JP2004336578A - Point-multipoint optical transmission system and station-side communication device - Google Patents

Point-multipoint optical transmission system and station-side communication device Download PDF

Info

Publication number
JP2004336578A
JP2004336578A JP2003132272A JP2003132272A JP2004336578A JP 2004336578 A JP2004336578 A JP 2004336578A JP 2003132272 A JP2003132272 A JP 2003132272A JP 2003132272 A JP2003132272 A JP 2003132272A JP 2004336578 A JP2004336578 A JP 2004336578A
Authority
JP
Japan
Prior art keywords
communication request
onu
request amount
subscriber
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003132272A
Other languages
Japanese (ja)
Inventor
Yoshifumi Hotta
善文 堀田
Hideaki Yamanaka
秀昭 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003132272A priority Critical patent/JP2004336578A/en
Publication of JP2004336578A publication Critical patent/JP2004336578A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently assign bands in accordance with the past communication volume by an easy operation in a PON (Passive Optical Network) system. <P>SOLUTION: In a point-multipoint optical transmission system, an optical line terminal OLT 10 and a plurality of optical network units ONU 41 to 4N are connected through optical fibers 20 and 201 to 20N, the OLT 10 uses downstream signals to assign bands for use to ONUs 41 to 4N, and ONUs 41 to 4N transmit upstream signals to the OLT 10 in the time slots of bands for use assigned by the OLT 10. The OLT 10 is provided with a band assignment volume control part 112 which integrates the quantity of communication requests included in received communication request codes to calculate the amount of communication request which has been integrated from the past for every subscriber-side device and assigns an upstream band to the subscriber-side device by using a weight proportional to the calculated integrated quantity of communication requests for the subscriber-side device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、局側通信装置と複数の加入者側装置とが光伝送路を介して接続され、局側通信装置が下り信号を用いて複数の加入者側装置の使用帯域の割り当てを行い、加入者側装置が局側通信装置から割り当てを受けた使用帯域のタイムスロットで局側通信装置に対し上り信号を送信するポイント・マルチポイント光伝送システムおよび局側通信装置に関するものである。
【0002】
【従来の技術】
マルチメディアサービスを各家庭まで、伝送するアクセス系ネットワークでは、一般にPDS(Passive Double Star)システム、またはPON(Passive Optical Network)システムと呼ばれるポイント・マルチポイント光伝送システム(光バースト送受信網)が用いられる。
【0003】
このポイント・マルチポイント光伝送システムでは、局側通信装置(OLT:Optical Line Terminal、親局)を光伝送路としての光ファイバおよび多重分岐器を介して複数の加入者側装置(ONU:Optional Network Unit、子局)に接続し、OLTが発する下り信号としての送信許可信号に応じて複数のONUが発する上り信号を多重分岐器で時分割多重してOLTに伝え、OLTが発した下り信号を多重分岐器で分岐して各ONUに伝え、OLTと複数のONUの間で双方向通信を行うようにしている。この方式では、複数のONUが単一のOLTを共有するため、光伝送装置と光ファイバを経済的に活用できる利点がある。
【0004】
このようなポイント・マルチポイント光伝送システムにおいて、各ONUからの上り(ONUからOLT方向)データに対する上りスロット制御は、OLTが各ONUに通信許可符号を送出することにより行う。通信許可符号は、各ONUに対し、データ送信開始時刻と、送信データ長を指定するための符号である。
【0005】
OLTは、各ONUから送られてくる通信要求符号からONU内部のユーザデータバッファ部に格納されているデータ量およびONUが通信要求符号を送出した時刻情報を取得し、取得したONUが通信要求符号を送出した時刻情報とOLT自身が通信要求符号を受信した時刻によりさらに各ONUとOLTとの距離情報すなわちONU位置情報を取得する。OLTは、取得した2つの情報(データ量およびONU位置情報)によって、各ONUが上りデータを送信すべきタイムスロット情報(送信開始時刻、送信データ長)を求め、該求めたタイムスロット情報を通信許可符号内に格納し、さらにONU毎の識別子を付与して、通信許可符号を各ONUに送出する。
【0006】
ONUは、通信許可符号により指定されたタイムスロットに、通信要求符号とユーザデータバッファ部から読み出したユーザデータを送出する。これにより、ONU間の上りデータの衝突を防ぐことができる。また、ONUは、OLTから入力された下りデータを各ONU毎の識別子によって自局宛のデータか否かを判別し、自局宛のものについては、識別子を削除した後、配下に接続される加入者通信ネットワークに送出する。自局宛以外のデータは廃棄する。
【0007】
このようなポイント・マルチポイント光伝送システムにおいては、OLTはONUの通信要求符号に対し、無制御で通信許可符号を生成することはできず、通常、各種方式で帯域割り当て制御を実行する。帯域割り当て制御方式としては、ONUに対して、固定的に帯域を割り当てる方式と、ONUが送出するデータ量に応じて、動的に帯域を割り当てる方法がある。
【0008】
動的帯域割り当て方法としては、例えば、特許文献1、非特許文献1、非特許文献2などが知られている。
【0009】
特許文献1は、TCP/IPプロトコルのAckフレームをOLTで読み取り、Ackフレームに格納される情報を基に通信許可符号を生成して送出する方式であり、この方式では、TCP/IPプロトコルに従う情報の送出環境において、PON区間でのバッファ溢れや、遅延による影響を最小限にとどめることができる。
【0010】
また、非特許文献1,2の方式は、通信許可符号の送信間隔を短くすることにより細かな制御を行うものであり、TCP/IPプロトコルを含む情報の送出環境において、効率的な帯域割当が期待できる。
【0011】
【特許文献1】
特開2000−13424号公報
【非特許文献1】
電子情報通信学会、信学技報、TECNICAL REPORT OF IEICE NS2002−17(2002−04),吉原修等、GE−PONに適した動的帯域割当アルゴリズム、
【非特許文献2】
電子情報通信学会、信学技報、TECNICAL REPORT OF IEICE NS2002−18(2002−04),太田憲行等、低遅延なEPONを実現する動的帯域割当方式、
【0012】
【発明が解決しようとする課題】
しかしながら、上記した特許文献1,非特許文献1,2に記載の従来の動的帯域割り当て方式は、共に制御が複雑であるという問題点があり、さらに、特許文献1の発明の場合、Ackフレームを伴わない情報の送出を伴う場合に、PON区間でのユーザデータのONU内部のユーザデータバッファでの滞留と、それに起因する遅延が発生する問題がある。
【0013】
この発明は上記に鑑みてなされたもので、簡易な帯域割り当ての演算によって、従来行われていなかった、過去の通信量に従量する効率的な動的帯域割り当てを可能にするポイント・マルチポイント光伝送システムおよび局側通信装置を得ることを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するため、この発明にかかるポイント・マルチポイント光伝送システムは、局側通信装置と複数の加入者側装置とが光伝送路を介して接続され、前記局側通信装置が下り信号を用いて前記複数の加入者側装置の使用帯域の割り当てを行い、前記加入者側装置が前記局側通信装置から割り当てを受けた使用帯域のタイムスロットで前記局側通信装置に対し上り信号を送信するポイント・マルチポイント光伝送システムにおいて、前記局側通信装置は、受信した通信要求符号に含まれる通信要求量を積算して過去からの積算通信要求量を加入者側装置毎に求める通信要求量積算手段と、この通信要求量積算手段で計算された加入者側装置毎の積算通信要求量に従量した重みで上り帯域を各加入者側装置に割り当てる帯域割り当て手段とを備えることを特徴とする。
【0015】
この発明によれば、過去からの積算通信要求量に従量する動的帯域割り当てを行うようにしているので、過去から現在までに多くの通信量を必要としている加入者側装置に対しては、割り当て帯域を多く割り当てることができ、過去の通信量に従量する効率的な帯域割り当てが可能となる。
【0016】
【発明の実施の形態】
以下に添付図面を参照して、この発明にかかるポイント・マルチポイント光伝送システムおよび局側通信装置の好適な実施の形態を詳細に説明する。
【0017】
実施の形態1.
図1は、この発明が適用されるポイント・マルチポイント光伝送システムの実施の形態1の構成を示すブロック図である。
【0018】
図1に示すポイント・マルチポイント光伝送システム(光バースト送受信網、あるいはPONシステム)は、局側通信装置(以下OLTという)10と複数の加入者側装置(以下ONUという)41〜4Nとが光分岐器(スターカプラ)30を介して幹線光ファイバ20,支線光ファイバー201〜20Nによって接続されている。
【0019】
OLT10は、IP網への接続を行うネットワークインタフェース部101と、OLT制御端末への接続を行うOLT制御端末インタフェース部102と、時分割多重制御を行うTDM(Time Division Multiple)制御部103と、電気/光変換を行って複数のONU41〜4Nを収容するためのPONインタフェースとしてのE/O変換部104とを備えている。
【0020】
ONU41は、複数の加入者端末601〜603が接続された加入者通信ネットワーク51との接続を行うネットワークインターフェース部411と、加入者端末601〜603からのユーザデータが記憶されるユーザデータバッファ421と、OLT10からの通信許可符号により指定されたタイムスロットに、通信要求符号とユーザデータバッファ421から読み出したユーザデータを送出するなどの時分割多元接続(TDMA:Time Division Multiple Access)処理を行うTDMA制御部431と、電気/光変換を行うPONインタフェースとしてのE/O変換部441とを備えている。他のONU42〜4NもONU41と同様の構成を有している。
【0021】
ここで、本発明の主要部であるOLT10の内部構成およびその動的帯域割り当て制御を説明する前に、OLT10および複数のONU41〜4N間での通常の通信動作について説明する。
【0022】
OLT10は、IP網側から入力された下り(OLTからONU方向)データにONU41〜4Nごとの識別子を付与し、接続される全ONUに同報する。各ONU41〜4Nからの上り(ONUからOLT方向)データに対する上りスロット制御は、OLT10が各ONU41〜4Nに通信許可符号を送出することにより行う。通信許可符号は、各ONU41〜4Nに対し、データ送信開始時刻と、送信データ長を指定するための符号である。
【0023】
OLT10は、各ONU41〜4Nから送られてくる通信要求符号からONU内部のユーザデータバッファ421〜42Nに格納されているデータ量およびONUが通信要求符号を送出した時刻情報を取得し、取得したONUが通信要求符号を送出した時刻情報とOLT自身が通信要求符号を受信した時刻によりさらに各ONUとOLTとの距離情報すなわちONU位置情報を取得する。OLT10は、取得した2つの情報(データ量およびONU位置情報)によって、各ONU41〜4Nが上りデータを送信すべきタイムスロット情報(送信開始時刻、送信データ長)を求め、該求めたタイムスロット情報を通信許可符号内に格納し、さらにONU毎の識別子を付与して、通信許可符号を各ONU41〜4Nに送出する。
【0024】
各ONU41〜4Nは、通信許可符号により指定されたタイムスロットに、通信要求符号とユーザデータバッファ421〜42Nから読み出したユーザデータを送出する。また、各ONU41〜4Nは、OLT10から入力された下りデータを各ONU毎の識別子によって自局宛のデータか否かを判別し、自局宛のものについては、識別子を削除した後、配下に接続される加入者通信ネットワーク51〜5Nに送出する。自局宛以外のデータは廃棄する。
【0025】
つぎに、本発明の主要部であるOLT10の内部構成およびその動的帯域割り当て制御について説明する。
【0026】
TDM制御部103は、各ONU41〜4Nから受信する通信要求符号を監視する通信要求符号監視部110と、通信要求符号内に含まれるONUが通信要求符号を送出した時刻情報およびOLTが該通信要求符号を受信した時刻情報に基づき各ONUとOLTとの距離すなわち各ONUの位置を算出するONU位置情報算出部111と、上り信号の帯域を時分割多重により帯域割り当て制御する帯域割り当て制御部112と、帯域割り当て制御部112で計算した各ONU毎の帯域割り当て量Giを反映した通信許可符号を各ONU41〜4Nに送信する通信許可符号生成部113とを備えている。なお、サフィックスiは、登録されているONU41〜4Nを識別する番号を示す。
【0027】
帯域割り当て制御部112は、本発明の主要部をなすもので、通信要求量抽出部114と、全ONU総通信要求量算出部115と、帯域割り当て量算出部116と、全ONU通信要求符号受信時刻監視部117とを備えている。
【0028】
通信要求量抽出部114は、各周期毎に受信した各ONU41〜4Nの通信要求符号から各ONU41〜4N毎の通信要求量Riを抽出し、抽出した当該帯域割当周期における各各ONU41〜4N毎の通信要求量Riを全ONU総通信要求量算出部115および帯域割り当て量算出部116に出力する。
【0029】
全ONU総通信要求量算出部115は、通信要求量抽出部114から取得した通信要求量Riを用いて次回の帯域割当周期に反映すべき、登録されている全ONUの通信要求量の総和TBを算出する。
【0030】
全ONU通信要求符号受信時刻監視部117は、帯域割り当て量算出部116から設定された、全ONUからの通信要求符号を受信する予定時刻に、帯域割り当て量算出部116に対して処理開始トリガを送出する帯域割り当て量計算の起動処理を実行する。
【0031】
帯域割り当て量算出部116は、通信要求量抽出部114から各帯域割当周期毎に入力される各ONU41〜4N毎の通信要求量Riを用いて、ONU毎の過去の通信要求量の総和Tiを、各帯域割当周期毎に算出している。ただし、ONU毎の過去の通信要求量の総和Tiは、正確には、各ONU毎の最低割り当て帯域AMiの過去分の総和が取り除かれた値である。また、過去の通信要求量の総和Tiとは、現時点までの過去の所定期間(n日、n帯域割当周期分)分の通信要求量Riの総和Tiのことをいう。
【0032】
帯域割り当て量算出部116は、全ONU通信要求符号受信時刻監視部117からの処理開始トリガを受信した際に実行する帯域割り当てにおいて、余剰帯域SBがある場合は、各ONU毎の過去から現在までの積算通信要求量Tiに応じて帯域を分配して、各ONU毎の帯域割り当て量Giを算出する。この場合、帯域を分配する重みWAiは、前述したように、最低割り当て量AMiを通信要求量Riから差し引いた過去の総通信要求量Tiを利用する。一方、各ONU41〜4Nからの総通信要求量が割り当て帯域を超える場合すなわち超過帯域が発生する場合は、通信要求量抽出部114から取得した今回周期の各ONU毎の通信要求量Riから各ONU毎の最低割り当て帯域AMiを差し引いた、各ONUからの通信要求量RAiを求め、各ONUに対する重みWBiを計算し、この重みWBiに基づいて各ONU毎の帯域割り当て量Giを算出する。
【0033】
つぎに、図2に示すフローチャート、図3および図4に示す帯域割り当て状態を示す図に従って図1に示すシステムの動作を説明する。なお、図3は図2のステップS200の判断がYESの場合の帯域割り当て状態を示すものであり、図4は図2のステップS200の判断がNOの場合の帯域割り当て状態を示すものである。
【0034】
まず、OLT10が起動されると、帯域割り当て量算出部116は、パラメータの初期化を行う(ステップS100)。パラメータの初期化では、ONUの登録状態がない状態とし、各ONU毎の最低割り当て帯域を除いた通信要求量Riの総和Ti=0、全ONUの総通信要求量TB=0、BW=一周期に割り当てる所定の帯域量、各ONUに割り当てる帯域量Gi=0、各ONU毎の最低割り当て帯域AMi=各ONUに割り当てる所定の最低割当量、に設定する。ここで、パラメータに付随するサフィックスiは、登録されているONUを識別する番号を示す。
【0035】
次に、帯域割り当て量算出部116は、登録するONUを設定する(ステップS101)。起動時、または起動が完了した後であっても、新規にONUが登録された場合には(ステップS102)、このONUからの通信要求符号はないが、通信要求符号分の送信要求があったものとして、通信要求符号用の帯域割り当てをおこなう(ステップS103)。さらに、この後、帯域割り当て量算出部116は、全ONU通信要求符号受信時刻監視部117に、全ONU41〜4Nからの通信要求符号を受信し終わる時刻を設定する。
【0036】
以下に示す、帯域割り当ての動作は簡単のため、ONUの登録/削除のない場合について述べる。前周期の通信許可符号の応答として、OLT10の帯域割り当て制御部112には、各ONU41〜4Nからの通信要求符号が到着する。通信要求量抽出部114は、到着した通信要求符号から各ONU毎の通信要求量Riを抽出する。抽出された通信要求量Riは、全ONU総通信要求量算出部115及び帯域割り当て量算出部116に送られる。
【0037】
全ONU総通信要求量算出部115では、下式(1)にしたがって、前周期の通信許可符号の応答として各ONUから受け取った通信要求量Riの総和、すなわち全ONUの総通信要求量TBを算出する(ステップS104)。
TB=ΣRi (i=1〜N) …(1)
【0038】
全ONU通信要求符号受信時刻監視部117は、全ONUからの通信要求符号を受信する予定時刻に、帯域割り当て量算出部116に対して処理開始トリガを送出する(ステップS105)。帯域割り当て量算出部116は、全ONU通信要求符号受信時刻監視部117から処理開始トリガを受信すると、全ONU総通信要求量算出部115から総通信要求量TBを取得し、さらに、各ONUの割り当て帯域量GiをGi=0と初期化する(ステップS106)。
【0039】
次に、帯域割り当て量算出部116は、予め設定された一周期に割り当てる所定の帯域量BWと、取得した総通信要求量TBの値を比較する(ステップS200)。
【0040】
図3に示すように、TB値がBW値以下である場合すなわち余剰帯域SBが存在する場合は、下式(2)に示すように、まず、各ONUに対し、予め設定された最低割り当て帯域量AMiを割り当てる(ステップS211)。
Gi=AMi …(2)
【0041】
さらに、帯域割り当て量算出部116は、下式(3)に示すように、通信要求量抽出部114から得た各ONUの通信要求量Riから最低割り当て帯域量AMiを差し引くことにより、各ONU毎に最低割り当て帯域割り当てを差し引いた通信要求量RAiを算出する(ステップS212)。このとき、あるONUのRAiが負となった場合は、通信要求量RAi=0とみなす。
RAi=Ri−AMi …(3)
但し、RAi<0のときRAi=0
【0042】
つぎに、帯域割り当て量算出部116は、下式(4)に示すように、前回の帯域割当周期までに計算していた各ONU毎の最低割り当て帯域を除いた過去の総通信要求量Tiに、今回の帯域割当周期における各ONU毎に最低割り当て帯域割り当てを差し引いた通信要求量RAiを各i毎に加算することにより、今回の帯域割当周期までにおける各ONU毎の最低割り当て帯域を除いた過去の総通信要求量Ti(これ以降、積算通信要求量という)を算出する(ステップS213)。
Ti=Ti+RAi …(4)
【0043】
つぎに、帯域割り当て量算出部116は、ステップS213で算出された積算通信要求量Tiから、下式(5)に従って、各ONUの帯域割り当て量の重みWAiを算出する(ステップS214)。これら帯域割り当て量の重みWAiは、登録識別子iのONUの積算通信要求量Tiを、全ONUの積算通信要求量Tiの総和ΣTiで割った値であり、各ONUの最低割り当て帯域を除いた過去の通信要求量に従量した重みとなる。なお、ΣTi=0の場合、WAi=1/Nとする。
WAi=Ti/ΣTi …(5)
【0044】
次に、帯域割り当て量算出部116は、下式(6)に示すように、一周期に割り当てる所定の帯域量BWから総通信要求量TBを差し引くことにより帯域の余剰量SBを算出する(ステップS215)。
SB=BW−TB …(6)
【0045】
次に、帯域割り当て量算出部116は、ステップS215で算出した帯域の余剰量SBと、ステップS214で算出した各ONUの帯域割り当て量の重みWAiとを用い、下式(7)に従って、各ONU毎の余剰帯域の分配量ASBiを算出する(ステップS216)。
ASBi=SB×WAi …(7)
【0046】
最後に、帯域割り当て量算出部116は、下式(8)に示すように、ステップS216で算出した各ONU毎の余剰帯域の分配量ASBiを、予め設定された各ONU毎の最低割り当て帯域量AMi(=Gi)に加算することにより、各ONU毎の今回周期の帯域割り当て量Giを決定する。
Gi=Gi+ASBi …(8)
【0047】
決定された帯域割り当て量Giは通信許可符号生成部113に通知される。通信許可符号生成部113は、これら各帯域割り当て量Giを反映した通信許可符号を各ONU41〜4Nに送信する。
【0048】
一方、ステップS200で、図4に示すように、TB値がBW値より大きい(全ONUの総通信要求量TBが割り当てるべき帯域BWよりも大きい)と判断された場合すなわち超過帯域が存在する場合は、帯域割り当て量算出部116は、下式(9)にしたがって、帯域の超過量EBを算出する(ステップS221)。
EB=TB−BW …(9)
【0049】
次に、帯域割り当て量算出部116は、下式(10)に従って、各ONU毎の帯域割り当て量Giに、予め設定された最低割り当て帯域量AMiを割り当てる(ステップS222)。
Gi=AMi …(10)
【0050】
つぎに、帯域割り当て量算出部116は、下式(11)に示すように、通信要求量抽出部114から得た各ONUの通信要求量Riから最低割り当て帯域量AMiを差し引くことにより、各ONU毎に最低割り当て帯域割り当てを差し引いた通信要求量RAiを算出する(ステップS223)。なお、あるONUのRAiが負となった場合は、通信要求量RAi=0とみなす。
RAi=Ri−AMi …(11)
但し、RAi<0のときRAi=0
【0051】
つぎに、帯域割り当て量算出部116は、ステップS223で算出した最低帯域割り当て量割り当て後の通信要求量RAiを用いて、下式(12)にしたがって、帯域超過分を各ONUの通信要求量Riから差し引く際の各ONUの重みWBiを算出する(ステップS224)。この帯域超過分の分配の重みWBiは、各ONUのRAi値を、全ONUのRAiの総和で割った値であり、各ONUの最低割り当て量AMiを通信要求量Riから差し引いた後の値に従量した重みとなる。
WBi=RAi/ΣRAi …(12)
【0052】
つぎに、帯域割り当て量算出部116は、超過帯域分を各ONUの通信要求量からどの程度差し引くかを決定する量AEBiを、帯域超過量EB及びステップS224で求めた重みWBiを用いて、下式(13)にしたがって算出する(ステップS225)。
AEBi=EB×WBi …(13)
【0053】
最後に、帯域割り当て量算出部116は、下式(14)に示すように、予め設定された各ONU毎の最低割り当て帯域量AMi(=Gi)と、最低割り当て帯域割り当てAMiを差し引いた通信要求量RAiとの各合計(Gi+RAi)から、ステップS225で算出したAEBi値を、差し引くことにより、各ONU毎の今回周期の帯域割り当て量Giを決定する(ステップS226)。
Gi=Gi+RAi−AEBi …(14)
【0054】
決定された帯域割り当て量Giは通信許可符号生成部113に通知される。通信許可符号生成部113は、これら各帯域割り当て量Giを反映した通信許可符号を各ONU41〜4Nに送信する。
【0055】
以上のように、この実施の形態1においては、余剰帯域がある場合は、各ONU毎の現在までの積算通信要求量Tiに応じて、帯域を分配する。この場合、帯域を分配する重みWAiは、最低割り当て量AMiを通信要求量Riから差し引いた過去の総通信要求量Tiを利用しているため、積算通信要求量Tiが多いONUに対して、多くの帯域を割り当てることができ、このユーザの帯域が急激に減少し、データのスループットが急激に減少ことを防ぐことができる。このことにより、余剰帯域があるときに、長時間にわたり、データを送信し続けるONU配下のユーザは、高いスループットを保ったまま、通信を行うことができる。また、最低帯域を越えない通信を長時間行うONUが配下にあったとしても、このONUに対して、余分な帯域を割り当てることはない。
【0056】
一方、各ONUからの総通信要求量が割り当て帯域を超える場合は、各ONUに最低帯域を割り当てた後の各ONUからの現在の通信要求量RAiに基づいて重みを計算して帯域割当量を決定するようにしているので、輻輳時は、現在の通信要求量に応じて各ONUの帯域が減少されることになり、特定のONUの通信要求量が極端に少なくなってしまうことがない。
【0057】
実施の形態2.
つぎに、この発明の実施の形態2を図5を用いて説明する。先の実施の形態1においては、RAi値およびTi値を帯域割り当て算出部116が計算するようにしていたが、実施の形態2においては、ONU毎通信要求量積算部118がこれらRAi値およびTi値を求めるようにしている。したがって、実施の形態2においては、帯域割り当て算出部116は、全ONU通信要求符号受信時刻監視部117より処理開始トリガが入力されると、全ONU総通信要求量算出部115から全ONU総通信要求量TBを取得し、ONU毎通信要求量積算部118から各ONU毎の積算通信要求量Tiおよび各ONU毎の最低割り当て帯域割り当て後の要求量RAiを取得し、取得した各値を用いて実施の形態1と同様の帯域割り当て処理を実行する。
【0058】
但し、実施の形態2では、通信要求量監視部119を新たに追加するようにしている。通信要求量監視部119は通信要求量抽出部114から入力される各ONU毎の通信要求量Riを監視するものであり、予め設定された所定の時間の間、通信要求符号を受信できなかったONUを検出するとともに予め設定された所定の時間の間、最低割り当て帯域に満たない通信要求量Riを送信し続けたONUを検出し、該検出がなされたONUについてのONU識別情報が付加されたTi削除信号をONU毎通信要求量積算部118に入力する。Ti削除信号は、該当ONUの積算通信要求量Tiを削除させるための信号である。
【0059】
ONU毎通信要求量積算部118では、このTi削除信号が入力された場合、付加されたONU識別情報に対応する、記憶している積算通信要求量Tiを0にクリアする。
【0060】
例えば、あるONUが過去に多くの通信要求を行っていたが、その後通信要求量が少なくなった場合などに上記の構成が効果を発揮する。実施の形態1では、余剰帯域がある場合、各ONUに対して、積算通信要求量Tiに応じた帯域を割り当てるように制御している。しかし、実施の形態2では、過去に通信要求量は多かったが、その後、通信要求量が減少したようなONUに対しては、積算通信要求量Tiを削除する機能により、不要な帯域を割り当てることがなくなる。
【0061】
このように実施の形態2においては、所定の時間の間通信要求符号を受信できなかったり、最低割り当て帯域に満たない通信要求量しか送ってこなかったONUに対しては、過去の総帯域要求量Tiをリセットする通信要求量監視手段119を備えることとしたので、余剰帯域を分配するときに、余分な帯域をONUに割り当てることがなく、効率的な帯域分配が可能となる。
【0062】
実施の形態3.
つぎに、実施の形態3について説明する。この実施の形態3においては、図5のONU毎通信要求量積算部118は、積算(カウント)している各ONU毎の過去の総帯域要求量Tiが予め設定された所定の上限値Luに達した場合、カウント値Tiをこの上限値Luに保持固定するようにしている。ただし、例えば、各ONU毎の積算通信要求量Tiをカウントする各カウンタのビット数をすべて等しくすることで、上限値Luは各ONUに亘って全て同じ値を設定する。
【0063】
例えば、或るONUからの通信要求量Riが長時間にわたって最低割り当て帯域を超えるような持続を行った場合には、上記の機能により、このONUの積算通信要求量Tiは上限値Luに達する。また、他のONUについても同様であり、上記と同様の持続を行った場合には、いずれこのONUの積算通信要求量Tiは上限値Luに達することになる。
【0064】
すなわち、各ONUについての上限値Luを同じ値に設定しているので、十分に長い時間が経過した後の、各ONUのカウンタ値すなわち積算通信要求量Tiはすべて同じ値の満了値となり、等しくなる。したがって、十分に長い時間が経過した後は、各ONUの通信要求量Riが等しければ、残余分配量が等しくなり、長時間経過した後の帯域割り当てのアンフェアはなくなる。
【0065】
なお、この実施の形態3においても、実施の形態2で説明したように、積算通信要求量Tiを削除するTi削除信号が、通信要求量監視部119から通信要求量積算部118に発せられた場合は、実施の形態2と同様、積算通信要求量の値Tiを0にクリアする。
【0066】
このようにこの実施の形態3においては、積算通信要求量Tiが各ONU間で同じ上限値Luに達した場合でも、Ti削除信号が通信要求量監視部119から通信要求量積算部118に発せられるまでは、積算通信要求量Tiは上限値Luに保持されるので、各ONUからの通信要求量が長時間にわたって最低割り当て帯域を超えて持続した場合のONU間の公平性を保つことが可能となる。
【0067】
【発明の効果】
以上説明したように、この発明によれば、過去の通信要求量に従量する動的帯域割り当てを行うようにしているので、過去から現在までに多くの通信量を必要としている加入者側装置に対しては、割り当て帯域を多く割り当てることができ、過去の通信量に従量する効率的な帯域割り当てが可能となる。また、余剰帯域があるときの、ユーザデータの滞留と、それに起因する遅延の問題に対しては、従来のような細かな帯域制御を行わず、過去の通信要求量の多いONUに対し、優先的に余剰帯域を割り当てることにより、ベストエフォートで回避することができる。さらに、余剰帯域がある場合の上り帯域割当量を、各加入者側装置より受信した通信要求量から最低割り当て帯域を差し引いたものを各加入者側装置毎に積算して各ONU毎の過去の総帯域通信要求量を求め、この総帯域通信要求量に従量した上り帯域を割り当てを行うようにしたので、過去の通信量が多いONUに対して優先的かつ実質的に多くの帯域を割り当てることができる。
【図面の簡単な説明】
【図1】この発明に係るポイント・マルチポイント光伝送システムの構成を示すブロック図である。
【図2】実施の形態1の動的帯域割り当て動作を示すフローチャートである。
【図3】余剰帯域がある場合の帯域割り当て状態を示す図である。
【図4】超過帯域がある場合の帯域割り当て状態を示す図である。
【図5】実施の形態2および実施の形態3にかかるOLTの内部構成を示すブロック図である。
【符号の説明】
10 局側通信装置(OLT)、20,201〜20N 光ファイバ、41〜4N 加入者側装置(ONU)、51〜5N 加入者通信ネットワーク、101ネットワークインタフェース部、102 OLT制御端末インタフェース部、103 TDM制御部、104 E/O変換部、110 通信要求符号監視部、111 ONU位置情報算出部、112 帯域割り当て制御部、113 通信許可符号生成部、114 通信要求量抽出部、115 全ONU総通信要求量算出部、116 帯域割り当て量算出部、117 全ONU通信要求符号受信時刻監視部、118 ONU毎通信要求量積算部、119 通信要求量監視部、411〜41N ネットワークインターフェース部、421〜42N ユーザデータバッファ、431〜43NTDMA制御部、441〜44N E/O変換部。
[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, the station communication device and the plurality of subscriber devices are connected via an optical transmission line, and the station communication device allocates the use band of the plurality of subscriber devices using a downlink signal, The present invention relates to a point-multipoint optical transmission system in which a subscriber device transmits an uplink signal to a station communication device in a time slot of a use band allocated from the station communication device, and a station communication device.
[0002]
[Prior art]
In an access network for transmitting a multimedia service to each home, a point-multipoint optical transmission system (optical burst transmission / reception network) called a PDS (Passive Double Star) system or a PON (Passive Optical Network) system is generally used. .
[0003]
In this point-multipoint optical transmission system, an optical line terminal (OLT: Optical Line Terminal, master station) is connected to an optical network as an optical transmission line and a plurality of optical network units, and a plurality of optical network units (ONUs: Optional Network). Unit, slave station), and in accordance with a transmission permission signal as a downstream signal generated by the OLT, an upstream signal generated by a plurality of ONUs is time-division multiplexed by a multiplexing / demultiplexing device and transmitted to the OLT, and a downstream signal generated by the OLT is transmitted. The signal is split by the multiplex splitter and transmitted to each ONU, and bidirectional communication is performed between the OLT and a plurality of ONUs. In this method, since a plurality of ONUs share a single OLT, there is an advantage that the optical transmission device and the optical fiber can be economically used.
[0004]
In such a point-multipoint optical transmission system, the upstream slot control for upstream data (from the ONU to the OLT) from each ONU is performed by the OLT transmitting a communication permission code to each ONU. The communication permission code is a code for designating a data transmission start time and a transmission data length for each ONU.
[0005]
The OLT acquires the amount of data stored in the user data buffer unit inside the ONU and the time information when the ONU sends the communication request code from the communication request code sent from each ONU, and the acquired ONU acquires the communication request code. The distance information between each ONU and the OLT, that is, the ONU position information, is further obtained based on the time information at which the communication request code is transmitted and the time information at which the communication request code is received. The OLT obtains time slot information (transmission start time and transmission data length) at which each ONU should transmit uplink data from the obtained two pieces of information (data amount and ONU position information), and communicates the obtained time slot information. The communication permission code is stored in the permission code, an identifier for each ONU is added, and the communication permission code is transmitted to each ONU.
[0006]
The ONU sends the communication request code and the user data read from the user data buffer unit to the time slot specified by the communication permission code. Thereby, collision of uplink data between ONUs can be prevented. Further, the ONU determines whether or not the downstream data input from the OLT is data addressed to the own station by using an identifier for each ONU, and deletes the identifier for the own station and connects to the subordinate after deleting the identifier. Send to the subscriber communication network. Discard any data not addressed to your own station.
[0007]
In such a point-multipoint optical transmission system, the OLT cannot generate a communication permission code without control for a communication request code of an ONU, and usually executes band allocation control by various methods. As a band allocation control method, there are a method of fixedly allocating a band to an ONU and a method of dynamically allocating a band according to the amount of data transmitted by the ONU.
[0008]
For example, Patent Document 1, Non-Patent Document 1, Non-Patent Document 2 and the like are known as dynamic band allocation methods.
[0009]
Patent Literature 1 is a system in which an Ack frame of the TCP / IP protocol is read by OLT, and a communication permission code is generated and transmitted based on information stored in the Ack frame. In this system, information according to the TCP / IP protocol is used. In the transmission environment, the effect of buffer overflow and delay in the PON section can be minimized.
[0010]
Also, the methods of Non-Patent Documents 1 and 2 perform fine control by shortening the transmission interval of the communication permission code. In a transmission environment of information including the TCP / IP protocol, efficient band allocation is performed. Can be expected.
[0011]
[Patent Document 1]
JP-A-2000-13424
[Non-patent document 1]
Dynamic bandwidth allocation algorithm suitable for GE-PON, such as IEICE, IEICE Technical Report, TECNICAL REPORT OF IEICE NS2002-17 (2002-04), Osamu Yoshihara, etc.
[Non-patent document 2]
IEICE, IEICE Technical Report, TECNICAL REPORT OF IEICE NS2002-18 (2002-04), Noriyuki Ota, etc.
[0012]
[Problems to be solved by the invention]
However, the conventional dynamic band allocation schemes described in Patent Literature 1, Non-Patent Literature 1, and Non-Patent Literature 1 have a problem that the control is complicated, and in the case of the invention of Patent Literature 1, the Ack frame However, there is a problem in that the transmission of the information without the information causes the user data to stay in the user data buffer inside the ONU in the PON section and to cause a delay due to the stagnation.
[0013]
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and a point-multipoint optical system that enables efficient dynamic band allocation that is not conventionally performed and that is based on past traffic, by a simple band allocation calculation. It is an object to obtain a transmission system and a station side communication device.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a point-to-multipoint optical transmission system according to the present invention comprises a station communication device and a plurality of subscriber devices connected via an optical transmission line, and the station communication device transmits a downstream signal. Allocate the use band of the plurality of subscriber-side devices by using, and the subscriber-side device sends an uplink signal to the station-side communication device in a time slot of the use band allocated from the station-side communication device. In the point-to-multipoint optical transmission system for transmission, the station-side communication device integrates a communication request amount included in a received communication request code and obtains a cumulative communication request amount from the past for each subscriber-side device. And a bandwidth allocating means for allocating an upstream band to each subscriber side device with a weight according to the integrated communication request amount of each subscriber side device calculated by the communication request amount integrating portion. Characterized in that it comprises and.
[0015]
According to the present invention, the dynamic bandwidth allocation is performed in accordance with the accumulated communication request amount from the past, so for the subscriber side device that requires a large amount of communication from the past to the present, A large allocated bandwidth can be allocated, and efficient bandwidth allocation can be performed according to the past traffic.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a point-multipoint optical transmission system and a station side communication device according to the present invention will be described in detail with reference to the accompanying drawings.
[0017]
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a first embodiment of a point-multipoint optical transmission system to which the present invention is applied.
[0018]
The point-to-multipoint optical transmission system (optical burst transmission / reception network or PON system) shown in FIG. 1 includes an office communication device (hereinafter referred to as OLT) 10 and a plurality of subscriber devices (hereinafter referred to as ONUs) 41 to 4N. The main optical fiber 20 and the branch optical fibers 201 to 20N are connected via an optical splitter (star coupler) 30.
[0019]
The OLT 10 includes a network interface unit 101 for connecting to an IP network, an OLT control terminal interface unit 102 for connecting to an OLT control terminal, a TDM (Time Division Multiple) control unit 103 for performing time division multiplexing control, And an E / O conversion unit 104 as a PON interface for accommodating a plurality of ONUs 41 to 4N by performing optical conversion.
[0020]
The ONU 41 includes a network interface unit 411 for connecting to the subscriber communication network 51 to which the plurality of subscriber terminals 601 to 603 are connected, a user data buffer 421 for storing user data from the subscriber terminals 601 to 603, and , TDMA control for performing time division multiple access (TDMA) processing such as transmitting a communication request code and user data read from the user data buffer 421 to a time slot designated by a communication permission code from the OLT 10. And an E / O converter 441 as a PON interface for performing electrical / optical conversion. The other ONUs 42 to 4N have the same configuration as the ONU 41.
[0021]
Here, before explaining the internal configuration of the OLT 10 and the dynamic band allocation control thereof, which are main parts of the present invention, a normal communication operation between the OLT 10 and the plurality of ONUs 41 to 4N will be described.
[0022]
The OLT 10 assigns an identifier for each of the ONUs 41 to 4N to the downstream data (from the OLT to the ONU) input from the IP network side, and broadcasts the data to all the connected ONUs. The OLT 10 performs uplink slot control for uplink (from the ONU to the OLT) data from each of the ONUs 41 to 4N by transmitting a communication permission code to each of the ONUs 41 to 4N. The communication permission code is a code for designating a data transmission start time and a transmission data length for each of the ONUs 41 to 4N.
[0023]
The OLT 10 obtains from the communication request codes sent from the respective ONUs 41 to 4N the amount of data stored in the user data buffers 421 to 42N inside the ONU and the time information at which the ONU sent the communication request codes, and the obtained ONU Obtains distance information between each ONU and the OLT, that is, ONU position information, based on the time information at which the communication request code is transmitted and the time at which the OLT itself receives the communication request code. The OLT 10 obtains time slot information (transmission start time, transmission data length) at which each of the ONUs 41 to 4N should transmit uplink data based on the obtained two pieces of information (data amount and ONU position information), and obtains the obtained time slot information. Is stored in the communication permission code, an identifier for each ONU is added, and the communication permission code is transmitted to each of the ONUs 41 to 4N.
[0024]
Each of the ONUs 41 to 4N transmits the communication request code and the user data read from the user data buffers 421 to 42N in the time slot specified by the communication permission code. Also, each of the ONUs 41 to 4N determines whether or not the downstream data input from the OLT 10 is data addressed to the own station by using an identifier for each ONU, deletes the identifier for the own station, and then deletes the data under its control. It is sent to the connected subscriber communication networks 51-5N. Discard any data not addressed to your own station.
[0025]
Next, the internal configuration of the OLT 10 which is a main part of the present invention and its dynamic band allocation control will be described.
[0026]
The TDM control unit 103 includes a communication request code monitoring unit 110 that monitors a communication request code received from each of the ONUs 41 to 4N, a time information at which the ONU included in the communication request code sends out the communication request code, and an OLT including the communication request code. An ONU position information calculation unit 111 that calculates the distance between each ONU and the OLT, that is, the position of each ONU, based on the time information at which the code is received; a band allocation control unit 112 that controls the band allocation of the uplink signal by time division multiplexing; And a communication permission code generation unit 113 that transmits a communication permission code reflecting the band allocation amount Gi for each ONU calculated by the band allocation control unit 112 to each of the ONUs 41 to 4N. The suffix i indicates a number for identifying the registered ONUs 41 to 4N.
[0027]
The band allocation control unit 112 is a main part of the present invention, and includes a communication request amount extraction unit 114, a total ONU total communication request amount calculation unit 115, a band allocation amount calculation unit 116, and a reception of all ONU communication request codes. A time monitoring unit 117 is provided.
[0028]
The communication request amount extraction unit 114 extracts the communication request amount Ri of each ONU 41 to 4N from the communication request code of each ONU 41 to 4N received in each period, and extracts the communication request amount Ri of each ONU 41 to 4N in the extracted band allocation period. Is output to the total ONU total communication request amount calculation unit 115 and the bandwidth allocation amount calculation unit 116.
[0029]
The total ONU total communication request amount calculation unit 115 uses the communication request amount Ri acquired from the communication request amount extraction unit 114 to reflect the total communication request amount TB of all registered ONUs to be reflected in the next band allocation cycle. Is calculated.
[0030]
The all-ONU communication request code reception time monitoring unit 117 sends a processing start trigger to the bandwidth allocation amount calculation unit 116 at the scheduled time set by the bandwidth allocation amount calculation unit 116 to receive communication request codes from all ONUs. A start process for calculating a bandwidth allocation amount to be transmitted is executed.
[0031]
Using the communication request amount Ri for each ONU 41 to 4N input for each band allocation period from the communication request amount extraction unit 114, the band allocation amount calculation unit 116 calculates the total sum Ti of the past communication request amount for each ONU. , Calculated for each band allocation cycle. However, the total sum Ti of the past communication request amounts for each ONU is, to be precise, a value obtained by removing the total sum of the minimum allocation bandwidth AMi for each ONU. The total Ti of the past communication request amounts refers to the total Ti of the communication request amounts Ri for the past predetermined period (n days, n band allocation periods) up to the present time.
[0032]
If there is a surplus bandwidth SB in the bandwidth allocation executed when the processing start trigger is received from the all ONU communication request code reception time monitoring unit 117, the bandwidth allocation amount calculation unit 116 performs the processing from the past to the present for each ONU. , The bandwidth is distributed according to the accumulated communication request amount Ti, and the bandwidth allocation amount Gi for each ONU is calculated. In this case, as described above, the weight WAi for distributing the bandwidth uses the past total communication request amount Ti obtained by subtracting the minimum allocation amount AMi from the communication request amount Ri as described above. On the other hand, when the total communication request amount from each of the ONUs 41 to 4N exceeds the allocated band, that is, when an excess band occurs, the ONU is calculated from the communication request amount Ri for each ONU in the current cycle acquired from the communication request amount extraction unit 114. The communication request amount RAi from each ONU, which is obtained by subtracting the minimum allocation bandwidth AMi for each ONU, is calculated, the weight WBi for each ONU is calculated, and the bandwidth allocation Gi for each ONU is calculated based on the weight WBi.
[0033]
Next, the operation of the system shown in FIG. 1 will be described with reference to the flowchart shown in FIG. 2 and the band allocation states shown in FIGS. 3 and 4. FIG. 3 shows a band allocation state when the determination in step S200 in FIG. 2 is YES, and FIG. 4 shows a band allocation state when the determination in step S200 in FIG. 2 is NO.
[0034]
First, when the OLT 10 is started, the bandwidth allocation calculation unit 116 initializes parameters (step S100). In the initialization of the parameters, it is assumed that there is no ONU registration state, the sum Ti = 0 of the communication request amount Ri excluding the minimum allocated bandwidth for each ONU, the total communication request amount TB = 0 of all ONUs, and BW = one cycle. , The bandwidth amount Gi allocated to each ONU = 0, the minimum allocated bandwidth AMi for each ONU = the predetermined minimum allocated amount allocated to each ONU. Here, the suffix i attached to the parameter indicates a number for identifying a registered ONU.
[0035]
Next, the bandwidth allocation calculation unit 116 sets an ONU to be registered (step S101). When a new ONU is registered at the time of activation or even after the activation is completed (step S102), there is no communication request code from this ONU, but there is a transmission request for the communication request code. As a result, a band is allocated for a communication request code (step S103). Further, thereafter, the bandwidth allocation amount calculation unit 116 sets the time at which the reception of the communication request codes from all the ONUs 41 to 4N ends in the all ONU communication request code reception time monitoring unit 117.
[0036]
For the sake of simplicity, the following description will be given of a case where there is no ONU registration or deletion. Communication request codes from the ONUs 41 to 4N arrive at the band allocation control unit 112 of the OLT 10 as a response to the communication permission code of the previous cycle. The communication request amount extraction unit 114 extracts a communication request amount Ri for each ONU from the arrived communication request code. The extracted communication request amount Ri is sent to the total ONU total communication request amount calculation unit 115 and the bandwidth allocation amount calculation unit 116.
[0037]
The all ONU total communication request amount calculation unit 115 calculates the total sum of the communication request amount Ri received from each ONU as a response to the communication permission code of the previous cycle, that is, the total communication request amount TB of all ONUs, according to the following equation (1). It is calculated (step S104).
TB = ΣRi (i = 1 to N) (1)
[0038]
The all-ONU communication request code reception time monitoring unit 117 sends a processing start trigger to the bandwidth allocation amount calculation unit 116 at the scheduled time for receiving the communication request code from all ONUs (step S105). Upon receiving the processing start trigger from the all ONU communication request code reception time monitoring unit 117, the bandwidth allocation amount calculation unit 116 obtains the total communication request amount TB from the all ONU total communication request amount calculation unit 115, and further, The allocated bandwidth Gi is initialized to Gi = 0 (step S106).
[0039]
Next, the bandwidth allocation amount calculation unit 116 compares the predetermined bandwidth amount BW to be allocated to one cycle set in advance with the value of the acquired total communication request amount TB (step S200).
[0040]
As shown in FIG. 3, when the TB value is equal to or less than the BW value, that is, when there is a surplus band SB, first, as shown in the following equation (2), first, a predetermined minimum allocated band The quantity AMi is assigned (step S211).
Gi = AMi (2)
[0041]
Further, as shown in the following equation (3), the bandwidth allocation amount calculation unit 116 subtracts the minimum allocation bandwidth amount AMi from the communication request amount Ri of each ONU obtained from the communication request amount extraction unit 114, thereby obtaining each ONU. Then, the communication request amount RAi is calculated by subtracting the minimum allocation bandwidth allocation from (step S212). At this time, when the RAi of a certain ONU becomes negative, it is considered that the communication request amount RAi = 0.
RAi = Ri-AMi (3)
However, when RAi <0, RAi = 0
[0042]
Next, as shown in the following equation (4), the bandwidth allocation amount calculation unit 116 calculates the past total communication request amount Ti excluding the minimum allocation bandwidth for each ONU calculated up to the previous bandwidth allocation cycle. By adding the communication request amount RAi obtained by subtracting the minimum allocation bandwidth allocation for each ONU in the current bandwidth allocation cycle for each i, the past bandwidth excluding the minimum allocation bandwidth for each ONU up to the current bandwidth allocation cycle is calculated. Is calculated (hereinafter referred to as an accumulated communication request amount) (step S213).
Ti = Ti + RAi (4)
[0043]
Next, the bandwidth allocation calculation unit 116 calculates the weight WAi of the bandwidth allocation of each ONU from the integrated communication request amount Ti calculated in step S213 according to the following equation (5) (step S214). The weight WAi of the bandwidth allocation amount is a value obtained by dividing the total communication request amount Ti of the ONU of the registration identifier i by the total sum of the total communication request amount Ti of all ONUs ΣTi, and is a value obtained by subtracting the minimum allocation band of each ONU. Weight according to the communication request amount. When な お Ti = 0, WAi = 1 / N.
WAi = Ti / ΣTi (5)
[0044]
Next, the bandwidth allocation amount calculation unit 116 calculates the surplus amount SB of the bandwidth by subtracting the total communication request amount TB from the predetermined bandwidth amount BW allocated in one cycle as shown in the following equation (6) (step S6). S215).
SB = BW-TB (6)
[0045]
Next, using the surplus amount SB of the band calculated in step S215 and the weight WAi of the band allocation amount of each ONU calculated in step S214, the band allocation amount calculation unit 116 calculates each ONU according to the following equation (7). The surplus bandwidth distribution amount ASBi is calculated for each (step S216).
ASBi = SB × WAi (7)
[0046]
Lastly, as shown in the following equation (8), the bandwidth allocation amount calculation unit 116 calculates the distribution amount ASBi of the surplus bandwidth for each ONU calculated in step S216 by using the preset minimum allocation bandwidth for each ONU. By adding it to AMi (= Gi), the bandwidth allocation Gi of the current cycle for each ONU is determined.
Gi = Gi + ASBi (8)
[0047]
The determined bandwidth allocation Gi is notified to the communication permission code generation unit 113. The communication permission code generation unit 113 transmits a communication permission code reflecting the respective bandwidth allocation amounts Gi to the ONUs 41 to 4N.
[0048]
On the other hand, when it is determined in step S200 that the TB value is larger than the BW value (the total communication request amount TB of all ONUs is larger than the bandwidth BW to be allocated) as shown in FIG. In step S221, the bandwidth allocation calculator 116 calculates the excess amount EB of the bandwidth according to the following equation (9).
EB = TB-BW (9)
[0049]
Next, the bandwidth allocation calculator 116 allocates a preset minimum allocation bandwidth AMi to the bandwidth allocation Gi for each ONU according to the following equation (10) (step S222).
Gi = AMi (10)
[0050]
Next, as shown in the following equation (11), the bandwidth allocation amount calculation unit 116 subtracts the minimum allocation bandwidth amount AMi from the communication request amount Ri of each ONU obtained from the communication request amount extraction unit 114, thereby obtaining each ONU. The communication request amount RAi, which is obtained by subtracting the minimum allocated band allocation, is calculated every time (step S223). If the RAi of a certain ONU becomes negative, it is considered that the required communication amount RAi = 0.
RAi = Ri-AMi (11)
However, when RAi <0, RAi = 0
[0051]
Next, using the communication request amount RAi after the allocation of the minimum band allocation amount calculated in step S223, the bandwidth allocation amount calculation unit 116 determines the excess of the bandwidth according to the following equation (12) to the communication request amount Ri of each ONU. Then, the weight WBi of each ONU at the time of subtraction is calculated (step S224). The weight WBi of the distribution of the excess band is a value obtained by dividing the RAi value of each ONU by the sum of RAi of all ONUs, and is a value obtained by subtracting the minimum allocation amount AMi of each ONU from the communication request amount Ri. It becomes a metered weight.
WBi = RAi / ΣRAi (12)
[0052]
Next, the bandwidth allocation amount calculation unit 116 uses the bandwidth excess amount EB and the weight WBi obtained in step S224 to determine the amount AEBi that determines how much the excess bandwidth is subtracted from the communication request amount of each ONU. It is calculated according to equation (13) (step S225).
AEBi = EB × WBi (13)
[0053]
Lastly, as shown in the following equation (14), the bandwidth allocation amount calculation unit 116 calculates the communication request obtained by subtracting the preset minimum allocation bandwidth AMi (= Gi) for each ONU and the minimum allocation bandwidth allocation AMi. By subtracting the AEBi value calculated in step S225 from each sum (Gi + RAi) with the amount RAi, the bandwidth allocation amount Gi in the current cycle for each ONU is determined (step S226).
Gi = Gi + RAi-AEBi (14)
[0054]
The determined bandwidth allocation Gi is notified to the communication permission code generation unit 113. The communication permission code generation unit 113 transmits a communication permission code reflecting the respective bandwidth allocation amounts Gi to the ONUs 41 to 4N.
[0055]
As described above, in the first embodiment, when there is a surplus bandwidth, the bandwidth is distributed according to the accumulated communication request amount Ti up to the present for each ONU. In this case, since the weight WAi for distributing the band uses the past total communication request amount Ti obtained by subtracting the minimum allocation amount AMi from the communication request amount Ri, the weight WAi is large for ONUs having a large integrated communication request amount Ti. Can be allocated, and the bandwidth of this user can be sharply reduced, and the data throughput can be prevented from being sharply reduced. Thus, when there is a surplus bandwidth, a user under the ONU that continuously transmits data for a long time can perform communication while maintaining high throughput. Even if there is an ONU that performs communication for a long time that does not exceed the minimum bandwidth, no extra bandwidth is allocated to this ONU.
[0056]
On the other hand, when the total communication request amount from each ONU exceeds the allocated bandwidth, the weight is calculated based on the current communication request amount RAi from each ONU after the minimum bandwidth is allocated to each ONU, and the bandwidth allocation amount is calculated. Since the determination is made, at the time of congestion, the bandwidth of each ONU is reduced according to the current communication request amount, and the communication request amount of a specific ONU does not extremely decrease.
[0057]
Embodiment 2 FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. In the first embodiment, the RAi value and the Ti value are calculated by the band allocation calculation unit 116. However, in the second embodiment, the communication request amount integrating unit 118 for each ONU uses the RAi value and the Ti value. I try to find the value. Therefore, in the second embodiment, when the processing start trigger is input from the all ONU communication request code reception time monitoring unit 117, the bandwidth allocation calculation unit 116 sends the total ONU total communication request amount calculation unit 115 to the all ONU total communication The request amount TB is acquired, the integrated communication request amount Ti for each ONU and the request amount RAi after the minimum allocated bandwidth allocation for each ONU are acquired from the communication request amount accumulation unit 118 for each ONU, and the acquired values are used. A bandwidth allocation process similar to that of the first embodiment is executed.
[0058]
However, in the second embodiment, the communication request amount monitoring unit 119 is newly added. The communication request amount monitoring unit 119 monitors the communication request amount Ri for each ONU input from the communication request amount extraction unit 114, and has not been able to receive the communication request code for a predetermined period of time. The ONU which has detected the ONU and has continuously transmitted the communication request amount Ri less than the minimum allocated bandwidth for a predetermined time set in advance is detected, and the ONU identification information of the detected ONU is added. The Ti deletion signal is input to the communication request amount integrating unit 118 for each ONU. The Ti deletion signal is a signal for deleting the accumulated communication request amount Ti of the corresponding ONU.
[0059]
When this Ti deletion signal is input, the ONU-based communication request amount accumulating section 118 clears the stored integrated communication request amount Ti corresponding to the added ONU identification information to zero.
[0060]
For example, the above configuration is effective when a certain ONU has made a large number of communication requests in the past, but the communication request amount has been reduced thereafter. In the first embodiment, when there is a surplus bandwidth, control is performed such that a bandwidth corresponding to the accumulated communication request amount Ti is allocated to each ONU. However, in the second embodiment, an unnecessary bandwidth is allocated to an ONU whose communication request amount has been large in the past but the communication request amount has decreased thereafter by a function of deleting the accumulated communication request amount Ti. Is gone.
[0061]
As described above, in the second embodiment, the ONU that has not received the communication request code for a predetermined time period or has transmitted only the communication request amount less than the minimum allocated bandwidth is assigned to the past total bandwidth request amount. Since the communication request amount monitoring means 119 for resetting the Ti is provided, when distributing the surplus bandwidth, the excess bandwidth is not allocated to the ONUs, and the bandwidth can be distributed efficiently.
[0062]
Embodiment 3 FIG.
Next, a third embodiment will be described. In the third embodiment, the ONU communication request amount accumulating unit 118 in FIG. 5 sets the past total bandwidth request amount Ti for each ONU that has been integrated (counted) to a predetermined upper limit Lu. When the count value has reached, the count value Ti is held and fixed at the upper limit value Lu. However, for example, the upper limit value Lu is set to the same value over all ONUs by making the number of bits of each counter counting the accumulated communication request amount Ti for each ONU equal.
[0063]
For example, when the communication request amount Ri from a certain ONU continues for a long time to exceed the minimum allocated bandwidth, the integrated communication request amount Ti of this ONU reaches the upper limit Lu by the above function. The same applies to the other ONUs. If the same duration is performed as described above, the accumulated communication request amount Ti of this ONU will eventually reach the upper limit Lu.
[0064]
That is, since the upper limit value Lu for each ONU is set to the same value, the counter value of each ONU after a sufficiently long time, that is, the accumulated communication request amount Ti becomes the same value and the expiration value. Become. Therefore, after a sufficiently long time elapses, if the communication request amounts Ri of the ONUs are equal, the remaining distribution amounts become equal, and there is no unfair band allocation after a long time elapses.
[0065]
Also in the third embodiment, as described in the second embodiment, a Ti deletion signal for deleting the accumulated communication request amount Ti is transmitted from the communication request amount monitoring unit 119 to the communication request amount accumulation unit 118. In this case, the value Ti of the integrated communication request amount is cleared to 0 as in the second embodiment.
[0066]
As described above, in the third embodiment, even when the integrated communication request amount Ti reaches the same upper limit Lu among the ONUs, the Ti deletion signal is transmitted from the communication request amount monitoring unit 119 to the communication request amount integrating unit 118. Until the total communication request amount Ti is held at the upper limit Lu, the fairness between ONUs can be maintained when the communication request amount from each ONU continues beyond the minimum allocated bandwidth for a long time. It becomes.
[0067]
【The invention's effect】
As described above, according to the present invention, the dynamic bandwidth allocation is performed in accordance with the past communication request amount, so that the subscriber side device requiring a large communication amount from the past to the present On the other hand, a large allocated bandwidth can be allocated, and efficient bandwidth allocation can be performed according to the past traffic. Also, with respect to the problem of stagnation of user data when there is a surplus bandwidth and the delay caused by it, priority is not given to ONUs with a large amount of past communication requests without performing fine bandwidth control as in the past. By allocating the surplus bandwidth in a proper manner, it is possible to avoid the problem with best effort. Further, the amount of upstream bandwidth allocated when there is a surplus bandwidth is calculated by subtracting the minimum allocated bandwidth from the communication request amount received from each subscriber device for each subscriber device, and the past bandwidth for each ONU is calculated. Since the total bandwidth communication request amount is obtained and the upstream bandwidth is allocated in accordance with the total bandwidth communication request amount, priority and substantially more bands are allocated to ONUs having a large past communication amount. Can be.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a point-multipoint optical transmission system according to the present invention.
FIG. 2 is a flowchart showing a dynamic band allocation operation according to the first embodiment.
FIG. 3 is a diagram showing a band allocation state when there is a surplus band.
FIG. 4 is a diagram showing a band allocation state when there is an excess band.
FIG. 5 is a block diagram illustrating an internal configuration of an OLT according to a second embodiment and a third embodiment;
[Explanation of symbols]
10 OLT (Optical Station), 20, 201-20N Optical Fiber, 41-4N Subscriber Unit (ONU), 51-5N Subscriber Communication Network, 101 Network Interface Unit, 102 OLT Control Terminal Interface Unit, 103 TDM Control unit, 104 E / O conversion unit, 110 communication request code monitoring unit, 111 ONU position information calculation unit, 112 bandwidth allocation control unit, 113 communication permission code generation unit, 114 communication request amount extraction unit, 115 total ONU total communication requests Amount calculation unit, 116 bandwidth allocation amount calculation unit, 117 all ONU communication request code reception time monitoring unit, 118 ONU communication request amount integration unit, 119 communication request amount monitoring unit, 411 to 41N network interface unit, 421 to 42N user data Buffers, 431 to 43 NTDMA control units, 441 to 4 4NE / O converter.

Claims (5)

局側通信装置と複数の加入者側装置とが光伝送路を介して接続され、前記局側通信装置が下り信号を用いて前記複数の加入者側装置の使用帯域の割り当てを行い、前記加入者側装置が前記局側通信装置から割り当てを受けた使用帯域のタイムスロットで前記局側通信装置に対し上り信号を送信するポイント・マルチポイント光伝送システムにおいて、
前記局側通信装置は、
受信した通信要求符号に含まれる通信要求量を積算して過去からの積算通信要求量を加入者側装置毎に求める通信要求量積算手段と、
この通信要求量積算手段で計算された加入者側装置毎の積算通信要求量に従量した重みで上り帯域を各加入者側装置に割り当てる帯域割り当て手段と、
を備えることを特徴とするポイント・マルチポイント光伝送システム。
The station-side communication device and the plurality of subscriber-side devices are connected via an optical transmission line, and the station-side communication device allocates a use band of the plurality of subscriber-side devices using a downlink signal, and In a point-multipoint optical transmission system in which a user side device transmits an uplink signal to the station side communication device in a time slot of a used band allocated from the station side communication device,
The station side communication device,
Communication request amount integrating means for integrating the communication request amount included in the received communication request code to obtain an integrated communication request amount from the past for each subscriber side device;
Band allocation means for allocating an upstream band to each subscriber-side device with a weight according to the integrated communication request amount for each subscriber-side device calculated by the communication request-amount integrating means,
A point-multipoint optical transmission system, comprising:
前記通信要求量積算手段は、各加入者側装置より受信した通信要求量から最低割り当て帯域を差し引いたものを積算することにより加入者側装置毎の積算通信要求量を導出することを特徴とする請求項1に記載のポイント・マルチポイント光伝送システムThe communication request amount accumulating means derives an integrated communication request amount for each subscriber side device by adding up a value obtained by subtracting a minimum allocated bandwidth from a communication request amount received from each subscriber side device. The point-multipoint optical transmission system according to claim 1. 前記加入者側装置が発する通信要求符号を所定の期間以上受信しなかった場合、および/または最低割り当て帯域に満たない通信要求量を所定の期間以上受信したは、前記加入者側装置毎の積算通信要求量をリセットする手段を設けたことを特徴とする請求項1または2に記載のポイント・マルチポイント光伝送システム。If the communication request code issued by the subscriber unit is not received for a predetermined period or more and / or the communication request amount less than the minimum allocated bandwidth is received for a predetermined period or more, 3. The point-multipoint optical transmission system according to claim 1, further comprising means for resetting a communication request amount. 前記通信要求量積算手段には、各加入者側装置に亘って共通の上限値が、加入者側装置毎の前記積算値に設定されていることを特徴とする請求項1〜3の何れか一つに記載のポイント・マルチポイント光伝送システム。4. The communication request amount integrating means according to claim 1, wherein a common upper limit is set to the integrated value for each of the subscriber side devices. A point-multipoint optical transmission system according to one of the above. 複数の加入者側装置の使用帯域の割り当てを行う局側通信装置において、
各加入者装置から要求される通信要求量を積算して過去からの積算通信要求量を加入者側装置毎に求める通信要求量積算手段と、
この通信要求量積算手段で計算された加入者側装置毎の積算通信要求量に従量した重みで上り帯域を各加入者側装置に割り当てる帯域割り当て手段と、
を備えることを特徴とする局側通信装置。
In a station side communication device for allocating a use band of a plurality of subscriber side devices,
A communication request amount integrating means for integrating the communication request amount requested from each of the subscriber devices and obtaining an integrated communication request amount from the past for each subscriber device;
Band allocation means for allocating an upstream band to each subscriber-side device with a weight according to the integrated communication request amount for each subscriber-side device calculated by the communication request-amount integrating means,
A station-side communication device comprising:
JP2003132272A 2003-05-09 2003-05-09 Point-multipoint optical transmission system and station-side communication device Abandoned JP2004336578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132272A JP2004336578A (en) 2003-05-09 2003-05-09 Point-multipoint optical transmission system and station-side communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132272A JP2004336578A (en) 2003-05-09 2003-05-09 Point-multipoint optical transmission system and station-side communication device

Publications (1)

Publication Number Publication Date
JP2004336578A true JP2004336578A (en) 2004-11-25

Family

ID=33507205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132272A Abandoned JP2004336578A (en) 2003-05-09 2003-05-09 Point-multipoint optical transmission system and station-side communication device

Country Status (1)

Country Link
JP (1) JP2004336578A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066733A1 (en) * 2007-11-21 2009-05-28 Mitsubishi Electric Corporation Communication device and band allocation method
JP2011024133A (en) * 2009-07-17 2011-02-03 Nippon Telegr & Teleph Corp <Ntt> Optical communication system and optical communication method
JP2011061480A (en) * 2009-09-09 2011-03-24 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, and optical communication method
JP2013106264A (en) * 2011-11-15 2013-05-30 Nippon Telegr & Teleph Corp <Ntt> Band allocation apparatus
KR101279312B1 (en) 2009-02-23 2013-06-26 미쓰비시덴키 가부시키가이샤 Communication apparatus, communication system, and band allocating method
JP2014165634A (en) * 2013-02-25 2014-09-08 Fujitsu Telecom Networks Ltd Communication system, communication device and communication band control method
JP2015177535A (en) * 2014-03-18 2015-10-05 株式会社東芝 Receiver, transmitter, communication system, and communication method
CN109691041A (en) * 2016-09-09 2019-04-26 日本电信电话株式会社 Optical transmission system and bandwidth allocation methods

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066733A1 (en) * 2007-11-21 2009-05-28 Mitsubishi Electric Corporation Communication device and band allocation method
US8374194B2 (en) 2007-11-21 2013-02-12 Mitsubishi Electric Corporation Communication device and bandwidth allocation method
KR101279312B1 (en) 2009-02-23 2013-06-26 미쓰비시덴키 가부시키가이샤 Communication apparatus, communication system, and band allocating method
JP2011024133A (en) * 2009-07-17 2011-02-03 Nippon Telegr & Teleph Corp <Ntt> Optical communication system and optical communication method
JP2011061480A (en) * 2009-09-09 2011-03-24 Nippon Telegr & Teleph Corp <Ntt> Optical communication system, and optical communication method
JP2013106264A (en) * 2011-11-15 2013-05-30 Nippon Telegr & Teleph Corp <Ntt> Band allocation apparatus
JP2014165634A (en) * 2013-02-25 2014-09-08 Fujitsu Telecom Networks Ltd Communication system, communication device and communication band control method
JP2015177535A (en) * 2014-03-18 2015-10-05 株式会社東芝 Receiver, transmitter, communication system, and communication method
US9813237B2 (en) 2014-03-18 2017-11-07 Kabushiki Kaisha Toshiba Receiver, transmitter, communication system, and communication method
CN109691041A (en) * 2016-09-09 2019-04-26 日本电信电话株式会社 Optical transmission system and bandwidth allocation methods
CN109691041B (en) * 2016-09-09 2023-01-17 日本电信电话株式会社 Optical transmission system and bandwidth allocation method

Similar Documents

Publication Publication Date Title
US7443861B2 (en) Method of controlling upstream data transmission in ethernet PON and apparatus thereof
KR100832531B1 (en) Dynamic bandwidth allocation apparatus and method in Ethernet Passive Optical Network, and EPON master apparatus using the same
CN1320803C (en) Dynamic distribution control of upward band width in passive optical network
US8526815B2 (en) Dynamic bandwidth allocation for congestion management in PON channel aggregation
CN114365459B (en) Network control device, communication resource allocation method, and communication system
CN109479022B (en) Optical terminal station device and uplink scheduling method of optical network
KR100666989B1 (en) Epon system and method of traffic scheduling thereof
US8184976B2 (en) Passive optical network system and operating method thereof
KR20060082516A (en) Bandwidth allocation method and system for data transmission in epon
KR20110060310A (en) Apparatus and method for assigning dynamic bandwidth
EP1178698A2 (en) Unused bandwidth allocation in passive optical networks
CN111464890B (en) Dynamic bandwidth allocation method for network slice and OLT (optical line terminal)
JPWO2013021461A1 (en) Optical communication system, communication apparatus, and bandwidth control method
JP2004336578A (en) Point-multipoint optical transmission system and station-side communication device
Han Simple and feasible dynamic bandwidth and polling allocation for XGPON
Han Iterative dynamic bandwidth allocation for XGPON
KR100584420B1 (en) Dynamic bandwidth allocation method for gigabit ethernet passive optical network
JP2017212707A (en) Communication device, setting method and communication program
WO2023095296A1 (en) Optical line terminating device, optical access network system, and optical communication method
US11683102B1 (en) Bandwidth allocation method and associated optical line terminal
JP2017139547A (en) Communication device, operation method therefor, and program
JP4877483B2 (en) Transmission allocation method and apparatus
KR100503417B1 (en) QoS guaranteed scheduling system in ethernet passive optical networks and method thereof
JP7034386B2 (en) Station side equipment, optical communication system and bandwidth allocation method
Ozimkiewicz et al. Evaluation of dynamic bandwidth allocation algorithms in GPON networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20081205