JP2004340546A - Evaporator for refrigerating machine - Google Patents

Evaporator for refrigerating machine Download PDF

Info

Publication number
JP2004340546A
JP2004340546A JP2003140325A JP2003140325A JP2004340546A JP 2004340546 A JP2004340546 A JP 2004340546A JP 2003140325 A JP2003140325 A JP 2003140325A JP 2003140325 A JP2003140325 A JP 2003140325A JP 2004340546 A JP2004340546 A JP 2004340546A
Authority
JP
Japan
Prior art keywords
evaporator
heat transfer
transfer tube
container
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003140325A
Other languages
Japanese (ja)
Inventor
Yoichiro Iritani
陽一郎 入谷
Yoshinori Shirakata
芳典 白方
Tatsuya Sato
達哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003140325A priority Critical patent/JP2004340546A/en
Publication of JP2004340546A publication Critical patent/JP2004340546A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator for a refrigerating machine having a demister arrangement applied to an evaporator divided into two and having improved efficiency of preventing a carry-over. <P>SOLUTION: A vessel 21 into which a refrigerant is introduced is divided by a partition wall 16 extending in a longitudinal direction thereof. The evaporator for a refrigerating machine is provided with heat exchanger bundles in the respective divided areas, each extending in the longitudinal direction of the vessel 21 and constituting of a plurality of heat exchanger tubes 15 which are arranged like a bundle and through which cool water flows, and refrigerant gas suction tubes 2 corresponding to respective areas. Each heat exchanger tube bundle has a configuration in which a heat exchanger tube bundle 13 at a forward side extending in a forward direction and a heat exchanger tube bundle 14 at a return side turned back at an end of the heat exchanger tube bundle 13 at the forward side and is adjacent thereto are continuously provided through a turning-back point. Wire mesh demisters 12 for collecting droplets or mist of the refrigerant are provided at the upper side of the heat exchanger tube bundles 13 and 14 of the each area, and the demisters are arranged to be inclined at a predetermined angle when seen in the longitudinal direction of the vessel 21. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被冷却物(例えば水,ブライン等)と冷媒との間で熱交換を行ってその被冷却物を冷却する冷凍機用蒸発器に関するものである。
【0002】
【従来の技術】
従来より、例えばビルのような大規模構造物においては、冷凍機で冷却した被冷却物を、構造物内に布設した配管を通じて循環させ、居室の空気と熱交換させることにより、冷房を行うようにしている。なお、ここで述べる従来の冷凍機、及び後述する本発明に係る冷凍機は、300〜3000冷凍トン(USRT)程度のもの、特に2000〜3000冷凍トンクラスの大型のものを対象としている。但し、これに限定される訳ではない。
【0003】
さて、図11は従来の冷凍機を示す外観斜視図であり、図12は従来の冷凍機の概略構成図である。図12の(a)は正面図、(b)は左側面図、(c)は蒸発器部分の平面断面図となっている。なお、図12では中間冷却器の図示を省略している。これは、後述する実施形態においても同様である。各図に示すように、冷凍機は主として蒸発器1,圧縮機3,凝縮器6等により構成されている。凝縮器6では、冷却水と気体状の冷媒との間で熱交換が行われ、冷媒が凝縮,液化される。
【0004】
凝縮された冷媒は冷媒液溜7に一旦溜められ、続いて冷媒液配管8を通って、途中の膨張弁9で減圧されつつ、蒸発器1に供給される。蒸発器1では、凝縮された冷媒と被冷却物である冷水との間で熱交換が行われ、冷水が冷却されるとともに、冷媒が蒸発,気化する。蒸発器1において冷却された冷水は、ビルの空調等に利用される。
【0005】
蒸発,気化した冷媒は、冷媒ガス吸込管2を経て圧縮機3に到達する。圧縮機3では冷媒が圧縮され、冷媒ガス吐出管5を経て凝縮器6へと供給される。なお、図11のMは中間冷却器であり、凝縮器6から出た冷媒は、一旦この中間冷却器Mに入って気液分離される。そして、液体の冷媒は蒸発器1に供給され、気体の冷媒は圧縮機3へと戻される仕組みである。その他、図11における4は圧縮機用のモータ、OPは操作盤である。
【0006】
図13は、上述したような冷凍機に具備される従来の蒸発器を示す左側面断面図である。同図(a)に示すように、蒸発器1では、冷媒が導入される円筒状の容器21の中に、被冷却物である冷水を流通させる複数(多数)の伝熱管15が、同図(b)に示すように束状且つ千鳥状に群をなして、順方向に延在する往路側(1パス側)の伝熱管群13、及び逆方向に隣接して延在する復路側(2パス側)の伝熱管群14として、紙面に垂直方向に配設されている。
【0007】
伝熱管群13は冷水入口22に連通しており、伝熱管群14は冷水出口23に連通している。また、伝熱管群13,14は容器21の中心位置付近から下方に配設されており、それら全てが冷媒液に浸されている。その他、容器21の上部からは、冷媒ガス吸込管2が斜め上方へと延びている。
【0008】
伝熱管群13,14の上方であって冷媒ガス吸込管2の下方位置には、所定の厚みを有する略直方体形状のワイヤメッシュデミスタ12が、底板24により下方から支えられて、伝熱管の全長に対向して配置されている。このワイヤメッシュデミスタは、例えば線条径が0.25mm,空間率97.5%となっており、3μm以上のミストに対して高効率で捕集可能なタイプを使用している。ワイヤメッシュデミスタ12は、同図に示すように、伝熱管群13からの距離が伝熱管群14からの距離より遠くなるように、長手方向より見て所定の角度θ(例えば水平に対して0゜〜15゜前後までの範囲で)傾いている。
【0009】
これは、往路側(1パス側)の伝熱管群13(更にはその入口側)の方が、伝熱管内の冷水温度と、冷媒の蒸発温度との温度差が大きく、蒸発が激しく起こるので、ガスの流れの中に液滴或いはミストが伴ういわゆるキャリオーバ(気液同伴)しやすいため、その対策を講じたものである。つまり、キャリオーバしやすい伝熱管群13側のワイヤメッシュデミスタ12を高くして、冷媒の液滴或いはミストがこれに到達するまでに、自然落下により冷媒ガスから重力分離してしまおうとするものである。
【0010】
さらに、ワイヤメッシュデミスタ12が傾いていることにより、捕集された液滴或いはミストが側方へ流れ落ちるので、再飛散することが防止されるといった効果もある。これに加えて、後述するように、冷媒ガス吸込管2をできるだけ復路側(2パス側)の伝熱管群14側に配置することにより、冷媒の液滴或いはミストが圧縮機3に到達しにくいようにしている。冷媒の液滴或いはミストが圧縮機3に到達すると、圧縮機内のインペラの損耗の恐れがあることから、冷媒の液滴或いはミストの圧縮機への到達を防止するものである。
【0011】
図12に戻って、伝熱管群13,14は、容器21内の長手方向に延在しており、両端がそれぞれ水室10に連通している。同図(c)中、右側に位置する冷水の出入口側の水室10は、仕切壁11で仕切られており、冷水入口22側と冷水出口23側とに分けられていて、冷水入口22側は伝熱管群13に、冷水出口23側は伝熱管群14に、それぞれ連通している。
【0012】
一方、図中左側に位置する水室10は、伝熱管群13,14いずれにも連通しており、折り返し部25を形成していて、ここで伝熱管群13,14同士が連通して構成されている。同図における矢印は冷水の流れる方向を示す。また、冷媒ガス吸込管2は、伝熱管群13の冷水入口22側から伝熱管15の長さ方向の1/2を越えた奥部の領域であって、且つ伝熱管群14側に配置されている。これにより、上述したように、冷媒の液滴或いはミストが圧縮機3に到達しにくいようにしている。
【0013】
以上のような構成からなる蒸発器1において、冷水との熱交換によって沸騰した冷媒ガスは、冷媒の液滴或いはミストを含みながら吹き上げられ、ワイヤメッシュデミスタ12を通過する際に液滴或いはミストが除去された後、容器21上部の冷媒ガス吸込管2から図示しない圧縮機へと吸い込まれる。
【0014】
【発明が解決しようとする課題】
しかしながら、上述したような従来の蒸発器におけるデミスタ配置は、蒸発器を軸方向(長手方向)に延在する仕切壁により2分割して被冷却物の冷却系統を2系統とした、いわゆる2分割蒸発器には適用できない。本発明は、このような問題点に鑑み、2分割蒸発器に適用されキャリオーバの防止効果を高めたデミスタ配置を持つ、冷凍機用蒸発器を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本実施形態では、冷媒が導入される容器がその長手方向に延在する仕切壁により分割され、前記容器の分割された各領域内に、前記冷媒により冷却される被冷却物が流通する複数の伝熱管が束状に配設されて、前記容器の長手方向に延在する各伝熱管群と、前記各領域に対応した冷媒ガス排出部材とを備えた冷凍機用蒸発器であって、前記各伝熱管群は、順方向に延在する往路側の伝熱管群と、その往路側の伝熱管群の端部から折り返されて逆方向に隣接して延在する復路側の伝熱管群とが、折り返し部を介して連続して成る冷凍機用蒸発器において、前記各領域内の伝熱管群上方に、前記冷媒の液滴或いはミストを捕集するデミスタを設け、その各デミスタは前記容器の長手方向から見て所定の角度傾斜して配置されて成ることを特徴とする。
【0016】
また、前記各領域のうち、往路側の管群域が復路側の管群域に対して小さい側の前記冷媒ガス排出部材は、前記被冷却物の入口側から遠い側に配置されて成ることを特徴とする。加えて、前記往路側の管群域が復路側の管群域に対して小さい側とは異なる側の前記冷媒ガス排出部材は、復路側の管群域寄りに配置されて成ることを特徴とする。
【0017】
また、前記デミスタは、前記往路側の伝熱管群からの距離が前記復路側の伝熱管群からの距離より遠くなるように配置されて成ることを特徴とする。
【0018】
また、前記容器は長手方向から見て左右に2分割されて成り、前記容器の左右に2分割された各領域内に設けたデミスタは、内側が高く外側が低くなるように山型に配置されて成ることを特徴とする。或いは、デミスタは内側が低く外側が高くなるように谷型に配置されて成ることを特徴とする。
【0019】
また、前記容器は長手方向から見て左右に2分割されて成り、前記容器の左右に2分割された各領域内に設けた伝熱管群は、それぞれ往路側が外側に配置され、復路側が内側に配置されて成ることを特徴とする。或いは、それぞれ往路側が内側に配置され、復路側が外側に配置されて成ることを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明に係るターボ冷凍機の実施の形態について、図面を参照しながら説明する。なお、上記従来の技術と共通する部分については同一の符号を付して、詳細な説明を適宜省略する。図1は、本発明に係る冷凍機の概略構成図である。同図の(a)は正面図、(b)は左側面図、(c)は蒸発器部分の平面断面図となっている。
【0021】
本発明に係る冷凍機は、同図(b)に示すように、蒸発器1をその中央で軸方向(長手方向)に延在する仕切壁16により左右2分割し、また凝縮器6をその中央で軸方向(長手方向)に延在する仕切壁17により左右2分割して、冷媒の循環系統を2系統としている。同図(c)に示すように、仕切壁16により2分割された蒸発器1の、それぞれの冷水系統における伝熱管群13,14は、容器21内の長手方向に延在しており、両端がそれぞれ水室10に連通している。
【0022】
また、右側に位置する冷水の出入口側の水室10は、仕切壁16が延長された仕切壁16aにより2分割されている。そして、分割されたそれぞれの水室10が、更に仕切壁11で仕切られており、冷水入口22側と冷水出口23側とに分けられていて、冷水入口22側は伝熱管群13に、冷水出口23側は伝熱管群14に、それぞれ連通している。
【0023】
一方、図中左側に位置する水室10は、仕切壁16が延長された仕切壁16bにより2分割されている。そして、分割されたそれぞれの水室10が、それぞれの冷水系統における伝熱管群13,14いずれにも連通しており、それぞれ折り返し部25を形成していて、ここで伝熱管群13,14同士が連通して構成されている。同図における矢印は冷水の流れる方向を示す。
【0024】
また、冷媒ガス吸込管2は容器21の分割された各領域に対応して設けられており、2つの圧縮機3の配置関係より、一方は伝熱管15の長さ方向の中央付近、もう一方は折り返し部25側付近に配置されている。これらの配置は、同図ではそれぞれ蒸発器1の左側面に向かって右側及び左側となっている。冷媒ガス吸込管2の配置については後述する。各系統における冷媒の作用は、上記従来の技術で説明した内容と同様である。
【0025】
図2は、本発明の第1の実施形態に係る冷凍機用蒸発器を示す左側面断面図である。同図に示すように、本実施形態の蒸発器1では、冷媒が導入される円筒状の容器21が、中央で軸方向(長手方向)に延在する仕切壁16により左右2分割されている。そして、分割された各領域内に、被冷却物である冷水を流通させる複数(多数)の伝熱管15が、従来の技術でも述べたように束状且つ千鳥状に群をなして、順方向に延在する往路側(1パス側)の伝熱管群13、及び逆方向に隣接して延在する復路側(2パス側)の伝熱管群14として、紙面に垂直方向に配設されている。容器21の分割された各領域の上部からは、冷媒ガス吸込管2が上方に延びている。
【0026】
容器21の分割された各領域において、伝熱管群13,14の上方であって冷媒ガス吸込管2の下方位置には、所定の厚みを有する略直方体形状のワイヤメッシュデミスタ12が、仕切壁16を介して各領域に跨る底板24により下方から支えられて、伝熱管の全長に対向して配置されている。ワイヤメッシュデミスタ12は、同図に示すように、それぞれ伝熱管群13からの距離が伝熱管群14からの距離より遠くなるように、長手方向より見て所定の角度θ(例えば水平に対して0゜〜15゜前後の範囲で)傾いている。これにより、従来と同様にしてキャリオーバ防止を図っている。ワイヤメッシュデミスタ12の仕様は、上記従来の技術で示したものと同様である。
【0027】
図3は、本発明の第2の実施形態に係る冷凍機用蒸発器を示す平面断面図である。なお、本実施形態に係る冷凍機用蒸発器の左側面断面図は、図2で示されたものと同様である。本実施形態では、蒸発器1において、往路側(1パス側)の管群域が小さい(伝熱管15の本数が少ない)側、即ち図2における右側の伝熱管群13側では、図3に示すように、冷媒ガス吸込管2は、折り返し部25側付近即ち冷水入口22から遠い側に配置されている。これは、往路側の管群域が小さい側では管内流速が速いため、熱貫流率が高くて冷媒の蒸発量が多く、特に冷水入口に近い側ではキャリオーバしやすいので、これを避けるためである。
【0028】
図4は、本発明の第3の実施形態に係る冷凍機用蒸発器を示す左側面断面図である。また図5は、その冷凍機の左側面図である。本実施形態では、上記第2の実施形態の構成に加えて、蒸発器1において、図4における左側の、管内冷水温度と冷媒温度との温度差が小さく、冷媒の蒸発量が少ない復路側(2パス側)である伝熱管群14側寄りに、冷媒ガス吸込管2aを配置して斜め方向に取り出し、キャリオーバの防止を図っている。このような構成は、以下の実施形態においても変形例として共通して使用することができる。
【0029】
図6は、本発明の第4の実施形態に係る冷凍機用蒸発器を示す左側面断面図である。本実施形態では、上記第1〜第3のいずれかの実施形態に対して、蒸発器1において、右側のワイヤメッシュデミスタ12の傾斜が逆となるように、即ち外側に傾斜するようにしている。これにより、ワイヤメッシュデミスタ12の吸込面積を大きくし、ここを通過する冷媒ガスの流速を低下させ液滴或いはミストの捕集率を高くして、キャリオーバの防止を図っている。この場合、ワイヤメッシュデミスタ12全体は左右対称であり、内側が高く外側が低くなるいわゆる山型配置となっている。
【0030】
図7は、本発明の第5の実施形態に係る冷凍機用蒸発器を示す左側面断面図である。本実施形態では、上記第1〜第3のいずれかの実施形態に対して、蒸発器1において、右側のワイヤメッシュデミスタ12の傾斜はそのままに、取付位置を下げて例えば左側と同様の高さとなるようにしている。これにより、ワイヤメッシュデミスタ12の吸込面積を大きくし、ここを通過する冷媒ガスの流速を低下させ液滴或いはミストの捕集率を高くして、キャリオーバの防止を図っている。
【0031】
これに加えて、左右各部のワイヤメッシュデミスタ12は、同図に示すように、それぞれ伝熱管群13からの距離が伝熱管群14からの距離より遠くなるように傾けられているので、これにより冷媒の液滴或いはミストが到達しにくいようになり、従来と同様にしてキャリオーバ防止を図ることができるようになっている。
【0032】
図8は、本発明の第6の実施形態に係る冷凍機用蒸発器を示す左側面断面図である。本実施形態では、蒸発器1において、往路側(1パス側)の伝熱管群13が左右共外側に配置され、復路側(2パス側)の伝熱管群14が左右共内側に配置されている。つまり、左右の伝熱管群のパス割りが対称となっている。そして、上記第4の実施形態と同様にして、ワイヤメッシュデミスタ12全体は山型配置となっている。
【0033】
この場合、伝熱管群13側のワイヤメッシュデミスタ12が低くなるので、冷媒の液滴或いはミストを自然落下により重力分離することについては不利となるが、装置周辺の配管の取り合いについては好都合となり、また引き回しを短くすることができるので、実用性は高いものとなる。
【0034】
図9は、本発明の第7の実施形態に係る冷凍機用蒸発器を示す左側面断面図である。本実施形態では、蒸発器1において、伝熱管群の配置は、上記第6の実施形態と同様に、往路側(1パス側)の伝熱管群13が左右共外側に配置され、復路側(2パス側)の伝熱管群14が左右共内側に配置されている。そして、ワイヤメッシュデミスタ12全体は、第4,第6の実施形態とは逆に、内側が低く外側が高くなる左右対称のいわゆる谷型配置となっている。
【0035】
この場合、蒸発の激しい伝熱管群13側のワイヤメッシュデミスタ12が高くなるので、これにより、冷媒の液滴或いはミストを自然落下により重力分離しやすいようにして、キャリオーバ防止を図っている。但し、ワイヤメッシュデミスタ12の吸込面積は、山型配置とした場合と比較して少し小さくなる。
【0036】
図10は、本発明の第8の実施形態に係る冷凍機用蒸発器を示す左側面断面図である。本実施形態では、左右の伝熱管群のパス割りが対称となってはいるが、上記第6の実施形態とは逆に、蒸発器1において、往路側(1パス側)の伝熱管群13が左右共内側に配置され、復路側(2パス側)の伝熱管群14が左右共外側に配置されている。そして、ワイヤメッシュデミスタ12全体は山型配置となっている。
【0037】
ここでは往路側(1パス側)即ち伝熱管群13側の管群域を大きい(伝熱管15の本数が多い)側に設定することで、往路側の管内流速を遅くし、熱貫流率を低減して冷媒の蒸発量を少なくし、キャリオーバの防止を図っている。さらに、比較的蒸発の激しい伝熱管群13側のワイヤメッシュデミスタ12が高くなるので、これにより、冷媒の液滴或いはミストを自然落下により重力分離しやすいようにして、キャリオーバ防止を図っている。加えて、山型配置によりワイヤメッシュデミスタ12の吸込面積を大きくし、ここを通過する冷媒ガスの流速を低下させ液滴或いはミストの捕集率を高くして、キャリオーバの防止を図っている。
【0038】
なお、特許請求の範囲で言う冷媒ガス排出部材は、実施形態における冷媒ガス吸込管に対応している。
【0039】
【発明の効果】
以上説明したように、本発明によれば、2分割蒸発器に適用されキャリオーバの防止効果を高めたデミスタ配置を持つ、冷凍機用蒸発器を提供することができる。
【0040】
また、冷媒の液滴或いはミストが圧縮機3に到達すると、圧縮機内のインペラの損耗の恐れがあることから、冷媒の液滴或いはミストの圧縮機への到達を防止するものであり、冷凍機の性能・信頼性が向上する。
【図面の簡単な説明】
【図1】本発明に係る冷凍機の概略構成図。
【図2】第1の実施形態に係る冷凍機用蒸発器を示す左側面断面図。
【図3】第2の実施形態に係る冷凍機用蒸発器を示す平面断面図。
【図4】第3の実施形態に係る冷凍機用蒸発器を示す左側面断面図。
【図5】第3の実施形態に係る冷凍機の左側面図。
【図6】第4の実施形態に係る冷凍機用蒸発器を示す左側面断面図。
【図7】第5の実施形態に係る冷凍機用蒸発器を示す左側面断面図。
【図8】第6の実施形態に係る冷凍機用蒸発器を示す左側面断面図。
【図9】第7の実施形態に係る冷凍機用蒸発器を示す左側面断面図。
【図10】第8の実施形態に係る冷凍機用蒸発器を示す左側面断面図。
【図11】従来の冷凍機を示す外観斜視図。
【図12】従来の冷凍機の概略構成図。
【図13】従来の蒸発器を示す左側面断面図。
【符号の説明】
1 蒸発器
2 冷媒ガス吸込管
3 圧縮機
4 モータ
5 冷媒ガス吐出管
6 凝縮器
7 冷媒液溜
8 冷媒液配管
9 膨張弁
10 水室
11 仕切壁
12 ワイヤメッシュデミスタ
13,14 伝熱管群
15 伝熱管
16,17 仕切壁
21 容器
22 冷水入口
23 冷水出口
24 底板
25 折り返し部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an evaporator for a refrigerator that exchanges heat between an object to be cooled (for example, water and brine) and a refrigerant to cool the object to be cooled.
[0002]
[Prior art]
BACKGROUND ART Conventionally, in a large-scale structure such as a building, for example, cooling is performed by circulating an object to be cooled cooled by a refrigerator through piping laid in the structure and exchanging heat with air in a living room. I have to. Note that the conventional refrigerator described here and the refrigerator according to the present invention described later are intended for large-sized refrigerators of about 300 to 3000 refrigeration tons (USRT), especially 2000 to 3000 refrigeration tons. However, it is not limited to this.
[0003]
FIG. 11 is an external perspective view showing a conventional refrigerator, and FIG. 12 is a schematic configuration diagram of the conventional refrigerator. 12A is a front view, FIG. 12B is a left side view, and FIG. 12C is a plan sectional view of an evaporator portion. In FIG. 12, the illustration of the intercooler is omitted. This is the same in the embodiment described later. As shown in each figure, the refrigerator mainly includes an evaporator 1, a compressor 3, a condenser 6, and the like. In the condenser 6, heat exchange is performed between the cooling water and the gaseous refrigerant, and the refrigerant is condensed and liquefied.
[0004]
The condensed refrigerant is temporarily stored in the refrigerant liquid reservoir 7, and subsequently supplied to the evaporator 1 through the refrigerant liquid pipe 8 while being decompressed by the expansion valve 9 on the way. In the evaporator 1, heat exchange is performed between the condensed refrigerant and cold water as the object to be cooled, thereby cooling the cold water and evaporating and vaporizing the refrigerant. The cold water cooled in the evaporator 1 is used for air conditioning of a building and the like.
[0005]
The evaporated and vaporized refrigerant reaches the compressor 3 via the refrigerant gas suction pipe 2. In the compressor 3, the refrigerant is compressed and supplied to the condenser 6 via the refrigerant gas discharge pipe 5. Note that M in FIG. 11 is an intercooler, and the refrigerant flowing out of the condenser 6 once enters the intercooler M and is separated into gas and liquid. The liquid refrigerant is supplied to the evaporator 1, and the gas refrigerant is returned to the compressor 3. In addition, reference numeral 4 in FIG. 11 denotes a motor for the compressor, and OP denotes an operation panel.
[0006]
FIG. 13 is a left side sectional view showing a conventional evaporator provided in the refrigerator as described above. As shown in FIG. 1A, in the evaporator 1, a plurality (many) of heat transfer tubes 15 for flowing cold water as an object to be cooled in a cylindrical container 21 into which a refrigerant is introduced. As shown in (b), the heat transfer tube group 13 on the outward path (1 pass side) extending in the forward direction in a bundle and in a staggered manner, and the return path side extending adjacently in the reverse direction ( The heat transfer tube group 14 on the two-pass side) is disposed in a direction perpendicular to the paper surface.
[0007]
The heat transfer tube group 13 communicates with a cold water inlet 22, and the heat transfer tube group 14 communicates with a cold water outlet 23. Further, the heat transfer tube groups 13 and 14 are disposed below the vicinity of the center position of the container 21 and are all immersed in the refrigerant liquid. In addition, the refrigerant gas suction pipe 2 extends obliquely upward from the upper part of the container 21.
[0008]
Above the heat transfer tube groups 13 and 14 and below the refrigerant gas suction tube 2, a substantially rectangular parallelepiped wire mesh demister 12 having a predetermined thickness is supported from below by a bottom plate 24, and the entire length of the heat transfer tubes Are arranged opposite to each other. This wire mesh demister has a wire diameter of, for example, 0.25 mm and a space ratio of 97.5%, and uses a type capable of collecting mist of 3 μm or more with high efficiency. As shown in the figure, the wire mesh demister 12 is arranged so that the distance from the heat transfer tube group 13 is longer than the distance from the heat transfer tube group 14 at a predetermined angle θ (for example, 0 ° with respect to the horizontal). (In the range of ゜ to 15 ゜).
[0009]
This is because the temperature difference between the cold water temperature in the heat transfer tubes and the evaporation temperature of the refrigerant is larger in the heat transfer tube group 13 (and the inlet side) on the outward path (1 pass side), and evaporation occurs more vigorously. Since a so-called carry-over (gas-liquid entrainment) accompanied by droplets or mist in the gas flow is apt to occur, measures have been taken. In other words, the wire mesh demister 12 on the side of the heat transfer tube group 13 that is liable to carry over is raised, and before the droplets or mist of the refrigerant reach the wire mesh demister 12, they attempt to separate gravity from the refrigerant gas by natural fall. .
[0010]
Further, the inclined wire mesh demister 12 has an effect of preventing the collected droplets or mist from flowing down to the side, thereby preventing re-scattering. In addition, as described later, by arranging the refrigerant gas suction pipe 2 as close to the heat transfer pipe group 14 as possible on the return path side (two-pass side), it is difficult for refrigerant droplets or mist to reach the compressor 3. Like that. When the droplets or mist of the refrigerant reaches the compressor 3, the impeller in the compressor may be worn out, so that the droplets or mist of the refrigerant are prevented from reaching the compressor.
[0011]
Returning to FIG. 12, the heat transfer tube groups 13 and 14 extend in the longitudinal direction in the container 21, and both ends thereof communicate with the water chamber 10. In FIG. 2C, the cold water inlet / outlet water chamber 10 located on the right side is partitioned by a partition wall 11 and divided into a cold water inlet 22 side and a cold water outlet 23 side. Is connected to the heat transfer tube group 13, and the cold water outlet 23 side is connected to the heat transfer tube group 14.
[0012]
On the other hand, the water chamber 10 located on the left side in the drawing communicates with both the heat transfer tube groups 13 and 14 and forms a folded portion 25, where the heat transfer tube groups 13 and 14 communicate with each other. Have been. Arrows in the figure indicate the direction in which the cold water flows. Further, the refrigerant gas suction pipe 2 is arranged in a deep area beyond half of the length of the heat transfer pipe 15 from the cold water inlet 22 side of the heat transfer pipe group 13 and on the heat transfer pipe group 14 side. ing. As a result, as described above, the droplets or mist of the refrigerant are less likely to reach the compressor 3.
[0013]
In the evaporator 1 having the above-described configuration, the refrigerant gas boiled by heat exchange with cold water is blown up while containing the droplets or mist of the refrigerant, and when passing through the wire mesh demister 12, the droplets or mist are generated. After being removed, it is sucked into the compressor (not shown) from the refrigerant gas suction pipe 2 at the upper part of the container 21.
[0014]
[Problems to be solved by the invention]
However, the demister arrangement in the conventional evaporator as described above is a so-called two-partition in which the evaporator is divided into two parts by a partition wall extending in the axial direction (longitudinal direction) to provide two cooling systems for the object to be cooled. Not applicable to evaporators. The present invention has been made in view of the above problems, and has as its object to provide an evaporator for a refrigerator having a demister arrangement applied to a two-part evaporator and having an improved effect of preventing carryover.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, in the present embodiment, the container into which the refrigerant is introduced is divided by a partition wall extending in the longitudinal direction, and the divided regions of the container are cooled by the refrigerant. A refrigerator including a plurality of heat transfer tubes through which a material to be cooled flows are arranged in a bundle, and each heat transfer tube group extending in a longitudinal direction of the container, and a refrigerant gas discharge member corresponding to each of the regions. Wherein each of the heat transfer tube groups extends forward and extends from the end of the heat transfer tube group on the forward path side and extends adjacent to the heat transfer tube group in the reverse direction. In the evaporator for a refrigerator in which the heat transfer tube group on the return path is continuous through the turn-up portion, a demister that collects droplets or mist of the refrigerant is provided above the heat transfer tube group in each region. The demisters are arranged at a predetermined angle when viewed from the longitudinal direction of the container. It is characterized by comprising.
[0016]
Further, in each of the regions, the refrigerant gas discharge member on the side where the tube group on the outward path is smaller than the tube group on the return path is arranged on a side far from the inlet side of the object to be cooled. It is characterized by. In addition, the refrigerant gas discharge member on the side different from the side on which the pipe group area on the outward path is smaller than the pipe group area on the return path is arranged near the pipe group area on the return path. I do.
[0017]
Further, the demister is arranged so that a distance from the group of heat transfer tubes on the outward path is longer than a distance from the group of heat transfer tubes on the return path.
[0018]
The container is divided into two parts, left and right, as viewed from the longitudinal direction, and the demisters provided in each of the left and right parts of the container are arranged in a mountain shape such that the inside is high and the outside is low. It is characterized by comprising. Alternatively, the demister is characterized by being arranged in a valley shape such that the inside is low and the outside is high.
[0019]
In addition, the container is divided into two parts left and right as viewed from the longitudinal direction, and the heat transfer tube groups provided in the respective regions divided into two parts on the left and right sides of the container are arranged outward on the outward path side and inside on the return path side. It is characterized by being arranged. Alternatively, it is characterized in that the forward path is disposed inside and the return path is disposed outside.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a centrifugal chiller according to the present invention will be described with reference to the drawings. In addition, the same reference numerals are given to portions common to the above-described conventional technology, and detailed description will be appropriately omitted. FIG. 1 is a schematic configuration diagram of a refrigerator according to the present invention. (A) is a front view, (b) is a left side view, and (c) is a plan sectional view of an evaporator portion.
[0021]
In the refrigerator according to the present invention, as shown in FIG. 1B, the evaporator 1 is divided into right and left by a partition wall 16 extending in the axial direction (longitudinal direction) at the center thereof, and the condenser 6 is divided into two parts. The center is divided into two right and left parts by a partition wall 17 extending in the axial direction (longitudinal direction), so that the refrigerant circulation system is two systems. As shown in FIG. 3C, the heat transfer tube groups 13 and 14 in the respective chilled water systems of the evaporator 1 divided into two by the partition wall 16 extend in the longitudinal direction in the vessel 21 and have both ends. Communicate with the water chamber 10, respectively.
[0022]
Further, the water chamber 10 on the right and left side of the cold water located on the right side is divided into two by a partition wall 16a in which the partition wall 16 is extended. Each of the divided water chambers 10 is further partitioned by a partition wall 11 and is divided into a cold water inlet 22 side and a cold water outlet 23 side. The outlet 23 side communicates with the heat transfer tube group 14.
[0023]
On the other hand, the water chamber 10 located on the left side in the figure is divided into two by a partition wall 16b in which the partition wall 16 is extended. Each of the divided water chambers 10 communicates with each of the heat transfer tube groups 13 and 14 in each of the chilled water systems, and forms a folded portion 25, where the heat transfer tube groups 13 and 14 are connected to each other. Are connected to each other. Arrows in the figure indicate the direction in which the cold water flows.
[0024]
Further, the refrigerant gas suction pipes 2 are provided corresponding to the respective divided areas of the container 21, and one is near the center in the longitudinal direction of the heat transfer pipe 15 and the other is based on the arrangement relationship between the two compressors 3. Are arranged near the folded portion 25 side. These arrangements are on the right and left sides, respectively, of the evaporator 1 in FIG. The arrangement of the refrigerant gas suction pipe 2 will be described later. The operation of the refrigerant in each system is the same as that described in the above-mentioned conventional technology.
[0025]
FIG. 2 is a left side sectional view showing the evaporator for a refrigerator according to the first embodiment of the present invention. As shown in the figure, in the evaporator 1 of the present embodiment, a cylindrical container 21 into which a refrigerant is introduced is divided into right and left by a partition wall 16 extending in the axial direction (longitudinal direction) at the center. . In each of the divided areas, a plurality (many) of heat transfer tubes 15 through which cold water to be cooled flows are grouped in a bundle and in a zigzag as described in the related art, and are arranged in a forward direction. The heat transfer tube group 13 on the outward path (1 pass side) extending in the direction and the heat transfer tube group 14 on the return path side (2 pass side) extending adjacent in the opposite direction are arranged in the direction perpendicular to the paper surface. I have. The refrigerant gas suction pipe 2 extends upward from the upper part of each divided area of the container 21.
[0026]
In each of the divided regions of the container 21, above the heat transfer tube groups 13 and 14 and below the refrigerant gas suction tube 2, a substantially rectangular parallelepiped wire mesh demister 12 having a predetermined thickness is provided. And is supported from below by a bottom plate 24 that straddles each region, and is disposed to face the entire length of the heat transfer tube. As shown in the figure, the wire mesh demister 12 has a predetermined angle θ (for example, with respect to horizontal) as viewed from the longitudinal direction such that the distance from the heat transfer tube group 13 is longer than the distance from the heat transfer tube group 14. (In the range of about 0 ° to 15 °). This prevents carryover as in the conventional case. The specifications of the wire mesh demister 12 are the same as those shown in the above-mentioned conventional technology.
[0027]
FIG. 3 is a plan sectional view showing an evaporator for a refrigerator according to a second embodiment of the present invention. The left side sectional view of the refrigerator evaporator according to the present embodiment is the same as that shown in FIG. In the present embodiment, in the evaporator 1, the tube group area on the outward path side (one pass side) is small (the number of heat transfer tubes 15 is small), that is, the heat transfer tube group 13 on the right side in FIG. As shown in the drawing, the refrigerant gas suction pipe 2 is disposed near the folded portion 25, that is, on the side far from the cold water inlet 22. This is because the flow rate in the pipe is high on the side where the pipe group area on the outward path side is small, the heat transmission rate is high and the amount of evaporation of the refrigerant is large, and it is easy to carry over, especially on the side near the cold water inlet, so to avoid this. .
[0028]
FIG. 4 is a left side sectional view showing a refrigerator evaporator according to a third embodiment of the present invention. FIG. 5 is a left side view of the refrigerator. In the present embodiment, in addition to the configuration of the above-described second embodiment, in the evaporator 1, the temperature difference between the in-pipe chilled water temperature and the refrigerant temperature on the left side in FIG. The refrigerant gas suction pipe 2a is disposed near the heat transfer pipe group 14 side (two-pass side) and is taken out obliquely to prevent carryover. Such a configuration can be commonly used as a modification in the following embodiments.
[0029]
FIG. 6 is a left side sectional view showing a refrigerator evaporator according to a fourth embodiment of the present invention. In the present embodiment, in the evaporator 1, the inclination of the wire mesh demister 12 on the right side is opposite to that of any of the first to third embodiments, that is, the inclination is outward. . As a result, the suction area of the wire mesh demister 12 is increased, the flow velocity of the refrigerant gas passing therethrough is reduced, and the collection rate of droplets or mist is increased, thereby preventing carryover. In this case, the entire wire mesh demister 12 is symmetrical, and has a so-called mountain-shaped arrangement in which the inside is high and the outside is low.
[0030]
FIG. 7 is a left side sectional view showing an evaporator for a refrigerator according to a fifth embodiment of the present invention. In this embodiment, as compared to any of the first to third embodiments, in the evaporator 1, the mounting position is lowered while maintaining the inclination of the right wire mesh demister 12 as it is, for example, to the same height as the left side. I am trying to become. As a result, the suction area of the wire mesh demister 12 is increased, the flow velocity of the refrigerant gas passing therethrough is reduced, and the collection rate of droplets or mist is increased, thereby preventing carryover.
[0031]
In addition to this, the wire mesh demisters 12 of the left and right portions are inclined such that the distance from the heat transfer tube group 13 is longer than the distance from the heat transfer tube group 14 as shown in FIG. This makes it difficult for the droplets or mist of the refrigerant to reach, so that carryover can be prevented in the same manner as in the related art.
[0032]
FIG. 8 is a left side sectional view showing a refrigerator evaporator according to a sixth embodiment of the present invention. In the present embodiment, in the evaporator 1, the heat transfer tube group 13 on the outward path (1 pass side) is arranged on the left and right outer sides, and the heat transfer tube group 14 on the return path side (2 pass side) is arranged on the left and right inner sides. I have. That is, the path division of the left and right heat transfer tube groups is symmetric. Then, as in the fourth embodiment, the entire wire mesh demister 12 has a mountain-shaped arrangement.
[0033]
In this case, since the wire mesh demister 12 on the heat transfer tube group 13 side becomes low, it is disadvantageous to gravity-separate the droplets or mist of the refrigerant by natural fall, but it is convenient for the arrangement of piping around the device, Further, since the routing can be shortened, the practicality is high.
[0034]
FIG. 9 is a left side sectional view showing a refrigerator evaporator according to a seventh embodiment of the present invention. In the present embodiment, in the evaporator 1, the heat transfer tube group is arranged such that the heat transfer tube group 13 on the outward path (one pass side) is disposed on both left and right sides, and the return path side ( The heat transfer tube group 14 (on the two-pass side) is disposed on both left and right inner sides. The entire wire mesh demister 12 has a so-called symmetrical valley-type arrangement in which the inside is low and the outside is high, contrary to the fourth and sixth embodiments.
[0035]
In this case, the wire mesh demister 12 on the side of the heat transfer tube group 13 where evaporation is intense becomes high, so that the droplets or mist of the refrigerant can be easily separated by gravity by gravity to prevent carryover. However, the suction area of the wire mesh demister 12 is slightly smaller than that in the case of the mountain-shaped arrangement.
[0036]
FIG. 10 is a left side sectional view showing a refrigerator evaporator according to an eighth embodiment of the present invention. In the present embodiment, the path division of the left and right heat transfer tube groups is symmetrical. However, contrary to the sixth embodiment, in the evaporator 1, the heat transfer tube group 13 on the outward path (one pass side) is used. Are arranged on the inner side on both the left and right sides, and the heat transfer tube group 14 on the return path side (2 pass side) is arranged on the outer side on both the left and right sides. The entire wire mesh demister 12 has a mountain-shaped arrangement.
[0037]
Here, by setting the tube group area on the outward path side (one pass side), that is, the tube group area on the heat transfer tube group 13 side to be large (the number of heat transfer tubes 15 is large), the flow velocity in the pipe on the outward path side is reduced, and the heat transmission coefficient is reduced. This reduces the amount of evaporation of the refrigerant to prevent carryover. Further, the height of the wire mesh demister 12 on the side of the heat transfer tube group 13 where evaporation is relatively intense is increased, so that the droplets or mist of the refrigerant can be easily separated by gravity by gravity, thereby preventing carryover. In addition, the mountain-shaped arrangement increases the suction area of the wire mesh demister 12, reduces the flow rate of the refrigerant gas passing therethrough, and increases the collection rate of droplets or mist, thereby preventing carryover.
[0038]
The refrigerant gas discharge member described in the claims corresponds to the refrigerant gas suction pipe in the embodiment.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an evaporator for a refrigerator having a demister arrangement applied to a two-part evaporator and having an improved effect of preventing carryover.
[0040]
Further, when the droplets or mist of the refrigerant reaches the compressor 3, the impeller in the compressor may be worn out. Therefore, the droplets or mist of the refrigerant are prevented from reaching the compressor. Performance and reliability are improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a refrigerator according to the present invention.
FIG. 2 is a left side sectional view showing the evaporator for the refrigerator according to the first embodiment.
FIG. 3 is a plan sectional view showing a refrigerator evaporator according to a second embodiment.
FIG. 4 is a left side sectional view showing a refrigerator evaporator according to a third embodiment.
FIG. 5 is a left side view of a refrigerator according to a third embodiment.
FIG. 6 is a left side sectional view showing a refrigerator evaporator according to a fourth embodiment.
FIG. 7 is a left side sectional view showing a refrigerator evaporator according to a fifth embodiment.
FIG. 8 is a left side sectional view showing a refrigerator evaporator according to a sixth embodiment.
FIG. 9 is a left side sectional view showing a refrigerator evaporator according to a seventh embodiment.
FIG. 10 is a left side sectional view showing a refrigerator evaporator according to an eighth embodiment.
FIG. 11 is an external perspective view showing a conventional refrigerator.
FIG. 12 is a schematic configuration diagram of a conventional refrigerator.
FIG. 13 is a left side sectional view showing a conventional evaporator.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Evaporator 2 Refrigerant gas suction pipe 3 Compressor 4 Motor 5 Refrigerant gas discharge pipe 6 Condenser 7 Refrigerant liquid reservoir 8 Refrigerant liquid pipe 9 Expansion valve 10 Water chamber 11 Partition wall 12 Wire mesh demister 13, 14 Heat transfer tube group 15 Transfer Heat pipes 16 and 17 Partition wall 21 Vessel 22 Cold water inlet 23 Cold water outlet 24 Bottom plate 25 Folded part

Claims (8)

冷媒が導入される容器がその長手方向に延在する仕切壁により分割され、前記容器の分割された各領域内に、前記冷媒により冷却される被冷却物が流通する複数の伝熱管が束状に配設されて、前記容器の長手方向に延在する各伝熱管群と、前記各領域に対応した冷媒ガス排出部材とを備えた冷凍機用蒸発器であって、
前記各伝熱管群は、順方向に延在する往路側の伝熱管群と、該往路側の伝熱管群の端部から折り返されて逆方向に隣接して延在する復路側の伝熱管群とが、折り返し部を介して連続して成る冷凍機用蒸発器において、
前記各領域内の伝熱管群上方に、前記冷媒の液滴或いはミストを捕集するデミスタを設け、該各デミスタは前記容器の長手方向から見て所定の角度傾斜して配置されて成ることを特徴とする冷凍機用蒸発器。
The container into which the refrigerant is introduced is divided by a partition wall extending in the longitudinal direction, and a plurality of heat transfer tubes through which the object to be cooled by the refrigerant flows are bundled in each of the divided regions of the container. A refrigerator evaporator comprising: a heat transfer tube group extending in the longitudinal direction of the container; and a refrigerant gas discharge member corresponding to each of the regions.
Each of the heat transfer tube groups includes a forward heat transfer tube group extending in a forward direction and a return heat transfer tube group that is folded back from an end of the forward heat side heat transfer tube group and extends adjacent to the reverse direction. And, in a refrigerator evaporator that is continuous through the folded portion,
A demister for collecting the refrigerant droplets or mist is provided above the heat transfer tube group in each of the regions, and each demister is arranged to be inclined at a predetermined angle when viewed from the longitudinal direction of the container. Characteristic evaporator for refrigerator.
前記各領域のうち、往路側の管群域が復路側の管群域に対して小さい側の前記冷媒ガス排出部材は、前記被冷却物の入口側から遠い側に配置されて成ることを特徴とする請求項1に記載の冷凍機用蒸発器。In each of the regions, the refrigerant gas discharge member on the side where the tube group on the outward path is smaller than the tube group on the return path is disposed farther from the inlet side of the object to be cooled. The evaporator for a refrigerator according to claim 1, wherein 前記往路側の管群域が復路側の管群域に対して小さい側とは異なる側の前記冷媒ガス排出部材は、復路側の管群域寄りに配置されて成ることを特徴とする請求項2に記載の冷凍機用蒸発器。The refrigerant gas discharging member on the side where the pipe group area on the outward path is different from the smaller pipe group area on the return path side is arranged closer to the pipe group area on the return path. 3. The evaporator for a refrigerator according to 2. 前記デミスタは、前記往路側の伝熱管群からの距離が前記復路側の伝熱管群からの距離より遠くなるように配置されて成ることを特徴とする請求項1〜請求項3のいずれかに記載の冷凍機用蒸発器。The said demister is arrange | positioned so that the distance from the said heat-transfer tube group on the outward path may be longer than the distance from the heat-transfer tube group on the return path side, The Claim 1 characterized by the above-mentioned. The evaporator for a refrigerator according to the above. 前記容器は長手方向から見て左右に2分割されて成り、前記容器の左右に2分割された各領域内に設けたデミスタは、内側が高く外側が低くなるように山型に配置されて成ることを特徴とする請求項1〜請求項4のいずれかに記載の冷凍機用蒸発器。The container is divided into two parts left and right as viewed from the longitudinal direction, and the demisters provided in each of the left and right parts of the container are arranged in a mountain shape such that the inside is high and the outside is low. The evaporator for a refrigerator according to any one of claims 1 to 4, wherein 前記容器は長手方向から見て左右に2分割されて成り、前記容器の左右に2分割された各領域内に設けたデミスタは、内側が低く外側が高くなるように谷型に配置されて成ることを特徴とする請求項1〜請求項4のいずれかに記載の冷凍機用蒸発器。The container is divided into left and right when viewed from the longitudinal direction, and the demister provided in each of the left and right divided regions is arranged in a valley shape such that the inside is low and the outside is high. The evaporator for a refrigerator according to any one of claims 1 to 4, wherein 前記容器は長手方向から見て左右に2分割されて成り、前記容器の左右に2分割された各領域内に設けた伝熱管群は、それぞれ往路側が外側に配置され、復路側が内側に配置されて成ることを特徴とする請求項1〜請求項6のいずれかに記載の冷凍機用蒸発器。The container is divided into two parts left and right as viewed from the longitudinal direction, and the heat transfer tube groups provided in each of the two divided regions on the left and right sides of the container are arranged such that the outward path is disposed outside and the return path is disposed inside. The evaporator for a refrigerator according to any one of claims 1 to 6, comprising: 前記容器は長手方向から見て左右に2分割されて成り、前記容器の左右に2分割された各領域内に設けた伝熱管群は、それぞれ往路側が内側に配置され、復路側が外側に配置されて成ることを特徴とする請求項1〜請求項6のいずれかに記載の冷凍機用蒸発器。The container is divided into two parts left and right as viewed from the longitudinal direction, and the heat transfer tube groups provided in each of the two divided regions on the left and right sides of the container are arranged such that the outward path is located inside and the return path is located outside. The evaporator for a refrigerator according to any one of claims 1 to 6, comprising:
JP2003140325A 2003-05-19 2003-05-19 Evaporator for refrigerating machine Withdrawn JP2004340546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140325A JP2004340546A (en) 2003-05-19 2003-05-19 Evaporator for refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140325A JP2004340546A (en) 2003-05-19 2003-05-19 Evaporator for refrigerating machine

Publications (1)

Publication Number Publication Date
JP2004340546A true JP2004340546A (en) 2004-12-02

Family

ID=33529078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140325A Withdrawn JP2004340546A (en) 2003-05-19 2003-05-19 Evaporator for refrigerating machine

Country Status (1)

Country Link
JP (1) JP2004340546A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089503A2 (en) * 2008-01-11 2009-07-16 Johnson Controls Technology Company Vapor compression system
WO2019073395A1 (en) * 2017-10-10 2019-04-18 Johnson Controls Technology Company A heating, ventilation, air conditioning, and refrigeration (hvac&r) system having an evaporator with a mesh eliminator assembly, and a method of constructing a mesh eliminator assembly
WO2019078084A1 (en) * 2017-10-17 2019-04-25 三菱重工サーマルシステムズ株式会社 Evaporator and refrigeration system
US11480370B2 (en) 2018-01-26 2022-10-25 Mitsubishi Heavy Industries Thermal Systems, Ltd. Evaporator and refrigeration machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089503A2 (en) * 2008-01-11 2009-07-16 Johnson Controls Technology Company Vapor compression system
WO2009089503A3 (en) * 2008-01-11 2009-09-11 Johnson Controls Technology Company Vapor compression system
WO2019073395A1 (en) * 2017-10-10 2019-04-18 Johnson Controls Technology Company A heating, ventilation, air conditioning, and refrigeration (hvac&r) system having an evaporator with a mesh eliminator assembly, and a method of constructing a mesh eliminator assembly
WO2019078084A1 (en) * 2017-10-17 2019-04-25 三菱重工サーマルシステムズ株式会社 Evaporator and refrigeration system
JP2019074262A (en) * 2017-10-17 2019-05-16 三菱重工サーマルシステムズ株式会社 Evaporator and refrigeration system
US11448435B2 (en) 2017-10-17 2022-09-20 Mitsubishi Heavy Industries Thermal Systems, Ltd. Evaporator and refrigeration system
US11480370B2 (en) 2018-01-26 2022-10-25 Mitsubishi Heavy Industries Thermal Systems, Ltd. Evaporator and refrigeration machine

Similar Documents

Publication Publication Date Title
US9109821B2 (en) Condenser for vehicle
WO2017179630A1 (en) Evaporator, and turbo-refrigerating apparatus equipped with same
CN106196755B (en) Shell and tube condenser and air-conditioning system
JPH09170850A (en) Refrigerant evaporator
JPH11304293A (en) Refrigerant condenser
JP4254015B2 (en) Heat exchanger
JPH10176874A (en) Heat-exchanger
CN105683639A (en) Pipe joint, heat exchanger, and air conditioner
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP3576486B2 (en) Evaporators and refrigerators
JP2004353936A (en) Heat exchanger and liquid receiver-integrated condenser
JP2014020758A (en) Cold storage heat exchanger
JP2004077039A (en) Evaporation type condenser
JP5733866B1 (en) Refrigerant heat exchanger
JP2008138895A (en) Evaporator unit
JP3785143B2 (en) Refrigerator evaporator and refrigeration equipment
JP2004340546A (en) Evaporator for refrigerating machine
JP2001221535A (en) Refrigerant evaporator
JP2004190956A (en) Condenser
CN109414975B (en) Cold storage heat exchanger
JP4451998B2 (en) Evaporator and refrigerator having the same
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JPH10170098A (en) Laminated evaporator
CN113587498A (en) Supercooling type efficient evaporative condenser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801