JP2004332104A - High tensile cold rolled steel sheet, and its production method - Google Patents

High tensile cold rolled steel sheet, and its production method Download PDF

Info

Publication number
JP2004332104A
JP2004332104A JP2003429884A JP2003429884A JP2004332104A JP 2004332104 A JP2004332104 A JP 2004332104A JP 2003429884 A JP2003429884 A JP 2003429884A JP 2003429884 A JP2003429884 A JP 2003429884A JP 2004332104 A JP2004332104 A JP 2004332104A
Authority
JP
Japan
Prior art keywords
cold
temperature
cooling
steel sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003429884A
Other languages
Japanese (ja)
Other versions
JP4292986B2 (en
Inventor
Kazuhiro Hanazawa
和浩 花澤
Saiji Matsuoka
才二 松岡
Takashi Sakata
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003429884A priority Critical patent/JP4292986B2/en
Publication of JP2004332104A publication Critical patent/JP2004332104A/en
Application granted granted Critical
Publication of JP4292986B2 publication Critical patent/JP4292986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile cold rolled steel sheet with a composite structure containing a trace amount of Si, having tensile strength of ≥590 MPa and satisfying TS×El of ≥19,000 MPa×%. <P>SOLUTION: In the method of producing the high tensile cold rolled steel sheet, a slab comprising 0.03 to 0.20% C, ≤0.4% Si and 1.0 to 3.0% Mn, and comprising ≤0.02% Al and 0.008 to 0.025% N so as to satisfy ≥0.5 N/Al is heated to ≥1,000°C, is thereafter subjected to finish rolling at an outlet side temperature of ≥800°C, is coiled at ≤750°C and is cold-rolled. The cold rolled sheet is heated to an annealing temperature in the range of (an Ac3 transformation point-50°C) to (an Ac3 transformation point+100°C) in such a manner that the average heating rate in an Ac1 transformation point or above is controlled to 0.5 to 3°C/s, is held for 10 to 120s, is subsequently cooled to a temperature region in a specified range at the average cooling rate of 30 to 100°C/s, and is retained for ≥50s. The cooling from the annealing temperature may consist of two-step cooling composed of first cooling where cooling is performed to a temperature in the range of 550 to 750°C at the average cooling rate of 1 to 10°C/s, and secondary cooling where cooling is performed to a cooling stopping temperature Ts at the average cooling rate of 15 to 100°C/s. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として自動車の車体部品等の使途に好適な、引張強さ590MPa以上を有する高張力冷延鋼板およびその製造方法に係り、特に高張力冷延鋼板の強度−延性バランスの向上に関する。なお、本発明における「鋼板」とは、鋼板、鋼帯を含むものとする。   The present invention relates to a high-strength cold-rolled steel sheet having a tensile strength of 590 MPa or more and a method of manufacturing the same, which is particularly suitable for use in vehicle body parts and the like, and particularly to an improvement in the strength-ductility balance of the high-tensile cold-rolled steel sheet. The “steel plate” in the present invention includes a steel plate and a steel strip.

近年、地球環境の保全という観点から、自動車の燃費改善が要求されている。自動車の燃費改善対策としては、車体重量の軽減が極めて重要な課題となっている。また、衝突時に乗員を安全に保護するという観点から、自動車車体の強化が要望されている。このため、自動車車体の軽量化と強化とを同時に達成する方策の検討が積極的に進められている。   2. Description of the Related Art In recent years, from the viewpoint of preserving the global environment, there has been a demand for improved fuel efficiency of automobiles. As a measure for improving the fuel efficiency of automobiles, reducing the weight of the vehicle body is an extremely important issue. Further, from the viewpoint of safe protection of occupants in the event of a collision, there is a demand for strengthening of the vehicle body. For this reason, studies are being actively conducted on measures for simultaneously achieving weight reduction and strengthening of the vehicle body.

自動車車体の軽量化と強化を同時に満足させるには、部品素材を高強度化することが効果的であると言われており、最近では自動車車体用部品への高張力鋼板の適用が進められている。   It is said that increasing the strength of component materials is effective in simultaneously satisfying both the weight reduction and strengthening of automobile bodies. Recently, the use of high-strength steel sheets for automobile body parts has been promoted. I have.

しかし、鋼板を素材とする自動車の車体用部品の多くがプレス加工により成形されるため、使用される高張力鋼板には、優れたプレス成形性を有することが要求される。一般に、鋼板を高強度化すると伸びが低下しプレス成形性が劣化するため、高強度と優れた成形性とを兼備させることは難しいとされていた。   However, since many automotive body parts made of steel plates are formed by press working, the high-strength steel plates used are required to have excellent press formability. In general, when the strength of a steel sheet is increased, elongation is reduced and press formability is deteriorated. Therefore, it has been difficult to combine high strength with excellent formability.

このような要求に対し、高強度と優れた成形性とを兼備させた、プレス成形性の良好な高張力鋼板が提案されている。プレス成形性の良好な高張力鋼板の代表例として、複合組織型高張力鋼板が挙げられる。この複合組織型高張力鋼板は、軟質のフェライトと硬質のマルテンサイトとが複合された複合組織を有し、特に連続焼鈍後、ガスジェット冷却で製造された複合組織型鋼板は、降伏応力が低く、高い強度−延性バランスを有するとともに、高い焼付硬化性を有する鋼板である。   To meet such demands, a high-strength steel sheet having both high strength and excellent formability and good press formability has been proposed. As a typical example of a high-tensile steel sheet having good press formability, a composite structure type high-tensile steel sheet is given. This composite-structure high-tensile steel sheet has a composite structure in which soft ferrite and hard martensite are combined.In particular, after continuous annealing, a composite-structure steel sheet manufactured by gas jet cooling has a low yield stress. It is a steel sheet having high strength-ductility balance and high bake hardenability.

しかし、この種の複合組織型高張力鋼板は、降伏比YR(YR(%)=(降伏強さYS)/(引張強さTS)×100 )が70%以下と低く形状凍結性には優れるものの、安定して得られる強度−延性バランスTS×El(引張強さ×全伸び(単に伸びともいう))は19000MPa・%程度が限界であった。したがって、通常条件の成形では慨ね良好な加工性を示すが、厳しい条件下での成形には問題を残していた。   However, this type of composite structure type high tensile strength steel sheet has a low yield ratio YR (YR (%) = (yield strength YS) / (tensile strength TS) × 100) of 70% or less and is excellent in shape freezing property. However, the strength-ductility balance TS × El (tensile strength × total elongation (also simply referred to as elongation)) that can be obtained stably was limited to about 19,000 MPa ·%. Accordingly, although good workability is generally exhibited under molding under normal conditions, problems remain under molding under severe conditions.

また、特許文献1には、C:0.12〜0.70%、Si:0.4〜1.8%、Mn:0.2 〜2.5 %、Al:0.01〜0.07%、N:0.02%以下を含み、残部がFeおよび不可避的不純物からなる鋼板に条件を制御した連続焼鈍を施すことを特徴とする延性に優れた高強度鋼板の製造方法が提案されている。   Patent Literature 1 includes C: 0.12 to 0.70%, Si: 0.4 to 1.8%, Mn: 0.2 to 2.5%, Al: 0.01 to 0.07%, N: 0.02% or less, with the balance being Fe and unavoidable. There has been proposed a method for producing a high-strength steel sheet having excellent ductility, which is characterized by subjecting a steel sheet made of impurities to continuous annealing under controlled conditions.

特許文献1に記載された技術で製造された鋼板は、フェライト、ベイナイトと残留オーステナイト等からなる複合組織を有する、いわゆる変態誘起塑性(TRIP)を利用した鋼板である。特許文献1に記載された技術では、TRIP効果に加え、AlNの析出を利用して微細なフェライト相を存在させて強度−延性バランス(TS×El)が20000MPa・%を超えるほど顕著に強度−延性バランスを向上させている反面、同一強度のフェライト+マルテンサイト複合組織型鋼板と比較するとSiの含有量が大幅に高くなる。このため、TRIP鋼は塗装性、耐食性、表面処理性(めっき性)や表面の美麗性に難点がある。   A steel sheet manufactured by the technique described in Patent Document 1 is a steel sheet having a composite structure including ferrite, bainite, retained austenite, and the like, and utilizing so-called transformation induced plasticity (TRIP). In the technique described in Patent Document 1, in addition to the TRIP effect, the presence of a fine ferrite phase utilizing the precipitation of AlN makes the strength-ductility balance (TS × El) more remarkable as the strength exceeds 20,000 MPa ·%. Although the ductility balance is improved, the content of Si is significantly higher than that of a ferrite + martensite composite structure type steel sheet having the same strength. For this reason, TRIP steel has drawbacks in paintability, corrosion resistance, surface treatment properties (plating properties), and surface aesthetics.

したがって、TRIP鋼で所望の塗装性、耐食性、表面処理性(めっき性)や美麗性を確保するためには、長時間の酸洗処理等を施す必要があり、製造コストの大幅な上昇を招くという問題があった。   Therefore, in order to ensure desired paintability, corrosion resistance, surface treatment properties (plating properties) and aesthetics in TRIP steel, it is necessary to perform a long-time pickling treatment, etc., which causes a significant increase in manufacturing costs. There was a problem.

また、近年、良好な成形性と、成形後の高強度とを同時に満足できる鋼板として、プレス成形前は軟質でプレス成形し易く、プレス成形後は塗装焼付処理により硬化して部品強度を高めることができる塗装焼付硬化型鋼板(BH鋼板) が開発されている。   In recent years, as a steel sheet that can simultaneously satisfy good formability and high strength after forming, it is soft and easy to press-form before press forming, and after press forming, it is hardened by paint baking to increase component strength. A paint bake hardening type steel sheet (BH steel sheet) that can be used has been developed.

このようなBH鋼板の例として、例えば、特許文献2には、C:0.05〜0.30%、Si:0.4〜2.0%、Mn:0.7 〜3.0 %、Al:0.02%以下、N:0.0050〜0.0250%を含み、かつN/Alが0.3 以上で、固溶状態のNを0.0010%以上含有する組成と、フェライト相とベイナイト相と残留オーステナイト相とを含む複合組織を有する歪時効硬化特性に優れた高張力冷延鋼板が提案されている。特許文献2に記載された技術では、適量のNを含有し、焼鈍条件を制御することにより、冷延製品で適量の固溶N量および残留オーステナイトを確保でき、延性および歪時効硬化特性が向上するとしている。   As an example of such a BH steel sheet, for example, in Patent Document 2, C: 0.05 to 0.30%, Si: 0.4 to 2.0%, Mn: 0.7 to 3.0%, Al: 0.02% or less, N: 0.0050 to 0.0250% Which has a composition containing at least 0.3% of N / Al and at least 0.0010% of N in a solid solution state and a composite structure including a ferrite phase, a bainite phase, and a retained austenite phase, and having excellent strain aging hardening characteristics. A tension cold-rolled steel sheet has been proposed. According to the technology described in Patent Document 2, by containing an appropriate amount of N and controlling the annealing conditions, it is possible to secure an appropriate amount of solute N and retained austenite in a cold-rolled product, thereby improving ductility and strain age hardening characteristics. I have to.

しかしながら、特許文献2に記載された技術では、残留オーステナイトを多量生成し、さらに安定化するためにSiを0.4 %以上と多く含有し、そのままでは塗装性、耐食性、表面処理性(めっき性)や表面の美麗性に問題を残していた。特許文献2に記載された技術では、所望の塗装性、耐食性、表面処理性(めっき性)や美麗性を確保するためには長時間の酸洗処理等を施す必要があり、大幅な製造コストの上昇が避けられない。
特開昭61−217529号公報 特開2001−303185号公報
However, the technique described in Patent Document 2 generates a large amount of retained austenite and contains a large amount of Si of 0.4% or more for further stabilization, and as it is, paintability, corrosion resistance, surface treatment property (plating property), This left a problem with the beauty of the surface. In the technique described in Patent Document 2, it is necessary to perform a long-time pickling treatment or the like in order to secure desired coating properties, corrosion resistance, surface treatment properties (plating properties) and aesthetics, resulting in a large production cost. Rise is inevitable.
JP-A-61-217529 JP 2001-303185 A

このように、上記した従来技術では、フェライト、ベイナイトおよび残留オーステナイトからなる複合組織を形成し延性および強度−延性バランスを顕著に向上させるために、多量のSiを含有させることを必須の要件としていた。これは、Fe3Cの生成を抑制する作用を有しているSiを多量に含有することにより、焼鈍時に残留オーステナイトの生成と安定化に必要な量のCをオーステナイト中に効果的に濃化させることができるためである。   As described above, in the above-described conventional technology, in order to form a composite structure composed of ferrite, bainite, and retained austenite, and to significantly improve the ductility and strength-ductility balance, it was an essential requirement to contain a large amount of Si. . This is because, by containing a large amount of Si, which has the effect of suppressing the generation of Fe3C, the amount of C necessary for the generation and stabilization of retained austenite during annealing can be effectively concentrated in austenite. This is because

しかしながら、Si含有量を0.4 %以上と多くした鋼板は、延性および強度−延性バランスが向上するが、塗装性、耐食性、表面処理性(めっき性)や表面の美麗性が低下する。このため、優れた塗装性、耐食性、表面処理性(めっき性)や美麗性を確保するためには、長時間の酸洗処理等を施す必要があり、大幅な製造コストの上昇が避けられない。   However, a steel sheet having a large Si content of 0.4% or more improves ductility and a balance between strength and ductility, but deteriorates paintability, corrosion resistance, surface treatment property (plating property), and surface aesthetics. For this reason, in order to ensure excellent coating properties, corrosion resistance, surface treatment properties (plating properties) and aesthetics, it is necessary to perform a long-time pickling treatment or the like, and a significant increase in manufacturing cost is inevitable. .

本発明は、上記した従来技術の問題を有利に解決し、比較的少ないSi含有量でありながら、引張強さ:590MPa以上を有し、かつ強度−延性バランス(TS×El)が19000MPa・%以上となる、強度−延性バランスに優れた高張力冷延鋼板およびその製造方法を提案することを目的とする。なお、本発明は、軽度の曲げ加工やロールフォーミングによりパイプに成形されるような比較的軽加工に供されるものから、比較的厳しい絞り成形に供されるものまで、広範囲の用途に適合可能な高張力冷延鋼板を提案することを目的としている。   The present invention advantageously solves the above-mentioned problems of the prior art, and has a tensile strength: 590 MPa or more and a strength-ductility balance (TS × El) of 19,000 MPa ·% while having a relatively small Si content. It is an object of the present invention to propose a high-tensile cold-rolled steel sheet excellent in strength-ductility balance and a method for producing the same. The present invention can be applied to a wide range of applications, from those used for relatively light processing such as forming into pipes by light bending and roll forming to those used for relatively severe drawing. The purpose is to propose a high-tensile cold-rolled steel sheet.

本発明者らは、上記した課題を達成するため、組成および製造条件を種々変更して鋼板を製造し、多くの材質評価実験を行った。その結果、高延性が要求される分野では従来あまり積極的に利用されることがなかったNを利用することによりSi含有量を微量としても、強度−延性バランスの向上が図れることを知見した。   In order to achieve the above object, the present inventors manufactured steel sheets with variously changed compositions and manufacturing conditions, and performed many material evaluation experiments. As a result, it has been found that in fields where high ductility is required, the strength-ductility balance can be improved by using N, which has not been actively used in the past, even if the Si content is very small.

まず、本発明の基礎となった実験結果について説明する。   First, a description will be given of the experimental results on which the present invention is based.

質量%で、C:0.081 %、Si:0.01%、Mn:1.52%、P:0.009 %、S:0.002 %、Al:0.008 %を基本成分とし、これにNを0.0023〜0.0182%の範囲で変化させた組成のシートバーを、1250℃に加熱し均熱したのち、仕上圧延終了温度が900 ℃となるように3パスの圧延を行い板厚4.0mm の熱延板とした。なお、仕上圧延終了後、コイル巻取処理に相当する、600 ℃で1h保温する熱処理を施した。ついで、得られた熱延板に、圧下率80%の冷間圧延を施して板厚0.8mm の冷延板とした。   In mass%, C is 0.081%, Si is 0.01%, Mn is 1.52%, P is 0.009%, S is 0.002%, Al is 0.008% as a basic component, and N is changed in the range of 0.0023 to 0.0182%. The sheet bar having the composition thus formed was heated to 1250 ° C., soaked, and then rolled in three passes so that the finish rolling end temperature was 900 ° C., to obtain a hot-rolled sheet having a thickness of 4.0 mm. After the finish rolling, a heat treatment was performed at 600 ° C. for 1 hour, which corresponds to a coil winding process. Next, the obtained hot-rolled sheet was subjected to cold rolling at a rolling reduction of 80% to obtain a cold-rolled sheet having a sheet thickness of 0.8 mm.

これらの冷延板に、Ac1変態点(概ね670 ℃)以上における平均加熱速度を2℃/s として、焼鈍温度:850 ℃まで加熱し、その温度で40s 保持した後、種々の冷却停止温度Tsまでの平均冷却速度が50℃/s となるようにガス冷却を行い、その冷却停止温度Tsにて120s保持した後、室温までガス冷却する焼鈍処理を施した。なお、これら冷延板のAc3変態点は概ね825 ℃であった。   These sheets were heated to an annealing temperature of 850 ° C. at an average heating rate of 2 ° C./s above the Ac1 transformation point (approximately 670 ° C.) and maintained at that temperature for 40 seconds. Gas cooling was performed so that the average cooling rate up to 50 ° C./s was maintained at the cooling stop temperature Ts for 120 seconds, and then annealing treatment was performed to cool the gas to room temperature. The Ac3 transformation point of these cold rolled sheets was approximately 825 ° C.

得られた冷延鋼板について、引張試験を実施し、引張特性(降伏強さYS、引張強さTS、伸びEl)を求めた。引張試験は、長軸を圧延方向に直交する方向としたJIS 5号引張試験片を用い、JIS Z 2241の規定に準拠して行った。また、得られた冷延鋼板の固溶N量、残留オーステナイト量を求めた。固溶N量は、鋼中の全N量から、析出N(電解抽出による溶解法でもとめる)を差し引いた値とした。残留オーステナイト量は鋼板の板厚の1/4 付近の面について、MoのKα線を用いてX線回析法により、オーステナイト相の( 211)面および( 220)面とフェライト相の( 200)面、( 220)面のピーク強度から残留オーステナイト相の体積率を算出した。   The obtained cold-rolled steel sheet was subjected to a tensile test to determine tensile properties (yield strength YS, tensile strength TS, elongation El). The tensile test was carried out in accordance with JIS Z 2241 using a JIS No. 5 tensile test piece having a long axis perpendicular to the rolling direction. Further, the amount of solute N and the amount of retained austenite of the obtained cold-rolled steel sheet were determined. The amount of solid solution N was a value obtained by subtracting precipitated N (dissolved by a dissolution method by electrolytic extraction) from the total amount of N in steel. The amount of retained austenite was determined by X-ray diffraction using a Kα ray of Mo on the surface near 1/4 of the sheet thickness of the steel sheet, using the (211) and (220) planes of the austenitic phase and the (200) plane of the ferrite phase. The volume fraction of the retained austenite phase was calculated from the peak intensities of the (220) plane.

得られた結果を図1〜図4に示す。図1、図2は、残留オーステナイト量、強度−延性バランス(TS×El)と固溶N量の関係を示す。また、図3、図4は、残留オーステナイト量、TS×Elと{( 500−303 C−300 N−31Mn−15Si)−Ts}の関係を示す。ここで、Tsは冷却停止温度である。   The obtained results are shown in FIGS. 1 and 2 show the relationship between the amount of retained austenite, the strength-ductility balance (TS × El), and the amount of solute N. 3 and 4 show the relationship between the amount of retained austenite, TS × El, and {(500-303C-300N-31Mn-15Si) -Ts}. Here, Ts is a cooling stop temperature.

図1、図2から、Si:0.01%の条件下においても、固溶N量の増加により3体積%以上の残留オーステナイト量を確保することができ、その結果としてTS×Elも19000MPa・%以上の優れた値を示すことがわかる。   From FIGS. 1 and 2, even under the condition of Si: 0.01%, the amount of retained austenite of 3% by volume or more can be ensured by increasing the amount of solute N. As a result, TS × El is also 19000 MPa ·% or more. It turns out that it shows the excellent value of.

また、図3、図4から、{( 500−303 C−300 N−31Mn−15Si)−Ts}が70〜270 の範囲となるように、焼鈍後冷却の冷却停止温度Tsを調整することにより、すなわち、冷却停止温度Tsを、{( 500−303 C−300 N−31Mn−15Si)−270 }−{( 500−303 C−300 N−31Mn−15Si)−70}の範囲とすることにより、同様に3体積%以上の残留オーステナイト相が確保でき、TS×Elが19000MPa・%以上の高TS×Elが得られることがわかる。   From FIGS. 3 and 4, by adjusting the cooling stop temperature Ts for post-annealing cooling such that {(500-303C-300N-31Mn-15Si) -Ts} is in the range of 70 to 270. That is, by setting the cooling stop temperature Ts in the range of {(500-303C-300N-31Mn-15Si) -270}-{(500-303C-300N-31Mn-15Si) -70}. Similarly, it can be seen that a retained austenite phase of 3% by volume or more can be secured, and a high TS × El having a TS × El of 19,000 MPa ·% or more can be obtained.

以上のように、Al、N含有量を調整した組成の鋼スラブに、熱間圧延条件、および冷間圧延後の焼鈍条件を加熱、均熱、冷却条件を含め適正化することにより、組織がフェライト、マルテンサイトと残留オーステナイトからなる複合組織となり、鋼板のプレス成形性が顕著に向上することを知見した。この原因の詳細については、現在までのところ不明な点が多いが、本発明者らは、本発明が対象とする組成の範囲では、(1)NがCに比べ析出物を生成しにくいこと、(2)適量の固溶Nの存在によりCがオーステナイト中に濃化しやすいこと、あるいは(3)NがCに比べ拡散速度が速いことから、適正な焼鈍条件を選択することにより、より効果的にNおよびCをオーステナイト中に濃化することができ、Si含有量が微量のままでも適正量の残留オーステナイトが生成し、強度−延性バランスが顕著に向上するものと考えている。   As described above, the structure of the steel slab having the Al and N content adjusted is adjusted by optimizing the hot rolling conditions and the annealing conditions after cold rolling including the heating, soaking, and cooling conditions. It was found that a composite structure consisting of ferrite, martensite and retained austenite was formed, and the press formability of the steel sheet was significantly improved. Although the details of this cause are largely unknown so far, the present inventors have found that (1) N is less likely to form a precipitate than C in the range of the composition targeted by the present invention. (2) C is easily concentrated in austenite due to the presence of an appropriate amount of solute N, or (3) N has a higher diffusion rate than C, so it is more effective to select appropriate annealing conditions. It is considered that N and C can be enriched in austenite, and an appropriate amount of retained austenite is generated even when the Si content is very small, and the strength-ductility balance is remarkably improved.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.03〜0.20%、Si:0.4%未満、Mn:1.0 〜3.0 %、P:0.08%以下、S:0.01%以下を含み、Al、Nを、Al:0.02%以下、N:0.008〜0.025%の範囲内でかつN含有量とAl含有量との比、N/Alが0.5 以上となるように含有し、さらに固溶状態のNを0.005 %以上含み、残部Feおよび不可避的不純物からなる組成と、体積率で、60〜94%のフェライト相と、3〜30%のマルテンサイト相と、3.0 %以上の残留オーステナイト相とを含む組織と、を有することを特徴とする高張力冷延鋼板。
(2)(1)において、前記組成に加えてさらに、質量%で、Cr:0.05〜1.5 %、Mo:0.05〜1.5 %のうちの1種または2種を含有することを特徴とする高張力冷延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cu:0.005 〜1.5 %、Ni:0.005 〜1.5 %のうちの1種または2種を含有することを特徴とする高張力冷延鋼板。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Nb、Ti、V、Bのうちの1種または2種以上を次(1)式
N/(Al+Nb+Ti+V+B)≧0.5 …………(1)
(ここで、N、Al、Nb、Ti、V、B:各元素の含有量(質量%))
を満足するように含有することを特徴とする高張力冷延鋼板。
(5)質量%で、C:0.03〜0.20%、Si:0.4%未満、Mn:1.0 〜3.0 %、P:0.08%以下、S:0.01%以下を含み、Al、Nを、Al:0.02%以下、N:0.008〜0.025%の範囲内でかつN含有量とAl含有量との比、N/Alが0.5 以上となるように含有し、残部Feおよび不可避的不純物からなる組成の鋼スラブを、スラブ加熱温度:1000℃以上に加熱したのち、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し熱延板とし、巻取温度:750 ℃以下で巻き取る熱間圧延工程と、該熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板にAc1 変態点以上における平均加熱速度を0.5 〜3℃/sとして、( Ac3変態点−50℃)〜( Ac3変態点+ 100℃)の温度範囲の焼鈍温度に加熱した後、平均冷却速度:30〜100 ℃/sで、次(2)式
{( 500−303 C−300 N−31Mn−15Si)−270 }≦Ts≦{( 500−303 C−300 N−31Mn−15Si)−70}℃ ………(2)
(ここで、Ts:冷却停止温度(℃)、C、N、Mn、Si:各元素の含有量(質量%))
を満足する冷却停止温度Ts まで冷却し、{( 500−303 C−300 N−31Mn−15Si)−270 }〜{( 500−303 C−300 N−31Mn−15Si)−70}℃の温度域で50s以上滞留させる焼鈍工程と、を施すことを特徴とする高張力冷延鋼板の製造方法。
(6)質量%で、C:0.03〜0.20%、Si:0.4%未満、Mn:1.0 〜3.0 %、P:0.08%以下、S:0.01%以下を含み、Al、Nを、Al:0.02%以下、N:0.008〜0.025%の範囲内でかつN含有量とAl含有量との比、N/Alが0.5 以上となるように含有し、残部Feおよび不可避的不純物からなる組成の鋼スラブを、スラブ加熱温度:1000℃以上に加熱したのち、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し熱延板とし、巻取温度:750 ℃以下で巻き取る熱間圧延工程と、該熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板にAc1 変態点以上における平均加熱速度を0.5 〜3℃/sとして、( Ac3変態点−50℃)〜( Ac3変態点+ 100℃)の温度範囲の焼鈍温度に加熱した後、平均冷却速度:1〜10℃/sで550〜750℃の範囲の温度まで冷却する第一段冷却と、該第一段冷却に引き続いて平均冷却速度:15〜100 ℃/sで、次(2)式
{( 500−303 C−300 N−31Mn−15Si)−270 }≦Ts≦{( 500−303 C−300 N−31Mn−15Si)−70}℃ ………(2)
(ここで、Ts:冷却停止温度(℃)、C、N、Mn、Si:各元素の含有量(質量%))
を満足する冷却停止温度Ts まで冷却する第二段冷却とを施し、{( 500−303 C−300 N−31Mn−15Si)−270 }〜{( 500−303 C−300 N−31Mn−15Si)−70}℃の温度域で50s以上滞留させる焼鈍工程と、を施すことを特徴とする高張力冷延鋼板の製造方法。
(7)(5)または(6)において、前記組成に加えてさらに、質量%で、Cr:0.05〜1.5 %、Mo:0.05〜1.5 %のうちの1種または2種を含有することを特徴とする高張力冷延鋼板の製造方法。
(8)(5)ないし(7)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cu:0.005 〜1.5 %、Ni:0.005 〜1.5 %のうちの1種または2種を含有することを特徴とする高張力冷延鋼板の製造方法。
(9)(5)ないし(8)のいずれかにおいて、前記組成に加えてさらに、質量%で、Nb、Ti、V、Bのうちの1種または2種以上を次(1)式
N/(Al+Nb+Ti+V+B)≧0.5 …………(1)
(ここで、N、Al、Nb、Ti、V、B:各元素の含有量(質量%))
を満足するように含有することを特徴とする高張力冷延鋼板の製造方法。
The present invention has been completed based on the above findings, with further investigations. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.03 to 0.20%, Si: less than 0.4%, Mn: 1.0 to 3.0%, P: 0.08% or less, S: 0.01% or less, Al, N, Al: 0.02% Hereafter, N: contained in the range of 0.008 to 0.025% and the ratio of the N content to the Al content, that is, N / Al was 0.5 or more, further contained 0.005% or more of N in the solid solution state, and the balance A composition comprising Fe and unavoidable impurities, and a structure containing, by volume, 60 to 94% of a ferrite phase, 3 to 30% of a martensite phase, and 3.0% or more of a retained austenite phase. High strength cold rolled steel sheet.
(2) In (1), in addition to the above composition, one or more of Cr: 0.05-1.5% and Mo: 0.05-1.5% by mass% are further contained. Cold rolled steel sheet.
(3) In (1) or (2), in addition to the above composition, one or more of Cu: 0.005 to 1.5% and Ni: 0.005 to 1.5% by mass%. And high tension cold rolled steel sheet.
(4) In any one of (1) to (3), in addition to the composition, one or more of Nb, Ti, V, and B may be represented by the following formula (1) in mass%.
N / (Al + Nb + Ti + V + B) ≧ 0.5 (1)
(Here, N, Al, Nb, Ti, V, B: content of each element (% by mass))
A high-strength cold-rolled steel sheet characterized by containing the following.
(5) In mass%, C: 0.03 to 0.20%, Si: less than 0.4%, Mn: 1.0 to 3.0%, P: 0.08% or less, S: 0.01% or less, Al, N, Al: 0.02% Hereinafter, a steel slab containing N: in the range of 0.008 to 0.025% and a ratio of the N content to the Al content such that N / Al becomes 0.5 or more and the balance being Fe and unavoidable impurities is used. After heating to a slab heating temperature of 1000 ° C. or higher, rough rolling is performed to form a sheet bar, and then the sheet bar is subjected to finish rolling to a finish rolling exit temperature of 800 ° C. or higher to obtain a hot rolled sheet. A hot rolling step of winding at 750 ° C. or lower, a cold rolling step of subjecting the hot-rolled sheet to cold rolling to form a cold-rolled sheet, and applying an average heating rate of 0.5 to 3 at or above the Ac1 transformation point to the cold-rolled sheet. After heating to an annealing temperature in the temperature range of (Ac3 transformation point -50 ° C) to (Ac3 transformation point + 100 ° C), the average cooling rate is 30 to 100 ° C / s. Next (2) {(500-303 C-300 N-31Mn-15Si) -270} ≦ Ts ≦ {(500-303 C-300 N-31Mn-15Si) -70} ℃ ......... (2)
(Here, Ts: cooling stop temperature (° C.), C, N, Mn, Si: content of each element (% by mass))
Is cooled to the cooling stop temperature Ts that satisfies the above, and the temperature range is {(500-303C-300N-31Mn-15Si) -270} to {(500-303C-300N-31Mn-15Si) -70} C. A high-strength cold-rolled steel sheet, comprising: an annealing step of retaining the steel sheet for 50 seconds or more.
(6) In mass%, C: 0.03 to 0.20%, Si: less than 0.4%, Mn: 1.0 to 3.0%, P: 0.08% or less, S: 0.01% or less, Al, N, Al: 0.02% Hereinafter, a steel slab containing N: in the range of 0.008 to 0.025% and a ratio of the N content to the Al content such that N / Al becomes 0.5 or more and the balance being Fe and unavoidable impurities is used. After heating to a slab heating temperature of 1000 ° C. or higher, rough rolling is performed to form a sheet bar, and then the sheet bar is subjected to finish rolling to a finish rolling exit temperature of 800 ° C. or higher to obtain a hot rolled sheet. A hot rolling step of winding at 750 ° C. or lower, a cold rolling step of subjecting the hot-rolled sheet to cold rolling to form a cold-rolled sheet, and applying an average heating rate of 0.5 to 3 at or above the Ac1 transformation point to the cold-rolled sheet. After heating to an annealing temperature in the temperature range of (Ac3 transformation point -50 ° C) to (Ac3 transformation point + 100 ° C), the average cooling rate is 55 at 1 to 10 ° C / s. First stage cooling to a temperature in the range of 0 to 750 ° C., and subsequent to the first stage cooling, at an average cooling rate of 15 to 100 ° C./s, the following formula (2) is used. (N-31Mn-15Si) -270 {≤Ts≤ {(500-303 C-300 N-31Mn-15Si) -70} C (2)
(Here, Ts: cooling stop temperature (° C.), C, N, Mn, Si: content of each element (% by mass))
Is performed to the cooling stop temperature Ts that satisfies the above condition, and {(500-303C-300N-31Mn-15Si) -270} to {(500-303C-300N-31Mn-15Si)}. A method for producing a high-tensile cold-rolled steel sheet, comprising: performing an annealing step of staying in a temperature range of −70 ° C. for 50 seconds or more.
(7) The composition according to (5) or (6), further comprising one or two of Cr: 0.05 to 1.5% and Mo: 0.05 to 1.5% by mass% in addition to the composition. Method for producing a high-tensile cold-rolled steel sheet.
(8) In any one of the constitutions (5) to (7), in addition to the above-mentioned composition, one or two of Cu: 0.005 to 1.5% and Ni: 0.005 to 1.5% by mass% are further contained. A method for producing a high tensile strength cold rolled steel sheet.
(9) In any one of (5) to (8), in addition to the above composition, one or more of Nb, Ti, V, and B may be further represented by the following formula (1) in mass%.
N / (Al + Nb + Ti + V + B) ≧ 0.5 (1)
(Here, N, Al, Nb, Ti, V, B: content of each element (% by mass))
The method for producing a high-tensile cold-rolled steel sheet, characterized in that the content is satisfied.

本発明によれば、Si含有量が微量であっても延性の向上に必要な残留オーステナイト相を生成することが可能となり、表面の美麗性を維持したまま強度−延性バランスに優れた高張力冷延鋼板を容易に製造でき、産業上格段の効果を奏する。なお、 本発明によれば、優れたプレス成形性と十分な部品としての強度を確保でき、自動車車体の軽量化に大きく寄与できるという効果もある。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to generate | occur | produce the residual austenite phase required for improvement of ductility, even if the Si content is a trace amount, and to maintain the beautifulness of the surface, and to maintain high strength-ductility balance excellent in the balance of strength-ductility. Rolled steel sheet can be easily manufactured, and it has a remarkable industrial effect. According to the present invention, there is also an effect that excellent press formability and sufficient strength as a part can be ensured, which can greatly contribute to weight reduction of an automobile body.

まず、本発明の冷延鋼板の組成限定理由について説明する。なお、以下、組成における質量%は、単に%と記す。   First, the reasons for limiting the composition of the cold-rolled steel sheet of the present invention will be described. Hereinafter, mass% in the composition is simply described as%.

C:0.03〜0.20%
Cは、鋼板強度を増加し、またオーステナイト相へ濃化することによりオーステナイト相を安定化させる元素であり、所望の強度と所望の残留オーステナイト(γ)量を確保するために、本発明では0.03%以上の含有を必要とする。一方、0.20%を超える含有は、溶接性を著しく劣化させる。このため、Cは0.03〜0.20%の範囲に限定した。なお、極めて高い強度−延性バランスと溶接性の両立という観点からは、0.07〜0.15%とするのが好ましい。
C: 0.03 to 0.20%
C is an element that increases the strength of the steel sheet and stabilizes the austenite phase by concentrating the steel into the austenite phase. In order to secure a desired strength and a desired amount of retained austenite (γ), C is 0.03% in the present invention. % Or more is required. On the other hand, when the content exceeds 0.20%, the weldability is significantly deteriorated. For this reason, C is limited to the range of 0.03 to 0.20%. In addition, from the viewpoint of achieving an extremely high strength-ductility balance and weldability, the content is preferably 0.07 to 0.15%.

Si:0.4 %未満
Siは、鋼の延性を顕著に低下させることなく、鋼板を高強度化させることができる強化元素であり、さらにSiは、オーステナイトがベイナイトへ変態する際に炭化物の生成を抑制し、未変態オーステナイトの安定性を向上させる効果を有するため適宜添加してもよい。このような効果は、0.1 %以上の含有で顕著となるが、0.4 %以上の含有は、表面性状、化成処理性、めっき性、耐食性等の表面美麗性に悪影響を与えるうえ、これらの悪影響を除去するためには、長時間の鋼板表面の酸洗処理等を必要とし、大きなコストアップが避けられない。このようなことから、本発明では、Siは0.4 %未満に限定した。なお、好ましくは0.3 %以下である。本発明では、Si含有量が0.4 %未満であっても未変態オーステナイトの安定性を高く保つことができ、適正量の残留オーステナイト(γ)量を確保できる。なお、より優れた表面美麗性が求められる用途ではSiは0.3 %以下に限定することが好ましい。
Si: less than 0.4%
Si is a strengthening element capable of increasing the strength of a steel sheet without remarkably reducing the ductility of steel.Si further suppresses the formation of carbides when austenite is transformed into bainite, and untransformed austenite. May be added as appropriate since it has the effect of improving the stability of the polymer. Such effects become remarkable at a content of 0.1% or more, but a content of 0.4% or more adversely affects the surface properties such as surface properties, chemical conversion properties, plating properties, and corrosion resistance. In order to remove the steel sheet, it is necessary to perform a long-time pickling treatment on the surface of the steel sheet, which inevitably leads to a large cost increase. For this reason, in the present invention, Si is limited to less than 0.4%. Preferably, it is at most 0.3%. In the present invention, the stability of untransformed austenite can be kept high even if the Si content is less than 0.4%, and a proper amount of retained austenite (γ) can be secured. In applications where higher surface aesthetics is required, the content of Si is preferably limited to 0.3% or less.

Mn:1.0 〜3.0 %
Mnは、Sによる熱間割れを防止する有効な元素であり、少なくとも含有するS量に応じた量含有させることが好ましい。また、Mnは、オーステナイト相に濃化し焼入れ性を向上させ、鋼板強度の増加に大きく寄与するとともに、オーステナイト相に濃縮し残留オーステナイトを安定化する作用も有する。このような効果は1.0 %以上の含有で認められる。一方、3.0 %を超えて含有すると、上記した効果が飽和するうえ、スポット溶接性が顕著に劣化する。このため、Mnは1.0 〜3.0 %に限定した。なお、より良好な耐食性と成形性が要求される用途では2.5 %以下に限定することが望ましい。
Mn: 1.0 to 3.0%
Mn is an effective element for preventing hot cracking due to S, and is preferably contained at least in an amount corresponding to the amount of S contained. In addition, Mn is concentrated in the austenite phase to improve hardenability, greatly contributes to the increase in the strength of the steel sheet, and has the effect of concentrating in the austenite phase and stabilizing the retained austenite. Such an effect is recognized at a content of 1.0% or more. On the other hand, if the content exceeds 3.0%, the above-mentioned effects are saturated and the spot weldability is significantly deteriorated. For this reason, Mn is limited to 1.0 to 3.0%. In applications where better corrosion resistance and moldability are required, the content is preferably limited to 2.5% or less.

P:0.08%以下
Pは、鋼を強化する作用があり、所望の強度に応じて必要量含有させることができる。このような効果は0.005 %以上の含有で顕著となるが、0.08%を超えて含有すると、プレス成形性が劣化する。このため、Pは0.08%以下に限定した。なお、より優れたプレス成形性が要求される場合や、優れた溶接性が要求される場合には、0.05%以下とすることが好ましい。
P: 0.08% or less P has an effect of strengthening steel, and can be contained in a necessary amount according to a desired strength. Such effects become remarkable when the content is 0.005% or more, but when the content exceeds 0.08%, press formability deteriorates. Therefore, P is limited to 0.08% or less. When more excellent press formability is required or when superior weldability is required, the content is preferably 0.05% or less.

S:0.01%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ成形性の劣化をもたらす元素であり、できるだけ低減することが好ましい。0.01%以下に低減することにより、伸びフランジ成形性への悪影響が無視できることから、本発明ではSは0.01%以下に限定した。なお、より優れた伸びフランジ成形性を要求される場合や、優れた溶接性を要求される場合には、Sは0.005 %以下とするのが好ましい。
S: 0.01% or less S is an element present as an inclusion in a steel sheet and causes deterioration of ductility, formability, particularly stretch flangeability of the steel sheet, and is preferably reduced as much as possible. By reducing the content to 0.01% or less, adverse effects on stretch flange formability can be neglected. Therefore, in the present invention, S is limited to 0.01% or less. When more excellent stretch flange formability is required or when superior weldability is required, S is preferably set to 0.005% or less.

Al:0.02%以下
Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有用な元素であり、また、組織を微細化する作用も有しており、0.005 %以上含有することが好ましい。本発明では、固溶状態のNを残留オーステナイトの安定化元素や強化元素としても利用するが、適正範囲のAlを添加したアルミキルド鋼のほうが、Alを添加しないリムド鋼に比して、機械的性質が優れている。一方、多量のAl含有は、表面性状の悪化や、固溶Nの顕著な低下を招いて優れた強度−延性バランスを確保することが困難となるため、本発明では、Alの上限は従来より低い0.02%に限定した。なお、材質の安定性という観点からは、0.005 〜0.015%の範囲に限定することが好ましい。Al含有量の低減は結晶粒の粗大化につながる懸念があるが、他の合金元素を最適量に調整するとともに、焼鈍条件を最適な範囲として防止することができる。
Al: 0.02% or less
Al is an element that acts as a deoxidizing agent and is useful for improving the cleanliness of steel, and also has a function of refining the structure, and is preferably contained at 0.005% or more. In the present invention, N in a solid solution state is also used as a stabilizing element and a strengthening element of retained austenite, but the aluminum-killed steel to which Al is added in an appropriate range is more mechanical than the rimped steel to which Al is not added. Excellent properties. On the other hand, a large amount of Al content deteriorates the surface properties and causes a remarkable decrease in solid solution N, which makes it difficult to secure an excellent strength-ductility balance. Limited to a low 0.02%. From the viewpoint of the stability of the material, the content is preferably limited to the range of 0.005 to 0.015%. Although there is a concern that a decrease in the Al content may lead to coarsening of crystal grains, it is possible to adjust other alloy elements to an optimal amount and prevent annealing conditions from being in an optimal range.

N:0.008〜0.025%
Nは、優れた強度−延性バランスを発現させるうえで本発明では重要な元素である。Nは、未変態オーステナイト中へ濃化して残留オーステナイト相を安定化する作用を有し、冷延鋼板の特性として、高強度でかつ高い強度−延性バランスの安定確保に寄与する。さらに、詳細は不明であるが、NはCのオーステナイト中への濃化を促進する効果も有していると思われる。また、Nは鋼の変態点を降下させる効果もあり、とくに薄物で変態点を大きく割り込んだ圧延をしたくないという状況では有用となる。このような効果は、概ね0.008%以上の含有により、安定して得られる。一方、0.025%を超えて含有すると、鋼板の内部欠陥発生率が高くなるとともに、連続鋳造時のスラブ割れなどの発生も顕著となる。このため、Nは0.008〜0.025%の範囲に限定した。なお、好ましくは0.0080〜0.0250%の範囲であり、製造工程全体を考慮した材質の安定性・歩留り向上という観点から、0.0120〜0.0180%の範囲に限定することが好ましい。なお、本発明の範囲内の含有であればNは溶接性等への悪影響は全くない。
N: 0.008 to 0.025%
N is an important element in the present invention for developing an excellent strength-ductility balance. N has the effect of concentrating in untransformed austenite and stabilizing the retained austenite phase, and contributes to ensuring high strength and a high strength-ductility balance as characteristics of a cold-rolled steel sheet. Further, although details are unknown, it seems that N also has an effect of promoting the concentration of C into austenite. N also has the effect of lowering the transformation point of steel, and is particularly useful in a situation where it is not desirable to perform rolling with a thin material that greatly reduces the transformation point. Such an effect can be stably obtained by containing approximately 0.008% or more. On the other hand, when the content exceeds 0.025%, the internal defect occurrence rate of the steel sheet increases, and the occurrence of slab cracks and the like during continuous casting becomes remarkable. For this reason, N was limited to the range of 0.008 to 0.025%. The content is preferably in the range of 0.0080 to 0.0250%, and is preferably limited to the range of 0.0120 to 0.0180% from the viewpoint of improving the stability and yield of the material in consideration of the entire manufacturing process. Note that N has no adverse effect on weldability or the like as long as the content is within the range of the present invention.

N/Alの比:0.5 以上
未変態オーステナイト中へ濃化して残留オーステナイト相を安定化する作用あるいはCのオーステナイト中への濃化を促進する作用を有するNを所定量の固溶状態で確保するために、本発明ではNを強力に固定する効果を有するAlの含有量を制限することが望ましい。幅広く成分の組み合わせを変化させた鋼板に固溶状態で残存するNと、N含有量(質量%)とAl含有量(質量%)の比であるN/Al比との関係を調査した結果、本発明鋼の鋼組成の範囲ではN/Alの値を0.5 以上とすることで安定して固溶N量を0.005 %以上にでき、目標とする強度−延性バランスが発揮されることを確認した。このため、N/Alの比は0.5 以上とする。
N / Al ratio: 0.5 or more N having a function of stabilizing the retained austenite phase by concentrating in untransformed austenite or accelerating the enrichment of C in austenite is ensured in a predetermined solid solution state. Therefore, in the present invention, it is desirable to limit the content of Al, which has the effect of strongly fixing N. As a result of examining the relationship between N remaining in a solid solution state in a steel sheet in which the combination of components was changed widely and the N / Al ratio, which is the ratio of N content (% by mass) and Al content (% by mass), In the range of the steel composition of the present invention, it was confirmed that by setting the value of N / Al to 0.5 or more, the amount of solute N can be stably increased to 0.005% or more, and the target strength-ductility balance is exhibited. . For this reason, the ratio of N / Al is set to 0.5 or more.

固溶状態のN:0.005 %以上
オーステナイトの安定化が図られ、さらに強度−延性バランスの向上に十分な量の残留オーステナイトを確保するためには、固溶状態のN(以下、固溶Nともいう)は慨ね0.005 %以上とする必要がある。
N in the solid solution state: 0.005% or more In order to stabilize austenite and to secure a sufficient amount of retained austenite to improve the strength-ductility balance, it is necessary to use N in the solid solution state (hereinafter, also referred to as solid solution N). ) Should generally be at least 0.005%.

なお、固溶N量は、鋼中の全N量から、析出N量を差し引いた値とする。析出Nの分析法について種々の方法を検討したが、定電位電解法を用いた電解抽出による溶解法を適用する方法が最も良く実際の材質の変化と対応しており、定電位電解法を用いた電解抽出による溶解法にて抽出した残渣を化学分析して残渣中のN量を求め、これを析出N量とした。なお、電解液としては、アセチルアセトン系を用いることが好ましい。   Note that the solid solution N amount is a value obtained by subtracting the precipitated N amount from the total N amount in the steel. Various methods of analyzing deposited N were examined, but the method of applying the dissolution method by electrolytic extraction using the potentiostatic electrolysis method best corresponds to the actual material change. The residue extracted by the dissolution method using electrolytic extraction was subjected to chemical analysis to determine the amount of N in the residue, which was defined as the amount of precipitated N. Note that it is preferable to use an acetylacetone-based electrolyte.

また、さらに大きな強度−延性バランスが必要な場合は固溶Nを0.0080%以上とすることが好ましい。   Further, when a greater strength-ductility balance is required, it is preferable that the solute N be 0.0080% or more.

Cr:0.05〜1.5 %、Mo:0.05〜1.5 %のうちの1種または2種
Cr、Moは、いずれも焼入れ性を向上させ鋼板の強度を増加させるとともに、残留オーステナイトの分布状態を微細分散とし、強度−延性バランスを向上させる効果を有する元素であり、必要に応じ含有できる。このような効果はCr、Moをそれぞれ0.05%以上含有することにより認められる。一方、Cr、Moをそれぞれ1.5 %を超えて含有すると、延性が低下する。このため、Cr、Moはいずれも0.05〜1.5 %の範囲に限定することが好ましい。
Cr: 0.05 to 1.5%, Mo: 0.05 to 1.5%, one or two of them
Both Cr and Mo are elements having the effect of improving the hardenability and increasing the strength of the steel sheet, making the distribution state of retained austenite finely dispersed, and improving the strength-ductility balance, and can be contained as necessary. Such an effect is recognized when each of Cr and Mo is contained at 0.05% or more. On the other hand, if each of Cr and Mo exceeds 1.5%, the ductility decreases. Therefore, it is preferable that both Cr and Mo be limited to the range of 0.05 to 1.5%.

Cu:0.005 〜1.5 %、Ni:0.005 〜1.5 %のうちの1種または2種
Cu、Niは、いずれも鋼を強化する作用を有し、所望の強度に応じて0.005 %以上含有することが好ましい。一方、CuおよびNiをそれぞれ1.5 %を超えて含有すると、伸びが低下し、強度−延性バランスが劣化する傾向がある。このため、Cu、Niはそれぞれ0.005〜1.5%の範囲に限定することが好ましい。
Cu: 0.005 to 1.5%, Ni: one or two of 0.005 to 1.5%
Both Cu and Ni have the effect of strengthening steel, and are preferably contained at 0.005% or more according to the desired strength. On the other hand, when each of Cu and Ni exceeds 1.5%, the elongation tends to decrease, and the strength-ductility balance tends to deteriorate. For this reason, Cu and Ni are each preferably limited to the range of 0.005 to 1.5%.

Nb、Ti、V、Bのうちの1種または2種以上を、次(1)式を満足するように含有することが望ましい。   It is desirable that one or more of Nb, Ti, V, and B be contained so as to satisfy the following expression (1).

N/(Al+Nb+Ti+V+B)≧0.5 ………(1)
(ここで、Nb、Ti、V、B:各元素の含有量(質量%))
Nb、Ti、V、Bは、いずれも化合物を形成して鋼を析出強化する作用があり、必要に応じ選択して1種または2種以上を含有することができる。とくに、これらの元素はNとの結合力が強く窒化物を形成し易いため、Al含有量とN含有量との関係で前記(1)式を満足するように含有することが好ましい。単独あるいは複合して含有するNb、Ti、V、Bの含有量が、前記(1)式を満足しない場合には、強度−延性バランスが劣化する傾向となる。このため、Nb、Ti、V、Bのうちの1種または2種以上を前記(1)式を満足するように調整することが好ましい。なお、上記した効果を得るためには、Nb:0.001 %以上、Ti:0.001 %以上、V:0.001 %以上、B:0.0001%以上含有することが好ましく、単独または複合して含有してもよい。
N / (Al + Nb + Ti + V + B) ≧ 0.5 (1)
(Here, Nb, Ti, V, B: content of each element (% by mass))
Nb, Ti, V, and B all have a function of forming a compound to precipitate and strengthen the steel, and may contain one or more of them if necessary. In particular, since these elements have a strong bonding force with N and easily form a nitride, it is preferable that these elements be contained so as to satisfy the above-mentioned formula (1) in the relationship between the Al content and the N content. If the content of Nb, Ti, V, and B alone or in combination does not satisfy the expression (1), the strength-ductility balance tends to deteriorate. For this reason, it is preferable to adjust one or more of Nb, Ti, V, and B so as to satisfy the above formula (1). In order to obtain the above-mentioned effects, it is preferable to contain Nb: 0.001% or more, Ti: 0.001% or more, V: 0.001% or more, and B: 0.0001% or more, and may be contained alone or in combination. .

なお、本発明では、上記した成分以外については、特に限定しないが、Ca、Zr、REM 等を通常の鋼組成の範囲内であれば含有させてもなんら問題ない。   In the present invention, there is no particular limitation on the components other than the above-mentioned components, but there is no problem even if Ca, Zr, REM and the like are contained within the range of a normal steel composition.

上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これら不可避的不純物元素は、例えば、Sb:0.01%以下、Sn:0. 1%以下、Zn:0.01%以下、Co:0. 1%以下が許容できる。   The balance other than the above components is Fe and unavoidable impurities. Inevitable impurities include, for example, Sb, Sn, Zn, Co and the like. These inevitable impurity elements are, for example, Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, Co: 0.1% or less is acceptable.

次に、本発明鋼板の組織限定理由について説明する。   Next, the reasons for limiting the structure of the steel sheet of the present invention will be described.

本発明の冷延鋼板は、組織全体に対する体積率で、主相として、60〜94%のフェライト相と、第二相として、組織全体に対する体積率で、3〜30%のマルテンサイト相と、3.0 %以上の残留オーステナイト相とを含む組織を有する。   The cold-rolled steel sheet of the present invention has a volume fraction based on the entire structure, a ferrite phase of 60 to 94% as a main phase, and a martensite phase of 3 to 30% as a second phase with a volume ratio based on the entire structure, It has a structure containing not less than 3.0% of a retained austenite phase.

高度な加工性が要求される自動車用鋼板として必要な高い延性を確保するためには、主相であるフェライト相は、60%以上含有する必要がある。一方、複合組織の利点を利用するため、フェライト相は94%以下の含有とする必要がある。このようなことから、フェライト相は組織全体に対する体積率で60〜94%に限定した。なお、さらなる良好な延性が必要とされる用途では、フェライト相は70%以上とすることが好ましい。   In order to ensure the high ductility required for a steel sheet for automobiles requiring high workability, it is necessary to contain the ferrite phase, which is the main phase, at 60% or more. On the other hand, in order to utilize the advantages of the composite structure, the ferrite phase needs to be contained at 94% or less. For this reason, the volume fraction of the ferrite phase is limited to 60 to 94% based on the whole structure. In applications where better ductility is required, the ferrite phase content is preferably 70% or more.

また、第二相として、組織全体に対する体積率で、マルテンサイト相が3%未満では、高い強度−延性バランスを確保することができない。一方、マルテンサイト相が30%を超えると、延性の劣化が著しくなる。このため、マルテンサイト相は組織全体に対する体積率で3〜30%とした。なお、さらに良好な強度−延性バランスが要求される場合は、マルテンサイト相は5%以上とすることが好ましい。   Further, if the martensite phase is less than 3% by volume relative to the entire structure as the second phase, a high strength-ductility balance cannot be secured. On the other hand, when the martensite phase exceeds 30%, ductility is significantly deteriorated. For this reason, the martensite phase is set to 3 to 30% by volume ratio with respect to the entire structure. When a better balance between strength and ductility is required, the martensite phase is preferably set to 5% or more.

また、さらに本発明の冷延鋼板では、高い強度−延性バランスを確保するために、第二相として、マルテンサイト相に加えてさらに、組織全体に対する体積率で、3.0 %以上の残留オーステナイト相を含有する。これにより、強度−延性バランス(TS×El)を、微量のSiの含有量が少ない鋼としては非常に高い、19000MPa・%以上とすることができる。残留オーステナイト相の上限は特に限定しないが、実質的には15%程度が上限と考えられる。本発明においては多量の固溶Nを含有するため、適正な焼鈍条件との組み合わせによりSiの含有量が微量であっても、NやCが容易にオーステナイト中に濃化し、残留オーステナイトの安定化に寄与すると考えられる。   Further, in the cold-rolled steel sheet of the present invention, in order to secure a high strength-ductility balance, in addition to the martensite phase, a retained austenite phase having a volume ratio of 3.0% or more with respect to the entire structure is further provided as the second phase. contains. As a result, the strength-ductility balance (TS × El) can be made 19000 MPa ·% or more, which is very high for a steel containing a small amount of a small amount of Si. Although the upper limit of the retained austenite phase is not particularly limited, it is considered that the upper limit is substantially about 15%. In the present invention, since a large amount of solid solution N is contained, even if the content of Si is very small by combination with appropriate annealing conditions, N and C easily concentrate in austenite and stabilize retained austenite. It is thought to contribute to.

なお、上記した主相、第二相以外には、若干量(体積率で30%以下)のベイナイト相、パーライト相の含有が許容できる。   In addition to the main phase and the second phase described above, a slight amount (30% or less by volume) of a bainite phase or a pearlite phase can be tolerated.

また、本発明の冷延鋼板は、表面に電気めっきあるいは溶融めっきを施しても何ら問題はない。電気めっきの種類としては、電気亜鉛めっき、電気錫めっき、電気クロムめっき、電気ニッケルめっき等、溶融めっきとしては、溶融亜鉛めっき、合金化亜鉛めっき等、いずれも好ましく適用することができる。   Further, the cold-rolled steel sheet of the present invention has no problem even if the surface is subjected to electroplating or hot-dip plating. Preferred types of electroplating include electrogalvanizing, electrotin plating, electrochromic plating, and electronickel plating, and hot-dip plating such as hot-dip galvanizing, alloyed zinc plating, and the like.

つぎに、本発明の冷延鋼板の好ましい製造方法について説明する。   Next, a preferred method for producing the cold-rolled steel sheet of the present invention will be described.

本発明で使用する鋼スラブの組成は、固溶状態のNを除き、上記した鋼板組成と同じ組成を好適組成とする。   The preferred composition of the steel slab used in the present invention is the same as the above-described steel sheet composition except for N in a solid solution state.

上記した好適組成の溶鋼を、転炉、電気炉等の公知の溶製法により溶製したのち、成分のマクロな偏析を防止すべく連続鋳造法で鋼スラブとすることが好ましい。なお、造塊−分塊圧延法、薄スラブ連鋳法等の公知の鋳造方法で鋼スラブとしてもよいことはいうまでもない。   After the molten steel having the above-mentioned preferred composition is melted by a known melting method such as a converter or an electric furnace, it is preferable to form a steel slab by a continuous casting method in order to prevent macro segregation of components. It goes without saying that the steel slab may be formed by a known casting method such as an ingot-bulking rolling method and a thin slab continuous casting method.

スラブ加熱温度:1000℃以上
得られた鋼スラブは、加熱され、熱間圧延工程により熱延板とされる。
Slab heating temperature: 1000 ° C. or more The obtained steel slab is heated and is turned into a hot rolled sheet by a hot rolling process.

初期状態として固溶状態のNを確保するという観点から、鋼スラブを1000℃以上のスラブ加熱温度に加熱することが好ましい。なお、スラブ加熱温度の上限は特に規定されないが、酸化重量の増加にともなうロスの増大などから1280℃以下とすることが望ましい。熱間圧延工程では、鋼スラブは、いったん室温まで冷却し、その後再加熱する方法に加えて、室温まで冷却しないで、温片のままで加熱炉に装入した後圧延する、あるいは僅かの保熱を行ったのち直に圧延する直送圧延・直接圧延等の省エネルギープロセスも問題なく適用できる。とくに固溶状態のNを有効に確保するには直送圧延は有効な技術の一つである。   From the viewpoint of securing N in a solid solution state as an initial state, it is preferable to heat the steel slab to a slab heating temperature of 1000 ° C. or higher. The upper limit of the slab heating temperature is not particularly limited, but is desirably 1280 ° C. or less in view of an increase in loss accompanying an increase in oxidation weight. In the hot rolling process, the steel slab is cooled to room temperature and then re-heated. Energy saving processes such as direct rolling and direct rolling, in which heat is applied and then rolling immediately, can be applied without any problem. In particular, direct rolling is one of the effective techniques for effectively securing solid solution N.

仕上圧延出側温度:800 ℃以上
熱間圧延工程では、加熱された鋼スラブを、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し熱延板とすることが好ましい。仕上圧延出側温度を800 ℃以上とすることで、均一微細な熱延母材組織を得ることができる。しかし、仕上圧延出側温度が800 ℃を下回ると、鋼板の組織が不均一になり、冷延、焼鈍後にも組織の不均一性が消えずに残留し、プレス成形時に種々の不具合を発生する危険性が増大する。また、圧延温度が低い場合に加工組織の残留を回避すべく高い巻取温度を採用しても、粗大粒が発生し、同様の不具合を生じる。このようなことから、仕上圧延出側温度は800 ℃以上に限定した。なお、機械的特性をさらに向上させるためには、820 ℃以上とすることがより好ましい。また、特に仕上圧延出側温度の上限は限定する必要がないが、過度に高い温度で圧延した場合はスケール疵などの発生原因となる恐れがあり、概ね1000℃程度までとすることが好ましい。
Finishing roll exit side temperature: 800 ° C or more In the hot rolling step, the heated steel slab is roughly rolled into a sheet bar, and then the sheet bar is subjected to finish rolling at a finish rolling exit side temperature of 800 ° C or more. It is preferable to use a hot rolled sheet. By setting the finish-rolling exit temperature at 800 ° C. or higher, a uniform and fine hot-rolled base material structure can be obtained. However, when the finish-rolling exit temperature is lower than 800 ° C, the structure of the steel sheet becomes non-uniform, and the non-uniformity of the structure remains without disappearing even after cold rolling and annealing, and various problems occur during press forming. Danger increases. Further, even when a high winding temperature is used to avoid the residual of the processed structure when the rolling temperature is low, coarse grains are generated and the same problem occurs. For this reason, the finish-rolling exit temperature is limited to 800 ° C. or higher. In order to further improve the mechanical properties, the temperature is more preferably set to 820 ° C. or higher. It is not particularly necessary to limit the upper limit of the finish-rolling discharge side temperature, but rolling at an excessively high temperature may cause scale flaws and the like, and is preferably set to approximately 1000 ° C.

巻取温度:750 ℃以下
巻取温度を低くすると、鋼板強度は増加する傾向にある。本発明が目標とする590MPa以上の引張強さを確保するためには、巻取温度は750 ℃以下とすることが好ましい。一方、巻取温度が、200 ℃を下まわると鋼板の形状が顕著に乱れだし、実際の使用にあたり不具合を生ずる危険性が増大する。また、材質の均一性も低下する傾向にあり望ましくないため、200 ℃以上とすることが好ましい。なお、さらに高い材質均一性が要求される場合は300 ℃以上とすることが望ましい。
Winding temperature: 750 ° C or lower When the winding temperature is lowered, the steel sheet strength tends to increase. In order to secure the target tensile strength of 590 MPa or more according to the present invention, the winding temperature is preferably 750 ° C. or less. On the other hand, when the winding temperature is lower than 200 ° C., the shape of the steel sheet is remarkably disturbed, and the risk of causing a problem in actual use increases. Further, the uniformity of the material tends to decrease, which is not desirable. If higher material uniformity is required, the temperature is preferably set to 300 ° C. or higher.

ついで、熱延板に、冷間圧延を施し冷延板とする冷間圧延工程を施す。なお、冷間圧延前の熱延板には、通常行われているように表面のスケールを取り除くため酸洗を行うことが好ましい。酸洗は通常法に準じて行えばよい。なお、極めて薄いスケールの状態であれば直接冷間圧延することも可能である。冷間圧延は所望の寸法形状の冷延鋼板とすることができればよく、圧下率等特に限定する必要はないが、表面の平坦度や組織の均一性の観点から40%以上の圧下率とすることが好ましい。   Next, the hot-rolled sheet is subjected to cold-rolling to form a cold-rolled sheet. It is preferable that the hot-rolled sheet before cold rolling is subjected to pickling in order to remove the scale on the surface as usual. The pickling may be performed according to a usual method. In addition, if it is a state of an extremely thin scale, it is also possible to carry out cold rolling directly. The cold rolling is not particularly limited as long as a cold-rolled steel sheet having a desired size and shape can be obtained. The rolling reduction is not particularly limited, but the rolling reduction is set to 40% or more from the viewpoint of surface flatness and structure uniformity. Is preferred.

ついで、冷延板は、焼鈍工程を施される。本発明において焼鈍工程の条件としては、焼鈍温度への加熱と、焼鈍温度から冷却停止温度までの冷却と、所定温度域での滞留とが重要である。   Next, the cold rolled sheet is subjected to an annealing step. In the present invention, as the conditions of the annealing step, heating to the annealing temperature, cooling from the annealing temperature to the cooling stop temperature, and staying in a predetermined temperature range are important.

Ac1 変態点以上における平均加熱速度:0.5 〜3℃/s
残留オーステナイト相を含む複合組織を得るためには、オーステナイト相安定化に必要な量のC、Nをオーステナイト相中に濃化する必要がある。焼鈍温度がフェライト+オーステナイトの二相域の場合には、C、Nは、熱力学的に、オーステナイト相へ優先的に分配される。このため、加熱時に Ac1変態点以上での加熱速度を遅くして二相域での滞留時間を十分に確保することにより、オーステナイト相の安定化のために必要なC、Nを容易に濃化することができる。なお、このとき、NはCに比べ拡散速度が速いため、オーステナイト相への濃化の観点からは有利と考えられる。
Average heating rate above the Ac1 transformation point: 0.5-3 ° C / s
In order to obtain a composite structure containing a retained austenite phase, it is necessary to concentrate C and N in the austenite phase in amounts necessary for stabilizing the austenite phase. When the annealing temperature is in the two-phase region of ferrite + austenite, C and N are thermodynamically distributed preferentially to the austenite phase. Therefore, during heating, the heating rate above the Ac1 transformation point is reduced to secure sufficient residence time in the two-phase region, so that C and N necessary for stabilizing the austenite phase can be easily concentrated. can do. At this time, since N has a higher diffusion rate than C, it is considered advantageous from the viewpoint of enrichment in the austenite phase.

冷延板の加熱時の、Ac1 変態点以上における平均加熱速度が、3℃/s を超えると、二相域での滞留時間が短くオーステナイト相安定化に必要な量のC、Nをオーステナイト相中に濃化することができない。一方、0.5 ℃/s 未満では、生産性が著しく低下する。このようなことから、焼鈍時の Ac1変態点以上における平均加熱速度を0.5 〜3℃/s とすることが好ましい。なお、 Ac1変態点は、熱膨張量−温度曲線図、あるいは比熱−温度曲線図、加熱後に急冷した試料のミクロ組織を直接観察する方法等から求めることができる。また、ここで Ac1変態点以上の平均加熱速度とは Ac1変態点から焼鈍温度までの平均加熱速度を意味する。   When the average heating rate above the Ac1 transformation point during heating of the cold-rolled sheet exceeds 3 ° C / s, the residence time in the two-phase region is short, and the amounts of C and N necessary for stabilizing the austenite phase are reduced to the austenite phase. Cannot be concentrated in. On the other hand, if it is less than 0.5 ° C./s, the productivity is significantly reduced. For this reason, it is preferable that the average heating rate at or above the Ac1 transformation point during annealing is 0.5 to 3 ° C./s. The Ac1 transformation point can be obtained from a thermal expansion-temperature curve diagram, a specific heat-temperature curve diagram, a method of directly observing the microstructure of a sample that has been rapidly cooled after heating, or the like. Here, the average heating rate above the Ac1 transformation point means the average heating rate from the Ac1 transformation point to the annealing temperature.

焼鈍温度:( Ac3変態点−50℃)〜( Ac3変態点+ 100℃)
焼鈍温度が、(Ac3 変態点−50)℃未満では、オーステナイト相へのC、Nの濃化が十分に行われず、残留オーステナイト相の生成が不十分となり優れた強度−延性バランスが得られない。オーステナイト相の安定化の観点からは、焼鈍温度はAc3 変態点までのフェライト−オーステナイト二相域で行うことが望ましいが、本発明では加熱時の加熱速度を3℃/s 以下とし、オーステナイト相へのC、Nの濃化が十分進行するため、優れた強度−延性バランスを確保する観点から、焼鈍温度の上限は(Ac3 変態点+ 100)℃まで許容できる。このようなことから、焼鈍温度は、(Ac3 変態点−50℃)〜(Ac3 変態点+ 100℃)とすることが好ましい。ここでAc3 変態点はAc1 変態点と同様に求めることができる。
Annealing temperature: (Ac3 transformation point -50 ℃) ~ (Ac3 transformation point + 100 ℃)
If the annealing temperature is less than (Ac3 transformation point -50) ° C, C and N are not sufficiently concentrated in the austenite phase, and the generation of the residual austenite phase becomes insufficient, so that an excellent strength-ductility balance cannot be obtained. . From the viewpoint of stabilization of the austenite phase, the annealing temperature is desirably performed in a ferrite-austenite two-phase region up to the Ac3 transformation point. However, in the present invention, the heating rate during heating is set to 3 ° C./s or less, and Since the concentration of C and N is sufficiently advanced, the upper limit of the annealing temperature is allowable up to (Ac3 transformation point + 100) ° C from the viewpoint of securing excellent strength-ductility balance. For this reason, the annealing temperature is preferably set to (Ac3 transformation point−50 ° C.) to (Ac3 transformation point + 100 ° C.). Here, the Ac3 transformation point can be obtained in the same manner as the Ac1 transformation point.

なお上記した焼鈍温度での保持時間が、10s未満では、オーステナイト相へのC、Nの濃化が十分に行われない場合があり、残留オーステナイト相の生成が不十分となり優れた強度−延性バランスが得られない場合がある。一方、保持時間が、120 sを超えて長時間となると、結晶粒が粗大化し、強度−延性バランスが低下する傾向にある。このようなことから、上記した焼鈍温度での保持時間は10〜120 sとすることが好ましい。   If the holding time at the above-mentioned annealing temperature is less than 10 s, C and N may not be sufficiently concentrated in the austenite phase, and the formation of the residual austenite phase becomes insufficient, resulting in an excellent strength-ductility balance. May not be obtained. On the other hand, when the holding time is longer than 120 s, the crystal grains tend to be coarse, and the strength-ductility balance tends to decrease. For this reason, the holding time at the above-described annealing temperature is preferably set to 10 to 120 s.

平均冷却速度:30〜100 ℃/s
上記した焼鈍温度に加熱後、冷延板は焼鈍温度から冷却停止温度Tsまで30〜100 ℃/sの平均冷却速度で冷却されることが好ましい。平均冷却速度が30℃/s未満では、オーステナイト相の安定化が図れず、優れた強度−延性バランスが得られない。これは、本発明の組成範囲ではSi含有量が少ないため、冷却速度が遅い範囲ではCやNを含む析出物が析出し、オーステナイト相中へのCやNの濃化が十分行われないためと考えられる。一方、平均冷却速度が100 ℃/s を超えると、硬質なベイナイトが多量生成し、優れた強度−延性バランスが得られない。このようなことから、冷却停止温度までの平均冷却速度は30〜100 ℃/sとすることが好ましい。
Average cooling rate: 30-100 ° C / s
After heating to the above-described annealing temperature, the cold-rolled sheet is preferably cooled at an average cooling rate of 30 to 100 ° C./s from the annealing temperature to the cooling stop temperature Ts. If the average cooling rate is less than 30 ° C./s, the austenite phase cannot be stabilized, and an excellent strength-ductility balance cannot be obtained. This is because the Si content is low in the composition range of the present invention, and precipitates containing C and N are precipitated in a range where the cooling rate is low, and the concentration of C and N in the austenite phase is not sufficiently performed. it is conceivable that. On the other hand, if the average cooling rate exceeds 100 ° C./s, a large amount of hard bainite is generated, and an excellent strength-ductility balance cannot be obtained. For this reason, the average cooling rate up to the cooling stop temperature is preferably set to 30 to 100 ° C./s.

冷却停止温度Ts:次(2)式を満足する温度
{( 500−303 C−300 N−31Mn−15Si)−270 }≦Ts≦{( 500−303 C−300 N−31Mn−15Si)−70}℃ ………(2)
(ここで、Ts:冷却停止温度(℃)、C、N、Mn、Si:各元素の含有量(質量%))
冷却停止温度Tsは、(2)式を満足する温度とすることが好ましい。冷却停止温度Tsが、{( 500−303 C−300 N−31Mn−15Si)−70}℃を超える温度では、CやNを含む析出物が多量に発生し、良好な強度−延性バランスを得るに十分な量の残留オーステナイト相を生成することができない。一方、冷却停止温度Tsが、{( 500−303 C−300 N−31Mn−15Si)−270 }℃未満の温度では、マルテンサイト相の分率が多量となり過ぎ、また、C、Nの拡散速度が極度に低下し、冷却停止後の保持時に残留オーステナイト相へのC、Nの濃化が図れないため、強度−延性バランスが顕著に低下する。このため、冷却停止温度Tsは{( 500−303 C−300 N−31Mn−15Si)−270 }〜{( 500−303 C−300 N−31Mn−15Si)−70}℃の範囲に限定することが好ましい。
Cooling stop temperature Ts: temperature satisfying the following expression (2) {(500-303C-300N-31Mn-15Si) -270} ≤Ts≤ {(500-303C-300N-31Mn-15Si) -70 } ℃ ……… (2)
(Here, Ts: cooling stop temperature (° C.), C, N, Mn, Si: content of each element (% by mass))
It is preferable that the cooling stop temperature Ts be a temperature that satisfies the expression (2). If the cooling stop temperature Ts exceeds {(500-303C-300N-31Mn-15Si) -70} C, a large amount of precipitates containing C and N are generated, and a good strength-ductility balance is obtained. A sufficient amount of the retained austenite phase cannot be produced. On the other hand, when the cooling stop temperature Ts is lower than {(500-303C-300N-31Mn-15Si) -270} C, the fraction of the martensite phase becomes too large, and the diffusion rates of C and N are increased. Is extremely reduced, and C and N are not concentrated in the retained austenite phase during the holding after the cooling is stopped, so that the strength-ductility balance is significantly reduced. Therefore, the cooling stop temperature Ts should be limited to the range of {(500-303C-300N-31Mn-15Si) -270} to {(500-303C-300N-31Mn-15Si) -70} C. Is preferred.

従来の、Siを多量に含有する残留オーステナイトを含むTRIP鋼では、フェライト、オーステナイト二相域で焼鈍、冷却後にMs点を超えるベイナイト生成温度域にて(おおよそ350 〜500 ℃の間)保持することにより、ベイナイト変態と同時にオーステナイト相へCが濃化するとともに、Siがセメンタイト(Fe3C)の析出を抑制するため、残留オーステナイト相が効果的に生成されるようになる。しかし、本発明ではSiをほとんど含有しないため、同様の処理を行った場合、CやNを含む析出物が多量に発生し、十分な量の残留オーステナイト相を生成することができない。このため、本発明ではこれらの析出物が生成しにくい温度域である{( 500−303 C−300 N−31Mn−15Si)−70}℃以下まで一気に冷却することが好ましい。ここで、冷却停止温度TsがC、N、Mn、Si含有量の関数として表されるのは、詳細は明らかでないが、CやNの析出やマルテンサイト相の生成がこれらの元素の含有量と関連しているためと考えられる。   Conventional TRIP steel containing retained austenite containing a large amount of Si must be annealed in the two-phase region of ferrite and austenite, and maintained in the bainite formation temperature region exceeding the Ms point after cooling (about 350 to 500 ° C). Thereby, C is concentrated in the austenite phase simultaneously with the bainite transformation, and Si suppresses the precipitation of cementite (Fe3C), so that the residual austenite phase is effectively formed. However, in the present invention, since almost no Si is contained, when the same treatment is performed, a large amount of precipitates containing C and N are generated, and a sufficient amount of the retained austenite phase cannot be generated. For this reason, in the present invention, it is preferable to cool at a stroke to {(500-303C-300N-31Mn-15Si) -70} C or lower, which is a temperature range in which these precipitates are not easily formed. Here, it is not clear that the cooling stop temperature Ts is expressed as a function of the contents of C, N, Mn, and Si, but the precipitation of C and N and the formation of a martensite phase are caused by the contents of these elements. It is thought that it is related to.

また、本発明では、上記した焼鈍温度から30〜100 ℃/sの一定の平均冷却速度で冷却停止温度Tsまで冷却することに代えて、第一段冷却と第二段冷却とからなる二段階の冷却で冷却停止温度Tsまで冷却するとしてもよい。   In the present invention, instead of cooling from the above annealing temperature to the cooling stop temperature Ts at a constant average cooling rate of 30 to 100 ° C./s, a two-stage cooling including a first stage cooling and a second stage cooling is performed. May be cooled to the cooling stop temperature Ts.

第一段冷却としては、上記した焼鈍温度から、平均冷却速度:1〜10℃/sで550〜750℃の範囲の温度(第一段冷却終了温度)まで冷却する冷却とすることが好ましい。上記した焼鈍温度から、平均冷却速度:1〜10℃/sで第一段冷却終了温度まで冷却することにより、冷却中にオーステナイト相へC、Nを濃化させることができる。第一段冷却の冷却速度が1℃/s未満では、生産性が著しく低下する。一方、10℃/sを超えて速くすると、冷却中にオーステナイト相へC、Nを濃化させることが困難になる。このため、第一段冷却の平均冷却速度は1〜10℃/sの範囲とすることが好ましい。また、第一段冷却終了温度が550℃未満では、セメンタイトが析出しオーステナイト相へのCの濃化が不十分となる。一方、750℃を超えて高くなると、オーステナイト相へのCの濃化が不十分となる。このため、第一段冷却終了温度は550〜750℃の範囲の温度とすることが好ましい。なお、第一段冷却終了温度は550〜750℃の範囲内の温度を適宜設定すればよい。   The first-stage cooling is preferably cooling from the above-described annealing temperature to a temperature in the range of 550 to 750 ° C at an average cooling rate of 1 to 10 ° C / s (first-stage cooling end temperature). By cooling from the above annealing temperature to the first-stage cooling end temperature at an average cooling rate of 1 to 10 ° C./s, C and N can be enriched in the austenite phase during cooling. If the cooling rate of the first-stage cooling is less than 1 ° C./s, the productivity is significantly reduced. On the other hand, if the speed is higher than 10 ° C./s, it becomes difficult to concentrate C and N into the austenite phase during cooling. For this reason, it is preferable that the average cooling rate of the first stage cooling be in the range of 1 to 10 ° C./s. If the first-stage cooling end temperature is lower than 550 ° C., cementite will precipitate and the concentration of C in the austenite phase will be insufficient. On the other hand, when the temperature exceeds 750 ° C., the concentration of C in the austenite phase becomes insufficient. Therefore, the first-stage cooling end temperature is preferably set to a temperature in the range of 550 to 750 ° C. Note that the first-stage cooling end temperature may be appropriately set to a temperature in the range of 550 to 750 ° C.

続く第二段冷却は、第一段冷却終了温度から平均冷却速度:15〜100 ℃/sで、冷却停止温度Ts まで冷却する冷却とすることが好ましい。第二段冷却では、第一段冷却中にオーステナイト相を安定化できるため、オーステナイト相の安定化の観点からは、一定の冷却速度で冷却する場合にくらべて遅い冷却速度範囲を含む、15〜100 ℃/sの範囲の冷却速度で十分となる。   Subsequent second stage cooling is preferably cooling at an average cooling rate of 15 to 100 ° C./s from the first stage cooling end temperature to the cooling stop temperature Ts. In the second-stage cooling, since the austenite phase can be stabilized during the first-stage cooling, from the viewpoint of stabilization of the austenite phase, a cooling rate range that is slower than when cooling at a constant cooling rate, including 15 to A cooling rate in the range of 100 ° C./s is sufficient.

{( 500−303 C−300 N−31Mn−15Si)−270 }〜{( 500−303 C−300 N−31Mn−15Si)−70}℃の温度範囲での滞留時間:50s以上
これらの温度範囲での滞留時間が50s未満では、CやNの拡散によるオーステナイト相の安定化、過度のマルテンサイト相生成の抑制等が不十分であり、良好な強度−延性バランスが得られない。滞留時間の上限は生産性の観点から決定されるが、600s程度とすることがより好ましい。なお、滞留時間の確保は、前記急冷に引き続いて除加熱あるいは緩冷却等により行ってもよい。
Residence time in the temperature range of {(500-303C-300N-31Mn-15Si) -270} to {(500-303C-300N-31Mn-15Si) -70} C. If the residence time is less than 50 s, the stabilization of the austenite phase due to the diffusion of C and N and the suppression of excessive martensite phase formation are insufficient, and a good strength-ductility balance cannot be obtained. The upper limit of the residence time is determined from the viewpoint of productivity, but is more preferably about 600 s. In addition, securing of the residence time may be performed by deheating or slow cooling, etc., following the rapid cooling.

上記した温度範囲での滞留後、室温まで空冷することが好ましい。   After staying in the above temperature range, it is preferable to air-cool to room temperature.

(実施例1)
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋼スラブとした。ついで、これら鋼スラブに表2に示す条件の熱延工程を施し、板厚4.0mm の熱延鋼帯(熱延板)とした。引き続き、これら熱延鋼帯(熱延板)に酸洗処理および、圧下率:80%の冷間圧延を施す冷延工程を施し、板厚0.8mm の冷延鋼帯(冷延板)とした。ついで、これら冷延鋼帯(冷延板)に連続焼鈍ラインにて表2に示す条件の焼鈍工程を施した。得られた冷延鋼帯(冷延板)に、さらに伸び率:0.5 %の調質圧延を施した。
(Example 1)
Molten steel having the composition shown in Table 1 was smelted in a converter and made into a steel slab by a continuous casting method. Then, these steel slabs were subjected to a hot rolling process under the conditions shown in Table 2 to obtain a hot-rolled steel strip (hot-rolled sheet) having a thickness of 4.0 mm. Subsequently, these hot-rolled steel strips (hot-rolled sheets) are subjected to a pickling treatment and a cold-rolling step of performing cold rolling at a rolling reduction of 80%, and a cold-rolled steel strip (cold-rolled sheets) having a thickness of 0.8 mm is formed. did. Next, these cold-rolled steel strips (cold-rolled sheets) were subjected to an annealing step under the conditions shown in Table 2 in a continuous annealing line. The resulting cold-rolled steel strip (cold-rolled sheet) was further subjected to temper rolling at an elongation of 0.5%.

なお、Ac1 変態点、Ac3 変態点は、数種の鋼組成について加熱速度3℃/s で熱膨張量−温度曲線図から実測した。   The Ac1 transformation point and the Ac3 transformation point were actually measured from a thermal expansion-temperature curve diagram at a heating rate of 3 ° C./s for several steel compositions.

得られた冷延鋼帯から試験片となる鋼板を採取し、組織観察、引張試験を実施し、また固溶N量を測定した。試験方法は次の通りとした。
(1)組織観察
得られた冷延鋼帯から試験片を採取し、圧延方向に直交する断面(C断面)について、光学顕微鏡を用いて、倍率1000倍で微視組織を撮像し、画像解析装置を用いて主相としてのフェライト相と第2相としてのマルテンサイト相等の組織の種類と、それらの組織分率を求めた。なお、微視組織の観察は、同一倍率で2視野とし、各視野での組織分率の値を平均してその組織の平均値とした。
From the obtained cold-rolled steel strip, a steel plate to be a test piece was collected, subjected to a structure observation, a tensile test, and the amount of solute N was measured. The test method was as follows.
(1) Microstructure observation A specimen was collected from the obtained cold-rolled steel strip, and the microstructure of the cross section (C cross section) orthogonal to the rolling direction was imaged at a magnification of 1000 using an optical microscope, and image analysis was performed. Using an apparatus, types of structures such as a ferrite phase as a main phase and a martensite phase as a second phase, and their structure fractions were determined. In addition, the observation of the microstructure was performed in two visual fields at the same magnification, and the value of the tissue fraction in each visual field was averaged to obtain an average value of the tissue.

なお、残留オーステナイト量はMoのKα線を用いてX線回析法により求めた。鋼板の板厚1/4付近の面を測定面とする試験片を使用し、オーステナイト相の( 211)および( 220)面とフェライト相の( 200)、( 220)面のピ−ク強度から残留オーステナイト相の体積率を算出した。
(2)引張試験
得られた冷延鋼帯から長軸を圧延方向に直交する方向としたJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、引張特性(降伏応力YS、引張強さTS、伸びEl、降伏比YR)を求めた。
The amount of retained austenite was determined by an X-ray diffraction method using Mo Kα radiation. Using a test piece whose surface is about 1/4 of the thickness of the steel sheet as the measurement surface, the peak strength of the (211) and (220) planes of the austenitic phase and the (200) and (220) planes of the ferrite phase were determined. The volume fraction of the retained austenite phase was calculated.
(2) Tensile test From the obtained cold-rolled steel strip, a JIS No. 5 tensile test piece with the long axis perpendicular to the rolling direction was sampled, and a tensile test was performed in accordance with the provisions of JIS Z 2241 to obtain tensile properties. (Yield stress YS, tensile strength TS, elongation El, yield ratio YR) were determined.

なお、固溶N量は、化学分析により得た全N量から定電位電解法を用いて得られた析出N量を差し引いた値とした。   The amount of solid solution N was a value obtained by subtracting the amount of precipitated N obtained by using the constant potential electrolysis method from the total amount of N obtained by chemical analysis.

得られた結果を表3に示す。   Table 3 shows the obtained results.

Figure 2004332104
Figure 2004332104

Figure 2004332104
Figure 2004332104

Figure 2004332104
Figure 2004332104

本発明例は、いずれも、引張強さTS590MPa以上の高強度を有し、かつ強度−延性バランス(TS×El)が19000MPa以上と、強度−延性バランスに優れるうえ、表面の美麗性にも優れていた。これに対し、本発明の範囲を外れる比較例では、強度−延性バランス(TS×El)が低い値となっている。
(実施例2)
表1に示す鋼No.O、No.P、No.Q組成の溶鋼を転炉で溶製し、連続鋳造法で鋼スラブとした。ついで、これら鋼スラブに表4に示す条件の熱延工程を施し、板厚4.0mmの熱延鋼帯(熱延板)とした。引き続き、これら熱延鋼帯(熱延板)に酸洗処理および、圧下率:80%の冷間圧延を施す冷延工程を施し、板厚0.8mmの冷延鋼帯(冷延板)とした。ついで、これら冷延鋼帯(冷延板)に連続焼鈍ラインにて表4に示す条件の焼鈍工程を施した。なお、焼鈍後の冷却は二段階冷却とした。
Each of the examples of the present invention has a high strength of tensile strength TS590MPa or more, and a strength-ductility balance (TS × El) of 19,000MPa or more, which is excellent in strength-ductility balance and also excellent in surface beauty. I was On the other hand, in Comparative Examples outside the range of the present invention, the strength-ductility balance (TS × El) is a low value.
(Example 2)
Molten steel having compositions No. O, No. P, and No. Q shown in Table 1 was smelted in a converter and made into a steel slab by a continuous casting method. Next, these steel slabs were subjected to a hot-rolling process under the conditions shown in Table 4 to obtain a hot-rolled steel strip (hot-rolled sheet) having a thickness of 4.0 mm. Subsequently, these hot-rolled steel strips (hot-rolled sheets) are subjected to pickling treatment and a cold-rolling step of performing cold rolling at a rolling reduction of 80% to form a 0.8 mm-thick cold-rolled steel strip (cold-rolled sheet). did. Next, these cold-rolled steel strips (cold-rolled sheets) were subjected to an annealing step under the conditions shown in Table 4 in a continuous annealing line. The cooling after annealing was performed in two stages.

得られた冷延鋼帯(冷延板)に、さらに伸び率:0.5 %の調質圧延を施した。   The resulting cold-rolled steel strip (cold-rolled sheet) was further subjected to temper rolling at an elongation of 0.5%.

得られた冷延鋼帯から試験片を採取し、実施例1と同様に組織観察、引張試験を実施した。得られた結果を表5に示す。   A test piece was collected from the obtained cold-rolled steel strip, and a structure observation and a tensile test were performed in the same manner as in Example 1. Table 5 shows the obtained results.

Figure 2004332104
Figure 2004332104

Figure 2004332104
Figure 2004332104

Figure 2004332104
Figure 2004332104

Figure 2004332104
Figure 2004332104

本発明例は、いずれも、引張強さTS590MPa以上の高強度を有し、かつ強度−延性バランス(TS×El)が19000MPa以上と、強度−延性バランスに優れるうえ、表面の美麗性にも優れていた。これに対し、本発明の範囲を外れる比較例では、強度−延性バランス(TS×El)が低い値となっている。   Each of the examples of the present invention has a high strength of tensile strength TS590MPa or more, and a strength-ductility balance (TS × El) of 19,000MPa or more, which is excellent in strength-ductility balance and also excellent in surface beauty. I was On the other hand, in Comparative Examples outside the range of the present invention, the strength-ductility balance (TS × El) is a low value.

残留オーステナイト量と固溶N量の関係を示すグラフである。4 is a graph showing the relationship between the amount of retained austenite and the amount of dissolved N. 強度−延性バランス(TS×El)と固溶N量の関係を示すグラフである。It is a graph which shows the relationship between strength-ductility balance (TSxEl) and the amount of solid solution N. 残留オーステナイト量と{( 500−303 C−300 N−31Mn−15Si)−Ts}の関係を示すグラフである。It is a graph which shows the relationship between the amount of retained austenite and {(500-303C-300N-31Mn-15Si) -Ts}. 強度−延性バランス(TS×El)と{( 500−303 C−300 N−31Mn−15Si)−Ts}の関係を示すグラフである。It is a graph which shows the relationship of strength-ductility balance (TSxEl) and {(500-303C-300N-31Mn-15Si) -Ts}.

Claims (9)

質量%で
C:0.03〜0.20%、 Si:0.4 %未満、
Mn:1.0 〜3.0 %、 P:0.08%以下、
S:0.01%以下
を含み、Al、Nを、Al:0.02%以下、N:0.008〜0.025%の範囲内でかつN含有量とAl含有量との比、N/Alが0.5 以上となるように含有し、さらに固溶状態のNを0.005 %以上含み、残部Feおよび不可避的不純物からなる組成と、体積率で、60〜94%のフェライト相と、3〜30%のマルテンサイト相と、3.0 %以上の残留オーステナイト相とを含む組織と、を有することを特徴とする高張力冷延鋼板。
C: 0.03-0.20% by mass%, Si: less than 0.4%,
Mn: 1.0 to 3.0%, P: 0.08% or less,
S: 0.01% or less, Al and N, Al: 0.02% or less, N: within the range of 0.008 to 0.025%, and the ratio of N content to Al content, N / Al becomes 0.5 or more. And a composition containing 0.005% or more of N in the solid solution state, the balance being Fe and unavoidable impurities, a ferrite phase of 60 to 94% by volume, a martensite phase of 3 to 30%, A high-strength cold-rolled steel sheet having a structure containing at least 3.0% of a retained austenite phase.
前記組成に加えてさらに、質量%で、Cr:0.05〜1.5 %、Mo:0.05〜1.5 %のうちの1種または2種を含有することを特徴とする請求項1に記載の高張力冷延鋼板。   2. The high tension cold roll according to claim 1, further comprising one or two of 0.05 to 1.5% of Cr and 0.05 to 1.5% of Mo in mass% in addition to the composition. steel sheet. 前記組成に加えてさらに、質量%で、Cu:0.005 〜1.5 %、Ni:0.005 〜1.5 %のうちの1種または2種を含有することを特徴とする請求項1または2に記載の高張力冷延鋼板。   The high tensile strength according to claim 1 or 2, further comprising one or two of Cu: 0.005 to 1.5% and Ni: 0.005 to 1.5% by mass% in addition to the composition. Cold rolled steel sheet. 前記組成に加えてさらに、質量%で、Nb、Ti、V、Bのうちの1種または2種以上を下記(1)式を満足するように含有することを特徴とする請求項1ないし3のいずれかに記載の高張力冷延鋼板。

N/(Al+Nb+Ti+V+B)≧0.5 …………(1)
ここで、N、Al、Nb、Ti、V、B:各元素の含有量(質量%)
4. The composition according to claim 1, further comprising, in mass%, one or more of Nb, Ti, V, and B so as to satisfy the following formula (1). A high-tensile cold-rolled steel sheet according to any one of the above.
Record
N / (Al + Nb + Ti + V + B) ≧ 0.5 (1)
Here, N, Al, Nb, Ti, V, B: content of each element (% by mass)
質量%で
C:0.03〜0.20%、 Si:0.4 %未満、
Mn:1.0 〜3.0 %、 P:0.08%以下、
S:0.01%以下
を含み、Al、Nを、Al:0.02%以下、N:0.008〜0.025%の範囲内でかつN含有量とAl含有量との比、N/Alが0.5 以上となるように含有し、残部Feおよび不可避的不純物からなる組成の鋼スラブを、スラブ加熱温度:1000℃以上に加熱したのち、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し熱延板とし、巻取温度:750 ℃以下で巻き取る熱間圧延工程と、該熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板にAc1 変態点以上における平均加熱速度を0.5 〜3℃/sとして、( Ac3変態点−50℃)〜( Ac3変態点+ 100℃)の温度範囲の焼鈍温度に加熱した後、平均冷却速度:30〜100 ℃/sで、下記(2)式を満足する冷却停止温度Ts まで冷却し、{( 500−303 C−300 N−31Mn−15Si)−270 }〜{( 500−303 C−300 N−31Mn−15Si)−70}℃の温度域で50s以上滞留させる焼鈍工程と、を施すことを特徴とする高張力冷延鋼板の製造方法。

{( 500−303 C−300 N−31Mn−15Si)−270 }≦Ts≦{( 500−303 C−300 N−31Mn−15Si)−70}℃ ………(2)
ここで、Ts:冷却停止温度(℃)
C、N、Mn、Si:各元素の含有量(質量%)
C: 0.03-0.20% by mass%, Si: less than 0.4%,
Mn: 1.0 to 3.0%, P: 0.08% or less,
S: 0.01% or less, Al and N, Al: 0.02% or less, N: within the range of 0.008 to 0.025%, and the ratio of N content to Al content, N / Al becomes 0.5 or more. Slab having a composition consisting of the balance Fe and unavoidable impurities is heated to a slab heating temperature of 1000 ° C. or higher, and then rough-rolled to form a sheet bar. C. or higher, to give a hot-rolled sheet, and a hot-rolling step of winding at a temperature of 750 ° C. or lower, and a cold-rolling step of cold-rolling the hot-rolled sheet to form a cold-rolled sheet. After the cold-rolled sheet was heated to an annealing temperature in a temperature range of (Ac3 transformation point −50 ° C.) to (Ac3 transformation point + 100 ° C.) with an average heating rate of 0.5 to 3 ° C./s above the Ac1 transformation point, Average cooling rate: 30 to 100 ° C./s, cooling to the cooling stop temperature Ts satisfying the following formula (2), Δ (500-303 C-300 N-31) Mn-15Si) -270 鋼板-} (500-303 C-300 N-31Mn-15Si) -Annealing step of staying at least 70s in the temperature range of -70} C Manufacturing method.
Note {(500-303C-300N-31Mn-15Si) -270} ≤Ts≤ {(500-303C-300N-31Mn-15Si) -70} C (2)
Here, Ts: cooling stop temperature (° C.)
C, N, Mn, Si: Content of each element (% by mass)
質量%で
C:0.03〜0.20%、 Si:0.4 %未満、
Mn:1.0 〜3.0 %、 P:0.08%以下、
S:0.01%以下
を含み、Al、Nを、Al:0.02%以下、N:0.008〜0.025%の範囲内でかつN含有量とAl含有量との比、N/Alが0.5 以上となるように含有し、残部Feおよび不可避的不純物からなる組成の鋼スラブを、スラブ加熱温度:1000℃以上に加熱したのち、粗圧延してシートバーとし、ついで該シートバーに仕上圧延出側温度:800 ℃以上とする仕上圧延を施し熱延板とし、巻取温度:750 ℃以下で巻き取る熱間圧延工程と、該熱延板に冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板にAc1 変態点以上における平均加熱速度を0.5 〜3℃/sとして、( Ac3変態点−50℃)〜( Ac3変態点+ 100℃)の温度範囲の焼鈍温度に加熱した後、平均冷却速度:1〜10℃/sで550〜750℃の範囲の温度まで冷却する第一段冷却と、該第一段冷却に引き続いて平均冷却速度:15〜100 ℃/sで、下記(2)式を満足する冷却停止温度Ts まで冷却する第二段冷却とを施し、{( 500−303 C−300 N−31Mn−15Si)−270 }〜{( 500−303 C−300 N−31Mn−15Si)−70}℃の温度域で50s以上滞留させる焼鈍工程と、を施すことを特徴とする高張力冷延鋼板の製造方法。

{( 500−303 C−300 N−31Mn−15Si)−270 }≦Ts≦{( 500−303 C−300 N−31Mn−15Si)−70}℃ ………(2)
ここで、Ts:冷却停止温度(℃)
C、N、Mn、Si:各元素の含有量(質量%)
C: 0.03-0.20% by mass%, Si: less than 0.4%,
Mn: 1.0 to 3.0%, P: 0.08% or less,
S: 0.01% or less, Al and N, Al: 0.02% or less, N: within the range of 0.008 to 0.025%, and the ratio of N content to Al content, N / Al becomes 0.5 or more. Slab having a composition consisting of the balance Fe and unavoidable impurities is heated to a slab heating temperature of 1000 ° C. or higher, and then rough-rolled to form a sheet bar. C. or higher, to give a hot-rolled sheet, and a hot-rolling step of winding at a temperature of 750 ° C. or lower, and a cold-rolling step of cold-rolling the hot-rolled sheet to form a cold-rolled sheet. After the cold-rolled sheet was heated to an annealing temperature in a temperature range of (Ac3 transformation point −50 ° C.) to (Ac3 transformation point + 100 ° C.) with an average heating rate of 0.5 to 3 ° C./s above the Ac1 transformation point, Average cooling rate: first stage cooling at 1 to 10 ° C / s to a temperature in the range of 550 to 750 ° C, and averaged following the first stage cooling Cooling speed: 15 to 100 ° C./s, second stage cooling for cooling to the cooling stop temperature Ts satisfying the following formula (2), and Δ (500-303C-300N-31Mn-15Si) -270 A method for producing a high-strength cold-rolled steel sheet, which comprises performing an annealing step of staying in a temperature range of} to {(500-303C-300N-31Mn-15Si) -70} C for 50 seconds or more.
Note {(500-303C-300N-31Mn-15Si) -270} ≤Ts≤ {(500-303C-300N-31Mn-15Si) -70} C (2)
Here, Ts: cooling stop temperature (° C.)
C, N, Mn, Si: Content of each element (% by mass)
前記組成に加えてさらに、質量%で、Cr:0.05〜1.5 %、Mo:0.05〜1.5 %のうちの1種または2種を含有することを特徴とする請求項5または6に記載の高張力冷延鋼板の製造方法。   The high tensile strength according to claim 5 or 6, further comprising one or two of 0.05 to 1.5% of Cr and 0.05 to 1.5% of Mo in mass% in addition to the composition. Manufacturing method of cold rolled steel sheet. 前記組成に加えてさらに、質量%で、Cu:0.005 〜1.5 %、Ni:0.005 〜1.5 %のうちの1種または2種を含有することを特徴とする請求項5ないし7のいずれかに記載の高張力冷延鋼板の製造方法。   8. The composition according to claim 5, further comprising one or two of Cu: 0.005 to 1.5% and Ni: 0.005 to 1.5% by mass in addition to the composition. Manufacturing method of high tension cold rolled steel sheet. 前記組成に加えてさらに、質量%で、Nb、Ti、V、Bのうちの1種または2種以上を下記(1)式を満足するように含有することを特徴とする請求項5ないし8のいずれかに記載の高張力冷延鋼板の製造方法。

N/(Al+Nb+Ti+V+B)≧0.5 …………(1)
ここで、N、Al、Nb、Ti、V、B:各元素の含有量(質量%)
9. The composition according to claim 5, further comprising one or more of Nb, Ti, V, and B in mass% so as to satisfy the following formula (1). The method for producing a high-tensile cold-rolled steel sheet according to any one of the above.
Record
N / (Al + Nb + Ti + V + B) ≧ 0.5 (1)
Here, N, Al, Nb, Ti, V, B: content of each element (% by mass)
JP2003429884A 2003-04-16 2003-12-25 High tensile cold-rolled steel sheet and method for producing the same Expired - Fee Related JP4292986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429884A JP4292986B2 (en) 2003-04-16 2003-12-25 High tensile cold-rolled steel sheet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003111208 2003-04-16
JP2003429884A JP4292986B2 (en) 2003-04-16 2003-12-25 High tensile cold-rolled steel sheet and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009039082A Division JP5035268B2 (en) 2003-04-16 2009-02-23 High tensile cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2004332104A true JP2004332104A (en) 2004-11-25
JP4292986B2 JP4292986B2 (en) 2009-07-08

Family

ID=33513192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429884A Expired - Fee Related JP4292986B2 (en) 2003-04-16 2003-12-25 High tensile cold-rolled steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4292986B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209384A (en) * 2008-02-29 2009-09-17 Jfe Steel Corp High-strength hot-dip galvanized steel sheet superior in workability and weldability, and manufacturing method therefor
JP2010100896A (en) * 2008-10-23 2010-05-06 Kobe Steel Ltd High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
CN105603306A (en) * 2016-01-25 2016-05-25 唐山钢铁集团有限责任公司 Dual-phase steel with transformation induced plasticity characteristic and production method thereof
JP2016141816A (en) * 2015-01-29 2016-08-08 新日鐵住金株式会社 Steel sheet blank, and steel sheet for laser cutting processing and production method of steel sheet for laser cutting processing
EP2886674A4 (en) * 2012-08-15 2016-11-30 Nippon Steel & Sumitomo Metal Corp Steel sheet for hot pressing use, method for producing same, and hot press steel sheet member
CN112313352A (en) * 2018-06-29 2021-02-02 东洋钢钣株式会社 Hot-rolled steel sheet, high-strength cold-rolled steel sheet, and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209384A (en) * 2008-02-29 2009-09-17 Jfe Steel Corp High-strength hot-dip galvanized steel sheet superior in workability and weldability, and manufacturing method therefor
JP2010100896A (en) * 2008-10-23 2010-05-06 Kobe Steel Ltd High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
EP2886674A4 (en) * 2012-08-15 2016-11-30 Nippon Steel & Sumitomo Metal Corp Steel sheet for hot pressing use, method for producing same, and hot press steel sheet member
US10570470B2 (en) 2012-08-15 2020-02-25 Nippon Steel Corporation Steel sheet for hot stamping, method of manufacturing the same, and hot stamped steel sheet member
JP2016141816A (en) * 2015-01-29 2016-08-08 新日鐵住金株式会社 Steel sheet blank, and steel sheet for laser cutting processing and production method of steel sheet for laser cutting processing
CN105603306A (en) * 2016-01-25 2016-05-25 唐山钢铁集团有限责任公司 Dual-phase steel with transformation induced plasticity characteristic and production method thereof
CN112313352A (en) * 2018-06-29 2021-02-02 东洋钢钣株式会社 Hot-rolled steel sheet, high-strength cold-rolled steel sheet, and method for producing same
CN112313352B (en) * 2018-06-29 2023-06-27 东洋钢钣株式会社 Hot-rolled steel sheet, high-strength cold-rolled steel sheet, and method for producing same

Also Published As

Publication number Publication date
JP4292986B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP6704995B2 (en) Aluminum-iron alloy plated steel sheet for hot forming excellent in hydrogen delayed fracture resistance, peeling resistance, and weldability, and hot forming member using the same
US11427880B2 (en) High-strength galvanized steel sheet and method for manufacturing same
KR100595946B1 (en) High tensile cold-rolled steel sheet having excellent strain aging hardening properties
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP4524850B2 (en) High-tensile cold-rolled steel sheet with excellent ductility and strain age hardening characteristics and method for producing high-tensile cold-rolled steel sheet
JP5151504B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP4559969B2 (en) Hot-rolled steel sheet for processing and manufacturing method thereof
WO2001092593A1 (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
EP3178953A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP2005154906A (en) High tensile strength cold-rolled steel sheet having excellent strain age hardening property, and its production method
JP4692018B2 (en) High-tensile hot-rolled steel sheet with excellent strength-ductility balance and method for producing the same
JP2011149066A (en) Cold rolled steel sheet, hot rolled steel sheet, and method for producing them
EP3901293B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method therefor
CN115461482B (en) Steel sheet, component, and method for manufacturing same
JP4839527B2 (en) Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2007077510A (en) High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP5035268B2 (en) High tensile cold-rolled steel sheet
JP4300793B2 (en) Manufacturing method of hot-rolled steel sheet and hot-dip steel sheet with excellent material uniformity
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP5397263B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2009013488A (en) High strength cold-rolled steel and manufacturing method thereof
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP4292986B2 (en) High tensile cold-rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees