JP2004330993A - Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance - Google Patents

Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance Download PDF

Info

Publication number
JP2004330993A
JP2004330993A JP2003132842A JP2003132842A JP2004330993A JP 2004330993 A JP2004330993 A JP 2004330993A JP 2003132842 A JP2003132842 A JP 2003132842A JP 2003132842 A JP2003132842 A JP 2003132842A JP 2004330993 A JP2004330993 A JP 2004330993A
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
corrosion resistance
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003132842A
Other languages
Japanese (ja)
Inventor
Wakahiro Harada
和加大 原田
Toshiro Adachi
俊郎 足立
Hiroki Tomimura
宏紀 冨村
Yasutoshi Hideshima
保利 秀嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003132842A priority Critical patent/JP2004330993A/en
Publication of JP2004330993A publication Critical patent/JP2004330993A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel tank and a fuel supply pipe that are made of stainless steel plate excellent in corrosion resistance, moldability and shock resistance and can keep crevice corrosion resistance for a long time in a severe corrosive atmosphere. <P>SOLUTION: The stainless steel contains 0.015 mass% or less C, 0.5 mass% or less Si, 11.0-25.0 mass% or less of Cr, 0.020 mass% or less N, 0.05-0.50 mass% or less Ti, 0.10-0.50 mass% or less Nb, and 0.0100 mass% or less B, and further contains one or more of 3.0 mass% or less Mo, 2.0 mass% or less Ni, 2.0 mass% or less Cu, and 4.0 mass% or less Al if necessary. A ferritic stainless steel plate where breaking elongation is 30% or more when it is processed by one axis tension and r<SB>min</SB>value of Lankford value (r value) is 1.3 or more is used as a substrate. At least an overlapping section of the substrate ferritic stainless steel plate and the surface of a welding section are coated with zinc rich paint. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、ガソリンあるいはメタノール含有ガソリン等の燃料を供給する自動車用燃料タンクおよび燃料を補給する給油管に関する。
【0002】
【従来の技術】
自動車や自動二輪に搭載される燃料タンク(以下、燃料タンクで総称する)は、ガソリンを通常貯蔵しているが、気密性が悪いと気化したガソリンが大気中に散逸する。ガソリンは常に貯蔵されているわけではないが、随時ガソリンが通る給油管も同様な現象が生じる。ガソリンの散逸は、最近特に重視されている地球環境に悪影響を及ぼす原因の一つである。この点、樹脂を素材とした従来の燃料タンクでは、十分な気密性が確保できない。Pbめっき鋼板,Alめっき鋼板等の表面処理鋼板を素材にした燃料タンクも知られているが、燃料タンクに加工する際にめっき層に剥離や亀裂が生じやすい。剥離,亀裂等の欠陥部は、ガソリンの劣化によって生じる有機酸を含む腐食性環境に曝されたとき腐食発生の起点となる。その結果、孔食による穴開き等が発生すると気密性が低下する。
他方、外面に対しては、寒冷地等、道路に融雪剤を撒くような地域においては、燃料タンクや給油管の外面に関しては厳しい腐食環境になっているため、長期的な耐食性の点で満足できていない。
また、近年、自動車材料は全般的に耐久性の向上が求められる中にあって、燃料タンク,給油管ともに、そのニーズに対応できていないのが現状である。
【0003】
【発明が解決しようとする課題】
気密性の観点からは、代表的な耐食材料であるステンレス鋼を燃料タンクや給油管の素材に使用することが検討されている(例えば、特開2002−219952号公報,特開2002−363712号公報参照)。しかし、ステンレス鋼は普通鋼に比較すると加工性に劣るため、加工する際、加工割れを生じ、所定形状への成形が困難であった。加工割れは、燃料タンク,給油管の気密性を損ない、貯蔵燃料を揮散させる原因となる。
耐食性の観点からは、加工によって導入される欠陥部が腐食起点となりやすく、特に劣化ガソリンと接触する燃料タンク内面では穴開きに至る孔食が発生しやすい。また、燃料タンク,給油管両部材とも、シーム溶接部あるいは燃料タンク固定用のバンドと燃料タンク本体間,サポート溶接部等で隙間が形作られ、雨水等の侵入によりステンレス鋼独特の腐食である隙間腐食を生じる。特に融雪塩を撒くような地域においては、それらの溶接隙間部に塩分が侵入し、乾燥・濃縮が起こるため、極めて厳しい腐食環境となる。隙間腐食の成長によっては穴開き腐食を起こす可能性もあり、燃料タンクや給油管として機能性を大きく損なう場合がある。
【0004】
これらの耐食性上の問題を解決するために、カチオン塗装や重塗装が施される場合があるが、製造工程が増え、かつ塗装費用によりコスト的に不利となる。また製品の重量が増し、軽量化に対しても不利となる。これらの防食処理を施すことなく、安価に防食できる材料が望まれる。
そこで、本発明は、このような問題を解消すべく案出されたものであり、燃料タンクや給油管への加工に必要な成形性を備えた素材で構成され、耐衝撃特性を備えるとともに、厳しい腐食環境においても長期にわたって耐食性を保持できる燃料タンクや給油管を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の耐食性に優れたステンレス鋼製の自動車用燃料タンク及び給油管は、その目的を達成するため、基材のフェライト系ステンレス鋼板が、C:0.015質量%以下,Si:0.5質量%以下,Cr:11.0〜25.0質量%,N:0.020質量%以下,Ti:0.05〜0.50質量%,Nb:0.10〜0.50質量%,B:0.0100質量%以下を含むものであり、一軸引張りで加工したときの破断伸びが30%以上,ランクフォード値(r値)のrmin値が1.3以上のフェライト系ステンレス鋼板を基材として形作られ、基材フェライト系ステンレス鋼板の少なくとも重ね合せ部および溶接部の表面にジンクリッチペイント層が設けられていることを特徴とする。
基材のフェライト系ステンレス鋼板には、さらに必要に応じて、Mo:3.0質量%以下,Ni:2.0質量%以下,Cu:2.0質量%以下,Al:4.0質量%以下の1種以上を含むこともできる。
【0006】
【作用】
本発明者等は、燃料タンクや給油管を製造するにあたり、まず、成形過程での加工起因の割れを誘発させることなく、また長期間にわたって優れた気密性を維持できる材料を探索した結果、基材の材質が特定され、Crリッチの不動態皮膜が基材表面に形成されているフェライト系のステンレス鋼の使用に到達した。
次に、鋼板の重ね合せ部や溶接部に形成される隙間における耐隙間腐食性向上の観点から、燃料タンクや給油管の表面、少なくとも鋼板の重ね合せ部や溶接部の表面をジンクリッチペイント層で被覆することに到達した。
以下にその詳細を説明する。
【0007】
燃料タンク,給油管は、複雑な形状に鋼板を多段プレス加工することにより製造されている。燃料タンクや給油管のような形状に鋼板を成形するときのプレス加工は、伸び,圧縮等が複合された複雑な塑性変形を伴う加工である。そのため、素材として使用するステンレス鋼の加工性が不足すると、絞り成形途中や絞り後の衝撃加工や二次加工時にクラックが発生しやすい。
【0008】
フェライト系ステンレス鋼は、普通鋼に比較してCr含有量が高いため硬質化しており、伸びも低い。そのため、素材の延性に基づく、張出し要素による加工性の向上が期待できないので、板厚収縮または幅方向に沿った材料流入の指標としてランクフォード値(r値)に着目し、燃料タンクや給油管への成形に耐えるステンレス鋼を調査した。r値の中でも、特に重要な因子は、圧延方向(L方向)、圧延方向に対して45度方向(D方向)ならびに圧延方向に対して垂直方向(T方向)での、最小のr値、rmin値である。種々検討した結果、一軸引張りで加工したときの破断伸びが30%以上,rmin値が1.3以上のフェライト系ステンレス鋼板を使用すると、絞り成形時や二次的な加工時に割れ等の欠陥が発生することなく、所定形状の燃料タンクや給油管に成形できることを見出した。
【0009】
なお、破断伸びの測定に当たっては,圧延方向に平行な方向を長手方向にするサンプルを各鋼板から切り出し、JIS Z2201に規定される13B号試験片に加工し、データを採取した。破断伸びは、速度10mm/分で試験片を引張り、破断後の試験片を突き合わせて標点間距離の伸び率を測定し、この測定値を使用した。
ランクフォード値(r値)の測定は、同じくJIS13B号試験片を使用し、15%の引張り歪を与えた後、圧延方向(L方向),圧延方向に対して45度方向(D方向)ならびに圧延方向に対して垂直方向(T方向)でのr値を求めた。上記3方向で求めたr値の中で最も低いr値をrminとした。r値は板厚および板幅を測定し、幅収縮率の自然対数値を板厚減少率の自然対数値で除した値として算出した。
【0010】
次に、本発明鋼の防食効果について説明する。
燃料タンクや給油管の内部はガソリンが存在する環境となる。ガソリンが劣化すると低級有機酸が生成し、これが結晶水に移行して腐食環境が形成される。これまでのめっきでは強変形を受けた箇所でめっき剥離部分があり、その部分で優先侵食等が起こる問題があったが、ステンレス鋼を用いることで従来のめっき鋼板よりも劣化ガソリンに対して優れた耐食性を示す。
【0011】
燃料タンクや給油管を形作る素材としてステンレス鋼を用い、燃料タンクや給油管を形作った後、その表面をジンクリッチペイント層で被覆すると、従来のステンレス鋼やZnめっき鋼板では得られなかったZnの防食効果が期待できる。すなわち、従来のジンクリッチ塗装鋼板では、金属Znが鋼板上に存在しているときには犠牲溶解により下地鋼の腐食が抑制されているが、金属Znが消失してしまうと、下地鋼は腐食する。この結果、赤錆となり、美観を損なうとともに穴開きに至る。
【0012】
本発明者等は、ステンレス鋼にZn粉あるいはそれらを含有する塗料、すなわちジンクリッチペイントを塗布した材料について検討した結果、Znの犠牲溶解による犠牲防食作用のみならず、Znの腐食生成物の付着による腐食抑制作用があることを見出した。ここで、Znの腐食生成物による腐食抑制作用とはステンレス鋼板表面に付着したZnの腐食生成物が腐食過程における陰極反応である酸素還元反応を抑制する作用と、水酸化亜鉛の剥離によるpH緩衝作用である。この作用はめっき下地鋼にステンレス鋼を用いた場合にのみ発現されるもので、普通鋼を用いた場合には観察されなかった。また、水環境のみならず大気環境においても腐食生成物が存在する限り、同様の防食作用が認められた。
【0013】
ジンクリッチ塗膜より溶出したZnの腐食生成物の防食作用はステンレス鋼の隙間腐食を抑制するのに極めて有効である。Znの腐食生成物はとりまく環境によって異なるが、主に酸化亜鉛ならびに水酸化亜鉛よりなる。Znは中性の水溶液中でも容易に腐食する金属である。特にCl濃度が濃縮するような隙間環境では容易に腐食生成物が生成されるため、ステンレス鋼板が重ね合わされて形成された隙間を有する部位にあっても有効に作用できると考えられる。
以上に説明したように、本発明者等は、本発明鋼であるステンレス鋼板、特にその重ね合せ部や溶接部にジンクリッチペイント層を形成することにより、燃料タンクや給油管での腐食環境においても長期間にわたって耐食性、特に耐隙間腐食性を維持できることを見出した。
【0014】
【実施の態様】
次に、本発明の燃料タンクまたは給油管の具体的態様について説明する。
まず、下地のステンレス鋼としては、下記の組成を有するものが好ましい。なお、各元素の含有量を示す「%」は、特に示さない限り「質量%」とする。
C:0.015%以下
Cは、炭化物を形成し、それが最終焼鈍での再結晶フェライトのランダム化の再結晶核として働く。しかし、Cは冷延焼鈍後の強度を上昇させる元素であり、あまり高いと靭性の低下を招くため、0.015%以下とした。
【0015】
Si:0.5%以下
Siは通常脱酸のために使用するが、固溶強化能が高く、あまりその含有量が多いと材質が硬化し延性の低下を招くので、0.5%以下とした。
Cr:11.0〜25.0%
Crは、ステンレス鋼としての耐食性を発揮するために、11.0%の含有が必要である。しかし、Cr量が多くなると、靭性や加工性の低下を招くため、その上限は25.0%とする。
【0016】
N:0.020%以下
Nは、窒化物を形成し、Cと同様にそれが最終焼鈍での再結晶フェライトの結晶方位ランダム化の再結晶核として働く。しかしNは冷延焼鈍材の強度を上昇させる元素であり、あまり高いと靭性の低下を招くため、0.020%以下とする。
Ti:0.05〜0.50%
TiはC,Nを固定し、加工性および耐食性を向上させる元素である。その効果がでる最低量は0.05%である。しかし、Tiを添加すると、鋼材コストの増大を招き、Ti系介在物が原因の表面欠陥が問題となることから、Ti含有量の上限を0.50%に設定した。
【0017】
Nb:0.10〜0.50%
NbはC,Nを固定し、耐衝撃特性や二次加工性を向上させる元素である。これらの効果がでる最低量は0.10%である。しかし、Nbを添加しすぎると材料が硬化し加工性に悪影響をもたらす。また再結晶温度を上げることにもなる。したがって上限は0.50%とする。
B:0.0100%以下
Bは、Nを固定し、耐食性や加工性を改善する作用をもつ合金成分である。この作用を発揮させるためには0.0005%以上添加することが好ましい。しかし、過剰に添加すると熱間加工性の低下や溶接性の低下を招くので、上限は0.0100%にする。
【0018】
Mo:3.0%以下
Moは、耐食性を改善するのに有効な元素であるが、過剰な添加は高温での固溶強化や動的再結晶の遅滞により、熱間加工性の低下をもたらすので、添加する場合には3.0%以下とすることが好ましい。
Ni:2.0%以下
Niは、オーステナイト形成元素であり、2.0%を超える添加は硬質化やコスト上昇を招くので、添加する場合には2.0%を上限とすることが好ましい。
【0019】
Cu:2.0%以下
Cuは、溶製時のスクラップからの混入等、不可避的に含有されるが、過度の含有は熱間加工性や耐食性を低下させるので、2.0%以下とすることが好ましい。
Al:4.0%以下
Alは、脱酸や耐酸化性のために有効な元素であるが、過剰な添加は表面欠陥の原因となる。したがって上限は4.0%とすることが好ましい。
【0020】
以下の元素は請求項の中では記載していないが、含有していても差し支えない。
Mn:2.0%以下
Mnは、オーステナイト形成元素であり、固溶強化能が小さく材質への悪影響が少ない。しかし、含有量が多いと溶製時にMnヒュームが生成する等、製造性が低下するので、その上限は2.0%とすることが好ましい。
P:0.050%以下
Pは、熱間加工性に有害な元素である。特に0.050%を超えるとその影響は顕著になるので、0.050%以下におさえることが好ましい。
【0021】
S:0.020%以下
Sは、結晶粒界に偏析しやすく、粒界脆化により熱間加工性の低下等を促進する元素である。0.020%を超えるとその影響は顕著になるので、0.020%以下におさえることが好ましい。
V,Zr:0.30%以下
Vは固溶Cを炭化物として析出させる効果による加工性向上、Zrは鋼中の酸素を酸化物として捕らえることによる加工性や靭性向上の面から有効な元素である。しかしながら、多量に添加すると製造性が低下するので、添加する場合は、それぞれ0.30%以下の範囲にすることが好ましい。
これら以外にも、Ca,Mg,Co,REMなどは、溶製中に原料であるスクラップ中より含まれることがあるが、特に多量に含まれる場合を除き、製品の特性には影響しない。
【0022】
次に、好ましい防食皮膜形成について説明する。
【0023】
ジンクリッチ塗膜:
燃料タンクや給油管は素材鋼板を重ね合わせ、必要個所を溶接して製造される。重ね合わされ、あるいは溶接された部位にあっては、隙間が形成され、隙間腐食が進行しやすくなっている。そこで、燃料タンクや給油管の形状に形作られたステンレス鋼板の表面に、特に隙間が形成されている部位の表面にジンクリッチ塗料を塗布する。
ジンクリッチ塗料は、亜鉛粉末を主成分(80%以上)とするものである。バインダーとして、無機系ではアルキルシリケート,エチルシリケート,コロイダルシリケートあるいはリチウムシリケートが、有機系ではエポキシ樹脂やアルキッド樹脂が使用される。亜鉛粉末、バインダー以外に酸化亜鉛,クロム酸塩,酸化鉄等を含むこともできる。
塗布方法としては、はけ塗りやスプレー法で十分である。
【0024】
【実施例】
表1の成分・組成をもつ板厚0.8mmのステンレス鋼板を素材とし、図1に示す形状の燃料タンクを作製した。最終製品に組み立てた後、市販のジンクリッチペイントを約20μmの厚さで塗装した。参考例には、Pbめっき普通鋼板,Alめっき普通鋼板およびSUS430の2D仕上げ材を用いた。
表1中、鋼種No.A〜Eが、本発明で規定した成分・組成を有し、破断伸びおよびrminを満たす鋼であり、鋼種No.F〜Hが、成分・組成が外れ、破断伸び或いはrminについて所定値を外れたものである。なお、この特性は、製品に成形する前の鋼板素材の引張り試験片から求めたものであり、圧延方向,圧延45度方向および圧延90度方向で求めた値の最も低い値を示したものである。
【0025】

Figure 2004330993
【0026】
本発明鋼および各種めっき鋼板より作製した製品を用いて、耐衝撃性と隙間部の耐食性試験を実施した。
耐衝撃試験は、温度を5℃に保持した製品に、φ2mmのビーズを5kgf/mmで1時間吹き付けて割れ発生の状況を観察した。
割れが認められなかったものを○、割れが発生していたものを×で評価した。
隙間部の耐食性試験は、塩乾湿複合サイクル試験により行った。試験の1サイクルは、(5%NaCl中15分)の塩水噴霧→(湿度35%、温度60℃に60分)の乾燥→(湿度95%、温度60℃に180分)の湿潤であり、これを300サイクル行って、隙間腐食部の侵食深さから耐食性を評価した。
隙間腐食が認められなかったものを○、認められたものを×とした。
その評価結果を表2に示す。
【0027】
Figure 2004330993
【0028】
本発明製品は、耐衝撃性と耐食性のいずれにも優れていた。特に、隙間が形成される構造で使用される場合でも、ジンクリッチペイント層を形成したものにあっては、塩害環境に対して優れた耐食性を有していることがわかる。
耐衝撃性について比較鋼をみると、比較鋼Fは、C量が多く、また破断伸びおよびrminのいずれも規定値に満たないため加工性が低く、タンク形状に成形した段階で既に加工割れが発生していた。比較鋼Gは、Nb量が少ないために、耐衝撃性が十分ではなく、衝撃試験で割れが発生していた。また、比較鋼Hは、Cr量が少ないために、ジンクリッチペイントの防食効果が認められず、隙間腐食を生じていた。
また、耐食性について参考として評価した従来鋼板をみると、Pbめっき普通鋼板,Alめっき普通鋼板およびSUS430無垢材には、シーム溶接間隙、金属間隙部ともに侵食が認められた。
【0029】
【発明の効果】
以上に説明したように、本発明の自動車の燃料タンクや給油管は、耐衝撃特性を含めた加工性および耐食性に優れたステンレス鋼板を素材とし、製品形状に形成された後、ステンレス鋼板の少なくとも重ね合わせ部の表面にジンクリッチペイント層が施されている。したがって過酷な加工を施しても、あるいは外的な衝撃を受けても、割れが発生するようなことはない。耐食性に関しても、孔食による穴開きや、外的な溶接空隙があるような部位での塩素イオン濃縮による隙間腐食も抑制され、長期にわたって優れた気密性が維持される。
このため、地球環境にとって有害な貯蔵ガソリンの揮散がない燃料タンクや給油管の提供が可能である。
【図面の簡単な説明】
【図1】燃料タンクの概略斜視図
1:アッパー 2:ロアー 3:ポンプ 4:仕切り板
5:タンクバンド(ゴム) 6:リンホース 7:リテーナー
8:ガスケット 9:給油管
A:エンジン系へ B:エバポ処理系へ
P:プロジェクション溶接 R:リングプロジェクション溶接
S:スポット溶接 T:シーム溶接[0001]
[Industrial applications]
The present invention relates to a fuel tank for a vehicle that supplies fuel such as gasoline or gasoline containing methanol, and a fuel supply pipe that supplies fuel.
[0002]
[Prior art]
Fuel tanks mounted on automobiles and motorcycles (hereinafter collectively referred to as fuel tanks) usually store gasoline, but if the airtightness is poor, gasified gasoline is dissipated into the atmosphere. Although gasoline is not always stored, a similar phenomenon occurs in a fuel supply pipe through which gasoline flows at any time. Dissipation of gasoline is one of the causes that has an adverse effect on the global environment, which has recently been particularly emphasized. In this regard, a conventional fuel tank made of a resin material cannot ensure sufficient airtightness. Fuel tanks made of a surface-treated steel sheet such as a Pb-plated steel sheet or an Al-plated steel sheet are also known. However, when processed into a fuel tank, peeling or cracking is likely to occur in the plating layer. Defects such as peeling and cracks are the starting points of corrosion when exposed to a corrosive environment containing organic acids generated by gasoline degradation. As a result, if a hole or the like due to pitting occurs, the airtightness is reduced.
On the other hand, in areas where snow melting agent is sprayed on roads, such as in cold regions, the outer surfaces of fuel tanks and filling pipes are severely corroded, so they are satisfactory in terms of long-term corrosion resistance. Not done.
In recent years, automobile materials have generally been required to have improved durability, and the current situation is that neither the fuel tank nor the fuel supply pipe can meet the needs.
[0003]
[Problems to be solved by the invention]
From the viewpoint of airtightness, the use of stainless steel, which is a typical corrosion-resistant material, as a material for fuel tanks and fuel supply pipes has been studied (for example, JP-A-2002-219952, JP-A-2002-363712). Gazette). However, stainless steel is inferior in workability as compared with ordinary steel, so that when working, stainless steel cracked and it was difficult to form it into a predetermined shape. The processing cracks impair the airtightness of the fuel tank and the fuel supply pipe and cause the stored fuel to evaporate.
From the viewpoint of corrosion resistance, a defect introduced by processing is likely to be a corrosion starting point, and particularly, pitting corrosion leading to perforation is likely to occur on the inner surface of a fuel tank that comes into contact with deteriorated gasoline. In addition, a gap is formed between the fuel tank and the fuel supply pipe both at the seam weld or between the fuel tank fixing band and the fuel tank main body, at the support weld, and the like. Causes corrosion. Particularly in an area where snow-melting salt is scattered, salt penetrates into these welding gaps, causing drying and concentration, resulting in an extremely severe corrosive environment. Depending on the growth of crevice corrosion, perforation corrosion may occur, which may greatly impair the functionality as a fuel tank or fuel supply pipe.
[0004]
In order to solve these corrosion resistance problems, cationic coating or heavy coating may be applied. However, the number of manufacturing steps increases, and the coating cost is disadvantageous in terms of cost. In addition, the weight of the product increases, which is disadvantageous for weight reduction. Materials that can be inexpensively protected without performing such anticorrosion treatment are desired.
Therefore, the present invention has been devised to solve such a problem, and is made of a material having moldability necessary for processing into a fuel tank and a fuel supply pipe, and has an impact resistance property. An object of the present invention is to provide a fuel tank and a fuel supply pipe that can maintain corrosion resistance for a long period of time even in a severely corrosive environment.
[0005]
[Means for Solving the Problems]
In order to achieve the object, the stainless steel automobile fuel tank and the fuel supply pipe having excellent corrosion resistance according to the present invention have a ferrite stainless steel sheet as a base material having a C content of 0.015% by mass or less and a Si content of 0.5%. % By mass, Cr: 11.0 to 25.0% by mass, N: 0.020% by mass or less, Ti: 0.05 to 0.50% by mass, Nb: 0.10 to 0.50% by mass, B : Based on a ferritic stainless steel sheet having a breaking elongation of 30% or more when processed by uniaxial tension and a r min value of a Rankford value (r value) of 1.3 or more when processed by uniaxial tension. A zinc-rich paint layer is provided on at least the overlapped portion and the welded surface of the base ferritic stainless steel sheet.
The ferrite stainless steel sheet of the base material further includes Mo: 3.0% by mass or less, Ni: 2.0% by mass or less, Cu: 2.0% by mass or less, and Al: 4.0% by mass, as necessary. One or more of the following may be included.
[0006]
[Action]
In producing a fuel tank and a fuel supply pipe, the present inventors first searched for a material that does not induce cracking due to processing in the molding process and that can maintain excellent airtightness over a long period of time. The material of the material was specified, and the use of ferritic stainless steel in which a Cr-rich passivation film was formed on the substrate surface was reached.
Next, from the viewpoint of improving the crevice corrosion resistance in the gaps formed in the overlapped portions and the welded portions of the steel plates, the surface of the fuel tank or the fuel supply pipe, at least the surface of the overlapped portions or the welded portions of the steel plates, is coated with a zinc-rich paint layer. Was reached.
The details will be described below.
[0007]
Fuel tanks and fuel supply pipes are manufactured by performing multi-stage pressing of a steel sheet into a complicated shape. The press working when forming a steel sheet into a shape such as a fuel tank or a fuel supply pipe is a work involving complicated plastic deformation in which elongation, compression, and the like are combined. For this reason, if the workability of the stainless steel used as a material is insufficient, cracks are likely to occur during impact forming or secondary processing during drawing or after drawing.
[0008]
Ferritic stainless steel has a higher Cr content than ordinary steel, so it is hardened and has low elongation. For this reason, it is not possible to expect an improvement in workability due to the overhanging element based on the ductility of the material. Therefore, focusing on the Rankford value (r value) as an index of the thickness shrinkage or the material inflow along the width direction, the fuel tank and the fuel supply pipe Stainless steels that could withstand forming into steel were investigated. Among the r-values, particularly important factors are the minimum r-value in the rolling direction (L direction), a direction at 45 degrees to the rolling direction (D direction) and a direction perpendicular to the rolling direction (T direction), r min value. As a result of various investigations, when a ferritic stainless steel sheet having a breaking elongation of 30% or more and a rmin value of 1.3 or more when processed by uniaxial tension is used, defects such as cracks during drawing and secondary processing. It has been found that it can be formed into a fuel tank or a fuel supply pipe having a predetermined shape without occurrence of cracks.
[0009]
In measuring the elongation at break, a sample having a longitudinal direction parallel to the rolling direction was cut out from each steel sheet, processed into a No. 13B test piece specified in JIS Z2201, and data was collected. For the elongation at break, the test piece was pulled at a speed of 10 mm / min, and the test pieces after breaking were abutted to measure the elongation of the distance between the gauges, and this measured value was used.
For the measurement of the Rankford value (r value), a JIS13B test piece was similarly used, a 15% tensile strain was applied, and then the rolling direction (L direction), the direction at 45 ° to the rolling direction (D direction) and The r value in the direction perpendicular to the rolling direction (T direction) was determined. The lowest r value among the r values obtained in the above three directions was defined as r min . The r-value was calculated as a value obtained by measuring the sheet thickness and the sheet width, and dividing the natural logarithmic value of the width shrinkage rate by the natural logarithmic value of the sheet thickness reduction rate.
[0010]
Next, the anticorrosion effect of the steel of the present invention will be described.
The inside of the fuel tank and the fuel pipe is an environment where gasoline exists. When gasoline is degraded, lower organic acids are generated, which migrate to the water of crystallization, and a corrosive environment is formed. In the past plating, there was a problem of plating erosion, etc., at the places where strong deformation occurred, and there was a problem of preferential erosion, etc., but the use of stainless steel is superior to deteriorated gasoline compared to conventional plated steel sheets. It shows excellent corrosion resistance.
[0011]
Using stainless steel as a material for forming a fuel tank and a fuel supply pipe, forming a fuel tank and a fuel supply pipe, and then coating the surface with a zinc-rich paint layer, it is possible to obtain Zn, which cannot be obtained with conventional stainless steel or Zn-plated steel sheet. Anticorrosion effect can be expected. That is, in the conventional zinc-rich coated steel sheet, when the metal Zn is present on the steel sheet, the corrosion of the base steel is suppressed by sacrificial melting, but when the metal Zn disappears, the base steel is corroded. As a result, it becomes red rust, impairs aesthetics and leads to perforation.
[0012]
The present inventors have studied a material in which Zn powder or a paint containing them, that is, a zinc-rich paint is applied to stainless steel. As a result, not only sacrificial corrosion prevention action due to sacrificial dissolution of Zn but also adhesion of corrosion products of Zn is observed. Has been found to have a corrosion inhibiting action. Here, the corrosion inhibiting action by the corrosion product of Zn means the action of the corrosion product of Zn attached to the surface of the stainless steel plate to suppress the oxygen reduction reaction, which is a cathodic reaction in the corrosion process, and the pH buffer by the peeling of zinc hydroxide. Action. This effect was exhibited only when stainless steel was used as the base steel for plating, and was not observed when ordinary steel was used. In addition, the same anticorrosive action was observed not only in the water environment but also in the air environment as long as the corrosion product was present.
[0013]
The anticorrosion effect of the corrosion product of Zn eluted from the zinc-rich coating film is extremely effective in suppressing crevice corrosion of stainless steel. The corrosion products of Zn vary depending on the surrounding environment, but mainly consist of zinc oxide and zinc hydroxide. Zn is a metal that easily corrodes even in a neutral aqueous solution. In particular, since corrosion products are easily generated in a gap environment where the Cl - concentration is concentrated, it is considered that the corrosion product can be effectively operated even in a portion having a gap formed by overlapping stainless steel plates.
As described above, the present inventors have formed a zinc-rich paint layer on a stainless steel plate, which is the steel of the present invention, particularly on the overlapped portion and welded portion thereof, so that the steel plate can be used in a corrosive environment in a fuel tank or a fuel supply pipe. It was also found that corrosion resistance, particularly crevice corrosion resistance, could be maintained over a long period of time.
[0014]
Embodiment
Next, a specific embodiment of the fuel tank or the fuel supply pipe of the present invention will be described.
First, as the base stainless steel, one having the following composition is preferable. Note that “%” indicating the content of each element is “% by mass” unless otherwise specified.
C: 0.015% or less C forms carbide, which acts as a recrystallization nucleus for randomization of recrystallized ferrite in final annealing. However, C is an element that increases the strength after cold rolling annealing, and if it is too high, it causes a decrease in toughness.
[0015]
Si: 0.5% or less Si is usually used for deoxidation, but the solid solution strengthening ability is high, and if the content is too large, the material is hardened and the ductility is reduced. did.
Cr: 11.0 to 25.0%
Cr must be contained at 11.0% in order to exhibit the corrosion resistance of stainless steel. However, when the amount of Cr increases, toughness and workability decrease, so the upper limit is set to 25.0%.
[0016]
N: 0.020% or less N forms a nitride, which, like C, serves as a recrystallization nucleus for randomizing the crystal orientation of the recrystallized ferrite in the final annealing. However, N is an element that increases the strength of the cold-rolled annealed material, and if it is too high, it causes a decrease in toughness.
Ti: 0.05 to 0.50%
Ti is an element that fixes C and N and improves workability and corrosion resistance. The minimum effect is 0.05%. However, the addition of Ti causes an increase in steel material cost and causes a problem of surface defects caused by Ti-based inclusions. Therefore, the upper limit of the Ti content was set to 0.50%.
[0017]
Nb: 0.10 to 0.50%
Nb is an element that fixes C and N and improves impact resistance and secondary workability. The minimum at which these effects are achieved is 0.10%. However, if Nb is added too much, the material is hardened, which adversely affects workability. It also increases the recrystallization temperature. Therefore, the upper limit is set to 0.50%.
B: 0.0100% or less B is an alloy component having an effect of fixing N and improving corrosion resistance and workability. In order to exhibit this effect, it is preferable to add 0.0005% or more. However, an excessive addition causes a decrease in hot workability and a decrease in weldability, so the upper limit is made 0.0100%.
[0018]
Mo: 3.0% or less Mo is an element effective for improving corrosion resistance. However, excessive addition causes deterioration of hot workability due to solid solution strengthening at high temperatures and delay of dynamic recrystallization. Therefore, when added, it is preferable to be 3.0% or less.
Ni: 2.0% or less Ni is an austenite-forming element, and addition exceeding 2.0% causes hardening and cost increase. Therefore, when adding, the upper limit is preferably 2.0%.
[0019]
Cu: 2.0% or less Cu is inevitably contained such as from scrap during melting, but excessive content lowers hot workability and corrosion resistance. Therefore, Cu is set to 2.0% or less. Is preferred.
Al: 4.0% or less Al is an effective element for deoxidation and oxidation resistance, but excessive addition causes surface defects. Therefore, the upper limit is preferably set to 4.0%.
[0020]
The following elements are not described in the claims, but may be contained.
Mn: 2.0% or less Mn is an austenite-forming element, has a low solid solution strengthening ability, and has little adverse effect on the material. However, if the content is large, the productivity is lowered, such as formation of Mn fume during melting, so the upper limit is preferably set to 2.0%.
P: 0.050% or less P is an element harmful to hot workability. In particular, if the content exceeds 0.050%, the effect becomes remarkable.
[0021]
S: 0.020% or less S is an element that easily segregates at crystal grain boundaries and promotes a reduction in hot workability due to grain boundary embrittlement. If it exceeds 0.020%, the effect becomes remarkable. Therefore, it is preferable to keep the content to 0.020% or less.
V, Zr: 0.30% or less V is an effective element from the aspect of improving workability and toughness by trapping oxygen in steel as an oxide by trapping oxygen in steel as an oxide. is there. However, if added in a large amount, the productivity is reduced. Therefore, when added, it is preferable to set each of the contents to 0.30% or less.
In addition to these, Ca, Mg, Co, REM, and the like may be contained in the scrap as a raw material during melting, but do not affect the characteristics of the product unless particularly contained in large amounts.
[0022]
Next, formation of a preferable anticorrosion film will be described.
[0023]
Zinc rich coating:
Fuel tanks and oil supply pipes are manufactured by laminating steel plates and welding necessary parts. In the overlapped or welded portion, a gap is formed, and the gap corrosion tends to progress. Therefore, a zinc-rich paint is applied to the surface of a stainless steel plate formed in the shape of a fuel tank or an oil supply pipe, particularly to the surface where a gap is formed.
The zinc-rich paint contains zinc powder as a main component (80% or more). As the binder, an alkyl silicate, an ethyl silicate, a colloidal silicate or a lithium silicate is used in an inorganic system, and an epoxy resin or an alkyd resin is used in an organic system. In addition to zinc powder and binder, zinc oxide, chromate, iron oxide and the like can be included.
As a coating method, brushing or spraying is sufficient.
[0024]
【Example】
A 0.8 mm thick stainless steel sheet having the components and compositions shown in Table 1 was used as a raw material to produce a fuel tank having the shape shown in FIG. After assembling into the final product, a commercially available zinc-rich paint was applied to a thickness of about 20 μm. For the reference example, a Pb-plated ordinary steel sheet, an Al-plated ordinary steel sheet, and a SUS430 2D finished material were used.
In Table 1, steel type No. A to E have the components and compositions specified in the present invention and satisfy the elongation at break and r min . F to H are components / compositions deviating from the predetermined values for elongation at break or r min . This property was obtained from a tensile test piece of a steel sheet material before being formed into a product, and showed the lowest value obtained in the rolling direction, the 45 ° direction of rolling, and the 90 ° direction of rolling. is there.
[0025]
Figure 2004330993
[0026]
The impact resistance and the corrosion resistance of the gaps were tested using the products prepared from the steel of the present invention and various types of plated steel sheets.
In the impact resistance test, beads having a diameter of 2 mm were sprayed at 5 kgf / mm 2 on a product maintained at a temperature of 5 ° C. for 1 hour to observe the state of occurrence of cracks.
The case where no crack was observed was evaluated as ○, and the case where cracks occurred was evaluated as x.
The corrosion resistance test of the gap was performed by a salt-dry / wet combined cycle test. One cycle of the test was a salt spray of (15 minutes in 5% NaCl) → drying (35% humidity, temperature 60 ° C. for 60 minutes) → wetting (95% humidity, temperature 60 ° C. for 180 minutes), This was performed for 300 cycles, and the corrosion resistance was evaluated based on the erosion depth of the crevice corrosion portion.
Indicates that no crevice corrosion was observed, and x indicates that it was observed.
Table 2 shows the evaluation results.
[0027]
Figure 2004330993
[0028]
The product of the present invention was excellent in both impact resistance and corrosion resistance. In particular, even when used in a structure in which gaps are formed, it can be seen that those having a zinc-rich paint layer have excellent corrosion resistance to a salt damage environment.
Looking at the comparative steels for impact resistance, comparative steel F has a large C content, and both the elongation at break and r min are less than the specified values, so the workability is low. Had occurred. The comparative steel G had a low Nb content, so that the impact resistance was not sufficient, and cracks occurred in the impact test. In Comparative Steel H, since the amount of Cr was small, the anticorrosion effect of zinc-rich paint was not recognized, and crevice corrosion occurred.
In addition, when the conventional steel sheets evaluated for corrosion resistance as a reference were observed, the Pb-plated ordinary steel sheet, the Al-plated ordinary steel sheet, and the solid SUS430 material were eroded in both the seam weld gap and the metal gap.
[0029]
【The invention's effect】
As described above, the fuel tank and the fuel supply pipe of the automobile of the present invention are made of a stainless steel sheet having excellent workability and corrosion resistance including impact resistance, and after being formed into a product shape, at least the stainless steel sheet is formed. A zinc-rich paint layer is applied to the surface of the overlapping portion. Therefore, even if severe processing is performed or an external impact is applied, cracking does not occur. Regarding the corrosion resistance, perforation due to pitting and crevice corrosion due to chloride ion concentration at a portion where there is an external welding gap are also suppressed, and excellent airtightness is maintained for a long time.
For this reason, it is possible to provide a fuel tank and a fuel supply pipe that do not volatilize stored gasoline that is harmful to the global environment.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a fuel tank 1: an upper 2: a lower 3: a pump 4: a partition plate 5: a tank band (rubber) 6: a phosphorus hose 7: a retainer 8: a gasket 9: an oil supply pipe A: to an engine system B: P: Projection welding R: Ring projection welding S: Spot welding T: Seam welding

Claims (3)

基材のフェライト系ステンレス鋼板が、C:0.015質量%以下,Si:0.5質量%以下,Cr:11.0〜25.0質量%,N:0.020質量%以下,Ti:0.05〜0.50質量%,Nb:0.10〜0.50質量%,B:0.0100質量%以下を含むものであり、一軸引張りで加工したときの破断伸びが30%以上,ランクフォード値(r値)のrmin値が1.3以上のフェライト系ステンレス鋼板を基材として形作られ、基材フェライト系ステンレス鋼板の少なくとも重ね合せ部および溶接部の表面にジンクリッチペイント層が設けられていることを特徴とする耐食性に優れたステンレス鋼製の自動車燃料タンクおよび給油管。The ferrite stainless steel sheet of the base material has C: 0.015% by mass or less, Si: 0.5% by mass or less, Cr: 11.0 to 25.0% by mass, N: 0.020% by mass or less, Ti: 0.05 to 0.50% by mass, Nb: 0.10 to 0.50% by mass, B: 0.0100% by mass or less, the elongation at break when processed by uniaxial tension is 30% or more, A ferrite-based stainless steel sheet having a Rankin value (r-value) r min value of 1.3 or more is formed as a base material, and a zinc-rich paint layer is formed on at least the overlapped portion and the welded surface of the base material ferritic stainless steel plate. An automotive fuel tank and fuel supply pipe made of stainless steel having excellent corrosion resistance and being provided. 基材のフェライト系ステンレス鋼板が、さらにMo:3.0質量%以下を含むものである請求項1に記載の耐食性に優れたステンレス鋼製の自動車燃料タンクおよび給油管。The automotive fuel tank and oil supply pipe made of stainless steel having excellent corrosion resistance according to claim 1, wherein the ferrite stainless steel sheet as the base material further contains Mo: 3.0% by mass or less. 基材のフェライト系ステンレス鋼板が、さらにNi:2.0質量%以下,Cu:2.0質量%以下,Al:4.0質量%以下の1種以上を含むものである請求項1または2に記載の耐食性に優れたステンレス鋼の自動車燃料タンクまたは給油管。The ferritic stainless steel sheet of the base material further contains one or more of Ni: 2.0% by mass or less, Cu: 2.0% by mass or less, and Al: 4.0% by mass or less. Stainless steel automobile fuel tank or fuel filler pipe with excellent corrosion resistance.
JP2003132842A 2003-05-12 2003-05-12 Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance Pending JP2004330993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132842A JP2004330993A (en) 2003-05-12 2003-05-12 Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132842A JP2004330993A (en) 2003-05-12 2003-05-12 Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JP2004330993A true JP2004330993A (en) 2004-11-25

Family

ID=33507562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132842A Pending JP2004330993A (en) 2003-05-12 2003-05-12 Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JP2004330993A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193771A (en) * 2005-01-12 2006-07-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent workability, and its manufacturing method
JP2007000680A (en) * 2005-06-21 2007-01-11 Nippon Steel & Sumikin Stainless Steel Corp Fuel tank or fuel pipe for automobile excellent in durability in salt damage environment
KR100905602B1 (en) 2007-12-13 2009-07-02 주식회사 포스코 TIG Welding Method of Ferritic Stainless Steel for Excellent Formability of Welding Part
JP2009215633A (en) * 2008-03-12 2009-09-24 Nisshin Steel Co Ltd Ferritic stainless steel for oil supply system member
WO2011152537A1 (en) * 2010-06-03 2011-12-08 新日鐵住金ステンレス株式会社 Oil feed pipe and process for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193771A (en) * 2005-01-12 2006-07-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent workability, and its manufacturing method
JP4624808B2 (en) * 2005-01-12 2011-02-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent workability and method for producing the same
JP2007000680A (en) * 2005-06-21 2007-01-11 Nippon Steel & Sumikin Stainless Steel Corp Fuel tank or fuel pipe for automobile excellent in durability in salt damage environment
KR100905602B1 (en) 2007-12-13 2009-07-02 주식회사 포스코 TIG Welding Method of Ferritic Stainless Steel for Excellent Formability of Welding Part
JP2009215633A (en) * 2008-03-12 2009-09-24 Nisshin Steel Co Ltd Ferritic stainless steel for oil supply system member
WO2011152537A1 (en) * 2010-06-03 2011-12-08 新日鐵住金ステンレス株式会社 Oil feed pipe and process for producing same
CN102947116A (en) * 2010-06-03 2013-02-27 新日铁住金不锈钢株式会社 Oil feed pipe and process for producing same
US9249901B2 (en) 2010-06-03 2016-02-02 Nippon Steel & Sumikin Stainless Steel Corporation Fuel pipe and method of production of same
CN102947116B (en) * 2010-06-03 2016-02-03 新日铁住金不锈钢株式会社 Rail and manufacture method thereof

Similar Documents

Publication Publication Date Title
JP4014907B2 (en) Stainless steel fuel tank and fuel pipe made of stainless steel with excellent corrosion resistance
JP5058574B2 (en) Anti-corrosion steel plate for ship ballast tanks to be anticorrosive and rust prevention method for ship ballast tanks
JP5691350B2 (en) Structural steels and steel structures with excellent weather resistance
JP6405910B2 (en) Corrosion resistant steel
JP4525687B2 (en) Corrosion resistant steel for ships
JP6084769B2 (en) Oil supply pipe and manufacturing method thereof
JP5861335B2 (en) Welded joint with excellent corrosion resistance
JP2003277992A5 (en)
JP2002363711A (en) Ferritic stainless steel sheet for fuel tank
KR20110084462A (en) Corrosion-resistant steel material for ship and vessel
JP5446278B2 (en) Structural steel with excellent weather resistance
JP6782621B2 (en) Automotive parts
JP4616181B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
JP6260755B1 (en) Steel for ship ballast tank and ship
JP2010229526A (en) Highly-corrosion-resistant painted steel material
JP4483107B2 (en) Marine steel with excellent coating life
JP2004277767A (en) Austenitic stainless steel for automotive oil filler pipe and fuel tank, and automotive oil filler pipe and fuel tank
JP2004330993A (en) Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
EP1378548A1 (en) Chromium containing ferritic stainless steel comprising a corrosion resistant film containing small metal particles
JP2003221660A (en) Fuel tank for vehicle made from hot-dip aluminized stainless steel sheet
JP4476928B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP3941762B2 (en) Ferritic stainless steel for automobile fuel tank and fuel tank peripheral parts
JP2001164341A (en) Steel excellent in corrosion resistance in working area
JP2011094184A (en) Highly corrosion resistant painted steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219