JP2004332558A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2004332558A
JP2004332558A JP2003125669A JP2003125669A JP2004332558A JP 2004332558 A JP2004332558 A JP 2004332558A JP 2003125669 A JP2003125669 A JP 2003125669A JP 2003125669 A JP2003125669 A JP 2003125669A JP 2004332558 A JP2004332558 A JP 2004332558A
Authority
JP
Japan
Prior art keywords
valve
exhaust
internal combustion
combustion engine
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003125669A
Other languages
Japanese (ja)
Other versions
JP3982449B2 (en
Inventor
Kojiro Okada
公二郎 岡田
Takashi Dougahara
隆 堂ヶ原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003125669A priority Critical patent/JP3982449B2/en
Publication of JP2004332558A publication Critical patent/JP2004332558A/en
Application granted granted Critical
Publication of JP3982449B2 publication Critical patent/JP3982449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine for promoting the stabilization of combustion while accurately suppressing the exhaustion of unburnt gas at starting the internal combustion engine in the cold condition. <P>SOLUTION: The exhaust emission control device comprises a secondary air supply device 25 for jetting secondary air toward the opening of an exhaust port 7 to be opened/closed by an exhaust valve 3 of the internal combustion engine, valve control means 33, 34 for variably controlling a valve opening/closing timing for at least one of a suction valve 4 and an exhaust valve 5 or a valve lifting amount, a water temperature sensor 45 (an operation information detecting means) for detecting operation information for the internal combustion engine, and a controller (a control means) 9 for driving the secondary air supply device 24 and operating the valve control means when determining that the internal combustion engine is at a cold condition determined temperature Tc1 or lower, to increase an overlap amount B1 between the suction valve and the exhaust valve larger than that in steady state operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気ガス中の未燃ガスの排出量を抑制できる内燃機関の排気浄化装置、特に、二次エアを排気ポート側より燃焼室に投入し、未燃ガスを再燃焼させる内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
内燃機関はその燃焼行程で残留した未燃ガス(HC)が排気行程で排気ガスと共に排出される傾向にある。例えば図17に示すように、シリンダヘッド100とシリンダブロック110の燃焼室側隙間(クレビス)p1やピストンとシリンダ壁間の燃焼室側隙間(クレビス)p2に未燃ガス(HC)が侵入すると、これらには火炎が届かず燃え残る。しかも、ピストン頂部周縁p3には経時的に燃えかすであるデポジットが堆積し、このデポジット生成物内の隙間にも未燃ガス(HC)が侵入すると、これには火炎が届かず燃え残る。更に、シリンダ壁p4のオイル膜に未燃ガスが付着するとこれが燃え残る。又、シリンダヘッド100の燃焼室壁101は温度が低いために火炎は燃焼室壁101の近くでは消炎し、シリンダヘッドの燃焼室壁近傍の未燃ガス(HC)も燃え残る傾向にある。
【0003】
このように、燃焼行程で火炎非到達域に侵入している未燃ガス(HC)は燃焼室内が低圧化する排気行程において、火炎非到達域より排気ポートを経て排気され、排気ガス悪化を招く。特に、内燃機関はその冷態始動時おいて、その燃焼安定性を確保するため、比較的リッチな混合気が供給されており、燃焼行程で燃え残る未燃ガス(HC)の排出量が増加し易くなっている。
【0004】
そこで、この対策として、不図示の排気路上に早期活性化する前段触媒と、その後方に主触媒を配備して冷態始動直後の未燃ガス(HC)の排出を抑制することが行なわれているが、この触媒だけでは触媒温度が低く活性が不充分な冷態始動時においては十分な未燃ガス(HC)の排出防止策と成っていない。
【0005】
そこで、排気行程において、図16に示すように、排気ポート130内に装着したノズル140により二次エアを排気弁150の背側より燃焼室160に向けて投入し、燃焼室160から排出されようとしている排気ガスを燃焼室に逆流させ、攪拌し、これにより、燃焼室160から排出される前に残留する未燃ガス(HC)を二次エアにより再燃焼させ、特に、排気行程での低圧化に応じて火炎非到達域より火炎到達域に達し、燃焼室から排出されようとしている未燃ガス(HC)を二次エアにより再燃焼させ、未燃ガスの排出を抑制している。
【0006】
例えば、特開平8−158858号公報(特許文献1)には、冷態始動後に未燃ガス(HC)の低減を図るため、二次エアを吹き、しかも、排気流動バルブ(シャッター)を閉じるが、これによる内部EGR量の上昇が燃焼不安定化を招くことより、排気バルブタイミングを進角して吸気バルブとのオーバーラップ量を小さくし、内部EGR量の過度な上昇を防止し、燃焼安定化を図っている。
【0007】
更に、特開2001−263050号公報(特許文献2)には、冷態始動後に排気バルブを進角し、吸気バルブと排気バルブのオーバーラップ量を増加させ、排気管内への未燃ガスの流出を促進させ、これに二次エアを吹くことで未燃ガス(HC)の排気管内での後燃えを促進し、触媒の早期活性化を図り、未燃ガス排出を抑えるというものが開示される。
【0008】
【特許文献1】
特開平8−158858号公報
【特許文献2】
特開2001−263050号公報
【0009】
【発明が解決しようとする課題】
このように、特許文献1の技術は二次エアを吹くことによる内部EGR量の過度の上昇による燃焼不安定化を防止するために、排気バルブタイミングを進角して、燃焼安定化を図るというものであり、特許文献2の技術は排気管内での未燃ガス(HC)の燃焼促進により触媒の早期活性化を図り、未燃ガス(HC)排出を抑えるというものであります。
【0010】
このように両特許文献の技術とも、二次エアと未燃ガス(HC)の反応による排気昇温効果(触媒早期活性化)を期待し、しかも、二次エア投入運転域において、空燃比リッチ化の度合いと二次エア投入量との最適化が難しく、未燃ガス(HC)の排出量が増加する場合がある、との点を改善することを考慮した技術と成っています。
【0011】
しかし、両特許文献の技術は、燃焼室内への二次エア供給を積極的に的確に行なうことができるものではない。即ち、燃焼室内への二次エア流入および排気ガスの逆流をより促進し、これにより燃焼室内の未燃ガス(HC)を積極的に攪拌して再燃焼させ、その再燃焼反応による排気昇温効果(触媒早期活性化)及び未燃ガス(HC)低減効果、早期の燃焼安定化を促進するということはできない。
【0012】
このため、燃焼室内へ積極的に二次エアおよび排気ガスを流入させ、燃焼室内の未燃ガス(HC)を積極的に攪拌して再燃焼し、未燃ガス(HC)の排出量を抑え、しかも、燃焼安定化を図ることが可能な装置が期待されている。
本発明は、以上のような課題に基づき、内燃機関の冷態始動時の未燃ガス(HC)の燃焼室内での再燃焼をより促進し、未燃ガス(HC)の排出量をより的確に抑え、燃焼安定化を促進することのできる内燃機関の排気浄化装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1の発明は、内燃機関の排気バルブにより開閉される排気ポートの開口に向けて2次エアを噴射する2次エア供給装置と、吸気バルブ又は排気バルブの少なくとも一方の開弁時期、開弁期間或いは弁リフト量を可変調整するバルブ調整手段と、内燃機関の運転情報を検出する運転情報検出手段と、内燃機関の運転情報より内燃機関が冷態判定温度を下回ると判定すると、前記2次エア供給装置を駆動すると共に前記バルブ調整手段を作動して、吸気バルブと排気バルブのオーバーラップ量を定常運転時より増大させる制御手段と、を備えたことを特徴とする。
【0014】
このように、内燃機関の冷態始動時に、二次エア供給装置が二次エアを排気ポートの開口より燃焼室内に投入させ、バルブ調整手段が吸気バルブ又は排気バルブの少なくとも一方の開弁時期、開弁期間或いは弁リフト量を可変調整してオーバーラップ量を定常運転時より増大させ、これにより吸気バルブが開いた後の吸気負圧による排気引き戻し効果とオーバラップ中の二次エアの燃焼室への投入との相乗効果を利用して、二次エアおよび排気ガスをより多く燃焼室内に流入させ、燃焼室の未燃ガスを二次エアおよび逆流排気ガスと攪拌して再燃焼を促進させ、排気ガス昇温による燃焼安定化を早期に図り、排気ガス中に残留する未燃ガスを低減させることができる。更に、オーバーラップ量を増大させることによって、吸気ポートまで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0015】
請求項2の発明は、請求項1記載の内燃機関の排気浄化装置において、前記バルブ調整手段が、吸気バルブの開弁期間あるいは弁リフト量を可変調整する吸気バルブ可変調整手段、及び、排気バルブの開弁期間あるいは弁リフト量を可変調整する排気バルブ可変調整手段の少なくとも一方を有することを特徴とする。
【0016】
このように、吸気バルブ可変調整手段と排気バルブ可変調整手段の少なくとも一方が吸気バルブと排気バルブの少なくとも一方の開弁期間或いは弁リフト量を可変調整してオーバーラップ量を定常運転時より増大させ、これによって、吸気バルブが開いた後の吸気負圧による排気引き戻し効果とオーバラップ中の二次エアの燃焼室への投入との相乗効果を利用して、二次エアおよび排気ガスをより多く燃焼室内に流入させ、燃焼室の未燃ガスを二次エアおよび逆流排気ガスと攪拌して再燃焼を促進させ、排気ガス昇温による燃焼安定化を早期に図れ、排気ガス中に残留する未燃ガスを低減させることができる。更に、オーバーラップ量を増大させることによって、吸気ポートまで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0017】
請求項3の発明は、請求項1記載の内燃機関の排気浄化装置において、前記バルブ調整手段が、吸気バルブの開弁時期、開弁期間あるいは弁リフト量を可変調整する吸気バルブ可変調整手段、及び、排気バルブの開弁時期、開弁期間あるいは弁リフト量を可変調整する排気バルブ可変調整手段の少なくとも一方を有することを特徴とする。
【0018】
このように、吸気バルブ可変調整手段と排気バルブ可変調整手段の少なくとも一方を駆動して吸気バルブと排気バルブの少なくとも一方の開弁時期、開弁期間あるいは弁リフト量を調整してオーバーラップ量を定常運転時より増大させ、これによって、吸気バルブが開いた後の吸気負圧による排気引き戻し効果とオーバラップ中の二次エアの燃焼室への投入との相乗効果を利用して、二次エアおよび排気ガスをより多く燃焼室内に流入させ、燃焼室の未燃ガスを二次エアおよび逆流排気ガスと攪拌して再燃焼を促進させ、排気ガス昇温による燃焼安定化を早期に図れ、排気ガス中に残留する未燃ガスを低減させることができる。更に、オーバーラップ量を増大させることによって、吸気ポートまで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0019】
請求項4の発明は、請求項1記載の内燃機関の排気浄化装置において、上記制御手段は、上記2次エア供給をすると共に排気バルブと吸気バルブのオーバーラップ量を増大させ、その上で所定時間経過後はオーバーラップ量を経過時間に比例して減少させて定常量に戻し、その戻し時点で上記2次エア供給装置を停止させることを特徴とする。
このように、オーバーラップ調整および二次エア供給処理の後、所定時間経過すると、排気ガス中の未燃ガスが低減した運転域に入っていることを考慮し、所定時間経過後の無駄なオーバーラップ調整および二次エア供給の駆動を停止し、無駄な出力ロスを防止できる。
【0020】
請求項5の発明は請求項1記載の内燃機関の排気浄化装置において、上記制御手段は、上記2次エア供給装置を駆動すると共に排気バルブと吸気バルブのオーバーラップ量を増大させ、その上で所定時間経過前に車両の発進があると、同時点でオーバーラップ量を定常量に戻し、上記2次エア供給装置を停止させることを特徴とする。
このように、オーバーラップ調整および二次エア供給処理の上で、所定時間が経過する前に車両の発進があると、同時点でオーバーラップ量を定常量に戻し、2次エア供給装置を停止させ、発進後はオーバーラップ調整および二次エア供給の駆動を停止し、運転性重視の制御を許容することができる。
【0021】
【発明の実施の形態】
図1は本発明の一実施形態としての内燃機関の排気浄化装置Mと、同装置を装備する内燃機関を示した。排気浄化装置Mは図1に示す内燃機関としての4サイクル4気筒ガソリンエンジン(以後、単にエンジン1と記す)に装着され、燃焼室2での排気の再燃焼を促進して、排気ガス改善を図るよう機能する。
ここで、エンジン1にはクランクシャフト3の回転力で駆動する吸排バルブ4、5が配備され、同吸排バルブ4、5により吸気路Ri側の吸気ポート6、排気路Re側の排気ポート7を燃焼室2に断続的に連通する。更に、各気筒には燃料噴射弁8及び点火プラグ10が装着される。
【0022】
エンジン1は吸気ポート6に燃料噴射するマルチポイントインジェクション式を採り、各気筒の燃料噴射弁8には不図示の燃料供給系より等圧燃料が供給されており、エンジンコントローラ(以後単にコントローラ9と記す)内の燃料量制御部A1が空燃比A/Fその他の運転情報より導出した燃料噴射量Tinj相当のパルス幅の燃料噴射出力D(Tinj)を受けて噴射作動をする。
【0023】
エンジン1の燃料量制御部A1によって、定常運転域では理論空燃比A/F(15、0)を保持して混合気の燃焼を行うことで、排気路Reの前段触媒11、主触媒12の浄化効率を高レベルに保持する。なお、暖機運転時は後述の二次エアと未燃ガス(HC)の反応による排気昇温効果(触媒早期活性化)を期待し、空燃比がリッチ化される。
点火系の点火プラグ10は点火回路13に接続され、点火回路13はコントローラ9内の点火制御部A2から後述するように点火時期IGTの信号を受けた際に、同点火時期IGTに点火出力Digを点火プラグ10に発し、点火駆動する。
【0024】
吸気路Riはエアクリーナ20からのエアをエンジン本体内の各気筒に流入させるもので、電子制御式のスロットルバルブ(以後単にETV14と記す)14を備えた吸気管15、その下流のサージタンク16、そのサージタンクから分岐して延出する分岐吸気路riを備えた吸気マニホールド17、各分岐吸気路riに連通するようシリンダヘッド18内に形成され各気筒の吸気バルブ4の開時に燃焼室2に連通する吸気ポート6とを備える。ETV14はコントローラ9内に設けられたスロットル弁駆動部A3から後述するように開弁出力Poを受けた際に、同弁開度に切換えるよう構成されている。
【0025】
ETV14の回転軸にはスロットル開度センサ19が装着され、これより発せられるスロットル開度θs信号はコントローラ9に入力される。更に、吸気管15には吸入空気量Qaを検出するエアフローセンサ22が装着され、吸入空気量Qa信号はコントローラ9に入力される。
【0026】
排気路Reは各気筒の燃焼室2の排気ガスを排気バルブ5の開時に排気ポート7より排気マニホールド23内の各分岐排気路reに導き、更に、排気ガスを排気管40の途中に設けた前段触媒11とその下流の主触媒12に順次導き、大気開放側に流下させている。前段触媒11はCO、HCおよびNOxを浄化する三元触媒で形成され、特に、小容量で早期に活性化して冷態始動直後の未燃ガス(HC)の浄化に寄与するよう形成され、主触媒12は大容量の三元触媒で形成され、定常運転時の大容量の排気ガス浄化に寄与するよう形成される。
【0027】
各気筒の排気ポート7には、二次エア供給装置24のエアノズル25が排気バルブ5の背部に向けて装着される。二次エア供給装置24は、電動モータ26で駆動のエアポンプ27と、電動モータ26の回転を可変駆動する駆動回路28と、エアポンプ27に連結されるエアノズル25とを有する。エアポンプ27はコントローラ9内の二次エア制御部Aaから駆動回路28に出力される制御信号に応じて駆動され、エアノズル25から排気ポート7に二次エアを吹き出すことにより、燃焼室2より排気ポート7に流出する排気ガスの要部を燃焼室2に逆流させ、燃焼室2内の排気ガスを攪拌し、これにより燃焼室2内の未燃ガス(HC)を掻き出し、これら排気ガス中の未燃ガス(HC)を二次エアで再燃焼させる。
【0028】
吸排気バルブ4、5を駆動する動弁系はDOHC式の動弁装置40であり、吸排カム29、30を備えた吸排カム軸31、32は図示しないベルト回転伝達手段を介してクランクシャフト3の回転を伝達され、回転駆動する。
図2に示すように、動弁装置40は各気筒毎の吸気バルブ4、排気バルブ5を駆動する。ここでシリンダヘッド18の軸受け部51には吸排カム軸31、32及び吸排ロッカシャフト52、53が互いに並列配備され、吸排カム軸31、32に吸排カム29、30が配備される。
【0029】
吸排ロッカシャフト52、53には吸排ロッカアーム54、55が枢支される。吸気ロッカアーム54はその一端に枢支するローラ56を介して吸気カム29に当接し、他端が吸気バルブ4に当接する。排気ロッカアーム55はその一端に枢支するローラ57を介して排気カム30に当接し、他端が排気バルブ5に当接する。
【0030】
図2に示すように、吸カム軸31は吸気カム29の開弁時期(開弁中心時期)θIcを可変調整する吸気バルブ可変調整手段である吸気位相調整機構33を備える。同じく、排カム軸32は排気バルブ5の開弁時期(開弁中心時期)θEc(図3参照)を可変調整する排気バルブ可変調整手段である排気位相調整機構34を備える。これら吸排気位相調整機構33、34によりバルブ調整手段が構成される。
【0031】
コントローラ9内には二次エア供給装置24の制御部である二次エア制御部Aaが配備され、これはエンジンの運転情報よりエンジン1が冷態判定温度Tcを下回ると判定すると、二次エア供給装置24を駆動するよう制御する。
コントローラ9内には吸気及び排気バルブ可変調整手段である吸排気位相調整機構33、34の制御部である吸排気バルブ可変調整部Abが配備され、これはエンジンの運転情報よりエンジン1が冷態判定温度Tcを下回ると判定すると、排気バルブ5の開弁時期(開弁中心時期)を定常運転時の開弁時期θEcより遅角量−ΔθaずらせたθEc1に設定し、吸気バルブ4と排気バルブ5のオーバーラップ量を定常運転時の量B0より増大したオーバーラップ量B1に制御するよう機能する。
【0032】
図2に示すように、吸排気位相調整機構33、34は排カム軸32の前端部に設けられたスプロケット35i、35eと、同スプロケットと吸排カム軸31、32とを相対回転可能に連結する位相制御用アクチュエータ36i、36eとを備える。スプロケット35i、35eは図示せぬタイミングベルトを介してクランクシャフト3に連結される。位相制御用アクチュエータ36i、36eは電磁式の回転型アクチュエータからなり、コントローラ9内の吸排気バルブ可変調整部Abからの制御信号Sti、Steを受けた各駆動回路37i、37eによって駆動制御される。これにより、吸排バルブ4、5のリフトにおける開弁時期(開弁中心時期)θIc、θEcが遅角あるいは進角される。この吸排気位相調整機構33、34の制御状態である吸排カム軸31、32の回転位置は駆動軸センサ38i、38eによって検出され、コントローラ9に出力される。
【0033】
エンジン1はその給排気系及び燃料供給系、点火系をコントローラ9によって制御される。
コントローラ9は運転情報検出手段によりエンジン1の運転情報を検出する。運転情報検出手段としての、クランク角センサ41は単位クランク角Δθc及びエンジン回転数Neを、スロットル開度センサ19はスロットル開度θsを、エアフローセンサ22は吸入空気量Qaを、車速センサは車速Vcを、空燃比センサ43は空燃比A/Fを、シリンダブロック44に装着された水温センサ45は冷却水の水温wtをそれぞれコントローラ9に入力する。
【0034】
ここで、コントローラ9のスロットル弁駆動部A3は、アクセルペダル開度θa、車速Vc、冷却水の水温wt、等に応じた通常時弁開度Po、或いは暖機時弁開度Poを求め、その上で、演算された通常時或いは暖機時弁開度Po相当の各開弁出力をETV14に出力し、吸気量制御処理を行っている。
コントローラ9の燃料量制御部A1は、定常時にエンジン回転数Neとスロットル開度θsに応じた基本燃料噴射量Tbを求め、これに空燃比A/F、水温wt等の補正値TA/F、Twtを加えて燃料噴射量Tinj(=Tb+TA/F+Twt)を導出する。その上で、演算された燃料噴射量Tinj相当の出力信号Dを燃料噴射弁8に出力し、燃料噴射量制御を行っている。
【0035】
ここで、暖機運転時の内、後述の二次エア供給時には、この二次エアと未燃ガス(HC)の反応による排気昇温効果(触媒早期活性化)を期待し、空燃比A/Fの補正値TA/Fがリッチ用の補正値TA/Frで燃料噴射量Tinjが演算され、リッチ化された燃料供給がなされる。
コントローラ9の点火制御部A2は、定常時において、スロットル開度θs等に応じた基本点火時期IGTbと運転状態に応じた遅角補正値ΔIGより点火時期IGTを導出する。その上で、演算され点火時期IGT相当の出力信号Digを点火プラグ10にそれぞれ出力し点火処理を行っている。
【0036】
次に、図1に示す内燃機関の排気浄化装置Mの作動をコントローラ9が行なう図4の第1冷態始動制御ルーチンに沿って説明する。
コントローラ9はメインスイッチのオンと同時に図示しないメインルーチンに沿ってエンジン1の燃料系、点火系、吸気系の制御を行ない、その途中で冷態始動制御ルーチンの処理を行なう。
【0037】
第1冷態始動制御ルーチンに達すると、ステップs1で始動判定処理を行ない、始動判定後にステップs2に進む。この始動判定処理では、スタータ駆動後の所定時間内におけるエンジン回転数Neが始動判定回転数Nes、例えば300rpmを越えたか否か判断し、始動前はメインルーチンにリターンし、始動完了後にはステップs2に達する。ここでは冷却水温度Twが冷態判定温度Tc1(例えば、25℃)を下回るか否か判断し、下回るとステップs3に、暖気後始動時にはNo側のステップs7に進み、後述するように、各々の制御が停止され、メインルーチンにリターンする。
【0038】
ステップs3では二次エア制御部Aaとして機能し、ここでは冷態判定温度Tc1以下であり、二次エア供給装置24の駆動回路に定常回転信号を出力し、駆動回路が電動モータ26を定常回転数で駆動し、エアポンプ27を定常吹出し圧Pn1で駆動する。
これによりエアノズル25から排気ポート7に定常吹出し圧Pn1の二次エアを吹き出し、排気行程で燃焼室2より排気ポート7に流出する排気ガスを燃焼室2に逆流させる。
【0039】
ステップs3よりステップs4に達すると、ここでは吸排気バルブ可変調整部Abとして機能する。ここでは吸気位相調整機構33の位相制御用アクチュエータ36によりスプロケット35iと吸カム軸31を基準開弁時期(開弁中心時期)θIcに保持する。一方、排気位相調整機構34の位相制御用アクチュエータ36eによりスプロケット35eに対して定常運転時の開弁時期θEcより遅角量−ΔθaずらせたθEc1に切換え保持する。
【0040】
これにより、図3に示すように、基準開弁時期(開弁中心時期)θInの吸気バルブ4(図3ではINと記す)に対して遅角量−Δθaずらせた開弁時期θEc1で駆動する排気バルブ5(図3ではEXと記す)はオーバーラップ量B1を保つようにして駆動する。
【0041】
この時、定常運転時より増大したオーバーラップ量B1でのオーバーラップ増大モードU1での運転期間において、吸気バルブ4が開いた後の吸気負圧による排気引き戻し効果と、二次エアの燃焼室2内への投入との相乗効果により、オーバラップ中に二次エアおよび逆流排気ガスをより多く燃焼室内に取り込み、燃焼室の未燃ガスを二次エアおよび逆流排気ガスと攪拌し、未燃ガス(HC)を掻き出し、これらを攪拌し、二次エアおよび逆流排気ガスで未燃ガス(HC)を再燃焼させ、排出未燃ガス(HC)を極力低減することができる。更に、オーバーラップ量B1を増大させることによって、吸気ポート6まで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0042】
ステップs4よりステップs5に達すると、ここでは所定経過時間toのカウントタイマTIM1を駆動し、ステップs6で経過前はそのままメインルーチンにリターンし、経過した時点でステップs7に進み、ここで二次エアの吹出し停止処理と、オーバーラップ増大モードU1での吸排気位相調整機構34、34の駆動を停止し、定常モード(吸排バルブ4、5を基準開弁時期θIn、θEnで駆動)U0に戻し処理し、メインルーチンに戻る。
【0043】
このように、図1の内燃機関の排気浄化装置Mではエンジン冷態始動時において、冷態判定温度Tc1以下では、オーバーラップ増大モードU1での運転期間において、吸気バルブ4が開いた後の吸気負圧による排気引き戻し効果と、二次エアの燃焼室2内への投入との相乗効果により、オーバラップ中に二次エアをより多く燃焼室内に取り込みでき、燃焼室2の排気行程の時点で排出されようとしていた未燃ガスを二次エアおよび逆流排気ガスと十分に攪拌して再燃焼させ、排気ガス中に残留する未燃ガスを低減させることができる。更に、オーバーラップ量B1を増大させることによって、吸気ポート6まで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0044】
上述のところにおいて、第1冷態始動制御ルーチンでステップs2で、冷却水温度Twが冷態判定温度Tc1(例えば、25℃)を下回るか否か判断し、下回るとステップs3以下の制御を行なっていたが、これに代えて図5に示すような第2冷態始動制御ルーチンを実行しても良い。ここで、第2冷態始動制御ルーチンにおいて、第1冷態始動制御ルーチンでの処理と同様になされる処理には同一ステップ符号を付し、重複説明を略す。
【0045】
第2冷態始動制御ルーチンに達すると、ステップs1で始動判定処理を行ない、ステップs2では冷却水温度Twが冷態判定温度Tc1を下回るか否か判断し、下回るとステップs10に、暖気後始動時にはステップs7に進み、後述するように、各々の制御が停止され、メインルーチンにリターンする。ステップs10では、冷却水温度Twが冷態判定温度Tc1より更に低い寒冷判定温度(例えば、0℃)を下回るか否か判断し、Noでステップs3に、Yesでステップs11に進む。
【0046】
ステップs3では、二次エア供給装置24の駆動回路に定常回転信号を出力し、エアポンプ27を定常吹出し圧Pn1で駆動し、エアノズル25から排気ポート7に定常吹出し圧Pn1の二次エアを吹き出し、燃焼室2内の排気ガスを攪拌し、排気ガス中の未燃ガス(HC)を再燃焼させる。
【0047】
ステップs4に達すると吸排気バルブ可変調整部Abとし、吸気位相調整機構33の位相制御用アクチュエータ36iにより基準開弁時期θInを保持し、排気位相調整機構34の位相制御用アクチュエータ36eにより定常運転時の開弁時期θEcより遅角量−ΔθaずらせたθEc1に切換え、図3に示すようにオーバーラップ増大モードU1で排気バルブ5を駆動する。
【0048】
オーバーラップ増大モードU1での運転期間において、吸気バルブ4が開いた後の吸気負圧による排気引き戻し効果と、二次エアの燃焼室2内への投入との相乗効果により、二次エアをより多く燃焼室内に取り込み、未燃ガスを二次エアと攪拌し、未燃ガス(HC)を掻き出し、排気ガス中の未燃ガス(HC)を再燃焼させ、排出未燃ガス(HC)を極力低減することができる。
【0049】
ステップs5に達するとカウントタイマTIM1を駆動し、ステップs6でt0経過を待ち、ステップs7に進み、二次エアの吹出し停止処理と、オーバーラップ増大モードU1を停止し、定常モードUoに戻し処理し、メインルーチンに戻る。
ステップs10で冷却水温度Twが寒冷判定温度(例えば、0℃)Tc2を下回ると判断してステップs11に達する。
【0050】
ここでは寒冷判定温度(例えば、0℃)Tc2を下回ることより、燃焼不安定化を抑制すべく、二次エア供給装置24の駆動回路28に高圧回転信号を出力し、駆動回路28が電動モータ26を高圧回転数で駆動し、エアポンプ27を高吹出し圧で駆動する。この後、ステップs4〜7に順次進む。
【0051】
この場合も、図3に示すようにオーバーラップ増大モードU1で、吸気バルブ4が開いた後の吸気負圧による排気引き戻し効果と二次エアの燃焼室2内への投入との相乗効果により、未燃ガスを二次エアおよび逆流排気ガスと攪拌し、未燃ガス(HC)を掻き出す機能が増し、排気ガス中の未燃ガス(HC)を再燃焼させ、排出未燃ガス(HC)を極力低減することができ、極低温時の燃焼安定性を確保できる。更に、オーバーラップ量B1を増大させることによって、吸気ポート6まで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0052】
上述のところにおいて、第1、第2の冷態始動制御ルーチンでのステップs6では、所定経過時間toの経過した時点で、二次エアの吹出し停止処理と、開弁期間Veo・リフト可変調整手段による開弁期間Veoを定常開弁モードに戻し処理していたが、所定経過時間toの経過前に冷却水Twが冷態判定温度Tc1以上となると、その時点でステップs7に進み、各々の制御が停止される。
【0053】
上述のところにおいて、第2冷態始動制御ルーチンでのステップs10では、寒冷判定温度Tc2を順次下回るか否かでエアポンプ27を定常吹出し圧Pn1あるいは高吹出し圧Pn2で駆動していたが、これに代えて、図6に示すように、ステップs3’、s11’で示す処理を行なってもよい。
【0054】
ここでは、冷却水温度Twが寒冷判定温度Tc2を上回る比較的緩やかな低温と判断すると、ステップs3’に進み、ここで所定経過時間toのカウントタイマTIM1のカウント値tnに応じたエアポンプ27の吹出し圧Pevを吹出し圧−経過時間マップmp(図7参照)より演算し、同吹出し圧Pevを確保できる駆動出力で、電動モータ26を駆動し、エアポンプ27の吹出し圧を増減調整する。この吹出し圧−経過時間マップmpでは、燃焼安定化のため、経過時間初期e1の吹出し圧PevLを高レベルに設定し、燃焼室2内の未燃ガス(HC)と二次エアの攪拌の程度を高める。その後の後期e2においては時間経過に応じて電動モータ26の回転レベル、即ち、攪拌の程度を徐々に低減させ、時間経過に応じた無駄な電動モータ26のエネルギロス増を排除している。なお、寒冷判定温度Tc2以下でステップs10よりステップs11’に達した場合もステップs3’と同様に制御されるが、その吹出し圧−経過時間マップmpでの吹出し圧PevHがより高レベルに設定されることとなり、同様に時間経過に応じた無駄なエネルギロス増を排除している。
【0055】
上述のところにおいて、第1、2冷態始動制御ルーチンでのステップs4では、吸排気バルブ可変調整部Abとし、排気位相調整機構34の位相制御用アクチュエータ36eにより定常運転時の開弁時期θEcより遅角量−ΔθaずらせたθEc1に排気バルブ5を切換え、図3に示すようにオーバーラップ増大モードU1で排気バルブ5を駆動した。これに対し、図8(a)、(b)に示すように、吸排気バルブ可変調整部Abとし、吸気位相調整機構33の位相制御用アクチュエータ36iにより定常運転時の開弁時期θIcより進角量+ΔθaずらせたθIc2に吸気バルブ4(図8(b)ではINと記す)を切換え、オーバーラップ増大モードU1で吸気バルブ4を駆動してもよい。
【0056】
更に、図9(a)、(b)に示すように、吸排気バルブ可変調整部Abとし、吸排気位相調整機構34、34の位相制御用アクチュエータ36i、36eにより定常運転時の開弁時期θIc、θEcより進角量+Δθa、遅角量−ΔθaずらせたθIc3、θEc3に吸気バルブ4を切換え、オーバーラップ増大モードU1で吸排バルブ4、5(図9(b)ではIN、EXと記す)を駆動してもよい。これらの場合も、図1の装置と同様の作用効果が得られる。
【0057】
図1の内燃機関の排気浄化装置Mでは吸排カム29、30がそれぞれ単一の動弁装置40であったが、これに代えて、図10に示すように吸排カムがそれぞれ2つ装備されたカム2段切換え動弁装置60を用い排気浄化装置Ma(図1の排気浄化装置Mの記載を同様に用いて説明する)を構成しても良い。
なお、ここでの排気浄化装置Maはカム2段切換え動弁装置60以外の部分が図1の内燃機関の排気浄化装置Mとほぼ同様の構成部材を備え、ここでは、同一部材に同一符号を付し重複説明を略す。
【0058】
カム2段切換え動弁装置60は、シリンダヘッド15の軸受け部51にはカム軸31、32及び吸排ロッカシャフト61、62が互いに並列配備され、カム軸31、32に吸気カム29a、29bと排気カム30a、30bがそれぞれ配備される。吸気ロッカシャフト61の軸部611には吸気ロッカアーム641が一体結合され、同吸気ロッカアーム641はその先端部で吸気バルブ4を駆動する。
【0059】
吸気ロッカシャフト61はその軸部611に大アーム63のボス部631が枢支され、その隣に小アーム642が一体的に取り付けられる。大アーム63の揺動端はローラ65を介し大吸気カム29aに当接し、小アーム642の揺動端はローラ66を介し小吸気カム29bに当接する。
大アーム63のボス部631と対向する軸部611内には、突出し可能に収容され、油路72からの圧油で油圧駆動する切換えピン73が配備される。
【0060】
排気ロッカシャフト62の軸部621には排気ロッカアーム681が一体結合され、同排気ロッカアーム681はその先端部で排気バルブ5を駆動する。排気ロッカシャフト62はその軸部621に大アーム67のボス部671が枢支され、その隣に小アーム682が一体的に取り付けられる。大アーム67の揺動端はローラ69を介し大排気カム30aに当接し、小アーム682の揺動端はローラ71を介し小排気カム30bに当接する。
大アーム67のボス部671と対向する軸部621内には、突出し可能に収容され、油路74からの圧油で油圧駆動する切換えピン75が配備される。
【0061】
各油路72、74はシリンダヘッド18側に連続する制御油路72a、74aを介し、オイルポンプ76、オイルパン77に連通する。ここで制御油路72a、74aには切換え弁である電磁弁78、79が介装され、各電磁弁がコントローラ9aにより駆動制御されることで切換えピン73、75の切換え、即ち、大小吸気カム、29a、29b、大小排気カム30a、30bの切換えがなされる。なお、ここでは電磁弁78、79がオフで、切換えピン73、75が非突出し状態で、大アーム63、67が空作動して小カム29b、30bと小アーム642、682の働きにより、図11に破線で示すように、吸排バルブ4、5(図11ではIN、EXと記す)が定常モードU0で駆動する。一方、電磁弁78、79オンで、切換えピン73、75が突出し作動して、大アーム63、67が大吸気、大排気カム29a、30aにより駆動し、図11に実線で示すように、吸排バルブ4、5がオーバーラップ増大モードUa1で駆動する。
【0062】
なお、両ローラ66、68の半径は同一で、大吸気カム29a、大排気カム30aと小吸気カム29b、小排気カム30bは突出し部以外の円筒部は同一半径で形成される。
このようなカム2段切換え動弁装置60は、図11に示すように、切換えピン73、75の退却時には小吸気、小排気カム29b、30bにより定常モードU0で吸排バルブ4、5が駆動され、切換えピン73、75の突出し時には大吸気、大排気カム29a、30aにより、オーバーラップ増大モードUa1で吸排バルブ4、5が駆動し、未燃ガスと二次エアの撹拌を促進し、燃焼安定性確保と排ガス改善とを図ることができる。
【0063】
このような内燃機関の排気浄化装置Maはコントローラ9aにより制御される。このコントローラ9aは上述のコントローラ9と比較し図12に示す第3冷態始動制御ルーチン以外の制御が同様のため、ここでは重複説明を略す。
図12に示す第3冷態始動制御ルーチンに達すると、ステップs1で始動判定処理を行ない、ステップs2では冷却水温度Twが冷態判定温度Tc1を下回るか否か判断し、下回るとステップs3に、暖気後始動時にはNo側のステップs7に進み、各々の制御が停止され、メインルーチンにリターンする。ステップs3では、二次エア供給装置24の駆動回路に定常回転信号を出力し、エアポンプ27を定常吹出し圧Pn1で駆動し、エアノズル25から排気ポート7に定常吹出し圧Pn1の二次エアを吹き出し、燃焼室2内の排気ガスを攪拌し、排気ガス中の未燃ガス(HC)を再燃焼させる。
【0064】
ステップs4に達すると吸排気バルブ可変調整部Ab’とし、吸排気位相調整機構34、34の位相制御用アクチュエータ35i、35eにより基準開弁時期θIc、θEcを保持する。
更に、カム2段切換え動弁装置60を駆動制御し、即ち、電磁弁78、79オンで切換えピン73、75が突出し作動して、大アーム63、67が大吸気、大排気カム29a、30aにより駆動し、吸排バルブ4、5がオーバーラップ増大モードUa1(図11参照)で駆動する。
【0065】
このオーバーラップ増大モードUa1での運転期間において、二次エアの投入を受けていること、吸気バルブ4が開いた後の吸気負圧による排気引き戻しとの相乗効果により、二次エアをより多く燃焼室内に取り込み、未燃ガスを二次エアおよび逆流排気ガスと攪拌し、未燃ガス(HC)を掻き出し、排気ガス中の未燃ガス(HC)を再燃焼させ、排出未燃ガス(HC)を極力低減することができる。更に、オーバーラップ量B1を増大させることによって、吸気ポート6まで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0066】
ステップs5に達するとカウントタイマTIM1を駆動し、ステップs6でt0経過を待ち、ステップs7に進み、二次エアの吹出し停止処理と、オーバーラップ増大モードUa1を停止し、定常モードU0に戻し処理し、メインルーチンに戻る。
【0067】
上述のところにおいて、内燃機関の排気浄化装置Maの第3冷態始動制御ルーチンでは、ステップs4において、両電磁弁78、79オンで両切換えピン73、75が突出し作動して、大アーム63、67が大吸気、大排気カム29a、30aにより駆動し、吸排バルブ4、5がオーバーラップ増大モードUa1(図11参照)で駆動していた。しかし、これに代えて、図13(a)、(b)に示すようにステップs4’において、電磁弁79オンで切換えピン75が突出し作動して、大アーム67が大排気カム30aにより駆動し、排気弁5がオーバーラップ増大モードUb1で駆動するとしてもよい。逆に、図14(a)、(b)に示すようにステップs4”において、電磁弁78オンで切換えピン73が突出し作動して、大アーム63が大吸気カム29aにより駆動し、吸気弁4がオーバーラップ増大モードUc1で駆動するとしてもよい。これらの場合も、図1の装置と同様の作用効果が得られる。
【0068】
さらに、図15(a)、(b)に示すように、ステップs4’’’において、吸排気バルブ可変調整部Ab’とし、吸排気位相調整機構33、34の位相制御用アクチュエータ35i、35eを進角量+Δθaおよび遅角量−Δθaを加えて定常時の開弁時期θIc、θEcを開弁時期θIc4、θEc4に切換え保持する。これに加え、両電磁弁78、79オンで両切換えピン73、75が突出し作動して、大アーム63、67が大吸気、大排気カム29a、30aにより駆動する。この結果、吸排バルブ4、5がオーバーラップB1のオーバーラップ増大モードUd1で駆動するとしてもよい。これにより、カム2段切換え動弁装置60に加え、吸気位相調整機構33が吸気バルブ4の開弁時期、開弁期間あるいは弁リフト量を可変調整する吸気バルブ可変調整手段として機能し、排気位相調整機構34が排気バルブの開弁時期、開弁期間あるいは弁リフト量を可変調整する排気バルブ可変調整手段として機能する。この場合も、図1の装置と同様の作用効果が得られる。
【0069】
上述のところにおいて吸気バルブ可変調整手段、排気バルブ可変調整手段としてカム2段切換え動弁装置60に吸排気位相調整機構33、34を加えた構成を示したが、このうち、カム2段切換え動弁装置60に代えて、特開2002−256905号公報に開示されるリフト・作動角可変機構を用い、開弁期間あるいはバルブリフト量の少なくとも一つを可変調整してもよい。この場合も、図10のカム2段切換え動弁装置60を用いた排気浄化装置Maと同様の作用効果が得られる。
【0070】
【発明の効果】
以上のように、本発明は、吸気バルブが開いた後の吸気負圧による排気引き戻し作用とオーバラップ中の二次エアの燃焼室への投入との相乗効果を利用して、二次エアおよび排気ガスをより多く燃焼室内に流入させ、燃焼室の未燃ガスを二次エアおよび逆流排気ガスと攪拌して再燃焼を促進させ、排気ガス昇温による燃焼安定化を早期に図れ、排気ガス中に残留する未燃ガスを低減させることができる。更に、オーバーラップ量を増大させることによって、吸気ポートまで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0071】
請求項2の発明は、吸気バルブ可変調整手段と排気バルブ可変調整手段の少なくとも一方が吸気バルブと排気バルブの少なくとも一方の開弁期間或いは弁リフト量を可変調整してオーバーラップ量を定常運転時より増大させ、これによって、吸気バルブが開いた後の吸気負圧による排気引き戻し作用とオーバラップ中に逆流方向に吹出す二次エアとの相乗効果を利用して、二次エアおよび排気ガスをより多く燃焼室内に流入させ、燃焼室の未燃ガスを二次エアおよび逆流排気ガスと攪拌して再燃焼を促進させ、排気ガス昇温による燃焼安定化を早期に図れ、排気ガス中に残留する未燃ガスを低減させることができる。更に、オーバーラップ量を増大させることによって、吸気ポートまで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0072】
請求項3の発明は、吸気バルブ可変調整手段と排気バルブ可変調整手段の少なくとも一方を駆動して吸気バルブと排気バルブの少なくとも一方の開弁時期、開弁期間あるいは弁リフト量を調整してオーバーラップ量を定常運転時より増大させ、これによって、吸気バルブが開いた後の吸気負圧による排気引き戻し作用とオーバラップ中に逆流方向に吹出す二次エアとの相乗効果を利用して、二次エアおよび排気ガスをより多く燃焼室内に流入させ、燃焼室の未燃ガスを二次エアおよび逆流排気ガスと攪拌して再燃焼を促進させ、排気ガス昇温による燃焼安定化を早期に図れ、排気ガス中に残留する未燃ガスを低減させることができる。更に、オーバーラップ量を増大させることによって、吸気ポートまで逆流排気ガスが到達し、吸気ポート壁面が加熱されて壁面付着燃料の霧化を促進することができる。
【0073】
請求項4の発明は、オーバーラップ調整および二次エア供給処理の後、所定時間経過すると、排気ガス中の未燃ガスが低減した運転域に入っていることを考慮し、所定時間経過後の無駄なオーバーラップ調整および二次エア供給の駆動を停止し、無駄な出力ロスを防止できる。
【0074】
請求項5の発明は、オーバーラップ調整および二次エア供給処理の上で、所定時間が経過する前に車両の発進があると、同時点でオーバーラップ量を定常量に戻し、2次エア供給装置を停止させ、発進後はオーバーラップ調整および二次エア供給の駆動を停止し、運転性重視の制御を許容することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態としての内燃機関の排気浄化装置を装備したエンジンの概略構成図である。
【図2】図1の内燃機関の排気浄化装置内の動弁装置の要部平面図である。
【図3】図1の内燃機関の排気浄化装置の吸排気弁の開弁モード説明図である。
【図4】図1の内燃機関の排気浄化装置が行なう第1冷態始動制御ルーチンのフローチャートである。
【図5】図1の内燃機関の排気浄化装置が行なう第2冷態始動制御ルーチンのフローチャートである。
【図6】図1の内燃機関の排気浄化装置が行なう第2冷態始動制御ルーチンの他の変形例である。
【図7】図1の内燃機関の排気浄化装置が行なう冷態始動制御ルーチンの第2変形例で用いる吹出し圧−経過時間マップmpの特性図である。
【図8】図1の内燃機関の排気浄化装置が行なう第2冷態始動制御ルーチンの他の変形例で、(a)はステップ4’を、(b)は吸排気弁の開弁モード説明図を示す。
【図9】図1の内燃機関の排気浄化装置が行なう第2冷態始動制御ルーチンの他の変形例で、(a)はステップ4”を、(b)は吸排気弁の開弁モード説明図を示す。
【図10】本発明の他の実施形態としての内燃機関の排気浄化装置で用いる動弁装置の要部平面図である。
【図11】本発明の他の実施形態としての内燃機関の排気浄化装置で用いる吸排気弁の開弁モード説明図である。
【図12】図10の動弁装置を有する内燃機関の排気浄化装置が行なう第3冷態始動制御ルーチンのフローチャートである。
【図13】図12の第3冷態始動制御ルーチンの変形例で、(a)はステップ4’を、(b)は吸排気弁の開弁モード説明図を示す。
【図14】図12の第3冷態始動制御ルーチンの他の変形例で、(a)はステップ4”を、(b)は吸排気弁の開弁モード説明図を示す。
【図15】図12の第3冷態始動制御ルーチンの他の変形例で、(a)はステップ4’’’を、(b)は吸排気弁の開弁モード説明図を示す。
【図16】内燃機関の二次エア供給装置の概略図である。
【図17】内燃機関の二次エア供給装置の機能説明図である。
【符号の説明】
1、1a エンジン
5 排気バルブ
7 排気ポート
9、9a コントローラ(制御手段)
24 二次エア供給装置
40 動弁装置
45 水温センサ(運転情報検出手段)
60 カム2段切換え動弁装置
Aa 二次エア制御部
Ab 排気バルブ可変調整部
B0、B1 オーバーラップ量
M、Ma 内燃機関の排気浄化装置
Ri 吸気路
Re 排気路
Tw 冷却水温(運転情報)
Tc1 冷態判定温度
U1 オーバーラップ増大モード
Pn1 定常吹出し圧
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that can suppress the amount of unburned gas in the exhaust gas of the internal combustion engine, and in particular, secondary air is injected into the combustion chamber from the exhaust port side to reburn the unburned gas. The present invention relates to an exhaust purification device for an internal combustion engine.
[0002]
[Prior art]
In an internal combustion engine, unburned gas (HC) remaining in the combustion stroke tends to be discharged together with the exhaust gas in the exhaust stroke. For example, as shown in FIG. 17, when unburned gas (HC) enters the combustion chamber side gap (clevis) p1 between the cylinder head 100 and the cylinder block 110 or the combustion chamber side gap (clevis) p2 between the piston and the cylinder wall, They do not reach the flame and remain unburned. In addition, deposits, which are burned out over time, accumulate on the top peripheral edge p3 of the piston, and if unburned gas (HC) also enters the gaps in the deposit product, the flame does not reach this and remains unburned. Furthermore, if unburned gas adheres to the oil film on the cylinder wall p4, it remains unburned. Further, since the temperature of the combustion chamber wall 101 of the cylinder head 100 is low, the flame extinguishes near the combustion chamber wall 101, and unburned gas (HC) near the combustion chamber wall of the cylinder head tends to remain unburned.
[0003]
As described above, the unburned gas (HC) that has entered the non-flame reaching region in the combustion stroke is exhausted from the non-flame reaching region through the exhaust port in the exhaust stroke in which the pressure in the combustion chamber is reduced, and the exhaust gas deteriorates. . In particular, during the cold start of the internal combustion engine, a relatively rich air-fuel mixture is supplied to ensure its combustion stability, and the amount of unburned gas (HC) remaining unburned in the combustion stroke increases. It is easy to do.
[0004]
Therefore, as a countermeasure, a pre-catalyst that is activated early on an exhaust passage (not shown) and a main catalyst behind the pre-catalyst are arranged to suppress the emission of unburned gas (HC) immediately after a cold start. However, this catalyst alone does not provide a sufficient measure for preventing unburned gas (HC) from being discharged during a cold start in which the catalyst temperature is low and the activity is insufficient.
[0005]
Therefore, in the exhaust stroke, as shown in FIG. 16, secondary air will be injected toward the combustion chamber 160 from the back side of the exhaust valve 150 by the nozzle 140 mounted in the exhaust port 130, and will be discharged from the combustion chamber 160. The exhaust gas flowing back into the combustion chamber is agitated, whereby the unburned gas (HC) remaining before being discharged from the combustion chamber 160 is reburned by the secondary air. The unburned gas (HC), which reaches the flame reaching region from the non-flame reaching region and is about to be discharged from the combustion chamber, is re-burned by the secondary air in accordance with the conversion to suppress the discharge of the unburned gas.
[0006]
For example, Japanese Patent Application Laid-Open No. 8-158858 (Patent Literature 1) discloses that in order to reduce unburned gas (HC) after a cold start, secondary air is blown and an exhaust flow valve (shutter) is closed. Since the increase in the internal EGR amount causes combustion instability, the exhaust valve timing is advanced to reduce the amount of overlap with the intake valve, preventing the internal EGR amount from excessively increasing, and stabilizing combustion. It is trying to make it.
[0007]
Further, Japanese Patent Application Laid-Open No. 2001-263050 (Patent Document 2) discloses that after a cold start, an exhaust valve is advanced to increase the amount of overlap between an intake valve and an exhaust valve, and that unburned gas flows into an exhaust pipe. And promoting secondary combustion of unburned gas (HC) in the exhaust pipe, thereby activating the catalyst early and suppressing unburned gas emission. .
[0008]
[Patent Document 1]
JP-A-8-158858
[Patent Document 2]
JP 2001-263050 A
[0009]
[Problems to be solved by the invention]
As described above, the technique of Patent Document 1 is to stabilize combustion by advancing the exhaust valve timing in order to prevent combustion instability due to an excessive increase in the internal EGR amount due to blowing secondary air. The technology disclosed in Patent Document 2 aims to activate the catalyst early by promoting the combustion of unburned gas (HC) in the exhaust pipe, thereby suppressing unburned gas (HC) emission.
[0010]
As described above, the technologies of both patents are expected to have an exhaust gas temperature increasing effect (early catalyst activation) due to the reaction between the secondary air and the unburned gas (HC), and have a rich air-fuel ratio in the secondary air injection operation region. It is a technology that takes into account the point that it is difficult to optimize the degree of conversion and the amount of secondary air input, and the emission of unburned gas (HC) may increase.
[0011]
However, the techniques of the two patent documents cannot positively and accurately supply the secondary air into the combustion chamber. That is, the inflow of the secondary air into the combustion chamber and the backflow of the exhaust gas are further promoted, whereby the unburned gas (HC) in the combustion chamber is actively stirred and reburned, and the exhaust gas is heated by the reburn reaction. The effect (early catalyst activation), unburned gas (HC) reduction effect, and early combustion stabilization cannot be promoted.
[0012]
For this reason, secondary air and exhaust gas are positively flown into the combustion chamber, and the unburned gas (HC) in the combustion chamber is actively stirred and reburned, thereby suppressing the emission of unburned gas (HC). Further, a device capable of stabilizing combustion is expected.
The present invention, based on the above-described problems, further promotes reburning of unburned gas (HC) in a combustion chamber at the time of a cold start of an internal combustion engine, and more accurately discharges unburned gas (HC). It is an object of the present invention to provide an exhaust gas purifying apparatus for an internal combustion engine capable of promoting combustion stabilization.
[0013]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a secondary air supply device for injecting secondary air toward an opening of an exhaust port opened and closed by an exhaust valve of an internal combustion engine, and at least one of an intake valve and an exhaust valve. Valve adjusting means for variably adjusting a valve period or a valve lift amount, operating information detecting means for detecting operating information of the internal combustion engine, and when it is determined from the operating information of the internal combustion engine that the internal combustion engine falls below the cold determination temperature, And a control means for driving the next air supply device and operating the valve adjusting means to increase the amount of overlap between the intake valve and the exhaust valve from that in the normal operation.
[0014]
As described above, at the time of the cold start of the internal combustion engine, the secondary air supply device causes the secondary air to be injected into the combustion chamber through the opening of the exhaust port, and the valve adjustment unit controls the opening timing of at least one of the intake valve or the exhaust valve, The valve opening period or the valve lift amount is variably adjusted to increase the overlap amount from that at the time of steady operation, whereby the exhaust gas is returned by the intake negative pressure after the intake valve is opened and the secondary air combustion chamber during the overlap. Utilizing the synergistic effect with the injection into the combustion chamber, more secondary air and exhaust gas flow into the combustion chamber, and the unburned gas in the combustion chamber is agitated with the secondary air and backflow exhaust gas to promote reburn. Further, it is possible to stabilize the combustion by raising the temperature of the exhaust gas at an early stage, and to reduce the unburned gas remaining in the exhaust gas. Further, by increasing the amount of overlap, the back-flow exhaust gas reaches the intake port, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0015]
According to a second aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect, the valve adjuster variably adjusts a valve opening period or a valve lift of the intake valve, and an exhaust valve. And at least one of exhaust valve variable adjusting means for variably adjusting the valve opening period or the valve lift amount.
[0016]
As described above, at least one of the intake valve variable adjusting means and the exhaust valve variable adjusting means variably adjusts the valve opening period or the valve lift amount of at least one of the intake valve and the exhaust valve to increase the overlap amount from that in the normal operation. Thereby, the secondary air and the exhaust gas are increased by utilizing the synergistic effect of the exhaust retraction effect by the intake negative pressure after the intake valve is opened and the injection of the secondary air into the combustion chamber during the overlap. The fuel is allowed to flow into the combustion chamber, and the unburned gas in the combustion chamber is agitated with the secondary air and the backflow exhaust gas to promote recombustion. Combustion gas can be reduced. Further, by increasing the amount of overlap, the back-flow exhaust gas reaches the intake port, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0017]
According to a third aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect, the valve adjusting means variably adjusts an opening timing, a valve opening period, or a valve lift of the intake valve. In addition, at least one of exhaust valve variable adjusting means for variably adjusting the valve opening timing, valve opening period, or valve lift of the exhaust valve is provided.
[0018]
As described above, at least one of the intake valve variable adjustment unit and the exhaust valve variable adjustment unit is driven to adjust the opening timing, the opening period, or the valve lift of at least one of the intake valve and the exhaust valve to reduce the overlap amount. This is increased from the time of steady operation, thereby utilizing the synergistic effect of the exhaust withdrawal effect due to the intake negative pressure after the intake valve opens and the injection of the secondary air into the combustion chamber during the overlap, and More exhaust gas flows into the combustion chamber, and the unburned gas in the combustion chamber is agitated with the secondary air and backflow exhaust gas to promote re-combustion. Unburned gas remaining in the gas can be reduced. Further, by increasing the amount of overlap, the back-flow exhaust gas reaches the intake port, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0019]
According to a fourth aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect, the control means increases the amount of overlap between the exhaust valve and the intake valve while supplying the secondary air. After a lapse of time, the overlap amount is reduced in proportion to the elapsed time and returned to a steady amount, and at the time of the return, the secondary air supply device is stopped.
As described above, when a predetermined time has elapsed after the overlap adjustment and the secondary air supply process, the unnecessary overburning after the predetermined time has elapsed in consideration of the fact that the unburned gas in the exhaust gas has entered the reduced operating range. The lap adjustment and the driving of the secondary air supply are stopped, so that useless output loss can be prevented.
[0020]
According to a fifth aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect, the control means drives the secondary air supply device and increases an amount of overlap between the exhaust valve and the intake valve. When the vehicle starts moving before the predetermined time elapses, the overlap amount is returned to the steady amount at the same time, and the secondary air supply device is stopped.
In this way, if the vehicle starts before the predetermined time elapses after the overlap adjustment and the secondary air supply processing, the overlap amount is returned to the steady amount at the same time, and the secondary air supply device is stopped. Then, after the start, the driving of the overlap adjustment and the secondary air supply is stopped, and the control with emphasis on drivability can be allowed.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an exhaust gas purification apparatus M for an internal combustion engine as an embodiment of the present invention, and an internal combustion engine equipped with the same. The exhaust gas purifying device M is mounted on a four-cycle four-cylinder gasoline engine (hereinafter simply referred to as an engine 1) as an internal combustion engine shown in FIG. 1 to promote re-combustion of exhaust gas in the combustion chamber 2 to improve exhaust gas. It works as planned.
Here, the engine 1 is provided with intake and exhaust valves 4 and 5 that are driven by the rotational force of the crankshaft 3. The intake and exhaust valves 4 and 5 connect the intake port 6 on the intake path Ri and the exhaust port 7 on the exhaust path Re. It communicates intermittently with the combustion chamber 2. Further, a fuel injection valve 8 and a spark plug 10 are mounted on each cylinder.
[0022]
The engine 1 employs a multipoint injection system in which fuel is injected into an intake port 6, and a fuel injection valve 8 of each cylinder is supplied with equal-pressure fuel from a fuel supply system (not shown). The fuel amount control unit A1 described in (1) receives the fuel injection output D (Tinj) having a pulse width corresponding to the fuel injection amount Tinj derived from the air-fuel ratio A / F and other operation information to perform the injection operation.
[0023]
The fuel amount control unit A1 of the engine 1 performs the combustion of the air-fuel mixture while maintaining the stoichiometric air-fuel ratio A / F (15, 0) in the steady operation range, so that the pre-catalyst 11 and the main catalyst 12 of the exhaust passage Re are formed. Keep purification efficiency at a high level. During the warm-up operation, the air-fuel ratio is enriched in expectation of an exhaust gas temperature increasing effect (early catalyst activation) due to the reaction of secondary air and unburned gas (HC) described later.
The ignition plug 10 of the ignition system is connected to an ignition circuit 13. When the ignition circuit 13 receives a signal of an ignition timing IGT from an ignition control unit A2 in the controller 9 as described later, the ignition output Dig is output to the ignition timing IGT. Is emitted to the ignition plug 10 to drive the ignition.
[0024]
The intake passage Ri allows air from the air cleaner 20 to flow into each cylinder in the engine body. The intake passage Ri includes an electronically controlled throttle valve (hereinafter simply referred to as ETV 14) 14, an intake pipe 15, a surge tank 16 downstream thereof, An intake manifold 17 having a branch intake passage ri that branches off from the surge tank and is formed in the cylinder head 18 so as to communicate with each branch intake passage ri, and is formed in the combustion chamber 2 when the intake valve 4 of each cylinder is opened. And an intake port 6 communicating therewith. The ETV 14 is configured to switch to the valve opening when receiving the valve opening output Po from the throttle valve driving unit A3 provided in the controller 9 as described later.
[0025]
A throttle opening sensor 19 is mounted on the rotating shaft of the ETV 14, and a throttle opening θs signal generated from the throttle opening sensor 19 is input to the controller 9. Further, an air flow sensor 22 for detecting an intake air amount Qa is attached to the intake pipe 15, and an intake air amount Qa signal is input to the controller 9.
[0026]
The exhaust passage Re leads the exhaust gas from the combustion chamber 2 of each cylinder from the exhaust port 7 to each branch exhaust passage re in the exhaust manifold 23 when the exhaust valve 5 is opened, and further provides the exhaust gas in the middle of the exhaust pipe 40. The pre-catalyst 11 and the downstream main catalyst 12 are successively guided and flow down to the atmosphere. The front-stage catalyst 11 is formed of a three-way catalyst for purifying CO, HC and NOx, and is particularly formed so as to be activated early with a small capacity and to contribute to the purification of unburned gas (HC) immediately after a cold start. The catalyst 12 is formed of a large-capacity three-way catalyst, and is formed so as to contribute to purification of a large-capacity exhaust gas during a steady operation.
[0027]
An air nozzle 25 of a secondary air supply device 24 is attached to the exhaust port 7 of each cylinder toward the back of the exhaust valve 5. The secondary air supply device 24 includes an air pump 27 driven by an electric motor 26, a drive circuit 28 that variably drives the rotation of the electric motor 26, and an air nozzle 25 connected to the air pump 27. The air pump 27 is driven according to a control signal output from the secondary air control unit Aa in the controller 9 to the drive circuit 28, and blows out secondary air from the air nozzle 25 to the exhaust port 7, so that the exhaust port The main part of the exhaust gas flowing out to the combustion chamber 2 is returned to the combustion chamber 2 to stir the exhaust gas in the combustion chamber 2, thereby scraping out the unburned gas (HC) in the combustion chamber 2, The combustion gas (HC) is reburned by the secondary air.
[0028]
A valve operating system for driving the intake and exhaust valves 4 and 5 is a DOHC type valve operating device 40. The intake and exhaust cam shafts 31 and 32 having the intake and exhaust cams 29 and 30 are connected to the crankshaft 3 via belt rotation transmission means (not shown). Is transmitted and driven to rotate.
As shown in FIG. 2, the valve gear 40 drives the intake valve 4 and the exhaust valve 5 for each cylinder. Here, the suction / discharge cam shafts 31, 32 and the suction / discharge rocker shafts 52, 53 are arranged in parallel with each other on the bearing portion 51 of the cylinder head 18, and the intake / discharge cams 29, 30 are provided on the intake / discharge cam shafts 31, 32.
[0029]
The suction and discharge rocker shafts 52 and 53 are pivotally supported by suction and discharge rocker arms 54 and 55. The intake rocker arm 54 contacts the intake cam 29 via a roller 56 pivotally supported at one end, and the other end contacts the intake valve 4. The exhaust rocker arm 55 contacts the exhaust cam 30 via a roller 57 pivotally supported at one end, and the other end contacts the exhaust valve 5.
[0030]
As shown in FIG. 2, the intake cam shaft 31 includes an intake phase adjustment mechanism 33 that is an intake valve variable adjustment unit that variably adjusts the valve opening timing (valve opening center timing) θIc of the intake cam 29. Similarly, the exhaust cam shaft 32 includes an exhaust phase adjustment mechanism 34 which is an exhaust valve variable adjusting means for variably adjusting the valve opening timing (valve opening center timing) θEc (see FIG. 3) of the exhaust valve 5. These intake and exhaust phase adjustment mechanisms 33 and 34 constitute valve adjustment means.
[0031]
A secondary air control unit Aa, which is a control unit of the secondary air supply device 24, is provided in the controller 9. When it is determined from the operation information of the engine that the engine 1 is lower than the cold determination temperature Tc, the secondary air control unit Aa is controlled. Control is performed to drive the supply device 24.
The controller 9 is provided with an intake / exhaust valve variable adjustment unit Ab which is a control unit of the intake / exhaust phase adjustment mechanisms 33 and 34 which is an intake / exhaust valve variable adjustment unit. If it is determined that the temperature falls below the determination temperature Tc, the valve opening timing (valve opening center timing) of the exhaust valve 5 is set to θEc1 that is shifted from the valve opening timing θEc in the steady operation by a delay amount −Δθa, and the intake valve 4 and the exhaust valve are set. The function of controlling the overlap amount of No. 5 to the overlap amount B1 which is larger than the amount B0 in the normal operation.
[0032]
As shown in FIG. 2, the intake / exhaust phase adjusting mechanisms 33, 34 connect the sprockets 35i, 35e provided at the front end of the exhaust cam shaft 32 and the sprockets and the intake / exhaust cam shafts 31, 32 so as to be relatively rotatable. Phase control actuators 36i and 36e. The sprockets 35i and 35e are connected to the crankshaft 3 via a timing belt (not shown). The phase control actuators 36i and 36e are electromagnetic rotary actuators, and are driven and controlled by respective drive circuits 37i and 37e that receive control signals Sti and Ste from the intake / exhaust valve variable adjustment unit Ab in the controller 9. Thus, the valve opening timings (valve opening center timings) θIc and θEc of the lifts of the intake and exhaust valves 4 and 5 are retarded or advanced. The rotational positions of the intake and exhaust camshafts 31 and 32 under the control of the intake and exhaust phase adjustment mechanisms 33 and 34 are detected by the drive shaft sensors 38i and 38e and output to the controller 9.
[0033]
The controller 1 controls the supply / exhaust system, fuel supply system, and ignition system of the engine 1.
The controller 9 detects the operation information of the engine 1 by the operation information detecting means. As the driving information detecting means, the crank angle sensor 41 indicates the unit crank angle Δθc and the engine speed Ne, the throttle opening sensor 19 indicates the throttle opening θs, the air flow sensor 22 indicates the intake air amount Qa, and the vehicle speed sensor indicates the vehicle speed Vc. The air-fuel ratio sensor 43 inputs the air-fuel ratio A / F, and the water temperature sensor 45 mounted on the cylinder block 44 inputs the water temperature wt of the cooling water to the controller 9.
[0034]
Here, the throttle valve driving unit A3 of the controller 9 obtains the normal valve opening Po or the warm-up valve opening Po according to the accelerator pedal opening θa, the vehicle speed Vc, the coolant temperature wt, and the like. After that, the calculated valve opening output corresponding to the normal or warm-up valve opening Po is output to the ETV 14, and the intake air amount control process is performed.
The fuel amount control unit A1 of the controller 9 obtains a basic fuel injection amount Tb according to the engine speed Ne and the throttle opening θs in a steady state, and calculates a correction value T such as an air-fuel ratio A / F and a water temperature wt. A / F , Twt, and the fuel injection amount Tinj (= Tb + T A / F + Twt). Then, an output signal D corresponding to the calculated fuel injection amount Tinj is output to the fuel injection valve 8 to control the fuel injection amount.
[0035]
Here, during the warm-up operation, when secondary air is supplied, which will be described later, an exhaust gas heating effect (early catalyst activation) due to the reaction between the secondary air and the unburned gas (HC) is expected, and the air-fuel ratio A / Correction value T for F A / F Is the correction value T for rich A / F The fuel injection amount Tinj is calculated by r, and the enriched fuel supply is performed.
The ignition control unit A2 of the controller 9 derives the ignition timing IGT in a steady state from the basic ignition timing IGTb according to the throttle opening θs and the like and the retardation correction value ΔIG according to the operating state. Then, the calculated output signal Dig corresponding to the ignition timing IGT is output to the spark plug 10 to perform the ignition process.
[0036]
Next, a description will be given of the operation of the exhaust gas purification apparatus M for the internal combustion engine shown in FIG.
The controller 9 controls the fuel system, the ignition system, and the intake system of the engine 1 along with a main routine (not shown) at the same time when the main switch is turned on, and performs a cold start control routine during the control.
[0037]
When the first cold start control routine is reached, a start determination process is performed in step s1, and after the start determination, the process proceeds to step s2. In this start determination processing, it is determined whether or not the engine speed Ne within a predetermined time after starter driving has exceeded a start determination speed Nes, for example, 300 rpm, and the routine returns to the main routine before the start, and returns to step s2 after the start is completed. Reach Here, it is determined whether or not the cooling water temperature Tw is lower than the cold state determination temperature Tc1 (for example, 25 ° C.). If the temperature is lower, the process proceeds to step s3. Is stopped, and the process returns to the main routine.
[0038]
In step s3, it functions as the secondary air control unit Aa. Here, the temperature is equal to or lower than the cold determination temperature Tc1, and a steady-state rotation signal is output to the drive circuit of the secondary air supply device 24. And the air pump 27 is driven at the steady blow-off pressure Pn1.
As a result, secondary air having a steady blowing pressure Pn1 is blown out from the air nozzle 25 to the exhaust port 7, and exhaust gas flowing from the combustion chamber 2 to the exhaust port 7 in the exhaust stroke flows back to the combustion chamber 2.
[0039]
When the process reaches step s4 from step s3, it functions as the intake / exhaust valve variable adjustment unit Ab here. Here, the sprocket 35i and the suction camshaft 31 are held at the reference valve opening timing (valve opening center timing) θIc by the phase control actuator 36 of the intake phase adjusting mechanism 33. On the other hand, the phase control actuator 36e of the exhaust phase adjustment mechanism 34 switches and holds the sprocket 35e at θEc1 which is shifted from the valve opening timing θEc at the time of steady operation by a delay amount −Δθa.
[0040]
As a result, as shown in FIG. 3, the intake valve 4 (indicated as IN in FIG. 3) at the reference valve opening timing (valve opening center timing) θIn is driven at a valve opening timing θEc1 shifted by a retard amount −Δθa. The exhaust valve 5 (shown as EX in FIG. 3) is driven so as to maintain the overlap amount B1.
[0041]
At this time, during the operation period in the overlap increasing mode U1 with the overlap amount B1 increased from that in the steady operation, the exhaust withdrawal effect due to the intake negative pressure after the intake valve 4 is opened, and the secondary air combustion chamber 2 Due to the synergistic effect with the injection into the combustion chamber, more secondary air and backflow exhaust gas are taken into the combustion chamber during the overlap, and the unburned gas in the combustion chamber is agitated with the secondary air and backflow exhaust gas. (HC) is raked out and stirred, and the unburned gas (HC) is reburned by the secondary air and the backflow exhaust gas, so that the discharged unburned gas (HC) can be reduced as much as possible. Further, by increasing the overlap amount B1, the backflow exhaust gas reaches the intake port 6, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0042]
When step s5 is reached from step s4, the count timer TIM1 for a predetermined elapsed time to is driven here, and in step s6, the process returns to the main routine before the lapse, and proceeds to step s7 when the lapse, and the secondary air Stop processing and stop the driving of the intake / exhaust phase adjustment mechanisms 34, 34 in the overlap increasing mode U1, and return to the steady mode (drive the intake / exhaust valves 4, 5 at the reference valve opening timing θIn, θEn) U0. And returns to the main routine.
[0043]
As described above, in the exhaust gas purifying apparatus M of the internal combustion engine in FIG. 1, at the time of the engine cold start, the intake air after the intake valve 4 is opened during the operation period in the overlap increasing mode U1 at the cold state determination temperature Tc1 or less. Due to the synergistic effect of the exhaust withdrawal effect due to the negative pressure and the injection of the secondary air into the combustion chamber 2, more secondary air can be taken into the combustion chamber during the overlap, and at the time of the exhaust stroke of the combustion chamber 2 The unburned gas that is about to be discharged is sufficiently agitated with the secondary air and the backflow exhaust gas and reburned, so that the unburned gas remaining in the exhaust gas can be reduced. Further, by increasing the overlap amount B1, the backflow exhaust gas reaches the intake port 6, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0044]
In the above description, in the first cold start control routine, in step s2, it is determined whether or not the cooling water temperature Tw is lower than the cold determination temperature Tc1 (for example, 25 ° C.). However, a second cold start control routine as shown in FIG. 5 may be executed instead. Here, in the second cold start control routine, processes performed in the same manner as the processes in the first cold start control routine are denoted by the same step numbers, and redundant description will be omitted.
[0045]
When the second cold start control routine is reached, a start determination process is performed in step s1, and in step s2, it is determined whether or not the cooling water temperature Tw is lower than the cold determination temperature Tc1, and if it is lower, the process proceeds to step s10. Sometimes, the process proceeds to step s7, and as described later, each control is stopped, and the process returns to the main routine. In step s10, it is determined whether or not the cooling water temperature Tw is lower than a cold determining temperature (for example, 0 ° C.) lower than the cold determining temperature Tc1, and if No, the process proceeds to step s3, and if Yes, the process proceeds to step s11.
[0046]
In step s3, a steady rotation signal is output to the drive circuit of the secondary air supply device 24, the air pump 27 is driven at the steady blowing pressure Pn1, and secondary air of the steady blowing pressure Pn1 is blown from the air nozzle 25 to the exhaust port 7, The exhaust gas in the combustion chamber 2 is stirred, and the unburned gas (HC) in the exhaust gas is reburned.
[0047]
When step s4 is reached, the intake / exhaust valve variable adjustment unit Ab is set, the reference valve opening timing θIn is held by the phase control actuator 36i of the intake phase adjustment mechanism 33, and during the steady operation by the phase control actuator 36e of the exhaust phase adjustment mechanism 34. In this case, the exhaust valve 5 is driven in the overlap increasing mode U1 as shown in FIG.
[0048]
During the operation period in the overlap increasing mode U1, the secondary air is further reduced by the synergistic effect of the exhaust withdrawal effect due to the intake negative pressure after the intake valve 4 is opened and the injection of the secondary air into the combustion chamber 2. A lot of gas is taken into the combustion chamber, and the unburned gas is stirred with the secondary air, the unburned gas (HC) is scraped out, the unburned gas (HC) in the exhaust gas is reburned, and the discharged unburned gas (HC) is reduced as much as possible. Can be reduced.
[0049]
When step s5 is reached, the count timer TIM1 is driven, and in step s6, the elapse of t0 is waited, and the process proceeds to step s7 to stop the secondary air blowing stop processing, stop the overlap increasing mode U1, and return to the steady mode Uo. And return to the main routine.
In step s10, it is determined that the cooling water temperature Tw is lower than the cold determination temperature (for example, 0 ° C.) Tc2, and the process reaches step s11.
[0050]
Here, a high-pressure rotation signal is output to the drive circuit 28 of the secondary air supply device 24 in order to suppress combustion instability by lowering the temperature below the cold determination temperature (for example, 0 ° C.) Tc2, and the drive circuit 28 26 is driven at a high rotation speed, and the air pump 27 is driven at a high blowing pressure. Thereafter, the process sequentially proceeds to steps s4 to s7.
[0051]
Also in this case, as shown in FIG. 3, in the overlap increasing mode U <b> 1, a synergistic effect of the exhaust pullback effect due to the intake negative pressure after the intake valve 4 is opened and the injection of the secondary air into the combustion chamber 2 is provided. The function of agitating the unburned gas with the secondary air and the backflow exhaust gas to increase the function of scraping out the unburned gas (HC) is increased, and the unburned gas (HC) in the exhaust gas is reburned and the discharged unburned gas (HC) is removed. It can be reduced as much as possible, and the combustion stability at extremely low temperatures can be secured. Further, by increasing the overlap amount B1, the backflow exhaust gas reaches the intake port 6, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0052]
In the above description, in step s6 of the first and second cold start control routines, at the time when the predetermined elapsed time to elapses, the secondary air blowing stop processing and the valve opening period Veo / lift variable adjustment means The valve opening period Veo is returned to the steady-state valve opening mode. However, if the cooling water Tw becomes equal to or higher than the cooling state determination temperature Tc1 before the elapse of the predetermined elapsed time to, the process proceeds to step s7 at that time, and each control is performed. Is stopped.
[0053]
In the above description, in step s10 of the second cold start control routine, the air pump 27 is driven at the steady blowing pressure Pn1 or the high blowing pressure Pn2 depending on whether the temperature sequentially falls below the cold determination temperature Tc2. Alternatively, as shown in FIG. 6, the processing shown in steps s3 ′ and s11 ′ may be performed.
[0054]
Here, if it is determined that the cooling water temperature Tw is a relatively gentle low temperature exceeding the cold determination temperature Tc2, the process proceeds to step s3 ′, where the air pump 27 blows out the predetermined elapsed time to according to the count value tn of the count timer TIM1. The pressure Pev is calculated from the blow-off pressure-elapsed time map mp (see FIG. 7), the electric motor 26 is driven with a drive output capable of securing the blow-off pressure Pev, and the blow-off pressure of the air pump 27 is adjusted. In this blow-off pressure-elapsed time map mp, the blow-out pressure PevL at the initial elapsed time e1 is set to a high level to stabilize combustion, and the degree of agitation of the unburned gas (HC) and the secondary air in the combustion chamber 2 is set. Enhance. In the later period e2, the rotation level of the electric motor 26, that is, the degree of agitation, is gradually reduced as time elapses, and unnecessary energy loss of the electric motor 26 as time elapses is eliminated. Note that when the temperature reaches the step s11 ′ from the step s10 at the temperature equal to or lower than the cold determination temperature Tc2, the control is performed in the same manner as in the step s3 ′. However, the blowing pressure PevH in the blowing pressure-elapsed time map mp is set to a higher level. As a result, wasteful increase in energy loss according to the passage of time is also eliminated.
[0055]
In the above description, in step s4 of the first and second cold start control routines, the intake / exhaust valve variable adjustment unit Ab is used, and the phase control actuator 36e of the exhaust phase adjustment mechanism 34 determines the valve opening timing θEc during steady operation. The exhaust valve 5 was switched to θEc1 shifted by the retard amount -Δθa, and the exhaust valve 5 was driven in the overlap increasing mode U1, as shown in FIG. On the other hand, as shown in FIGS. 8A and 8B, the intake / exhaust valve variable adjustment unit Ab is advanced by the phase control actuator 36i of the intake phase adjustment mechanism 33 from the valve opening timing θIc at the time of steady operation. The intake valve 4 (indicated as IN in FIG. 8B) may be switched to θIc2 shifted by the amount + Δθa, and the intake valve 4 may be driven in the overlap increasing mode U1.
[0056]
Further, as shown in FIGS. 9 (a) and 9 (b), the intake / exhaust valve variable adjustment unit Ab is used, and the phase control actuators 36i, 36e of the intake / exhaust phase adjustment mechanisms 34, 34 make the valve opening timing θIc at the time of steady operation. The intake valve 4 is switched to θIc3 and θEc3, which are shifted from θEc by the amount of advance angle + Δθa and the amount of retardation by −Δθa, and the intake and exhaust valves 4 and 5 (denoted as IN and EX in FIG. 9B) in the overlap increasing mode U1. It may be driven. In these cases, the same operation and effect as those of the apparatus shown in FIG.
[0057]
In the exhaust gas purifying apparatus M for an internal combustion engine shown in FIG. 1, the intake and exhaust cams 29 and 30 are each a single valve operating device 40. Instead, two intake and exhaust cams are provided as shown in FIG. An exhaust gas purification device Ma (which will be described using the description of the exhaust gas purification device M in FIG. 1 in the same manner) may be configured using the cam two-stage switching valve operating device 60.
Exhaust gas purification device Ma here has components similar to those of exhaust gas purification device M of the internal combustion engine in FIG. 1 except for cam two-stage switching valve operating device 60. Here, the same reference numerals are used for the same members. The description is omitted here.
[0058]
In the cam two-stage switching valve operating device 60, cam shafts 31, 32 and suction / discharge rocker shafts 61, 62 are arranged in parallel in a bearing 51 of a cylinder head 15, and intake cams 29 a, 29 b and exhaust gas are provided on the cam shafts 31, 32. Cams 30a and 30b are provided, respectively. An intake rocker arm 641 is integrally connected to the shaft portion 611 of the intake rocker shaft 61, and the intake rocker arm 641 drives the intake valve 4 at a tip end thereof.
[0059]
A boss portion 631 of the large arm 63 is pivotally supported on a shaft portion 611 of the intake rocker shaft 61, and a small arm 642 is integrally attached next to the boss portion 631. The swing end of the large arm 63 contacts the large intake cam 29a via the roller 65, and the swing end of the small arm 642 contacts the small intake cam 29b via the roller 66.
A switching pin 73 is provided in the shaft portion 611 facing the boss portion 631 of the large arm 63 so as to protrude therefrom and is hydraulically driven by pressure oil from the oil passage 72.
[0060]
An exhaust rocker arm 681 is integrally connected to a shaft portion 621 of the exhaust rocker shaft 62, and the exhaust rocker arm 681 drives the exhaust valve 5 at its tip. The exhaust rocker shaft 62 has a shaft portion 621 on which a boss portion 671 of a large arm 67 is pivotally supported, and a small arm 682 is integrally attached next to the boss portion 671. The swing end of the large arm 67 contacts the large exhaust cam 30a via the roller 69, and the swing end of the small arm 682 contacts the small exhaust cam 30b via the roller 71.
A switching pin 75 is provided in the shaft portion 621 facing the boss portion 671 of the large arm 67 so as to protrude therefrom and is hydraulically driven by pressure oil from an oil passage 74.
[0061]
Each of the oil passages 72, 74 communicates with an oil pump 76 and an oil pan 77 via control oil passages 72a, 74a continuous with the cylinder head 18 side. The control oil passages 72a and 74a are provided with solenoid valves 78 and 79, which are switching valves, respectively. The solenoid valves are driven and controlled by the controller 9a to switch the switching pins 73 and 75, that is, the large and small intake cams. , 29a, 29b and the large and small exhaust cams 30a, 30b are switched. Here, with the solenoid valves 78 and 79 turned off and the switching pins 73 and 75 in a non-projecting state, the large arms 63 and 67 idle and the small cams 29b and 30b and the small arms 642 and 682 operate. As indicated by a broken line in FIG. 11, the intake and exhaust valves 4, 5 (denoted as IN and EX in FIG. 11) are driven in the steady mode U0. On the other hand, when the solenoid valves 78, 79 are turned on, the switching pins 73, 75 protrude and operate, and the large arms 63, 67 are driven by the large intake and large exhaust cams 29a, 30a, and as shown by the solid line in FIG. The valves 4 and 5 are driven in the overlap increasing mode Ua1.
[0062]
The rollers 66 and 68 have the same radius, and the large intake cam 29a, the large exhaust cam 30a and the small intake cam 29b, and the small exhaust cam 30b are formed to have the same radius except the protruding portion.
In such a cam two-stage switching valve operating device 60, as shown in FIG. 11, when the switching pins 73 and 75 retreat, the intake and exhaust valves 4 and 5 are driven in the steady mode U0 by the small intake and small exhaust cams 29b and 30b. When the switching pins 73 and 75 protrude, the intake and exhaust valves 4 and 5 are driven in the overlap increasing mode Ua1 by the large intake and large exhaust cams 29a and 30a to promote agitation of the unburned gas and the secondary air to stabilize combustion. It is possible to ensure the performance and improve the exhaust gas.
[0063]
The exhaust gas purification device Ma of the internal combustion engine is controlled by the controller 9a. Since the controller 9a has the same control as that of the controller 9 except the third cold start control routine shown in FIG. 12, the duplicate description is omitted here.
When the third cold start control routine shown in FIG. 12 is reached, start determination processing is performed in step s1, and in step s2, it is determined whether or not the cooling water temperature Tw is lower than the cold determination temperature Tc1, and if lower, the process proceeds to step s3. At the time of starting after warm-up, the process proceeds to step s7 on the No side, each control is stopped, and the process returns to the main routine. In step s3, a steady rotation signal is output to the drive circuit of the secondary air supply device 24, the air pump 27 is driven at the steady blowing pressure Pn1, and secondary air of the steady blowing pressure Pn1 is blown from the air nozzle 25 to the exhaust port 7, The exhaust gas in the combustion chamber 2 is stirred, and the unburned gas (HC) in the exhaust gas is reburned.
[0064]
When step s4 is reached, the intake / exhaust valve variable adjustment section Ab 'is set, and the reference valve opening timings θIc, θEc are held by the phase control actuators 35i, 35e of the intake / exhaust phase adjustment mechanisms 34, 34.
Further, the cam two-stage switching valve operating device 60 is driven and controlled, that is, the switching pins 73 and 75 are protruded and actuated when the solenoid valves 78 and 79 are turned on, and the large arms 63 and 67 are operated with large intake and large exhaust cams 29a and 30a. And the intake and exhaust valves 4 and 5 are driven in the overlap increasing mode Ua1 (see FIG. 11).
[0065]
During the operation period in the overlap increasing mode Ua1, the secondary air is injected, and the secondary air is burned more due to a synergistic effect with the exhaust return by the intake negative pressure after the intake valve 4 is opened. The unburned gas is taken into the room, the unburned gas is stirred with the secondary air and the backflow exhaust gas, the unburned gas (HC) is scraped out, the unburned gas (HC) in the exhaust gas is reburned, and the discharged unburned gas (HC) is discharged. Can be reduced as much as possible. Further, by increasing the overlap amount B1, the backflow exhaust gas reaches the intake port 6, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0066]
When the count reaches step s5, the count timer TIM1 is driven, and in step s6, the elapse of t0 is waited. Then, the process proceeds to step s7 to stop the secondary air blowing stop processing, stop the overlap increasing mode Ua1, and return to the steady mode U0. And return to the main routine.
[0067]
As described above, in the third cold start control routine of the exhaust gas purification device Ma of the internal combustion engine, in step s4, when both the solenoid valves 78 and 79 are turned on, both the switching pins 73 and 75 protrude and operate, and the large arm 63 and 67 was driven by the large intake and large exhaust cams 29a and 30a, and the intake and exhaust valves 4 and 5 were driven in the overlap increasing mode Ua1 (see FIG. 11). However, instead of this, as shown in FIGS. 13A and 13B, in step s4 ', the switching pin 75 projects and operates when the solenoid valve 79 is turned on, and the large arm 67 is driven by the large exhaust cam 30a. Alternatively, the exhaust valve 5 may be driven in the overlap increasing mode Ub1. Conversely, as shown in FIGS. 14 (a) and 14 (b), in step s4 ″, the switching pin 73 protrudes and operates when the solenoid valve 78 is turned on, and the large arm 63 is driven by the large intake cam 29a. May be driven in the overlap increasing mode Uc1. In these cases, the same operation and effect as those of the apparatus of FIG.
[0068]
Further, as shown in FIGS. 15A and 15B, in step s4 ′ ″, the intake / exhaust valve variable adjustment unit Ab ′ is used, and the phase control actuators 35i, 35e of the intake / exhaust phase adjustment mechanisms 33, 34 are connected. The steady-state valve-opening timings θIc and θEc are switched to the valve-opening timings θIc4 and θEc4 by adding the advance amount + Δθa and the retard amount −Δθa. In addition, when both solenoid valves 78 and 79 are turned on, both switching pins 73 and 75 protrude and operate, and large arms 63 and 67 are driven by large intake and large exhaust cams 29a and 30a. As a result, the intake and exhaust valves 4, 5 may be driven in the overlap increasing mode Ud1 of the overlap B1. Thus, in addition to the cam two-stage switching valve operating device 60, the intake phase adjusting mechanism 33 functions as intake valve variable adjusting means for variably adjusting the opening timing, the opening period, or the valve lift of the intake valve 4, and the exhaust phase The adjusting mechanism 34 functions as an exhaust valve variable adjusting unit that variably adjusts the valve opening timing, the valve opening period, or the valve lift of the exhaust valve. In this case, the same operation and effect as those of the apparatus shown in FIG.
[0069]
In the above description, the configuration in which the intake / exhaust phase adjusting mechanisms 33 and 34 are added to the cam two-stage switching valve operating device 60 as the intake valve variable adjusting unit and the exhaust valve variable adjusting unit is shown. Instead of the valve device 60, a lift / operating angle variable mechanism disclosed in JP-A-2002-256905 may be used to variably adjust at least one of the valve opening period and the valve lift amount. Also in this case, the same operation and effect as those of the exhaust gas purifying apparatus Ma using the cam two-stage switching valve train 60 of FIG. 10 can be obtained.
[0070]
【The invention's effect】
As described above, the present invention utilizes secondary air and secondary air by utilizing the synergistic effect of the exhaust retraction action by the negative intake pressure after the intake valve is opened and the injection of the secondary air into the combustion chamber during the overlap. More exhaust gas is allowed to flow into the combustion chamber, and the unburned gas in the combustion chamber is agitated with the secondary air and the backflow exhaust gas to promote re-combustion. It is possible to reduce unburned gas remaining therein. Further, by increasing the amount of overlap, the back-flow exhaust gas reaches the intake port, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0071]
According to a second aspect of the present invention, at least one of the intake valve variable adjusting means and the exhaust valve variable adjusting means variably adjusts the valve opening amount or the valve lift amount of at least one of the intake valve and the exhaust valve to adjust the overlap amount during the steady operation. This increases the secondary air and exhaust gas by utilizing the synergistic effect of the exhaust retraction effect by the intake negative pressure after the intake valve opens and the secondary air blowing in the reverse flow direction during the overlap. More gas flows into the combustion chamber, and the unburned gas in the combustion chamber is agitated with the secondary air and the backflow exhaust gas to promote reburning, stabilizing combustion by raising the temperature of the exhaust gas early, and remaining in the exhaust gas. Unburned gas generated can be reduced. Further, by increasing the amount of overlap, the back-flow exhaust gas reaches the intake port, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0072]
According to a third aspect of the present invention, at least one of the intake valve variable adjustment means and the exhaust valve variable adjustment means is driven to adjust at least one of the intake valve and the exhaust valve, the valve opening period, and the valve lift amount to adjust the valve opening amount. The amount of lap is increased from that in the steady operation, thereby utilizing the synergistic effect of the exhaust retraction effect by the intake negative pressure after the intake valve is opened and the secondary air blowing in the reverse flow direction during the overlap. Allow more secondary air and exhaust gas to flow into the combustion chamber, stir unburned gas in the combustion chamber with secondary air and backflow exhaust gas to promote reburning, and achieve early combustion stabilization by raising exhaust gas temperature. In addition, unburned gas remaining in the exhaust gas can be reduced. Further, by increasing the amount of overlap, the back-flow exhaust gas reaches the intake port, and the wall surface of the intake port is heated, so that atomization of the fuel deposited on the wall surface can be promoted.
[0073]
According to a fourth aspect of the present invention, considering that the unburned gas in the exhaust gas has entered a reduced operating range when a predetermined time has elapsed after the overlap adjustment and the secondary air supply processing, the predetermined time has elapsed. Unnecessary overlap adjustment and driving of the secondary air supply are stopped, and unnecessary output loss can be prevented.
[0074]
According to a fifth aspect of the present invention, when the vehicle starts before the predetermined time elapses after the overlap adjustment and the secondary air supply processing, the overlap amount is returned to the steady amount at the same time, and the secondary air supply is performed. The apparatus is stopped, and after starting, the overlap adjustment and the driving of the secondary air supply are stopped, so that control emphasizing drivability can be permitted.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an engine equipped with an exhaust gas purification device for an internal combustion engine as one embodiment of the present invention.
FIG. 2 is a plan view of a main part of a valve train in the exhaust gas purifying apparatus of the internal combustion engine of FIG. 1;
3 is an explanatory diagram of a valve opening mode of an intake / exhaust valve of the exhaust gas purifying apparatus for an internal combustion engine of FIG.
FIG. 4 is a flowchart of a first cold start control routine performed by the exhaust gas control apparatus of the internal combustion engine of FIG. 1;
FIG. 5 is a flowchart of a second cold start control routine performed by the exhaust gas purification apparatus for an internal combustion engine of FIG. 1;
FIG. 6 is another modified example of the second cold start control routine performed by the exhaust gas control apparatus of the internal combustion engine of FIG. 1;
FIG. 7 is a characteristic diagram of an outlet pressure-elapsed time map mp used in a second modification of the cold start control routine performed by the exhaust gas purification apparatus of the internal combustion engine of FIG. 1;
8 shows another modification of the second cold start control routine performed by the exhaust gas purification apparatus for an internal combustion engine shown in FIG. 1, in which (a) describes step 4 'and (b) describes the valve opening mode of the intake and exhaust valves. The figure is shown.
9 shows another modified example of the second cold start control routine performed by the exhaust gas control apparatus of the internal combustion engine shown in FIG. 1, wherein FIG. 9 (a) shows step 4 ″ and FIG. 9 (b) shows the valve opening mode of the intake and exhaust valves. The figure is shown.
FIG. 10 is a plan view of a main part of a valve train used in an exhaust gas purification apparatus for an internal combustion engine as another embodiment of the present invention.
FIG. 11 is an explanatory view of a valve opening mode of an intake / exhaust valve used in an exhaust gas purifying apparatus for an internal combustion engine as another embodiment of the present invention.
FIG. 12 is a flowchart of a third cold start control routine performed by the exhaust gas purification apparatus for an internal combustion engine having the valve train of FIG. 10;
13A and 13B show a modification of the third cold start control routine of FIG. 12, in which FIG. 13A shows step 4 ′ and FIG.
14A and 14B are diagrams illustrating another modified example of the third cold start control routine of FIG. 12, in which FIG. 14A illustrates step 4 ″ and FIG. 14B illustrates a valve opening mode of the intake and exhaust valves.
15A and 15B are diagrams illustrating another modified example of the third cold start control routine of FIG. 12, in which FIG. 15A illustrates step 4 ′ ″ and FIG. 15B illustrates a valve opening mode of the intake and exhaust valves.
FIG. 16 is a schematic diagram of a secondary air supply device for an internal combustion engine.
FIG. 17 is a diagram illustrating the function of a secondary air supply device for an internal combustion engine.
[Explanation of symbols]
1, 1a engine
5 Exhaust valve
7 Exhaust port
9, 9a Controller (control means)
24 Secondary air supply device
40 Valve train
45 Water temperature sensor (driving information detection means)
60 Cam two-stage switching valve train
Aa Secondary air control unit
Ab Exhaust valve variable adjustment unit
B0, B1 Overlap amount
M, Ma Exhaust purification device for internal combustion engine
Ri intake path
Re exhaust path
Tw Cooling water temperature (operating information)
Tc1 Cold state judgment temperature
U1 Overlap increase mode
Pn1 steady blowing pressure

Claims (5)

内燃機関の排気バルブにより開閉される排気ポートの開口に向けて2次エアを噴射する2次エア供給装置と、
吸気バルブ又は排気バルブの少なくとも一方の開弁時期、開弁期間或いは弁リフト量を可変調整するバルブ調整手段と、
内燃機関の運転情報を検出する運転情報検出手段と、
内燃機関の運転情報より内燃機関が冷態判定温度を下回ると判定すると、前記2次エア供給装置を駆動すると共に前記バルブ調整手段を作動して、吸気バルブと排気バルブのオーバーラップ量を定常運転時より増大させる制御手段と、
を備えたことを特徴とする内燃機関の排気浄化装置。
A secondary air supply device for injecting secondary air toward an opening of an exhaust port opened and closed by an exhaust valve of the internal combustion engine;
Valve adjustment means for variably adjusting the opening timing of at least one of the intake valve or the exhaust valve, the valve opening period or the valve lift;
Operating information detecting means for detecting operating information of the internal combustion engine,
When it is determined from the operation information of the internal combustion engine that the internal combustion engine is lower than the cold determination temperature, the secondary air supply device is driven and the valve adjusting means is operated to set the overlap amount between the intake valve and the exhaust valve to the steady operation. Control means for increasing over time;
An exhaust gas purification device for an internal combustion engine, comprising:
請求項1記載の内燃機関の排気浄化装置において、
前記バルブ調整手段は、吸気バルブの開弁期間あるいは弁リフト量を可変調整する吸気バルブ可変調整手段、及び、排気バルブの開弁期間あるいは弁リフト量を可変調整する排気バルブ可変調整手段の少なくとも一方を有することを特徴とする内燃機関の排気浄化装置。
The exhaust gas purifying apparatus for an internal combustion engine according to claim 1,
The valve adjusting means is at least one of an intake valve variable adjusting means for variably adjusting an opening period or a valve lift of an intake valve, and an exhaust valve variable adjusting means for variably adjusting an opening period or a valve lift of an exhaust valve. An exhaust gas purifying apparatus for an internal combustion engine, comprising:
請求項1記載の内燃機関の排気浄化装置において、
前記バルブ調整手段は、吸気バルブの開弁時期、開弁期間あるいは弁リフト量を可変調整する吸気バルブ可変調整手段、及び、排気バルブの開弁時期、開弁期間あるいは弁リフト量を可変調整する排気バルブ可変調整手段の少なくとも一方を有することを特徴とする内燃機関の排気浄化装置。
The exhaust gas purifying apparatus for an internal combustion engine according to claim 1,
The valve adjusting means variably adjusts the opening timing, opening period or valve lift of the intake valve, and variably adjusts the opening timing, opening period or valve lift of the exhaust valve. An exhaust gas purifying apparatus for an internal combustion engine, comprising at least one of variable exhaust valve adjusting means.
請求項1記載の内燃機関の排気浄化装置において、
上記制御手段は、上記2次エア供給装置を駆動すると共に排気バルブと吸気バルブのオーバーラップ量を増大させ、その上で所定時間経過後はオーバーラップ量を経過時間に比例して減少させて定常量に戻し、その戻し時点で上記2次エア供給装置を停止させることを特徴とする内燃機関の排気浄化装置。
The exhaust gas purifying apparatus for an internal combustion engine according to claim 1,
The control means drives the secondary air supply device and increases the amount of overlap between the exhaust valve and the intake valve, and after a lapse of a predetermined time, reduces the amount of overlap in proportion to the elapsed time, thereby steadily increasing the amount of overlap. An exhaust purification device for an internal combustion engine, wherein the secondary air supply device is stopped at the time of the return.
請求項1記載の内燃機関の排気浄化装置において、
上記制御手段は、上記2次エア供給装置を駆動すると共に排気バルブと吸気バルブのオーバーラップ量を増大させ、その上で所定時間経過前に車両の発進があると、同時点でオーバーラップ量を定常量に戻し、上記2次エア供給装置を停止させることを特徴とする内燃機関の排気浄化装置。
The exhaust gas purifying apparatus for an internal combustion engine according to claim 1,
The control means drives the secondary air supply device and increases the amount of overlap between the exhaust valve and the intake valve. If the vehicle starts before a predetermined time elapses, the amount of overlap is determined at the same time. An exhaust purification device for an internal combustion engine, wherein the exhaust gas is returned to a steady amount and the secondary air supply device is stopped.
JP2003125669A 2003-04-30 2003-04-30 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3982449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125669A JP3982449B2 (en) 2003-04-30 2003-04-30 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125669A JP3982449B2 (en) 2003-04-30 2003-04-30 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004332558A true JP2004332558A (en) 2004-11-25
JP3982449B2 JP3982449B2 (en) 2007-09-26

Family

ID=33502864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125669A Expired - Fee Related JP3982449B2 (en) 2003-04-30 2003-04-30 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3982449B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113469A (en) * 2005-10-19 2007-05-10 Toyota Motor Corp Control device for internal combustion engine
JP2009197635A (en) * 2008-02-20 2009-09-03 Toyota Motor Corp Internal combustion engine
WO2014196267A1 (en) 2013-06-05 2014-12-11 トヨタ自動車株式会社 Internal combustion engine
CN114658516A (en) * 2021-05-24 2022-06-24 长城汽车股份有限公司 System and method for reducing emission of nitrogen oxides

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113469A (en) * 2005-10-19 2007-05-10 Toyota Motor Corp Control device for internal combustion engine
US7716919B2 (en) 2005-10-19 2010-05-18 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
JP2009197635A (en) * 2008-02-20 2009-09-03 Toyota Motor Corp Internal combustion engine
WO2014196267A1 (en) 2013-06-05 2014-12-11 トヨタ自動車株式会社 Internal combustion engine
US9587597B2 (en) 2013-06-05 2017-03-07 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
CN114658516A (en) * 2021-05-24 2022-06-24 长城汽车股份有限公司 System and method for reducing emission of nitrogen oxides

Also Published As

Publication number Publication date
JP3982449B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US10502151B2 (en) Method and system for particulate filter regeneration
JP5862292B2 (en) Diesel engine control device
KR19980024127A (en) Exhaust purifier of internal combustion engine
CN103670753A (en) Spark-ignition direct injection engine
JP4172319B2 (en) Variable valve timing controller for engine
JP3933386B2 (en) Variable valve timing control device for internal combustion engine
JP3939079B2 (en) Variable valve timing control device for internal combustion engine
JP2004516405A (en) Method and apparatus for operating an internal combustion engine
JP2010285981A (en) Device and method for controlling continuous variable valve lift actuator of diesel engine
JP3748518B2 (en) Valve timing control device for internal combustion engine
JP3605354B2 (en) Valve timing control device for internal combustion engine
JP3699645B2 (en) Valve timing control device for internal combustion engine
JP2006200414A (en) Exhaust temperature control device for internal combustion engine
JP3982449B2 (en) Exhaust gas purification device for internal combustion engine
JP2000145511A (en) Exhaust gas temperature raising device
JP4062884B2 (en) In-cylinder internal combustion engine
JP4591645B2 (en) Variable valve timing device
JP2004332561A (en) Exhaust emission control device for internal combustion engine
JP3925456B2 (en) Exhaust gas purification device for internal combustion engine
JP3743499B2 (en) Exhaust temperature raising device
JP2005299408A (en) Device for raising temperature of engine
JP2005299409A (en) Device for raising temperature of engine
JP4103674B2 (en) Exhaust control device for internal combustion engine
JP2010174742A (en) Control system for internal combustion engine
JP4186499B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3982449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140713

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees