JP2004333541A - Method for adjusting optical circuit - Google Patents

Method for adjusting optical circuit Download PDF

Info

Publication number
JP2004333541A
JP2004333541A JP2003125138A JP2003125138A JP2004333541A JP 2004333541 A JP2004333541 A JP 2004333541A JP 2003125138 A JP2003125138 A JP 2003125138A JP 2003125138 A JP2003125138 A JP 2003125138A JP 2004333541 A JP2004333541 A JP 2004333541A
Authority
JP
Japan
Prior art keywords
light
adjustment
optical waveguide
optical circuit
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003125138A
Other languages
Japanese (ja)
Other versions
JP3933086B2 (en
Inventor
Takashi Chiba
貴史 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003125138A priority Critical patent/JP3933086B2/en
Publication of JP2004333541A publication Critical patent/JP2004333541A/en
Application granted granted Critical
Publication of JP3933086B2 publication Critical patent/JP3933086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for adjusting an optical circuit in which light power in adjustment can be made large and light loss after adjustment can be made small. <P>SOLUTION: In the method for adjusting an adjustment place in an optical circuit 20 by making light incident on an optical waveguide 23 in the optical circuit 20 and while referring to light taken out, a groove 2 which slants to an optical waveguide 1 is formed in the optical waveguide 1 and then the light incident on the optical waveguide 1 is reflected by the groove 2, and a reference optical waveguide 3 is formed in the direction of reflection to guide the light reflected by the groove 2 to the reference optical waveguide 3, and while referring to the light taken out of the reference optical waveguide 3, adjustment is made at an adjustment place closer to the incidence side than the groove 2. After the adjustment is completed, the groove 2 is filled with an antireflective material which prevents light reflection. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路を有する光回路の調整方法に係り、特に、調整時の光パワーが大きくとれ、調整後の光損失を少なくできる光回路の調整方法に関するものである。
【0002】
【従来の技術】
光導波路中に光回路要素を構成した光回路は、同種類或いは異種類の光回路要素を多段に組み合わせることで、所望の機能を実現したり機能を高めたりすることができる。例えば、非特許文献1のように、MZI光回路要素を多段に組み合わせることで、任意の波長損失特性を実現することができる。図4に示されるように、ある一定のチャネル波長間隔を有する信号41をその2倍のチャネル波長間隔でそのチャネル波長間隔だけ波長がずれた2つの信号42,42に分波、またはその逆に合波する機能を持つインターリーブ光合分波器もMZI光回路要素を多段に組み合わせることで、高性能化を実現することができる。
【0003】
また、光導波路中に光回路要素を構成した光回路は、各種光回路要素を1つの基板上に集積化することができ、例えば、アレイ導波路型合分波器とMZI型光スイッチとを集積化することで、これらの光回路要素を別々に作った場合に比べて両光回路要素間を接続する光ファイバの取り回しがなくなり、小型に作ることができる。
【0004】
【非特許文献1】
K.Jinguji and M.Kawachi,“Synthesis of coherent two−port lattice−form optical delay−line circuit,”J.LightwaveTechnol.,vol.13,pp.73−82,Jan.1995.
【0005】
【発明が解決しようとする課題】
しかし、図5のように光回路要素51を多段に接続した光回路50は、入射端52から出射端53までの光回路全体の特性が個々の光回路要素51の特性の重ね合わせとして現れる。光回路要素51が多段に接続された光回路50において個々の光回路要素51の特性を確認することは難しく、これらの光回路要素51が調整の必要な光回路要素である場合、調整が困難となる。接続段数が多くなると調整が不可能になる場合もある。また、光回路要素51を多段に接続した光回路50中のいずれかの光回路要素51に欠陥があった場合に、その欠陥のある光回路要素を特定することは難しい。
【0006】
従来は、光回路要素51間を繋いでいる光導波路素子54を切断して個々の光回路要素51に分離することで、欠陥を調査したり、調整することができたが、分離した光回路50を多段接続の光回路50に再生することはほぼ不可能であった。また、図6のように光回路要素61を多段に接続した光回路60中に予め光を分岐する光回路要素(カプラ62及びタップ63)を作り込んでおき、このタップ63から個々の光回路要素61の特性をモニタする方法もあった。しかし、タップ63に分岐する光は本来の光回路60にとって損失分になるため、モニタする光のパワーが小さいことが要求される。その一方で、個々の光回路要素61の特性をよく把握するためには、タップ63に分岐する光に十分大きいパワーが要求される。タップ63に分岐する光を多くしたい及び少なくしたいという相反する2つの要求を同時に満たすことは困難である。
【0007】
そこで、本発明の目的は、上記課題を解決し、調整時の光パワーが大きくとれ、調整後の光損失を少なくできる光回路の調整方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明は、光回路の光導波路に光を入射させ、取り出された光を参照しつつ該光回路内の調整箇所を調整する方法であって、上記光導波路中にこの光導波路に対して傾斜する溝を形成することにより、この光導波路へ入射してきた光を上記溝で反射させ、この反射の方向に参照用光導波路を形成することにより、上記溝で反射した光をこの参照用光導波路に導き、この参照用光導波路から取り出された光を参照しつつ上記溝より入射側の調整箇所で調整を行い、調整の終了後に上記溝に光反射を防止する反射防止材を充填するものである。
【0009】
上記反射防止材の充填後、上記光導波路から出射された光を参照しつつ上記溝より出射側の調整箇所で調整を行ってもよい。
【0010】
光の伝搬経路に沿って存在する複数の調整箇所を調整するときに、各調整箇所間に上記溝及び参照用光導波路をそれぞれ形成し、光の伝搬順に調整箇所の調整と溝への反射防止材の充填とを交互に行ってもよい。
【0011】
上記溝の傾斜角度を光が全反射する角度としてもよい。
【0012】
上記反射防止材として上記光導波路と屈折率が同等な材料を用いてもよい。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて詳述する。
【0014】
図1に示されるように、本発明に係る光回路の調整方法では、光導波路1中に溝2と参照用光導波路3とを形成する。溝2を形成したことにより、光導波路1は入射側光導波路4と出射側光導波路5に分離される。なお、この光回路は、基板6上に設けたクラッド7内にクラッド7とは屈折率の異なるコア8を設けることで実現されている。光導波路1はチャネル型導波路である。溝2には何も充填しない。光を吸収しない空気等の気体を充填すると考えてもよい。
【0015】
溝2は光導波路1に対して傾斜させて設ける。その傾斜角度は光ができるだけ多く反射する、例えば、全反射する角度とする。参照用光導波路3は、溝2における反射の方向に設けて反射光に結合できるようにする。溝2には、屈折率が光導波路1(コア8)に近く溝2での光反射を防止することのできる屈折率整合剤、樹脂、低融点ガラス等の反射防止材を充填できるようにしておく。
【0016】
光回路において図1の構成とした部分をモニタ回路部9と呼ぶことにする。
【0017】
モニタ回路部9において、溝2に何も充填されていないときは、入射側光導波路4へ入射してきた光は溝2で全反射され、参照用光導波路3に導かれる。溝2に反射防止材を充填した後は、入射側光導波路4へ入射してきた光は反射されることなく出射側光導波路5に導かれる。
【0018】
このモニタ回路部9を調整用ヒータ付き多段MZI光回路に導入した実施形態を図2に示す。
【0019】
この光回路20は、MZI光回路要素21(21a,21b,21c,21d)を多段に接続したものである。MZI光回路要素21は、光路長の異なる2本の光導波路22,23のいずれか一方又は両方に調整用ヒータ24を設け、これら光導波路22,23の両端をそれぞれ光合分波器25でまとめたものである。各MZI光回路要素21は、隣接する光合分波器25を共有して次々と接続されている。
【0020】
入射端26から入射した光は、MZI光回路要素21a,21b,21c,21dを順に通過して出射端27から出射される。各MZI光回路要素21の調整用ヒータ24は、この光回路20の中の調整箇所に相当する。従って、この光回路20では、入射端26から出射端27までの光の伝搬経路に沿って複数の調整箇所が存在することになる。
【0021】
この実施形態は、調整用ヒータ24を設けた光導波路23の調整用ヒータ24より出射側に図1のようなモニタ回路部9を形成したものである。
【0022】
図示のように、調整箇所である各調整用ヒータ24間に溝2及び参照用光導波路3がそれぞれ形成されている。参照用光導波路3は光回路20の適宜な端部まで延出されているので、参照用光導波路3に導かれた光を光回路20の外部のモニタ装置に取り出すことは容易である。
【0023】
なお、一段目のMZI光回路要素21aには、後述する手順から明らかなように、特にモニタ回路部9を形成しなくてもよい。
【0024】
以下、光回路の調整手順を図2と図3により説明する。
【0025】
まず、ステップS1において、全ての溝2に何も充填しない状態で入射端26へ光を入射させると、この光はMZI光回路要素21aを経て二段目のMZI光回路要素21bに入射される。この光はMZI光回路要素21bの溝2で全反射されて参照用光導波路3に導かれる。そこで、このMZI光回路要素21bの参照用光導波路3に外部のモニタ装置を光結合させておく。
【0026】
ステップS2において、モニタ装置によりMZI光回路要素21aの特性をモニタすることができる。即ち、MZI光回路要素21aからMZI光回路要素21bに入射した光は、MZI光回路要素21bの中では入射側光導波路4へ入射し、溝2で全反射され、参照用光導波路3に導かれる。MZI光回路要素21bの調整用ヒータ24は作用させない状態にしておくと、ステップS3において、一段目のMZI光回路要素21aの調整用ヒータ24での調整のみによる特性変化をモニタしつつ、この一段目の調整をすることができる。
【0027】
このようにして一段目のMZI光回路要素21aの調整を終えた後、ステップS4において、MZI光回路要素21bの溝2に反射防止材を充填する。この充填により、MZI光回路要素21bの入射側光導波路4へ入射した光は、溝2で反射されず出射側光導波路5に導かれる。この光は、三段目のMZI光回路要素21cへ入射される。この光は、MZI光回路要素21cの中では入射側光導波路4へ入射し、溝2で全反射され、参照用光導波路3に導かれる。そこで、外部のモニタ装置をMZI光回路要素21cの参照用光導波路3に光結合させる。
【0028】
ステップS5において、モニタ装置でモニタされる光は一段目のMZI光回路要素21aを通った光であるから、MZI光回路要素21aの特性にも影響されているが、MZI光回路要素21aは既に調整済みであることから、この光をモニタしつつMZI光回路要素21bを調整することは容易である。即ち、MZI光回路要素21cの調整用ヒータ24は作用させない状態にしておき、ステップS6において、MZI光回路要素21bの調整用ヒータ24での調整のみによる特性変化をモニタしつつ、この二段目の調整をすることができる。
【0029】
このようにして二段目のMZI光回路要素21bの調整を終えた後、ステップS7において、MZI光回路要素21cの溝2に反射防止材を充填する。この充填により、MZI光回路要素21cの入射側光導波路4へ入射した光は、溝2で反射されず出射側光導波路5に導かれる。
【0030】
以下同様に、光の伝搬順に調整箇所である調整用ヒータ24の調整と溝2への反射防止材の充填とを交互に行う。四段目のMZI光回路要素21dに配置した参照用光導波路3からの光をモニタして三段目のMZI光回路要素21cを調整した後は、溝2に反射防止材を充填すると出射端27に光が導かれるようになるので、出射端27にモニタ装置を光結合させるとよい。
【0031】
以上の手順により伝搬順に調整箇所の調整と溝2への反射防止材の充填とを交互に行うことで、個々のMZI光回路要素21の特性を容易に調整することができ、かつ全体の光回路20も所望した特性に調整することができる。一般に、MZI光回路要素21が多段接続された光回路で所望の特性(例えば、波長損失特性)を得るためには、個々のMZI光回路要素21の位相をそれぞれ独立に調整する必要がある。モニタ回路部9のない図5の従来技術では、全てのMZI光回路要素21を通った光しかモニタできないので、個々のMZI光回路要素21を調整することは不可能であったが、本発明では上記のように容易に調整することができる。
【0032】
また、光を分岐する図6の従来技術では、モニタする光パワーの獲得と光回路にとっての光損失の抑制とが矛盾し合う問題があった。本発明では、調整時には入射光が全反射してモニタ装置に取り出されるのでモニタする光パワーは十分に大きくとれ、調整後には入射光が無反射で出射されるので光損失は少なくなる。
【0033】
上記の実施形態では光回路要素をMZI光回路要素21としたが他の種類の光回路要素であっても本発明は適用できる。
【0034】
図1の光回路20では、光導波路23中の調整用ヒータ24より出射側にモニタ回路部9を形成したが調整用ヒータ24より入射側にモニタ回路部9を形成してもよい。
【0035】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0036】
(1)調整時には光パワーが大きくとれ、しかも、調整後には光損失を少なくできる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す光回路のモニタ回路部の拡大透視図である。
【図2】本発明の一実施形態を示す調整用ヒータ付き多段MZI光回路の平面視構成図である。
【図3】本発明の一実施形態を示す調整手順図である。
【図4】従来のインターリーブ光合分波器の平面視構成図である。
【図5】従来の光回路要素を多段に接続した光回路の平面視構成図である。
【図6】従来のカプラ及びタップを付けた光回路の平面視構成図である。
【符号の説明】
1 光導波路
2 溝
3 参照用光導波路
9 モニタ回路部
21,21a,21b,21c,21d MZI光回路要素
22,23 光導波路
24 調整用ヒータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an adjustment method of an optical circuit having an optical waveguide, and more particularly to an adjustment method of an optical circuit capable of obtaining a large optical power at the time of adjustment and reducing optical loss after the adjustment.
[0002]
[Prior art]
An optical circuit in which an optical circuit element is formed in an optical waveguide can realize a desired function or enhance the function by combining optical circuit elements of the same type or different types in multiple stages. For example, as described in Non-Patent Document 1, arbitrary wavelength loss characteristics can be realized by combining MZI optical circuit elements in multiple stages. As shown in FIG. 4, a signal 41 having a certain channel wavelength interval is demultiplexed into two signals 42, 42 whose wavelengths are shifted by the channel wavelength interval at twice the channel wavelength interval, or vice versa. An interleaved optical multiplexer / demultiplexer having a multiplexing function can also achieve high performance by combining MZI optical circuit elements in multiple stages.
[0003]
In an optical circuit having an optical circuit element formed in an optical waveguide, various optical circuit elements can be integrated on a single substrate. For example, an array waveguide type multiplexer / demultiplexer and an MZI type optical switch can be used. By integrating, compared to the case where these optical circuit elements are separately manufactured, the routing of the optical fiber connecting between the two optical circuit elements is eliminated, and the optical circuit element can be made compact.
[0004]
[Non-patent document 1]
K. Jinguji and M.J. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," LightwaveTechnol. , Vol. 13, pp. 73-82, Jan. 1995.
[0005]
[Problems to be solved by the invention]
However, in the optical circuit 50 in which the optical circuit elements 51 are connected in multiple stages as shown in FIG. 5, the characteristics of the entire optical circuit from the input end 52 to the output end 53 appear as a superposition of the characteristics of the individual optical circuit elements 51. It is difficult to confirm the characteristics of the individual optical circuit elements 51 in the optical circuit 50 in which the optical circuit elements 51 are connected in multiple stages. If these optical circuit elements 51 are optical circuit elements that need to be adjusted, adjustment is difficult. It becomes. Adjustment may not be possible if the number of connection stages increases. In addition, when any one of the optical circuit elements 51 in the optical circuit 50 in which the optical circuit elements 51 are connected in multiple stages has a defect, it is difficult to identify the defective optical circuit element.
[0006]
Conventionally, a defect can be investigated or adjusted by cutting the optical waveguide element 54 connecting the optical circuit elements 51 and separating the individual optical circuit elements 51, but the separated optical circuit It was almost impossible to reproduce the optical circuit 50 into the multistage connected optical circuit 50. Also, as shown in FIG. 6, an optical circuit element (coupler 62 and tap 63) for splitting light is previously formed in an optical circuit 60 in which optical circuit elements 61 are connected in multiple stages. There was also a method of monitoring the characteristics of the element 61. However, since the light branched to the tap 63 is a loss for the original optical circuit 60, the power of the monitored light is required to be small. On the other hand, in order to grasp the characteristics of each optical circuit element 61 well, a sufficiently large power is required for the light branched to the tap 63. It is difficult to simultaneously satisfy two contradictory requirements for increasing and decreasing the light branched to the tap 63.
[0007]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems and to provide an optical circuit adjustment method that can obtain a large optical power at the time of adjustment and can reduce optical loss after adjustment.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a method of adjusting light in an optical waveguide of an optical circuit, and adjusting an adjustment portion in the optical circuit while referring to the extracted light. By forming a groove inclined with respect to the optical waveguide, light incident on the optical waveguide is reflected by the groove, and by forming a reference optical waveguide in the direction of the reflection, the light is reflected by the groove. The light is guided to the reference optical waveguide, and adjustment is performed at an adjustment point on the incident side from the groove while referring to the light extracted from the reference optical waveguide, and a reflection for preventing light reflection to the groove after the adjustment is completed. It is to be filled with an inhibitor.
[0009]
After the antireflection material is filled, adjustment may be performed at an adjustment point on the emission side from the groove with reference to light emitted from the optical waveguide.
[0010]
When adjusting a plurality of adjustment points existing along the light propagation path, the groove and the reference optical waveguide are formed between the adjustment points, respectively, and the adjustment points are adjusted in the light propagation order and the reflection to the grooves is prevented. The filling of the material may be performed alternately.
[0011]
The inclination angle of the groove may be an angle at which light is totally reflected.
[0012]
A material having a refractive index equivalent to that of the optical waveguide may be used as the antireflection material.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0014]
As shown in FIG. 1, in the method for adjusting an optical circuit according to the present invention, a groove 2 and a reference optical waveguide 3 are formed in an optical waveguide 1. By forming the groove 2, the optical waveguide 1 is separated into the incident-side optical waveguide 4 and the emission-side optical waveguide 5. Note that this optical circuit is realized by providing a core 8 having a different refractive index from the clad 7 in a clad 7 provided on the substrate 6. The optical waveguide 1 is a channel type waveguide. The groove 2 is not filled with anything. It may be considered to be filled with a gas such as air that does not absorb light.
[0015]
The groove 2 is provided to be inclined with respect to the optical waveguide 1. The inclination angle is an angle at which light is reflected as much as possible, for example, total reflection. The reference optical waveguide 3 is provided in the direction of reflection in the groove 2 so that it can be coupled to reflected light. The groove 2 can be filled with an antireflection material such as a refractive index matching agent, a resin, and a low-melting glass, which has a refractive index close to that of the optical waveguide 1 (core 8) and can prevent light reflection in the groove 2. deep.
[0016]
The portion of the optical circuit having the configuration shown in FIG. 1 is referred to as a monitor circuit section 9.
[0017]
In the monitor circuit section 9, when nothing is filled in the groove 2, the light incident on the incident-side optical waveguide 4 is totally reflected by the groove 2 and guided to the reference optical waveguide 3. After the groove 2 is filled with the anti-reflection material, the light incident on the incident side optical waveguide 4 is guided to the emission side optical waveguide 5 without being reflected.
[0018]
FIG. 2 shows an embodiment in which the monitor circuit section 9 is introduced into a multi-stage MZI optical circuit with an adjustment heater.
[0019]
This optical circuit 20 has MZI optical circuit elements 21 (21a, 21b, 21c, 21d) connected in multiple stages. In the MZI optical circuit element 21, an adjusting heater 24 is provided in one or both of two optical waveguides 22 and 23 having different optical path lengths, and both ends of the optical waveguides 22 and 23 are combined by an optical multiplexer / demultiplexer 25. It is a thing. Each of the MZI optical circuit elements 21 is connected one after another while sharing an adjacent optical multiplexer / demultiplexer 25.
[0020]
Light incident from the incident end 26 passes through the MZI optical circuit elements 21a, 21b, 21c, and 21d in order, and is emitted from the emission end 27. The adjustment heater 24 of each MZI optical circuit element 21 corresponds to an adjustment location in the optical circuit 20. Therefore, in this optical circuit 20, a plurality of adjustment points exist along the light propagation path from the incident end 26 to the emission end 27.
[0021]
In this embodiment, the monitor circuit section 9 as shown in FIG. 1 is formed on the light emitting side of the optical waveguide 23 provided with the adjustment heater 24 from the adjustment heater 24.
[0022]
As shown in the drawing, the groove 2 and the reference optical waveguide 3 are formed between the respective adjustment heaters 24 which are the adjustment locations. Since the reference optical waveguide 3 extends to an appropriate end of the optical circuit 20, it is easy to extract the light guided to the reference optical waveguide 3 to a monitor device outside the optical circuit 20.
[0023]
It should be noted that the monitor circuit section 9 need not be formed in the first-stage MZI optical circuit element 21a, as is apparent from the procedure described later.
[0024]
Hereinafter, the adjustment procedure of the optical circuit will be described with reference to FIGS.
[0025]
First, in step S1, when light is incident on the incident end 26 without filling all the grooves 2, the light is incident on the second-stage MZI optical circuit element 21b via the MZI optical circuit element 21a. . This light is totally reflected by the groove 2 of the MZI optical circuit element 21 b and guided to the reference optical waveguide 3. Therefore, an external monitor device is optically coupled to the reference optical waveguide 3 of the MZI optical circuit element 21b.
[0026]
In step S2, the characteristics of the MZI optical circuit element 21a can be monitored by the monitor device. That is, light that has entered the MZI optical circuit element 21b from the MZI optical circuit element 21a enters the incident side optical waveguide 4 in the MZI optical circuit element 21b, is totally reflected by the groove 2, and is guided to the reference optical waveguide 3. I will When the adjustment heater 24 of the MZI optical circuit element 21b is not operated, in step S3, the characteristic change caused only by the adjustment by the adjustment heater 24 of the first MZI optical circuit element 21a is monitored. You can make eye adjustments.
[0027]
After the adjustment of the first-stage MZI optical circuit element 21a is completed in this way, in step S4, the groove 2 of the MZI optical circuit element 21b is filled with an anti-reflection material. By this filling, the light incident on the incident side optical waveguide 4 of the MZI optical circuit element 21b is guided to the emission side optical waveguide 5 without being reflected by the groove 2. This light is incident on the third-stage MZI optical circuit element 21c. This light enters the incident side optical waveguide 4 in the MZI optical circuit element 21 c, is totally reflected by the groove 2, and is guided to the reference optical waveguide 3. Therefore, an external monitor device is optically coupled to the reference optical waveguide 3 of the MZI optical circuit element 21c.
[0028]
In step S5, the light monitored by the monitor device is light that has passed through the first-stage MZI optical circuit element 21a, and is thus affected by the characteristics of the MZI optical circuit element 21a. Since the adjustment has been completed, it is easy to adjust the MZI optical circuit element 21b while monitoring this light. That is, the adjustment heater 24 of the MZI optical circuit element 21c is not operated, and in step S6, the characteristic change caused only by the adjustment by the adjustment heater 24 of the MZI optical circuit element 21b is monitored. Can be adjusted.
[0029]
After the adjustment of the second-stage MZI optical circuit element 21b is completed in this way, in step S7, the groove 2 of the MZI optical circuit element 21c is filled with an antireflection material. Due to this filling, the light incident on the incident side optical waveguide 4 of the MZI optical circuit element 21c is guided to the emission side optical waveguide 5 without being reflected by the groove 2.
[0030]
Similarly, adjustment of the adjustment heater 24, which is an adjustment point, and filling of the groove 2 with the antireflection material are alternately performed in the order of light propagation. After monitoring the light from the reference optical waveguide 3 disposed in the fourth stage MZI optical circuit element 21d and adjusting the third stage MZI optical circuit element 21c, when the groove 2 is filled with an anti-reflection material, the emission end Since the light is guided to the light emitting device 27, it is preferable to optically couple the monitor device to the light emitting end 27.
[0031]
By performing the adjustment of the adjustment portion and the filling of the groove 2 with the antireflection material alternately in the order of propagation according to the above procedure, the characteristics of the individual MZI optical circuit elements 21 can be easily adjusted, and the entire light The circuit 20 can also be adjusted to desired characteristics. Generally, in order to obtain desired characteristics (for example, wavelength loss characteristics) in an optical circuit in which the MZI optical circuit elements 21 are connected in multiple stages, it is necessary to adjust the phases of the individual MZI optical circuit elements 21 independently. In the prior art shown in FIG. 5 without the monitor circuit section 9, only the light passing through all the MZI optical circuit elements 21 can be monitored. Therefore, it is impossible to adjust each of the MZI optical circuit elements 21. Then, it can be easily adjusted as described above.
[0032]
Further, in the prior art shown in FIG. 6 for splitting light, there is a problem in which acquisition of optical power to be monitored and suppression of optical loss for an optical circuit are inconsistent. According to the present invention, during adjustment, the incident light is totally reflected and taken out to the monitor device, so that the monitoring optical power can be sufficiently large. After adjustment, the incident light is emitted without reflection, so that the optical loss is reduced.
[0033]
In the above embodiment, the optical circuit element is the MZI optical circuit element 21, but the present invention is applicable to other types of optical circuit elements.
[0034]
In the optical circuit 20 of FIG. 1, the monitor circuit section 9 is formed on the emission side of the adjustment heater 24 in the optical waveguide 23, but the monitor circuit section 9 may be formed on the incidence side of the adjustment heater 24.
[0035]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0036]
(1) The optical power can be increased during the adjustment, and the optical loss can be reduced after the adjustment.
[Brief description of the drawings]
FIG. 1 is an enlarged perspective view of a monitor circuit section of an optical circuit according to an embodiment of the present invention.
FIG. 2 is a plan view configuration diagram of a multi-stage MZI optical circuit with an adjustment heater according to an embodiment of the present invention.
FIG. 3 is an adjustment procedure diagram showing an embodiment of the present invention.
FIG. 4 is a plan view of a conventional interleaved optical multiplexer / demultiplexer.
FIG. 5 is a plan view of an optical circuit in which conventional optical circuit elements are connected in multiple stages.
FIG. 6 is a plan view of an optical circuit with a conventional coupler and taps.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical waveguide 2 Groove 3 Reference optical waveguide 9 Monitor circuit sections 21, 21a, 21b, 21c, 21d MZI optical circuit elements 22, 23 Optical waveguide 24 Adjustment heater

Claims (5)

光回路の光導波路に光を入射させ、取り出された光を参照しつつ該光回路内の調整箇所を調整する方法であって、上記光導波路中にこの光導波路に対して傾斜する溝を形成することにより、この光導波路へ入射してきた光を上記溝で反射させ、この反射の方向に参照用光導波路を形成することにより、上記溝で反射した光をこの参照用光導波路に導き、この参照用光導波路から取り出された光を参照しつつ上記溝より入射側の調整箇所で調整を行い、調整の終了後に上記溝に光反射を防止する反射防止材を充填することを特徴とする光回路の調整方法。A method in which light is made incident on an optical waveguide of an optical circuit, and an adjusting portion in the optical circuit is adjusted while referring to the extracted light, wherein a groove inclined with respect to the optical waveguide is formed in the optical waveguide. By doing so, the light that has entered the optical waveguide is reflected by the groove, and a reference optical waveguide is formed in the direction of the reflection, so that the light reflected by the groove is guided to the reference optical waveguide. Light is characterized in that adjustment is performed at an adjustment point on the incident side from the groove while referring to light extracted from the reference optical waveguide, and after the adjustment is completed, the groove is filled with an antireflection material for preventing light reflection. How to adjust the circuit. 上記反射防止材の充填後、上記光導波路から出射された光を参照しつつ上記溝より出射側の調整箇所で調整を行うことを特徴とする請求項1記載の光回路の調整方法。2. The method of adjusting an optical circuit according to claim 1, wherein after the antireflection material is filled, adjustment is performed at an adjustment point on the emission side from the groove with reference to light emitted from the optical waveguide. 光の伝搬経路に沿って存在する複数の調整箇所を調整するときに、各調整箇所間に上記溝及び参照用光導波路をそれぞれ形成し、光の伝搬順に調整箇所の調整と溝への反射防止材の充填とを交互に行うことを特徴とする請求項1又は2記載の光回路の調整方法。When adjusting a plurality of adjustment points existing along the light propagation path, the groove and the reference optical waveguide are formed between the adjustment points, respectively, and the adjustment points are adjusted in the light propagation order and the reflection to the grooves is prevented. 3. The method for adjusting an optical circuit according to claim 1, wherein the filling of the material is performed alternately. 上記溝の傾斜角度を光が全反射する角度とすることを特徴とする請求項1〜3いずれか記載の光回路の調整方法。4. The method for adjusting an optical circuit according to claim 1, wherein the inclination angle of the groove is an angle at which light is totally reflected. 上記反射防止材として上記光導波路と屈折率が同等な材料を用いることを特徴とする請求項1〜4いずれか記載の光回路の調整方法。The method for adjusting an optical circuit according to any one of claims 1 to 4, wherein a material having a refractive index equivalent to that of the optical waveguide is used as the antireflection material.
JP2003125138A 2003-04-30 2003-04-30 Multistage optical circuit Expired - Fee Related JP3933086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125138A JP3933086B2 (en) 2003-04-30 2003-04-30 Multistage optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125138A JP3933086B2 (en) 2003-04-30 2003-04-30 Multistage optical circuit

Publications (2)

Publication Number Publication Date
JP2004333541A true JP2004333541A (en) 2004-11-25
JP3933086B2 JP3933086B2 (en) 2007-06-20

Family

ID=33502495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125138A Expired - Fee Related JP3933086B2 (en) 2003-04-30 2003-04-30 Multistage optical circuit

Country Status (1)

Country Link
JP (1) JP3933086B2 (en)

Also Published As

Publication number Publication date
JP3933086B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP4361030B2 (en) Mode splitter and optical circuit
US7843644B1 (en) Compact free-space WDM device with one-sided input/output ports
JP3448182B2 (en) All-optical fiber optical router
JP4385224B2 (en) Optical waveguide device and optical waveguide module
WO2001033270A1 (en) Phasar with flattened pass-band
JP2006106776A (en) Optical coupling device
KR20130027497A (en) An optical filter or multiplexer/demultiplexer
JP2009531720A (en) Planar light wave filter with mixed diffractive elements
JP2007310387A (en) Asymmetric mach-zehnder interferometer having reduced drive voltage coupled to compact low-loss arrayed waveguide grating
Huang et al. Arrayed waveguide grating DWDM interleaver
US6370296B1 (en) Dense wavelength division multiplexer/demultiplexer with parallel separation of wavelengths utilizing glass block interruption of the optic signal
JP2001166160A (en) Optical waveguide, light source and optical multiplexer
JP2004191944A (en) Optical demultiplexer, optical multiplexer/ demultiplexer, and optical device using them
JP2001108846A (en) Waveguide grating router
JP2004333541A (en) Method for adjusting optical circuit
JP4719786B2 (en) Wavelength selective switch using planar waveguide technology
JP2003195076A (en) Optical power splitter with assistance waveguide
US8005328B2 (en) Optical add/drop module
JP5632436B2 (en) Optical wavelength filter
US20020131704A1 (en) Low loss multiplexer/demultiplexer with high spectral sampling
US20040047373A1 (en) Multichannel optical add-drop multiplexer
JP2005242142A (en) Optical multiplexer/demultiplexer
JP2003255160A (en) Optical wavelength multiplexer/demultiplexer
Wang et al. Low-Crosstalk 1× 40 100 GHz Spacing Cascaded Planar Echelle Gratings for Mux/Demux on 3-μm Silicon Platform
JP2000241638A (en) Array waveguide diffraction grating part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees