1 (en) Piezo-electric stretching detector and method for measuring stretching phenomena using such a detector
JPH11248557A (en) Pressure-sensitive conductive sensor
JPS6246222A (en) Pressure sensitive sensor
JP2002031503A (en) Elastic strain sensor
JP2006184098A (en) Pressure-sensitive sensor
JP7038320B2 (en) Pressure sensor
KR100828067B1 (en) Linearity-Compensated Micro Pressure Sensor
Wang Usage of connected structure to eliminate blind area of piezoresistive sensor array
KR101953760B1 (en) Sensor capable of measuring pressure or shear stress, sensor substrate and insole using the same
JP2010147227A (en) Electronic device package
JP2005049330A (en) Pressure sensor
CN108613759B (en) Touch sensor skin
JPS5825327Y2 (en) Load measuring device for pressure tools of bonding equipment for semiconductor devices
JP3731388B2 (en) Electrical characteristic measuring jig
KR20240038604A (en) Pressure sensor using magnetic field
JPH0743205A (en) Piezoelectric vibration sensor device
JP2001101947A (en) Device for sensing compressed force

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Effective date: 20080729

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080919

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A02