JP2004339022A - Method of manufacturing silicon/silicon carbide/graphite combined sintered compact having self-lubrication - Google Patents

Method of manufacturing silicon/silicon carbide/graphite combined sintered compact having self-lubrication Download PDF

Info

Publication number
JP2004339022A
JP2004339022A JP2003139056A JP2003139056A JP2004339022A JP 2004339022 A JP2004339022 A JP 2004339022A JP 2003139056 A JP2003139056 A JP 2003139056A JP 2003139056 A JP2003139056 A JP 2003139056A JP 2004339022 A JP2004339022 A JP 2004339022A
Authority
JP
Japan
Prior art keywords
powder
silicon
sic
graphite
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003139056A
Other languages
Japanese (ja)
Inventor
Masuhiro Egawa
益博 江川
Katsuo Arai
勝男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Research and Development Centre Ltd
Original Assignee
Akebono Research and Development Centre Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Research and Development Centre Ltd filed Critical Akebono Research and Development Centre Ltd
Priority to JP2003139056A priority Critical patent/JP2004339022A/en
Publication of JP2004339022A publication Critical patent/JP2004339022A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of simply manufacturing an Si/SiC/C<SB>G</SB>combined sintered compact having self-lubrication at a low cost for a short time at a relatively low temperature using powdery mixture prepared by directly controlling the mixing ratio of Si to carbon as a raw material. <P>SOLUTION: In this method, the silicon/silicon carbide/graphite combined sintered compact having self-lubrication is manufactured by sintering the powdery mixture prepared by blending mesophase carbon powder or carbon black powder and graphite powder with silicon power under a pressure or vacuum at 1,200-1,300°C by a discharge plasma sintering method. The mixing ratio of graphite per total volume of silicon and mesophase carbon is preferably 5-20 vol.%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば摺動部材や耐熱構造部材、耐摩耗部品等に有用な、自己潤滑性を有する珪素・SiC・黒鉛(以下、「Si/SiC/C」と略記する)複合焼結体の製造方法に関し、特に耐熱性、耐食性及び耐摩耗性に優れ、自己潤滑性を有するSi/SiC/C複合焼結体を簡便に製造できる方法を提供するものである。
【0002】
【従来の技術】
液体搬送ポンプなどの軸封部に使用される摺動部材には、耐摩耗性に優れ、しかも摩擦係数が小さいこと、耐食性が優れていること、機械的強度が高いことなどの種々の特性を備えていることが要求される。しかし、これらの要求される特性の全てを具備するのは難しく、そのため、従来から使用されている黒鉛、金属、セラミックスあるいはこれらを複合する摺動材料は、各種の用途に合わせて選択使用されているのが実状である。この内、セラミックスであるSiCは、組織的に極めて緻密で高い機械的強度と優れた耐摩耗性を具備し、しかも化学的に安定であるため耐食性にも優れ、表面を研磨するだけで良好な摺動面を形成することができる優れた摺動材料として用いられている。
【0003】
しかしながら、このSiCにも、摩擦係数が大きいという欠点があり、特に高負荷条件での使用時においては、往々にして相手部材(例えば金属製の回転軸等)に損傷を与え、円滑な摺動作用を阻害するという問題点があった。そのため、摩擦係数を改善する目的で、黒鉛基材の表面を珪化してSiCとすることも開発されているが、これは基材が黒鉛なので摩擦係数は小さいものの機械的強度に劣り、摺動特性と機械的強度の双方を満足できるものではなかった。
【0004】
上記の問題点を解決するものとして、例えば、摺動特性と機械的強度の双方を満足するするものとして、特許文献1では、高硬度で高強度なSiC燒結体の粒界に固体潤滑剤として潤滑性を有する黒鉛を均一に介在させた燒結体の開発をして、耐摩耗性や機械的強度および耐蝕性を有し、摩擦係数の小さい優れた摺動材料を得るために、SiC燒結体のSiC粒界に、第2相としてSiC量に対して1〜20体積%の平均粒径200μm以下の黒鉛が均一に分散して存在し、該第2相は摺動時において固体潤滑剤を成すことを特徴とするSiC質摺動材料を示している。
【0005】
さらにそれを改良するために、特許文献2には、SiC粉末に黒鉛粒子を添加し、混合し、それを形成した後、焼結するSiC質摺動材料の製造方法として、該SiC粉末が、1μm以下の平均粒径を有する粉末であり、該黒鉛粒子が、20μm以下の平均粒径を有する粒子であり、該黒鉛粒子を添加、混合する方法が、黒鉛粒子を黒鉛エマルジョン液と成し、そのエマルジョン液をSiC粉末に対し黒鉛換算で3〜20重量%となるように添加し、それを混合する方法であることとしたSiC質摺動材料の製造方法が開示されている。
【0006】
しかしながら、この製造方法においても、SiC粉末の平均粒径が1μmであり、このような微細粉末は、通常、粒子径5〜30μmのSiC粉末を粉砕・分級して製作されるので、相当高価なものである。
また、黒鉛粒子をエマルジョン液にして、SiC粉末に添加しているため、水やアルコール等の混合用溶媒に加えて分散剤や乳化剤も必要とするために、原料コストが高くなるばかりでなく、乾燥のためのエネルギーコストも要するという問題点も依然として残ることになる。
【0007】
【特許文献1】
特開昭59−30765号公報
【特許文献2】
特開平10−203871号公報
【0008】
【発明が解決しようとする課題】
上記したSiC粉末に炭素粉末を添加してなるSiC/C複合体はセラミックスの中で低摩擦・低摩耗を示すトライポロジー材料として知られている。しかし、SiCは、共有化合物であると共に、難焼結性物質であって、焼結するのが非常に難しいという問題がある。
従来、このようなSiCを原料としてSiC/C焼結体を得るには、ホットプレス法(HP法)や熱間等方加圧法(HIP法)などによって焼結されているが、焼結に1800〜2000℃の高温及び長時間を要し、SiC/C焼結体を効率的に得ることができなかった。更に、焼結密度の向上を図るため、焼結助剤を添加するが、この焼結助剤の影響によってSiC/C本来の特性が十分引き出されていないのが実情である。また、緻密なSiC/C複合体を得るため、有機系炭素を減圧下、高温で多孔質SiC/Cに繰り返し含浸させ、黒鉛化処理を行い、そのプロセスに長時間が必要であるという問題点があった。
【0009】
本発明は、このような従来の課題に鑑みてなされたものであり、直接Siと炭素を混合した混合粉末を原料として使用して、低コスト、短時間かつ比較的低温で、自己潤滑性を有するSi/SiC/C複合焼結体を簡便に製造する方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者等は、上記従来の技術の欠点を解消するため鋭意研究を行い、直接Siと炭素の比を制御した混合粉末を原料とし、これに加圧下で直流パルス電流を印加するという、放電プラズマ焼結法を用いることにより、Si/SiC/C複合焼結体を、一段階・短時間でかつ比較的低温で得られることを見出した。更に、異なる炭素種(黒鉛粉(C)、カーボンブラック粉(C)、メソフェーズカーボン粉(C)の三種類)とSiとの反応性について調べた結果、1200〜1300℃の温度範囲において、SiC生成のし易さは粉末の粒径に依存せず、炭素種に大きく支配されていることを見出した。X線のピーク強度から、反応し易さはC>C>Cの順であることを見出した。
【0011】
本発明は、このような知見に基づいてなされたものである。
すなわち、本発明は、以下の手段を用いることによって、上記の課題を解決することができた。
(1)珪素粉末に、メソフェーズカーボン粉末又はカーボンブラック粉末、及び黒鉛粉末を配合した粉末混合物を、放電プラズマ焼結法により、加圧下、真空中で温度1200〜1300℃にて焼結することを特徴とする自己潤滑性を有する珪素・炭化珪素・黒鉛複合焼結体の製造方法。
(2)黒鉛粉末の混合割合が、珪素とメソフェーズカーボンの合計体積に対して5〜20体積%であることを特徴とする、前記(1)記載の珪素・炭化珪素・黒鉛複合焼結体の製造方法。
【0012】
本発明の骨子は、前記した異なる炭素種とSiとの反応性の差を利用して、SiとC(或いはC)の反応により生成したSiCと、反応せずに残存したCが混在し、自己潤滑性を有するSi/SiC/C複合焼結体が短時間で容易に得られることにある。
【0013】
本発明においては、製造に用いる原料で、炭素は、Cの場合粒径範囲は10〜20μm、例えば15μmが好ましく、Cの場合10〜20μm、例えば15μmが好ましく、Cの場合1〜80μm、例えば5μmが好ましい。
Siと炭素との配合割合に関しては、SiとC(C)とは1:1で反応するから、SiCの生成にはSiとC(C)とは1:1の量比でよいわけであるが、SiとC(C)との間を埋めるために、反応に関与しないSiを余計に配合する必要があり、Si:Cを2:1〜4:1の割合で配合する。実施例では2:1の割合とした。その他にSiと反応しにくいCを、SiとC(C)の合計量の5〜20体積%で配合することが好適である。このCもSiとC(C)との間を埋めることになる。また、炭素はC、Cの単独でもよいが、CとCとの混合物でもよい。
【0014】
本発明においては、製造に放電プラズマ燒結法を用いるが、その条件は圧力が10〜50MPa,昇温速度が50〜100℃/min、温度1200〜1300℃、保持時間3〜15分とすることが好適であって、具体的な例としては、圧力が15MPa,昇温速度が100℃/min、温度1250℃、保持時間10分とすることが好ましい。
【0015】
【発明の実施の形態】
放電プラズマ焼結法を用い、1200〜1300℃の温度範囲で、Si粉末(平均粒径約1μm)と三種類の炭素(C、C、C)をそれぞれ反応させ(混合比はSi/C=2:1(モル比))、図1に示すX線回折結果により、C(図1のA)、C(図1のB)ではSiCが生成していたのに対して、C(図1のC)ではSiCが殆ど生成せず、Cのままで存在することがわかった。この知見を基にして、この焼結法を用いれば、直接過剰のSiとC(あるいはC)とCの混合粉末を原料とし、自己潤滑性を有するSi/SiC/C複合焼結体の合成・焼結が可能であることが判明した。
【0016】
【実施例】
以下において、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例により制限されるものではない。
【0017】
実施例1〜7及び比較例1〜3
発明の実施の形態に記載した前記の知見に基づき、本発明のSi/SiC/C複合焼結体を作製するに際し、実施例1〜3においては、SiとCとCを原材料として用いた。混合割合は、Si/C(モル比2:1)をベースにして、Cの添加量を0〜25体積%に変えた。混合した粉末は内径20mm、外径50mmの黒鉛型に10gを充填し、圧力30MPa、昇温速度100℃/min、焼結温度1250℃、保持時間10minの条件で、放電プラズマ焼結装置(住友石炭鉱業、型式:SPS−515S)を用いて真空中で合成・焼結した。
また、実施例4〜6においては、SiとCとCを用い、実施例7においては、Siと3種類の炭素(C、C、C)すべてを用い、実施例1〜3と同様にして合成・焼結した。
黒鉛粉末の添加量の変化と平均摩擦係数及び比摩耗量との関係を第1表に示す。
【0018】
【表1】

Figure 2004339022
【0019】
これらの焼結体は厚み5mmに加工し、エメリー紙(#2000)で研磨、アセトン中で超音波洗浄を行い、乾燥した後、摩擦試験片とした。摩擦試験装置はピン/デイスク型試験機を用いた。SiC製ピンを相手材として、荷重9.8N、摩擦速度1.5m/sで摩擦試験開始直後から試験終了までの摩擦係数を平均した値を平均摩擦係数として測定した。第1表にはCの添加量を変え、得られた摩擦特性を示した。実施例1〜7では平均摩擦係数は0.25以下で小さく、しかも安定した摩擦特性が得られた。また、比摩耗量が2〜7×10−6mm/Nmと、優れた耐摩耗性を示した。
【0020】
を含まない比較例1のSi/SiC焼結体では、平均摩擦係数が0.25で比摩耗量も10−4mm/Nm以上であったことを示した。
の添加量が3体積%の比較例2では、平均摩擦係数が0.35と高く、Cの潤滑効果があまり顕著に認められなかったことを示した。
の添加量が25体積%の比較例3では、平均摩擦係数が0.2を示したが、比摩耗量が2×10−4mm/Nmと多く、耐摩耗特性の向上は認められなかったことを示した。
【0021】
【発明の効果】
本発明によれば、異なる炭素種、すなわちC、CとCそれぞれとSiとの反応性の差を利用して、SiとC(或いはC)の反応により生成したSiCと、反応せずに残存したCが混在した、自己潤滑性を有するSi/SiC/C複合焼結体を容易に得ることができた。この複合焼結体は、平均摩擦係数が小さく、比摩耗量が少ない。各種機械の摺動部材として、特に極低温、高温、腐食性雰囲気などの極限条件に適用することができる。
【図面の簡単な説明】
【図1】Si粉末とC粉末を原料とする放電プラズマ反応焼結法(1250℃、10min)によるSiC系炭化物合成のX線回折結果を示すグラフである。
【図2】Si粉末とC粉末を原料とする放電プラズマ反応焼結法(1250℃、10min)によるSiC系炭化物合成のX線回折結果を示すグラフである。
【図3】Si粉末とC粉末を原料とする放電プラズマ反応焼結法(1250℃、10min)によるSiC系炭化物合成のX線回折結果を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a self-lubricating silicon-SiC-graphite (hereinafter abbreviated as "Si / SiC / CG ") composite sintered body useful for, for example, sliding members, heat-resistant structural members, wear-resistant parts, and the like. In particular, the present invention provides a method for easily producing a Si / SiC / CG composite sintered body having excellent heat resistance, corrosion resistance and wear resistance, and having self-lubricating properties.
[0002]
[Prior art]
Sliding members used for shaft seals such as liquid transfer pumps have various characteristics such as excellent wear resistance, low friction coefficient, excellent corrosion resistance, and high mechanical strength. Is required. However, it is difficult to provide all of these required properties, and therefore, conventionally used graphite, metal, ceramics, or sliding materials that combine these are selectively used in accordance with various applications. That is the fact. Among them, SiC, which is a ceramic, is structurally extremely dense, has high mechanical strength and excellent wear resistance, and is chemically stable, so it has excellent corrosion resistance, and is good only by polishing the surface. It is used as an excellent sliding material that can form a sliding surface.
[0003]
However, this SiC also has a drawback that the coefficient of friction is large, and particularly when used under a high load condition, often damages a mating member (for example, a metal rotary shaft or the like) and causes a smooth sliding operation. There is a problem that it hinders use. Therefore, in order to improve the coefficient of friction, it has been developed to silicify the surface of a graphite base material into SiC. However, since the base material is graphite, the friction coefficient is small but the mechanical strength is inferior. Both properties and mechanical strength were not satisfactory.
[0004]
In order to solve the above problems, for example, as a material satisfying both the sliding characteristics and the mechanical strength, Patent Document 1 discloses a solid lubricant as a solid lubricant on the grain boundaries of a high-hardness and high-strength SiC sintered body. To develop a sintered body in which graphite with lubricating property is uniformly interposed, and to obtain an excellent sliding material with abrasion resistance, mechanical strength and corrosion resistance and a small friction coefficient, In the SiC grain boundaries, graphite having an average particle diameter of 200 μm or less of 1 to 20% by volume based on the amount of SiC is uniformly dispersed as a second phase, and the second phase contains a solid lubricant during sliding. 1 shows a SiC-based sliding material characterized by being formed.
[0005]
In order to further improve the method, Patent Document 2 discloses a method of manufacturing a SiC-based sliding material in which graphite particles are added to SiC powder, mixed, formed, and then sintered. A powder having an average particle size of 1 μm or less, the graphite particles are particles having an average particle size of 20 μm or less, and the method of adding and mixing the graphite particles comprises forming the graphite particles into a graphite emulsion liquid; A method of manufacturing a SiC-based sliding material is disclosed in which the emulsion liquid is added to SiC powder so as to be 3 to 20% by weight in terms of graphite, and the mixture is mixed.
[0006]
However, even in this manufacturing method, the average particle size of the SiC powder is 1 μm, and such a fine powder is usually produced by pulverizing and classifying SiC powder having a particle size of 5 to 30 μm. Things.
Further, since the graphite particles are made into an emulsion liquid and added to the SiC powder, a dispersant or an emulsifier is required in addition to a mixing solvent such as water or alcohol, so that not only does the raw material cost increase, The problem that the energy cost for drying is also required still remains.
[0007]
[Patent Document 1]
JP-A-59-30765 [Patent Document 2]
JP-A-10-203781
[Problems to be solved by the invention]
The SiC / C composite obtained by adding carbon powder to the above-described SiC powder is known as a tribological material showing low friction and low wear among ceramics. However, SiC is a common compound and is a substance that is difficult to sinter, and has a problem that it is very difficult to sinter.
Conventionally, to obtain a SiC / C sintered body using such SiC as a raw material, the sintered body is sintered by a hot press method (HP method) or a hot isostatic pressing method (HIP method). A high temperature of 1800 to 2000 ° C and a long time were required, and a SiC / C sintered body could not be efficiently obtained. Further, a sintering aid is added in order to improve the sintering density. However, in reality, the original characteristics of SiC / C are not sufficiently brought out by the influence of the sintering aid. In addition, in order to obtain a dense SiC / C composite, organic carbon is repeatedly impregnated in porous SiC / C at a high temperature under reduced pressure, graphitized, and the process requires a long time. was there.
[0009]
The present invention has been made in view of such a conventional problem, and uses self-lubricating properties at a low cost, in a short time and at a relatively low temperature by using a mixed powder obtained by directly mixing Si and carbon as a raw material. It is an object of the present invention to provide a method for easily producing a Si / SiC / CG composite sintered body having the same.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned disadvantages of the conventional technology, and directly apply a DC pulse current under pressure to a mixed powder in which the ratio of Si to carbon is controlled as a raw material. It has been found that by using the plasma sintering method, a Si / SiC / CG composite sintered body can be obtained in one step, in a short time, and at a relatively low temperature. Furthermore, different carbon species results of examining the reactivity with Si (graphite powder (C G), a carbon black powder (C B), three types of mesophase carbon powder (C M)), the temperature range of 1200 to 1300 ° C. It was found that the easiness of SiC formation did not depend on the particle size of the powder, but was largely controlled by the carbon species. From the peak intensity of X-rays, reaction easiness we have found that in the order of C M> C B> C G .
[0011]
The present invention has been made based on such findings.
That is, the present invention has solved the above-mentioned problems by using the following means.
(1) Sintering a powder mixture obtained by mixing mesophase carbon powder or carbon black powder and graphite powder with silicon powder at a temperature of 1200 to 1300 ° C. in a vacuum under pressure by a discharge plasma sintering method. A method for producing a silicon / silicon carbide / graphite composite sintered body having a characteristic self-lubricating property.
(2) The silicon / silicon carbide / graphite composite sintered body according to the above (1), wherein the mixing ratio of the graphite powder is 5 to 20% by volume based on the total volume of silicon and mesophase carbon. Production method.
[0012]
Gist of the present invention utilizes the difference in reactivity of different carbon species and Si described above, the SiC produced by the reaction of Si and C M (or C B), the C G remaining without reacting A Si / SiC / CG composite sintered body that is mixed and has self-lubricating properties can be easily obtained in a short time.
[0013]
In the present invention, the raw material used for manufacturing, carbon, if particle size range of C M is 10 to 20 [mu] m, for example, 15μm are preferred, if the C B 10 to 20 [mu] m, for example 15μm are preferred, in the case of C G. 1 to 80 μm, for example, 5 μm is preferred.
Regarding the mixing ratio of Si and carbon, Si and C M (C B ) react at a ratio of 1: 1. Therefore, for the generation of SiC, the ratio of Si and C M (C B ) is 1: 1. Although it is good, in order to fill the gap between Si and C M (C B ), it is necessary to add extra Si that does not participate in the reaction, and Si: C is added in a ratio of 2: 1 to 4: 1. Mix. In the embodiment, the ratio is 2: 1. Other in Si and nobler C G, it is preferable to blend in 5 to 20 vol% total amount of Si and C M (C B). This CG also fills the gap between Si and C M (C B ). The carbon may be C M or C B alone, or may be a mixture of C M and C B.
[0014]
In the present invention, the discharge plasma sintering method is used for the production, with the conditions that the pressure is 10 to 50 MPa, the temperature is raised at a rate of 50 to 100 ° C./min, the temperature is 1200 to 1300 ° C., and the holding time is 3 to 15 minutes. It is preferable that the pressure is 15 MPa, the temperature raising rate is 100 ° C./min, the temperature is 1250 ° C., and the holding time is 10 minutes.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Using a spark plasma sintering method, Si powder (average particle size of about 1 μm) and three types of carbon (C M , C B , C G ) are allowed to react in a temperature range of 1200 to 1300 ° C. (mixing ratio is Si / C = 2: 1 (molar ratio)), by X-ray diffraction results shown in Fig. 1, a of C M (FIG. 1), whereas the C B (in FIG. 1 B) the SiC was produced , C G (C in FIG. 1), the SiC is not generated almost was found to be present remain C G. And this finding based, the use of this sintering method, the mixed powder direct excess Si and C M (or C B) and C G as a raw material, Si / SiC / C G composite sintered having the self-lubricating property It was found that the synthesis and sintering of the compact was possible.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0017]
Examples 1 to 7 and Comparative Examples 1 to 3
Based on the findings described in the embodiment of the invention, when manufacturing a Si / SiC / C G composite sintered body of the present invention, in Examples 1 to 3, Si and C M and C G as raw materials Using. Mixing ratio, Si / C M (molar ratio 2: 1) was based was varied the amount of C G 0 to 25% by volume. 10 g of the mixed powder was filled in a graphite mold having an inner diameter of 20 mm and an outer diameter of 50 mm, and a discharge plasma sintering apparatus (Sumitomo) under the conditions of a pressure of 30 MPa, a heating rate of 100 ° C./min, a sintering temperature of 1250 ° C., and a holding time of 10 min. It was synthesized and sintered in vacuum using coal mining, type: SPS-515S).
In Example 4-6, using Si and C B and C G In Example 7, Si and three carbon (C M, C B, C G) using all, Example 1 It was synthesized and sintered in the same manner as in No. 3.
Table 1 shows the relationship between the change in the addition amount of the graphite powder and the average friction coefficient and the specific wear amount.
[0018]
[Table 1]
Figure 2004339022
[0019]
These sintered bodies were processed to a thickness of 5 mm, polished with emery paper (# 2000), subjected to ultrasonic cleaning in acetone, dried, and used as friction test pieces. The friction tester used was a pin / disk type tester. A value obtained by averaging the friction coefficients from immediately after the start of the friction test to the end of the test at a load of 9.8 N and a friction speed of 1.5 m / s was measured using the SiC pin as a mating material as an average friction coefficient. The Table 1 changing the amount of C G, showed the resulting frictional properties. In Examples 1 to 7, the average friction coefficient was as small as 0.25 or less, and stable friction characteristics were obtained. In addition, the specific wear amount was 2 to 7 × 10 −6 mm 3 / Nm, showing excellent wear resistance.
[0020]
The Si / SiC sintered bodies of Comparative Example 1 containing no C G, showed that the average coefficient of friction was specific wear amount 10 -4 mm 3 / Nm or 0.25.
In C Comparative Example addition amount of 3% by volume of G 2, the average friction coefficient is as high as 0.35, indicating that lubricating effect of C G was not recognized less pronounced.
In C Comparative Example addition amount of 25 vol% of G 3, the average friction coefficient showed 0.2, specific wear amount is large and 2 × 10 -4 mm 3 / Nm , observed improvement in wear characteristics Was not shown.
[0021]
【The invention's effect】
According to the present invention, SiC generated by the reaction between Si and C M (or C B ) by utilizing the difference in reactivity between Si and different carbon species, that is, C G , C B and C M , and C G remaining without reaction was mixed, it was possible to easily obtain the Si / SiC / C G composite sintered body having the self-lubricating property. This composite sintered body has a small average friction coefficient and a small amount of specific wear. It can be applied to extreme conditions such as extremely low temperature, high temperature, corrosive atmosphere and the like as sliding members of various machines.
[Brief description of the drawings]
FIG. 1 is a graph showing an X-ray diffraction result of synthesis of a SiC-based carbide by a discharge plasma reaction sintering method (1250 ° C., 10 minutes) using Si powder and CM powder as raw materials.
[Figure 2] Si powder and C B powder discharge plasma reaction sintering method that the raw material (1250 ℃, 10min) is a chart showing the X-ray diffraction pattern of the SiC-based carbide synthesis by.
FIG. 3 is a graph showing an X-ray diffraction result of synthesis of a SiC-based carbide by a discharge plasma reaction sintering method (1250 ° C., 10 min) using Si powder and CG powder as raw materials.

Claims (2)

珪素粉末に、メソフェーズカーボン粉末又はカーボンブラック粉末、及び黒鉛粉末を配合した粉末混合物を、放電プラズマ法により、加圧下、真空中で温度1200〜1300℃にて焼結することを特徴とする自己潤滑性を有する珪素・炭化珪素・黒鉛複合焼結体の製造方法。Self-lubrication characterized by sintering a powder mixture of silicon powder, mesophase carbon powder or carbon black powder, and graphite powder at a temperature of 1200 to 1300 ° C. in a vacuum under pressure by a discharge plasma method. For producing a silicon / silicon carbide / graphite composite sintered body having properties. 黒鉛粉末の混合割合が、珪素とメソフェーズカーボン又はカーボンブラックの合計体積に対して5〜20体積%であることを特徴とする、請求項1記載の珪素・炭化珪素・黒鉛複合焼結体の製造方法。2. The production of a silicon / silicon carbide / graphite composite sintered body according to claim 1, wherein the mixing ratio of the graphite powder is 5 to 20% by volume based on the total volume of silicon and mesophase carbon or carbon black. Method.
JP2003139056A 2003-05-16 2003-05-16 Method of manufacturing silicon/silicon carbide/graphite combined sintered compact having self-lubrication Withdrawn JP2004339022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139056A JP2004339022A (en) 2003-05-16 2003-05-16 Method of manufacturing silicon/silicon carbide/graphite combined sintered compact having self-lubrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139056A JP2004339022A (en) 2003-05-16 2003-05-16 Method of manufacturing silicon/silicon carbide/graphite combined sintered compact having self-lubrication

Publications (1)

Publication Number Publication Date
JP2004339022A true JP2004339022A (en) 2004-12-02

Family

ID=33528258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139056A Withdrawn JP2004339022A (en) 2003-05-16 2003-05-16 Method of manufacturing silicon/silicon carbide/graphite combined sintered compact having self-lubrication

Country Status (1)

Country Link
JP (1) JP2004339022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408237A (en) * 2011-08-10 2012-04-11 哈尔滨新辉特种陶瓷有限公司 Ceramic composite material containing graphite and silicon carbide and preparation method thereof
CN111320478A (en) * 2020-03-27 2020-06-23 有研资源环境技术研究院(北京)有限公司 Preparation method of carbon-silicon ceramic target material
CN116102354A (en) * 2022-11-07 2023-05-12 江苏核电有限公司 Composition for main pump bearing bush and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408237A (en) * 2011-08-10 2012-04-11 哈尔滨新辉特种陶瓷有限公司 Ceramic composite material containing graphite and silicon carbide and preparation method thereof
CN111320478A (en) * 2020-03-27 2020-06-23 有研资源环境技术研究院(北京)有限公司 Preparation method of carbon-silicon ceramic target material
CN111320478B (en) * 2020-03-27 2022-02-11 有研资源环境技术研究院(北京)有限公司 Preparation method of carbon-silicon ceramic target material
CN116102354A (en) * 2022-11-07 2023-05-12 江苏核电有限公司 Composition for main pump bearing bush and preparation method thereof
CN116102354B (en) * 2022-11-07 2024-04-09 江苏核电有限公司 Composition for main pump bearing bush and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6182084B2 (en) Dense composite material, manufacturing method thereof, joined body, and member for semiconductor manufacturing apparatus
JP5735501B2 (en) Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid seal parts
JP2003034581A (en) Silicon nitride abrasion resistant member and method for producing the same
JP2004018322A (en) Silicon/silicon carbide composite material and method of producing the same
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
IL134576A (en) Method for producing abrasive grains and the abrasive grains produced by this method
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
KR101793031B1 (en) Manufacturing method of alumina-graphene composites with excellent wear resistance
JP2011184290A (en) Method for producing sintered cubic boron nitride compact
JP2004339022A (en) Method of manufacturing silicon/silicon carbide/graphite combined sintered compact having self-lubrication
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP2007008793A (en) Carbon-containing conductive ceramic comprising al-si-c based compound as main constituent
JP2007107067A (en) Copper based sintered friction material
JP2007321797A (en) Sliding member and mechanical seal ring using the same
WO2012092587A2 (en) Silicon carbide body and method of forming same
JPH0251864B2 (en)
JP4178236B2 (en) Silicon carbide-based low friction sliding material and manufacturing method thereof
CN110372391A (en) A kind of SiC/ graphite composite material and its preparation method and application
WO1989008086A1 (en) HIGH-STRENGTH, beta-TYPE SILICON CARBIDE SINTER AND PROCESS FOR ITS PRODUCTION
JP2004339587A (en) Self-lubricating hard material
JPH02275772A (en) Production of aluminum nitride-base sintered material
JP3339645B2 (en) Method for producing silicon carbide-carbon composite material
JP3694583B2 (en) Crusher parts
JP2007022914A (en) Method for manufacturing silicon/silicon carbide composite material
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070808