JP2004340637A - Method for measuring dispersibility of noble metal and dispersibility measuring instrument - Google Patents

Method for measuring dispersibility of noble metal and dispersibility measuring instrument Download PDF

Info

Publication number
JP2004340637A
JP2004340637A JP2003135071A JP2003135071A JP2004340637A JP 2004340637 A JP2004340637 A JP 2004340637A JP 2003135071 A JP2003135071 A JP 2003135071A JP 2003135071 A JP2003135071 A JP 2003135071A JP 2004340637 A JP2004340637 A JP 2004340637A
Authority
JP
Japan
Prior art keywords
noble metal
catalyst
dispersibility
amount
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003135071A
Other languages
Japanese (ja)
Other versions
JP4126606B2 (en
Inventor
Yasutaka Nagai
康貴 長井
Toshitaka Tanabe
稔貴 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003135071A priority Critical patent/JP4126606B2/en
Publication of JP2004340637A publication Critical patent/JP2004340637A/en
Application granted granted Critical
Publication of JP4126606B2 publication Critical patent/JP4126606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a dispersibility with a high precision even in a catalyst using an oxide having an oxygen absorbing/discharging capacity. <P>SOLUTION: In such a state that the catalyst is cooled to a sufficiently low temperature capable of suppressing the formation of a carbonate seed, CO is adsorbed by the catalyst and the adsorption amount of CO is measured while the amount of an active noble metal being the amount of the noble metal having adsorbed CO is calculated from the adsorption amount of CO and the dispersibility of the noble metal is calculated from the ratio of the amount of the active noble metal to the total amount of the noble metal supported on the catalyst. The formation of the carbonate seed can be suppressed by adsorbing CO at a sufficiently low temperature and the lowering of measuring precision caused by the increase in the apparent adsorption amount of CO by the formation of the carbonate seed can be prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酸化物担体に貴金属が担持されてなる触媒における貴金属の分散性を測定する方法と、その方法を実施するための測定装置に関する。
【0002】
【従来の技術】
自動車からの排ガス中にはCO、HC、NO などの有害成分が含まれ、これらの排出量を低減するために酸化触媒、三元触媒、NO 吸蔵還元触媒など種々の排ガス浄化用触媒が排気系に搭載されている。これらの触媒は、主としてPtなどの貴金属を活性種とし、貴金属をアルミナなどの酸化物担体に担持することで固定して用いている。
【0003】
ところで貴金属の活性をより引き出すためには、貴金属を微細な状態で担持して表面積を大きくし、活性点の数を増やすことが必要である。そこで酸化物担体に貴金属を担持するには、可溶性の貴金属塩の水溶液が用いられている。そして例えば、所定量のその貴金属塩水溶液を酸化物担体粉末に含浸させた後に蒸発乾固する含浸担持法、あるいは酸化物担体よりなるコート層をハニカム基材に形成し、それを貴金属塩水溶液中に浸漬後に引き上げて焼成する吸水担持法、などの担持方法が知られている。
【0004】
また排ガス浄化用触媒は高温に晒されるために、担持されている貴金属に粒成長が生じる場合がある。例えばPtは高温の酸素過剰雰囲気下でPtOとなって担体上を移動しやすく、近傍に存在するPtどうしが凝集して粗大粒子となりやすい。貴金属がこのように粗大な粒子となると、活性点の減少によって浄化活性が低下するという問題がある。
【0005】
そこで排ガス浄化用触媒の活性の指標として、貴金属の分散性を測定することが行われている。すなわち担持されている全貴金属に対する活性な貴金属量の割合を分散性と定義すれば、分散性が高いほど活性点の数が多く、つまり貴金属は微細であって活性が高いと判断される。一方、分散性が低ければ、活性点の数が少なく貴金属は粒成長していると判断される。
【0006】
例えばPtの分散性を測定する方法として、「触媒講座5触媒設計」触媒学会編,(1985),141などに記載されているように、CO吸着法が広く用いられている。このCO吸着法は、測定対象の触媒を所定の前処理方法で処理した後、キャリアガス中で室温まで冷却し、室温においてCOを触媒に導入する。その際のCOの減少量から触媒へのCO吸着量を求め、CO吸着量からCOを吸着したPt量を算出する。そして予めわかっている触媒のPtの全担持量に対するCOを吸着したPt量の割合を求めることで、それを分散性として評価することができる。
【0007】
【非特許文献1】「触媒講座5触媒設計」触媒学会編,(1985),141
【0008】
【発明が解決しようとする課題】
ところで近年、排ガス浄化用触媒の担体として、CeO、CeO−ZrO複合酸化物などの、酸素吸放出能を有する酸化物が用いられている。このような酸化物を担体とすることで、排ガスの雰囲気変動を緩和することが可能となり、三元触媒などストイキ近傍の雰囲気で最大の活性が得られる排ガス浄化用触媒の活性をさらに向上させることができる。
【0009】
ところが酸素吸放出能を有する酸化物を用いた触媒を用い、CO吸着法によって貴金属の分散性を測定した場合には、その測定値が実際の貴金属の分散性と一致しないという不具合があった。
【0010】
本発明はこのような事情に鑑みてなされたものであり、酸素吸放出能を有する酸化物を用いた触媒においても、高い精度で分散性を測定できるようにすることを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決する本発明の貴金属の分散性測定方法の特徴は、酸化物担体に貴金属が担持されてなる触媒における貴金属の分散性を測定する方法であって、触媒をカルボネート種の生成を抑制できる十分な低温に冷却した状態で触媒にCOを吸着させて吸着したCOの量であるCO吸着量を測定し、CO吸着量からCOを吸着した貴金属量である活性貴金属量を算出し、触媒に担持されている貴金属の全量に対する活性貴金属量の割合から貴金属の分散性を算出することにある。
【0012】
本発明の分散性測定方法は、酸化物担体が酸素吸放出能を有する場合でも精度よく貴金属の分散性を測定することができる。また十分な低温とは、 −10℃〜−120℃の範囲であることが好ましい。
【0013】
また本発明の分散性測定方法を実施する本発明の分散性測定装置の特徴は、酸化物担体に貴金属が担持されてなる触媒を保持した状態で反応ガスが流通される反応管と、反応管に少なくともCOを含む反応ガスを供給するガス供給手段と、触媒をカルボネート種の生成を抑制できる十分な低温に冷却する冷却手段と、触媒からの出ガス中のCO濃度を検出する検出手段と、からなることにある。
【0014】
【発明の実施の形態】
本発明者らは、酸素吸放出能を有する酸化物を用いた触媒を用い、CO吸着法によって貴金属の分散性を測定した場合に、その測定値が実際の貴金属の分散性と一致しない原因を鋭意研究した。その結果、貴金属にCOを吸着させる際にCOからカルボネート種が生成し、その分がCO吸着量に加わってしまうために、実際のCO吸着量より値が大きくなることが明らかとなった。
【0015】
つまりCOを含むガスは酸素不足のリッチ雰囲気であるために、酸素吸放出能を有する酸化物からは酸素が放出される。また酸素吸放出能を有する酸化物と貴金属とは相互作用が強い。そのため図1に示すように、貴金属に吸着したCOの一部は、室温程度の温度では貴金属の酸化活性と担体から放出される酸素によって酸化されてカルボネート種を生成し、担体に吸着する。そして空席となった貴金属の活性点には新たなCOが吸着するため、結果的にCO吸着量が多くなってしまう。
【0016】
そこでカルボネート種の生成を抑制することが想起され、鋭意研究を重ねた結果、所定温度以下では貴金属へのCOの吸着は阻害されることなく、カルボネート種の生成が抑制されることが見出され、本発明が完成された。
【0017】
すなわち本発明の貴金属の分散性測定方法では、触媒をカルボネート種の生成を抑制できる十分な低温に冷却した状態で、触媒にCOを吸着させてCO吸着量を測定している。そのような低温域では、図2に示すように、COの吸着は阻害されずCOの酸化反応のみを抑制することができる。したがってカルボネート種の生成が抑制され、またCOはPt上にのみ吸着すると仮定されるので、CO吸着量は実際に貴金属に吸着したCO量とほぼ一致し、貴金属の分散性を精度よく測定することができる。
【0018】
カルボネート種の生成を抑制できる十分な低温は、酸素吸放出能を有する酸化物種及び貴金属種によってそれぞれ異なる。少なくともCeO系の酸化物にPtを担持した触媒の場合には、十分な低温とは −10℃以下をいい、 −10℃〜−120℃の範囲、より好ましくは−60℃〜−90℃の範囲とすることが望ましい。触媒の温度が −10℃より高くなるとカルボネート種が生成するため測定精度が低下し、−120℃より低くなるとCOの吸着反応まで阻害されるため測定精度が低下する。
【0019】
本発明の分散性測定方法に用いられる触媒は、酸化物担体に貴金属が担持されてなるものである。酸化物担体としては、 Al、TiO、ZrO、SiO、CeOなどの単味又はこれらから選ばれる複数種の複合酸化物などを用いることができる。酸素吸放出能を有していても有していなくてもよいが、酸素吸放出能を有する酸化物を用いた場合でも高い測定精度が得られる。またPrOなどの希土類金属酸化物、NiO 、Fe 、CuO 、Mn などの遷移金属酸化物なども酸素吸放出能を有しているので、これらを上記酸化物と併用した担体の場合にも本発明は有効である。
【0020】
担持される貴金属としては、上記した低温で活性点にCOが吸着するものであればよいが、Ptの場合に特に有効である。また貴金属の担持量には特に制限がない。さらにNO 吸蔵還元触媒のように、貴金属と共にNO 吸蔵材など他の触媒成分を担持した触媒を用いることもできる。
【0021】
CO吸着量の測定は、少なくともCOを含む反応ガスをパルス状で触媒に接触させ、触媒入ガスと触媒出ガス中のCO濃度の差から測定することができる。そしてCO吸着量から、COを吸着した貴金属量である活性貴金属量を算出する。すなわち活性貴金属量は、吸着したCOのモル量と等モル量の貴金属量となる。したがって、触媒に担持されている貴金属の全量に対する活性貴金属量の割合を算出すれば、それが貴金属の分散性となり、その値が 100%に近いほど貴金属が高分散に担持されて活性点が多く粒径が小さいことを意味する。
【0022】
上記分散性測定方法を実施する本発明の貴金属の分散性測定装置は、反応管と、ガス供給手段と、冷却手段と、検出手段と、からなる。反応管は、酸化物担体に貴金属が担持されてなる触媒を保持した状態で反応ガスが流通されるものであり、石英ガラス、鋼材など、流通されるガスと反応しない材質から形成することができる。その形状は、配置される触媒の形状に応じて種々の形状とすることができる。
【0023】
ガス供給手段は、反応管に少なくともCOを含む反応ガスを供給する手段であり、公知の供給手段を用いることができる。供給される反応ガスは、少なくともCOを含めばよくCOガスのみを供給してもよいが、精度を高めるためにHe、Nなどの不活性ガスで希釈した反応ガスを用いることが好ましい。また不活性ガスなどを流通させている状態で、パルス状にCOガスを供給することが好ましい。ガスの流量は、従来の測定方法と同様とすることができ、一般に10〜 300ml/分程度とすることができる。流速がこの範囲を外れると測定精度が低下する場合がある。
【0024】
冷却手段は、触媒をカルボネート種の生成を抑制できる十分な低温に冷却するものであり、触媒を直接冷却してもよいし、反応管を介して触媒を冷却してもよく、供給されるガスを冷却することで触媒を冷却することもできる。冷媒は例えば−10℃〜−120℃の範囲で触媒を安定して冷却できるものが望ましく、液体窒素なども用いることができるが、ドライアイスinアルコールなどが最適である。
【0025】
検出手段は、反応管への入ガス及び出ガス中のCO濃度を検出する手段であり、従来の測定方法と同様にガスクロマトグラフ、質量分析計、赤外線吸収法によるCO濃度計などを用いることができる。
【0026】
【実施例】
以下、試験例、実施例及び比較例により本発明を具体的に説明する。
【0027】
(試験例1)
市販のCeO粉末(比表面積 120m/g)に含浸担持法によりPtを1重量%担持したPt/CeO触媒粉末を用意した。このPt/CeO触媒粉末 0.1gを拡散反射赤外分光分析用の in−situセルに入れ、Nガスを 150ml/分の流量で流通させながら、触媒粉末を 400℃まで加熱した。そして 400℃に保持した状態で、触媒粉末にOを5%含むNガスを15分間流通させ、続いてHを10%含むNガスを15分間流通させ、さらにNガスを15分間流通させる前処理を行った。いずれもガス流量は 150ml/分である。この前処理後、室温のNガスを流通させながら触媒粉末を冷却し、触媒粉末の温度が室温付近になったところで、液体窒素をガス化して in−situセルに吹き付け、触媒粉末を約 −80℃まで冷却した。この状態で触媒粉末にCOを0.28%含むNガスを流通させ、COを吸着させた。
【0028】
COを吸着させる前後の触媒粉末のIRスペクトルを測定し、その差分を図3に示す。
【0029】
(試験例2)
液体窒素をガス化して in−situセルに吹き付けることを行わず、COを吸着させる際の触媒粉末の温度を室温付近としたこと以外は試験例1と同様にして、COを吸着させる前後の触媒粉末のIRスペクトルを測定した。その差分を図4に示す。
【0030】
<評価>
図3及び図4に認められる2070cm−1付近のピークは、Pt上に吸着したCOに起因するピークである。一方、図4のみに認められる1100〜1600cm−1付近のピークは、担体表面上のカルボネート種に起因するピークである。すなわち試験例2ではカルボネート種が生成しているのに対し、試験例1ではカルボネート種の生成が認められない。したがって室温でCOを吸着させた場合にはカルボネート種が生成するが、約 −80℃の温度でCOを吸着させた場合にはカルボネート種が生成しないことがわかる。
【0031】
(実施例)
図5に本実施例の測定装置を示す。この測定装置は、反応管1と、ガス供給手段2と、冷却手段3と、検出手段4と、からなる。反応管1は石英ガラス製のU字形の筒状をなし、内部に触媒粉末10が詰められている。反応管1には温度センサ11が設けられ、触媒粉末10の温度を検出可能とされている。
【0032】
ガス供給手段2は4種のガスボンベ21〜24からなり、切替コック20を介して反応管1の一端開口に接続されている。ガスボンベ21には5%のOを含むHeガスが充填され、ガスボンベ22には10%のHを含むHeガスが充填され、ガスボンベ23にはHeガスが充填され、ガスボンベ24にはCOガスが充填されている。またガスボンベ24は、切替コック25を介してガスボンベ23のガス流路に接続されている。
【0033】
冷却手段3は、エタノールにドライアイスを投入することで約 −80℃に冷却された冷媒が入れられた容器からなり、反応管1の触媒粉末10が詰められた部分が冷媒中に浸漬されている。また反応管1の他端はガスクロマトグラフと質量分析計からなる検出手段4に連結され、出ガス中のCO濃度を定量可能とされている。
【0034】
先ず、冷却手段3に代えてヒータを配置した。次に試験例1で調製したPt/CeO触媒粉末の 0.5gを反応管1内に詰め、ガスボンベ23からHeガスを30ml/分の流量で流通させながら、ヒーターで触媒粉末10の温度が 400℃となるように加熱した。触媒粉末10の温度を 400℃に保持した状態で、ガスボンベ21からOを5%含むHeガスを15分間供給し、続いてガスボンベ22からHを10%含むHeガスを15分間供給し、その後ガスボンベ23からHeガスを15分間供給する前処理を行った。いずれもガス流量は30ml/分である。
【0035】
この前処理後にヒータを除去し、ガスボンベ23からHeガスを30ml/分の流量で流通させながら触媒粉末10を冷却した。触媒粉末10の温度が室温付近になった時点で、図5に示すように冷却手段3を配置して反応管1を冷媒中に浸漬し、触媒粉末10をさらに冷却した。
【0036】
触媒粉末10の温度が −78℃になった状態で、ガスボンベ24から所定量のCOガスをHeキャリア中にパルス状に供給し、そのときの出ガス中のCO濃度を検出手段4で測定し、出ガス中のCO量を算出した。そして供給されたCO量と出ガス中のCO量との差分から触媒粉末10によるCO吸着量を算出した。さらにCO吸着量からCOの吸着に関わった活性Pt量を算出し、触媒粉末 0.5gに担持されているPtの全量(0.005g)に対する活性Pt量の割合をPt分散性として算出した。算出されたCO吸着量とPt分散性を表1に示す。
【0037】
(比較例)
冷却手段3を用いず、COガスをパルス状に供給する際の触媒粉末の温度を室温(25℃)としたこと以外は実施例と同様にして出ガス中のCO濃度を測定し、同様にCO吸着量とPt分散性を算出した。結果を表1に示す。
【0038】
<評価>
【0039】
【表1】

Figure 2004340637
【0040】
表1から、比較例の方法の場合にはPt分散性が 100%を超える異常な値となっている。Pt分散性は、Ptが原子状に担持されている場合に約 100%となり得るのであるから、Pt分散性が 100%を超えることは理論上あり得ない。一方実施例の方法では、Pt分散性は27%と妥当な値であり、信頼に足る結果となっている。
【0041】
またCO吸着量は、比較例の方法では 153μmol /gと実施例に比べて10倍以上の値を示している。この差は図3と図4のピ−ク面積の差にほぼ相当し、比較例の方法ではカルボネート種の分までCO吸着量に含まれていることが明らかである。
【0042】
してみると実施例の方法によれば、算出されたCO吸着量はPtに吸着したCOの量のみを表していることが明らかであり、それから算出されたPt分散性は十分に信頼に足りることが明らかである。すなわち −78℃でCOをPtに吸着させることで、カルボネート種の生成が抑制され、精度よくPtの分散性を測定することができる。
【0043】
【発明の効果】
すなわち本発明の貴金属の分散性測定方法及び分散性測定装置によれば、酸化物担体が酸素吸放出能を有する場合でも、精度よく貴金属の分散性を測定することができる。
【図面の簡単な説明】
【図1】従来の測定方法における反応機構を示す説明図である。
【図2】本発明の測定方法における反応機構を示す説明図である。
【図3】約 −80℃でCOを吸着させる前後の触媒粉末のIRスペクトルの差分を示すグラフである。
【図4】室温でCOを吸着させる前後の触媒粉末のIRスペクトルの差分を示すグラフである。
【図5】本発明の一実施例の測定装置を示す概略説明図である。
【符号の説明】
1:反応管 2:ガス供給手段 3:冷却手段
4:検出手段 10:触媒粉末[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for measuring the dispersibility of a noble metal in a catalyst in which a noble metal is supported on an oxide carrier, and a measuring device for performing the method.
[0002]
[Prior art]
CO in the exhaust gas from automobiles, HC, contains harmful components such as NO x, oxidation catalyst in order to reduce these emissions, the three-way catalyst, NO x storage-reduction various exhaust gas purifying catalyst such as a catalyst It is mounted on the exhaust system. These catalysts mainly use a noble metal such as Pt as an active species and fix the noble metal by supporting it on an oxide carrier such as alumina.
[0003]
In order to further extract the activity of the noble metal, it is necessary to support the noble metal in a fine state to increase the surface area and increase the number of active points. To support the noble metal on the oxide carrier, an aqueous solution of a soluble noble metal salt is used. And, for example, a predetermined amount of the noble metal salt aqueous solution is impregnated into the oxide carrier powder and then evaporated to dryness, or a coating layer made of the oxide carrier is formed on the honeycomb substrate, and the coating layer is formed in the noble metal salt aqueous solution. A supporting method such as a water-absorbing supporting method in which the film is immersed in water and then fired is known.
[0004]
Further, since the exhaust gas purifying catalyst is exposed to a high temperature, grain growth may occur in the noble metal carried. For example, Pt becomes PtO 2 in a high-temperature oxygen-excess atmosphere and easily moves on the carrier, and Pt present in the vicinity is likely to aggregate to form coarse particles. When the noble metal is formed into such coarse particles, there is a problem that the purification activity is reduced due to a decrease in the number of active points.
[0005]
Therefore, measurement of the dispersibility of a noble metal has been performed as an index of the activity of an exhaust gas purifying catalyst. That is, if the ratio of the amount of active noble metal to the total noble metal carried is defined as dispersibility, the higher the dispersibility, the greater the number of active sites, that is, it is determined that the noble metal is finer and has higher activity. On the other hand, if the dispersibility is low, the number of active sites is small, and it is determined that the noble metal has grown.
[0006]
For example, as a method for measuring the dispersibility of Pt, a CO adsorption method is widely used as described in “Catalysis Course 5 Catalyst Design” edited by The Catalysis Society of Japan, (1985), 141 and the like. In this CO adsorption method, a catalyst to be measured is treated by a predetermined pretreatment method, then cooled to room temperature in a carrier gas, and CO is introduced into the catalyst at room temperature. The amount of CO adsorbed on the catalyst is determined from the amount of decrease in CO at that time, and the amount of Pt adsorbed CO is calculated from the amount of CO adsorbed. Then, the ratio of the amount of Pt adsorbing CO to the total amount of Pt supported on the catalyst, which is known in advance, can be evaluated as dispersibility.
[0007]
[Non-Patent Document 1] "Catalyst Course 5 Catalyst Design", edited by the Catalysis Society of Japan, (1985), 141
[0008]
[Problems to be solved by the invention]
In recent years, oxides having an oxygen absorbing / releasing ability, such as CeO 2 and CeO 2 -ZrO 2 composite oxide, have been used as a carrier of an exhaust gas purifying catalyst. By using such an oxide as a carrier, it is possible to mitigate fluctuations in the atmosphere of exhaust gas, and to further improve the activity of an exhaust gas purification catalyst such as a three-way catalyst that can obtain the maximum activity in an atmosphere near stoichiometry. Can be.
[0009]
However, when the dispersibility of a noble metal is measured by a CO adsorption method using a catalyst using an oxide having an oxygen absorbing / releasing ability, the measured value does not match the actual dispersibility of the noble metal.
[0010]
The present invention has been made in view of such circumstances, and an object of the present invention is to make it possible to measure the dispersibility with high accuracy even in a catalyst using an oxide having an oxygen absorbing / releasing ability.
[0011]
[Means for Solving the Problems]
The feature of the method for measuring the dispersibility of a noble metal of the present invention that solves the above problems is a method for measuring the dispersibility of a noble metal in a catalyst in which a noble metal is supported on an oxide carrier, and the catalyst suppresses generation of carbonate species. In a state where the catalyst is cooled to a sufficiently low temperature, CO is adsorbed on the catalyst and the amount of CO adsorbed, which is the amount of CO adsorbed, is measured. Is to calculate the dispersibility of the noble metal from the ratio of the amount of the active noble metal to the total amount of the noble metal supported on the noble metal.
[0012]
The dispersibility measuring method of the present invention can accurately measure the dispersibility of a noble metal even when the oxide carrier has an oxygen absorbing / releasing ability. The sufficiently low temperature is preferably in the range of −10 ° C. to −120 ° C.
[0013]
The feature of the dispersibility measuring apparatus of the present invention that implements the dispersibility measuring method of the present invention is that a reaction tube through which a reaction gas flows while holding a catalyst in which a noble metal is supported on an oxide carrier, Gas supply means for supplying a reaction gas containing at least CO, cooling means for cooling the catalyst to a temperature low enough to suppress the generation of carbonate species, detection means for detecting the CO concentration in the gas output from the catalyst, Consists of
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have found that when a catalyst using an oxide having an oxygen absorbing / releasing ability was used to measure the noble metal dispersibility by the CO adsorption method, the measured value did not match the actual noble metal dispersibility. Diligently studied. As a result, it has been clarified that a carbonate species is generated from CO when the CO is adsorbed on the noble metal, and the carbonate species is added to the CO adsorption amount, so that the value becomes larger than the actual CO adsorption amount.
[0015]
That is, since the gas containing CO has a rich atmosphere lacking oxygen, oxygen is released from the oxide having the ability to absorb and release oxygen. In addition, the interaction between the oxide having the ability to absorb and release oxygen and the noble metal is strong. Therefore, as shown in FIG. 1, a part of the CO adsorbed on the noble metal is oxidized by the oxidation activity of the noble metal and oxygen released from the carrier at a temperature around room temperature to generate a carbonate species, and is adsorbed on the carrier. Then, new CO is adsorbed at the active site of the vacant precious metal, and as a result, the amount of adsorbed CO increases.
[0016]
Therefore, it has been recalled that the generation of carbonate species is suppressed, and as a result of intensive studies, it has been found that below a predetermined temperature, the generation of carbonate species is suppressed without inhibiting the adsorption of CO to the noble metal. Thus, the present invention has been completed.
[0017]
That is, in the method for measuring dispersibility of a noble metal of the present invention, CO is adsorbed on the catalyst and the amount of adsorbed CO is measured in a state where the catalyst is cooled to a temperature low enough to suppress generation of carbonate species. In such a low temperature range, as shown in FIG. 2, the adsorption of CO is not hindered, and only the oxidation reaction of CO can be suppressed. Therefore, it is assumed that the generation of carbonate species is suppressed, and that CO is adsorbed only on Pt. Therefore, the amount of CO adsorbed substantially coincides with the amount of CO actually adsorbed on the noble metal, and the dispersibility of the noble metal should be accurately measured. Can be.
[0018]
A sufficiently low temperature at which the generation of carbonate species can be suppressed differs depending on the type of oxide and the type of noble metal having the ability to absorb and release oxygen. In the case of a catalyst in which Pt is supported on at least a CeO 2 -based oxide, a sufficiently low temperature refers to −10 ° C. or less, in a range of −10 ° C. to −120 ° C., more preferably −60 ° C. to −90 ° C. It is desirable to be within the range. When the temperature of the catalyst is higher than −10 ° C., the measurement accuracy is reduced because carbonate species are generated, and when the temperature is lower than −120 ° C., the measurement accuracy is lowered because the CO adsorption reaction is inhibited.
[0019]
The catalyst used in the method for measuring dispersibility of the present invention is one in which a noble metal is supported on an oxide carrier. As the oxide carrier, a simple substance such as Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , CeO 2 or a plurality of composite oxides selected from these can be used. Although it may or may not have oxygen absorbing / releasing ability, high measurement accuracy can be obtained even when an oxide having oxygen absorbing / releasing ability is used. Rare earth metal oxides such as PrO 4 and transition metal oxides such as NiO 2 , Fe 2 O 3 , CuO 2 and Mn 2 O 5 also have an oxygen absorbing / releasing ability. The present invention is also effective in the case of a carrier.
[0020]
As the noble metal to be supported, any material can be used as long as CO can be adsorbed at the active site at the low temperature described above, but it is particularly effective in the case of Pt. The amount of the noble metal carried is not particularly limited. Further, as the NO x storage reduction catalyst, the other catalyst components such as the NO x storage material can also be used supported catalyst with a noble metal.
[0021]
The amount of adsorbed CO can be measured by contacting a reaction gas containing at least CO with the catalyst in a pulsed manner and measuring the difference between the CO concentrations in the gas entering the catalyst and the gas exiting the catalyst. Then, the amount of active noble metal, which is the amount of noble metal that has adsorbed CO, is calculated from the amount of CO adsorption. That is, the amount of the active noble metal is the amount of the noble metal in an equimolar amount to the molar amount of the adsorbed CO. Therefore, if the ratio of the amount of the active noble metal to the total amount of the noble metal supported on the catalyst is calculated, it becomes the dispersibility of the noble metal, and the closer the value is to 100%, the more the noble metal is supported in a highly dispersed state and the more active points are increased. It means that the particle size is small.
[0022]
The apparatus for measuring the dispersibility of a noble metal of the present invention, which implements the above-described method for measuring dispersibility, includes a reaction tube, a gas supply unit, a cooling unit, and a detection unit. The reaction tube is a tube through which a reaction gas is passed while holding a catalyst in which a noble metal is supported on an oxide carrier, and can be formed of a material that does not react with the flowed gas, such as quartz glass or steel. . The shape can be various shapes depending on the shape of the catalyst to be arranged.
[0023]
The gas supply means is a means for supplying a reaction gas containing at least CO to the reaction tube, and a known supply means can be used. The reaction gas to be supplied may be supplied only good CO gas be include at least CO, but it is preferable to use a reaction gas diluted He, an inert gas such as N 2 in order to increase the accuracy. Further, it is preferable to supply the CO gas in a pulsed manner while the inert gas or the like is flowing. The flow rate of the gas can be the same as the conventional measurement method, and can be generally about 10 to 300 ml / min. If the flow velocity is out of this range, the measurement accuracy may decrease.
[0024]
The cooling means cools the catalyst to a temperature low enough to suppress the generation of carbonate species, and may cool the catalyst directly or may cool the catalyst through a reaction tube, By cooling the catalyst, the catalyst can also be cooled. The refrigerant is desirably one that can stably cool the catalyst in the range of, for example, -10 ° C to -120 ° C, and liquid nitrogen or the like can be used, but dry ice in alcohol or the like is optimal.
[0025]
The detection means is a means for detecting the CO concentration in the gas entering and exiting the reaction tube, and may use a gas chromatograph, a mass spectrometer, a CO concentration meter based on an infrared absorption method, or the like as in the conventional measurement method. it can.
[0026]
【Example】
Hereinafter, the present invention will be described specifically with reference to Test Examples, Examples, and Comparative Examples.
[0027]
(Test Example 1)
A Pt / CeO 2 catalyst powder in which 1 wt% of Pt was supported on a commercially available CeO 2 powder (specific surface area: 120 m 2 / g) by an impregnation support method was prepared. 0.1 g of this Pt / CeO 2 catalyst powder was placed in an in-situ cell for diffuse reflection infrared spectroscopy, and the catalyst powder was heated to 400 ° C. while flowing N 2 gas at a flow rate of 150 ml / min. Then, with the temperature kept at 400 ° C., N 2 gas containing 5% of O 2 was allowed to flow through the catalyst powder for 15 minutes, N 2 gas containing 10% of H 2 was allowed to flow for 15 minutes, and N 2 gas was allowed to flow for 15 minutes. A pre-treatment was performed to circulate for a minute. In each case, the gas flow rate is 150 ml / min. After this pretreatment, the catalyst powder was cooled while flowing N 2 gas at room temperature, when the temperature of the catalyst powder becomes around room temperature, spraying the in-situ cell liquid nitrogen is gasified, about the catalyst powder - Cooled to 80 ° C. N 2 gas containing 0.28% of CO to the catalyst powder is circulated in this state, to adsorb CO.
[0028]
The IR spectra of the catalyst powder before and after adsorbing CO were measured, and the difference is shown in FIG.
[0029]
(Test Example 2)
The catalyst before and after adsorbing CO in the same manner as in Test Example 1 except that the liquid nitrogen was not gasified and sprayed onto the in-situ cell, and the temperature of the catalyst powder when adsorbing CO was set to around room temperature. The IR spectrum of the powder was measured. The difference is shown in FIG.
[0030]
<Evaluation>
The peak around 2070 cm −1 observed in FIGS. 3 and 4 is a peak caused by CO adsorbed on Pt. On the other hand, peaks around 1100 to 1600 cm −1 observed only in FIG. 4 are peaks attributable to carbonate species on the support surface. That is, in Test Example 2, a carbonate species was generated, whereas in Test Example 1, no carbonate species was generated. Therefore, it is understood that carbonate species are generated when CO is adsorbed at room temperature, but no carbonate species is generated when CO is adsorbed at a temperature of about -80 ° C.
[0031]
(Example)
FIG. 5 shows a measuring apparatus of the present embodiment. This measuring device includes a reaction tube 1, a gas supply unit 2, a cooling unit 3, and a detection unit 4. The reaction tube 1 has a U-shaped cylindrical shape made of quartz glass and has a catalyst powder 10 packed therein. A temperature sensor 11 is provided in the reaction tube 1 so that the temperature of the catalyst powder 10 can be detected.
[0032]
The gas supply means 2 includes four types of gas cylinders 21 to 24, and is connected to one end opening of the reaction tube 1 via the switching cock 20. The gas cylinder 21 is filled with He gas containing 5% O 2 , the gas cylinder 22 is filled with He gas containing 10% H 2 , the gas cylinder 23 is filled with He gas, and the gas cylinder 24 is filled with CO gas. Is filled. The gas cylinder 24 is connected to a gas flow path of the gas cylinder 23 via a switching cock 25.
[0033]
The cooling means 3 comprises a container in which a refrigerant cooled to about -80 ° C. by pouring dry ice into ethanol is filled, and a portion of the reaction tube 1 filled with the catalyst powder 10 is immersed in the refrigerant. I have. The other end of the reaction tube 1 is connected to a detection means 4 composed of a gas chromatograph and a mass spectrometer so that the CO concentration in the outgas can be quantified.
[0034]
First, a heater was arranged in place of the cooling means 3. Next, 0.5 g of the Pt / CeO 2 catalyst powder prepared in Test Example 1 was packed into the reaction tube 1, and the temperature of the catalyst powder 10 was reduced by the heater while flowing He gas from the gas cylinder 23 at a flow rate of 30 ml / min. Heated to 400 ° C. While maintaining the temperature of the catalyst powder 10 at 400 ° C., He gas containing 5% of O 2 was supplied from the gas cylinder 21 for 15 minutes, and He gas containing 10% of H 2 was supplied from the gas cylinder 22 for 15 minutes. Thereafter, a pretreatment for supplying He gas from the gas cylinder 23 for 15 minutes was performed. In each case, the gas flow rate is 30 ml / min.
[0035]
After this pretreatment, the heater was removed and the catalyst powder 10 was cooled while flowing He gas from the gas cylinder 23 at a flow rate of 30 ml / min. When the temperature of the catalyst powder 10 became close to room temperature, the cooling means 3 was arranged as shown in FIG. 5, and the reaction tube 1 was immersed in a refrigerant to further cool the catalyst powder 10.
[0036]
With the temperature of the catalyst powder 10 reduced to −78 ° C., a predetermined amount of CO gas is supplied into the He carrier from the gas cylinder 24 in a pulsed manner. And the amount of CO in outgassing was calculated. Then, the amount of CO adsorbed by the catalyst powder 10 was calculated from the difference between the supplied CO amount and the CO amount in the output gas. Further, the amount of active Pt involved in the adsorption of CO was calculated from the amount of CO adsorption, and the ratio of the amount of active Pt to the total amount (0.005 g) of Pt supported on 0.5 g of the catalyst powder was calculated as Pt dispersibility. Table 1 shows the calculated CO adsorption amount and Pt dispersibility.
[0037]
(Comparative example)
The CO concentration in the outgas was measured in the same manner as in Example except that the temperature of the catalyst powder when the CO gas was supplied in a pulsed form was set to room temperature (25 ° C.) without using the cooling means 3. The CO adsorption amount and Pt dispersibility were calculated. Table 1 shows the results.
[0038]
<Evaluation>
[0039]
[Table 1]
Figure 2004340637
[0040]
From Table 1, in the case of the method of the comparative example, the Pt dispersibility is an abnormal value exceeding 100%. Since Pt dispersibility can be about 100% when Pt is supported in an atomic state, it is theoretically impossible that Pt dispersibility exceeds 100%. On the other hand, in the method of the embodiment, the Pt dispersibility is an appropriate value of 27%, which is a reliable result.
[0041]
The amount of CO adsorbed by the method of the comparative example was 153 μmol / g, which is ten times or more that of the example. This difference substantially corresponds to the difference between the peak areas in FIG. 3 and FIG. 4, and it is clear that in the method of the comparative example, even the carbonate species is included in the CO adsorption amount.
[0042]
According to the method of the example, it is clear that the calculated amount of adsorbed CO represents only the amount of CO adsorbed on Pt, and the Pt dispersibility calculated therefrom is sufficiently reliable. It is clear that. That is, by adsorbing CO on Pt at −78 ° C., the generation of carbonate species is suppressed, and the dispersibility of Pt can be measured accurately.
[0043]
【The invention's effect】
That is, according to the method and apparatus for measuring dispersibility of a noble metal of the present invention, the dispersibility of a noble metal can be accurately measured even when the oxide carrier has an oxygen absorbing / releasing ability.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a reaction mechanism in a conventional measurement method.
FIG. 2 is an explanatory diagram showing a reaction mechanism in the measurement method of the present invention.
FIG. 3 is a graph showing a difference between IR spectra of a catalyst powder before and after adsorbing CO at about −80 ° C.
FIG. 4 is a graph showing a difference between IR spectra of a catalyst powder before and after adsorbing CO at room temperature.
FIG. 5 is a schematic explanatory view showing a measuring apparatus according to one embodiment of the present invention.
[Explanation of symbols]
1: reaction tube 2: gas supply means 3: cooling means 4: detection means 10: catalyst powder

Claims (4)

酸化物担体に貴金属が担持されてなる触媒における貴金属の分散性を測定する方法であって、
該触媒をカルボネート種の生成を抑制できる十分な低温に冷却した状態で該触媒にCOを吸着させて吸着したCOの量であるCO吸着量を測定し、該CO吸着量からCOを吸着した貴金属量である活性貴金属量を算出し、該触媒に担持されている該貴金属の全量に対する該活性貴金属量の割合から該貴金属の分散性を算出することを特徴とする貴金属の分散性測定方法。
A method for measuring the dispersibility of a noble metal in a catalyst in which a noble metal is supported on an oxide carrier,
In a state where the catalyst is cooled to a temperature low enough to suppress the generation of carbonate species, CO is adsorbed on the catalyst, and the amount of CO adsorbed, which is the amount of CO adsorbed, is measured. A method for measuring the dispersibility of a noble metal, comprising calculating an amount of an active noble metal, which is an amount, and calculating a dispersibility of the noble metal from a ratio of the amount of the active noble metal to the total amount of the noble metal supported on the catalyst.
前記酸化物担体は酸素吸放出能を有する請求項1に記載の貴金属の分散性測定方法。The method for measuring dispersibility of a noble metal according to claim 1, wherein the oxide carrier has an oxygen absorbing / releasing ability. 前記十分な低温は −10℃〜−120℃の範囲である請求項1又は請求項2に記載の貴金属の分散性測定方法。The method for measuring the dispersibility of a noble metal according to claim 1, wherein the sufficiently low temperature is in a range of −10 ° C. to −120 ° C. 4. 酸化物担体に貴金属が担持されてなる触媒を保持した状態で反応ガスが流通される反応管と、
該反応管に少なくともCOを含む反応ガスを供給するガス供給手段と、
該触媒をカルボネート種の生成を抑制できる十分な低温に冷却する冷却手段と、
該触媒からの出ガス中のCO濃度を検出する検出手段と、からなることを特徴とする貴金属の分散性測定装置。
A reaction tube through which a reaction gas flows while holding a catalyst comprising a noble metal supported on an oxide carrier,
Gas supply means for supplying a reaction gas containing at least CO to the reaction tube;
Cooling means for cooling the catalyst to a temperature low enough to suppress the formation of carbonate species;
A detector for detecting the concentration of CO in the gas emitted from the catalyst.
JP2003135071A 2003-05-13 2003-05-13 Precious metal dispersibility measuring method and dispersibility measuring apparatus Expired - Lifetime JP4126606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135071A JP4126606B2 (en) 2003-05-13 2003-05-13 Precious metal dispersibility measuring method and dispersibility measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135071A JP4126606B2 (en) 2003-05-13 2003-05-13 Precious metal dispersibility measuring method and dispersibility measuring apparatus

Publications (2)

Publication Number Publication Date
JP2004340637A true JP2004340637A (en) 2004-12-02
JP4126606B2 JP4126606B2 (en) 2008-07-30

Family

ID=33525453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135071A Expired - Lifetime JP4126606B2 (en) 2003-05-13 2003-05-13 Precious metal dispersibility measuring method and dispersibility measuring apparatus

Country Status (1)

Country Link
JP (1) JP4126606B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038864A (en) * 2004-07-23 2006-02-09 Hyundai Motor Co Ltd Method for measuring nitrogen oxide adsorbing ability of catalyst
WO2007111004A1 (en) 2006-03-28 2007-10-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas, method of regenerating the same, exhaust gas purification apparatus using the same and method of purifying exhaust gas
WO2007132829A1 (en) 2006-05-15 2007-11-22 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification and method for producing the same
CN109142503A (en) * 2018-08-23 2019-01-04 厦门大学 A kind of mass spectrometry detection device in situ for heterogeneous catalytic reaction intermediate and product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038864A (en) * 2004-07-23 2006-02-09 Hyundai Motor Co Ltd Method for measuring nitrogen oxide adsorbing ability of catalyst
JP4508964B2 (en) * 2004-07-23 2010-07-21 現代自動車株式会社 Method for measuring nitrogen oxide adsorption capacity of catalysts
WO2007111004A1 (en) 2006-03-28 2007-10-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas, method of regenerating the same, exhaust gas purification apparatus using the same and method of purifying exhaust gas
US8105561B2 (en) 2006-03-28 2012-01-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, regeneration method for the catalyst, and apparatus and method for purification of exhaust gas using the catalyst
EP2527033A1 (en) 2006-03-28 2012-11-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, regeneration method for the catalyst, and apparatus and method for purification of exhaust gas using the catalyst
WO2007132829A1 (en) 2006-05-15 2007-11-22 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification and method for producing the same
CN109142503A (en) * 2018-08-23 2019-01-04 厦门大学 A kind of mass spectrometry detection device in situ for heterogeneous catalytic reaction intermediate and product

Also Published As

Publication number Publication date
JP4126606B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
Katta et al. Doped nanosized ceria solid solutions for low temperature soot oxidation: Zirconium versus lanthanum promoters
Shi et al. NOx storage and reduction properties of model ceria-based lean NOx trap catalysts
JP2016517343A (en) NOx storage catalyst with improved hydrothermal stability and NOX conversion
JPH04118053A (en) Catalyst for cleaning exhaust gas from engine
JP2006255677A (en) Oxidation catalyst and its manufacturing method
Nascimento et al. Control of diesel particulate emission based on Ag/CeOx/FeOy catalysts supported on cordierite
JP5491745B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5583967B2 (en) Exhaust gas purification catalyst, exhaust gas purification apparatus and exhaust gas purification method using the same
Lv et al. The lean NOx traps behavior of (1–5%) BaO/CeO2 mixed with Pt/Al2O3 at low temperature (100–300° C): The effect of barium dispersion
JP6414043B2 (en) Exhaust gas purification catalyst and method for producing the same
JP7125229B2 (en) Cluster-supported catalyst and method for producing the same
US9795945B2 (en) Exhaust gas purification catalyst and method for producing the same
US9475003B2 (en) Exhaust gas purification catalyst, method of producing the same, and exhaust gas purification method using the same
JP2004340637A (en) Method for measuring dispersibility of noble metal and dispersibility measuring instrument
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
Savastenko et al. Synthesis of nanostructured lean-NO x catalysts by direct laser deposition of monometallic Pt-, Rh-and bimetallic PtRh-nanoparticles on SiO 2 support
JP2583655B2 (en) Low temperature catalyst composites for producing carbon dioxide
US9789479B2 (en) Catalyst with highly annealed Pd layer
JP2015157236A (en) Catalyst material for purifying engine exhaust gas, and particulate filter
JP5605900B2 (en) Exhaust gas purification catalyst
JP4046075B2 (en) Method for measuring dispersibility of precious metals
JP2006326477A (en) Method for manufacturing catalyst for cleaning exhaust gas
JP6824467B2 (en) Exhaust gas purification catalyst
JP5956496B2 (en) Exhaust gas purification catalyst, exhaust gas purification filter and exhaust gas purification method using the same
Paryjczak et al. Gas chromatography of the palladium-oxygen system over a wide temperature range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4126606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

EXPY Cancellation because of completion of term