JP2004330227A - Bead patching method for circumferential multilayer welding, and automatic welding equipment - Google Patents

Bead patching method for circumferential multilayer welding, and automatic welding equipment Download PDF

Info

Publication number
JP2004330227A
JP2004330227A JP2003127643A JP2003127643A JP2004330227A JP 2004330227 A JP2004330227 A JP 2004330227A JP 2003127643 A JP2003127643 A JP 2003127643A JP 2003127643 A JP2003127643 A JP 2003127643A JP 2004330227 A JP2004330227 A JP 2004330227A
Authority
JP
Japan
Prior art keywords
welding
pass
torch
bead
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003127643A
Other languages
Japanese (ja)
Other versions
JP4788094B2 (en
Inventor
Akiyoshi Imanaga
昭慈 今永
Mitsuaki Haneda
光明 羽田
Nobuo Shibata
信雄 柴田
Tatsuro Seki
辰郎 関
Hiroo Koide
宏夫 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003127643A priority Critical patent/JP4788094B2/en
Publication of JP2004330227A publication Critical patent/JP2004330227A/en
Application granted granted Critical
Publication of JP4788094B2 publication Critical patent/JP4788094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a satisfactory circumferential weld bead to a tubular material bevel joint requiring multilayer welding and bead patching per welding pass by nonconsumable electrode pulse arc welding or direct current arc welding. <P>SOLUTION: The welding starting position on the 1st pass in the initial layer is set to the position same as the previously instructed torch standard position, and each welding starting position from the 2nd pass after the initial layer to the N-th pass in the final layer is set to the position advanced or retreated from the torch standard position to the direction of a welding line by a first prescribed angle or by a first prescribed distance. On the finishing side of the bead patching part in circumferential welding, each welding finishing position from the 1st pass in the initial layer to the N-th pass in the final layer is set to the position advanced by a second prescribed angle or a second prescribed distance from the position obtained by making a round from each welding starting position to the direction of the welding line. Then, the previously set welding condition parameters per welding pass in the previously set regular welding section and the welding starting-finishing conditions between the welding starting section and the finishing section are output, and pulse arc welding or direct current arc welding are performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多層盛溶接及び溶接パス毎のビード継ぎが必要な厚板管材の開先継手を非消耗性電極による溶接トーチでパルスアーク溶接又は直流アーク溶接を行う円周多層盛溶接のビード継ぎ方法及び自動溶接装置に関する。
【0002】
【従来の技術】
容器や配管や案内管など円形又は楕円形をした管材の開先継手の円周溶接を行う場合、溶接開始部と終了部とのビード継ぎ溶接が必要である。特に、厚板管材の開先継手では、多層盛の円周溶接及び溶接パス毎のビード継ぎ溶接が必要である。また、ステンレス材などの高級材料を溶接する場合には、高品質な溶接結果が求められ、一般に非消耗性のタングステンを電極にするパルスアーク溶接や直流アーク溶接が用いられている。このパルスアーク溶接や直流アーク溶接の場合においても、円周多層盛溶接及びビード継ぎに適した制御を行う必要がある。
【0003】
従来からビード継ぎ溶接に関する制御方法が幾つか提案されている。例えば、特許文献1の円周溶接方法では、溶接ワイヤを電極にするアーク溶接を用い、溶接開始の始端ビードと溶接終了の終端ビードとのラップ区間の溶接終端部で流す溶接電流を本溶接区間の溶接電流値より大きくして前記始端ビードを終端ビードに溶け込ませることが提案されている。
【0004】
また、特許文献2の溶接始終端処理方法では、円周方向に溶接が進行して溶接始端の手前の位置に到達した時に、溶接トーチの向きを溶接始端側に傾斜移動させると同時に電流を増加させて始端形状を滑らかに修正し、溶接トーチの向きを元に戻した後に定常作業により溶接終端を溶接始端に重ねることが提案されている。
【0005】
また、特許文献3の固定管の片面突き合せ溶接方法では、左半周と右半周の溶接を各々受け持つ2本の溶接トーチを配置し、溶接の開始時と終了時に各溶接トーチを傾動及び溶融プールを一体化させてビード始端継ぎ及びビード終端継ぎを行うことが提案されている。
【0006】
また、特許文献4の溶接方法及び溶接構造では、溶接ビードの終端位置で、溶接トーチの進行を一旦停止させ、少なくとも溶接進行方向の後方に生じている溶融プールの長さ分、溶接トーチを逆戻りさせ、その逆戻り終端位置でクレータ処理を施すことが提案されている。
【0007】
また、特許文献5のビード継ぎ重ね溶接の制御方法では、ビード継ぎの組合せを事前に決め、ビード継ぎ重ね溶接の開始側では、前記既存溶接のビード終端部の凹み始めた位置より小電流・電圧のアークを発生させると共に溶接トーチを走行させた後に、その小電流アークから定常溶接の高電流・高電圧のアークに移行させると共に溶接速度を一旦高速に切り換え、その後、高速から低速の定常速度に移行させてアーク溶接するようにし、また、前記既存溶接のビード始端部に対するビード継ぎ重ね溶接の終了側では、溶接トーチがそのビード始端境界位置に到達して所定距離走行後に、アーク溶接の電流・電圧を減少及び溶接トーチの走行を一時停止させ、その後、小電流のアークを持続した状態のままで溶接トーチを再び走行させて終点へ到達後にそのアーク溶接を終了することが提案されている。
【0008】
一方、特許文献6の多層盛溶接の制御方法及び多層盛溶接では、光学式センサで検出する検出データ郡から抽出した未溶接面積より面積差分倍率を算出し、この面積差分倍率の特性に基づいて溶接速度と溶接電流又はワイヤ速度を増減制御すること、さらに、開先中心ずれに基づいてトーチ位置を修正制御することが提案されている。なお、溶接始終端のビード継ぎ溶接については、全く記載されていない。また、溶接トーチを左右に揺動させる制御についても記載されていない。
【0009】
【特許文献1】
特開昭62−267073号公報(特許請求の範囲)
【特許文献2】
特開平3−42179号公報(特許請求の範囲)
【特許文献3】
特開平8−155638号公報(要約,特許請求の範囲)
【特許文献4】
特開平10−099965号公報(要約,特許請求の範囲)
【特許文献5】
特開平11−077305号公報(特許請求の範囲)
【特許文献6】
特開平10−216940号公報(要約,特許請求の範囲)
【0010】
【発明が解決しようとする課題】
特許文献1の場合には、融合不良のない溶接始終端ビードを得るための工夫がされている。しかしながら、始終端ビードのラップ区間で溶接電流を大きくしているため、溶融金属の増加(溶接ワイヤの増加)を伴い、溶接終端部のビード幅が広くなり、溶接外観が悪化する可能性がある。また、1パス仕上の円周溶接であり、2パス以上の多層盛溶接にそのまま適用できないものと推定される。
【0011】
特許文献2の場合には、融合不良のない溶接始終端ビードを得るための制御に工夫がされており、一応の目的を達成し得る方法である。しかしながら、溶接ワイヤを電極にするアーク溶接であるため、非消耗性のタングステンを電極にするアーク溶接又はパルスアーク溶接が必要な開先継手の円周多層盛溶接に適用することができない。
【0012】
特許文献3の場合には、左半周と右半周の振分け溶接における始端部同士のビード継ぎと終端部同士のビード継ぎを良好に行うための制御に工夫がされている。しかしながら、2つの溶接トーチを溶接開始時と終了時に傾斜移動させて各々のアーク及び溶融プールを一体化させると、電磁場の発生によるアーク同士の干渉やスパッタの多発や多重の溶融金属によるビード盛上りなどの不具合が生じる可能性がある。また、2つの溶接トーチを駆動制御する2組の溶接台車が必要であり、装置の大型化及び複雑な制御を要するという課題がある。
【0013】
特許文献4の場合には、溶接終端部の凹みを防止するための制御に工夫がされている。しかしながら、特許文献1,2と同様に1パス仕上の円周溶接であるため、2パス以上の多層盛溶接にそのまま適用することができないものと推定される。また、溶接ワイヤを電極にするアーク溶接であるため、非消耗性のタングステンを電極にする直流アーク溶接又はパルスアーク溶接が必要な開先継手の円周多層盛溶接に適用することができない。
【0014】
特許文献5は、本発明者らが提案したビード継ぎ重ね溶接の制御方法であるが、溶接ワイヤを電極にするアーク溶接を対象にしており、非消耗性のタングステンを電極にするアーク溶接ではない。
【0015】
また、特許文献6は、本発明者らが提案した多層盛溶接の制御方法及び多層盛装置であり、溶接条件の制御及びトーチ位置の制御に有効であるが、ビード継ぎ部の条件制御が考慮されていない。したがって、溶接パス毎に良好な溶接始終端のビード継ぎ部及び円周溶接部を得るための新たな制御技術が必要である。
【0016】
本発明の目的は、多層盛溶接及び溶接パス毎のビード継ぎが必要な厚板管材の開先継手からなる溶接製品に対して、非消耗性電極のパルスアーク溶接又は直流アーク溶接により溶接パス毎に溶接開始部から定常溶接の円周部及び一周後の開始部と終端部とのビード継ぎ部まで欠陥のない平滑で良好な円周溶接ビードを得ることが可能な円周多層盛溶接のビード継ぎ方法及び自動溶接装置を提供することにある。
【0017】
【課題を解決するための手段】
本発明は、上記目的を達成するために、少なくとも2パス以上の多層盛溶接及び溶接パス毎のビード継ぎが必要な厚板管材の開先継手を非消耗性電極による溶接トーチでパルスアーク溶接又は直流アーク溶接を行う円周多層盛溶接のビード継ぎ方法において、溶接前に前記円周多層盛溶接の基準となるトーチ基準位置を前記開先継手の所望の開先中心位置に設定し、初層1パス目の溶接開始位置を前記トーチ基準位置と同じ位置に設定し、初層後の2パス目から最終層Nパス目までの各溶接開始位置を前記トーチ基準位置より溶接線方向に第1の所定角度ずつ又は第1の所定距離ずつ前進させた位置又は後退させた位置に各々設定し、各円周溶接のビード継ぎ部の終了側では、前記初層1パス目から最終層Nパス目までの各溶接終了位置を前記各溶接開始位置から溶接線方向に一周させた位置より第2の所定角度又は第2の所定距離だけ前進させた位置に各々設定し、事前に設定した定常溶接区間の溶接パス毎の溶接条件パラメータと溶接開始区間及び終了区間の溶接始終条件とを出力させて前記パルスアーク溶接又は直流アーク溶接を行うことを特徴とする円周多層盛溶接のビード継ぎ方法を提案する。
【0018】
また、本発明は、上記目的を達成するために、少なくとも2パス以上の多層盛溶接及び溶接パス毎のビード継ぎが必要な厚板管材の開先継手を非消耗性電極による溶接トーチでパルスアーク溶接又は直流アーク溶接を行う円周多層盛溶接のビード継ぎ方法において、溶接前に前記円周多層盛溶接の基準となるトーチ基準位置を前記開先継手の所望の開先中心位置に設定し、少なくとも奇数番号の溶接パスに該当する第1の溶接開始位置を前記トーチ基準位置より溶接線方向に第1の所定角度又は第1の所定距離だけ前進させた位置又は後退させた位置に設定し、偶数番号の溶接パスに該当する第2の溶接開始位置を前記第1の溶接開始位置と異なる正反対の位置又は該位置近傍に設定し、各円周溶接のビード継ぎ部の終了側では、前記奇数番号に該当する第1の溶接終了位置を前記第1の溶接開始位置から溶接線方向に一周させた位置より第2の所定角度又は第2の所定距離だけ前進させた位置に設定し、前記偶数番号に該当する第2の溶接終了位置を前記第2の溶接開始位置から溶接線方向に一周させた位置より前記第2所定角度又は前記第2の所定距離だけ前進させた位置に設定し、事前に設定した定常溶接区間の溶接パス毎の溶接条件パラメータと溶接開始区間及び終了区間の溶接始終条件とを出力させて前記パルスアーク溶接又は直流アーク溶接を行うことを特徴とする円周多層盛溶接のビード継ぎ方法を提案する。
【0019】
特に、溶接パス毎の開始側では、前記溶接トーチを該当する溶接パスの前記溶接開始位置に相対移動させ、移動停止後に溶接トーチ先端よりシールドガス流出の雰囲気内で小電流のアークを発生させ、前記小電流のアップスロープ時間経過後に定常溶接のパルスアークのピーク電流・ベース電流又は直流アークの平均電流に到達させ、溶接トーチを開先左右方向に揺動させ、その後に、前記アーク中及び溶融プール内にワイヤを送給すると共に、溶接線方向に所定速度で前記溶接トーチを走行させ又は母材の開先継手側を回転させながら定常状態の円周溶接を行い、ビード継ぎ部の終了側では、前記溶接終了位置に溶接トーチが到達した地点で、前記ピーク電流・ベース電流又は平均電流をダウンスロープさせると共に前記ワイヤを停止して引上げ、溶接トーチの走行又は母材の回転を停止させ、ダウンスロープ時間経過後に小電流のアークを停止させ、前記シールドガスの停止後に溶接トーチを上昇回避させるとよい。
【0020】
また、定常溶接区間で出力すべき溶接パス毎のピーク電流/ベース電流又は平均電流,ピーク電圧又は平均電圧,ピーク時間/ベース時間又は停止時間/移動時間,ピークワイヤ/ベースワイヤの送り速度又は平均ワイヤの送り速度,ウィービング幅,溶接速度又は回転速度などの溶接条件パラメータと、溶接開始区間及び終了区間で出力すべき溶接始終条件と、溶接パス毎の左右上下方向のトーチ位置,溶接線方向の前記溶接開始位置及び終了位置と、溶接の制御や計算に用いる各定数及び補正データとを書込み設定及び引出し可能な溶接データファイルを設け、パス毎の溶接を実行する時には、前記溶接データファイルの溶接データに基づいて前記パルスアーク溶接又は直流アーク溶接の制御を行うとよい。
【0021】
また、前記開先継手の開先肩幅,深さ,ギャップ,溶接部のビード幅,左右方向の開先中心ずれをリアルタイムで検出する視覚センサ及び画像処理装置をさらに設け、溶接前にセンサ基準位置合せを前記トーチ基準位置又は該トーチ基準位置近傍に設定し、パス毎の溶接を実行する時には、前記視覚センサ及び画像処理装置による検出データを使用し、前記ギャップ又はビード幅又は開先肩幅の大きさに応じて前記溶接トーチを左右に揺動させるウィービング幅を適応制御し、溶接部のビード幅,深さ,開先肩幅の大きさに応じて溶接すべきビード高さが一定高さになるように溶着面積及び溶接速度を算出して適応制御し、前記開先中心ずれをなくす方向にトーチ位置を修正制御するとよい。
【0022】
さらに、少なくとも最終層Nパス目の溶接又は該最終層Nパス目及び前層(N−1)パス目の溶接を実行する時には、前記視覚センサ及び画像処理装置による検出動作を停止して、最後に検出及び制御した前層溶接で記録した検出データを再使用し、前記ウィービング幅の適応制御と溶接速度の適応制御とトーチ位置の修正制御とを行うとよい。
【0023】
また、本発明は、上記目的を達成するために、少なくとも2パス以上の多層盛溶接及び溶接パス毎のビード継ぎが必要な厚板管材の開先継手に対して、非消耗性電極による溶接トーチと、パルスアーク又は直流アークの出力可能なTIG溶接電源と、前記開先継手の回転走行が制御可能な母材回転装置又は溶接トーチの回転走行が制御可能な溶接台車と、ワイヤ及び溶接トーチの上下左右位置の駆動制御可能な駆動装置と、パス毎の溶接開始から終了に至る一連の動作及び構成機器を統括管理する溶接制御装置とを用いて、円周多層盛溶接及びビード継ぎ溶接を行う自動溶接装置において、溶接前に前記円周多層盛溶接の基準となるトーチ基準位置を前記開先継手の所望の開先中心位置に教示する位置教示手段と、教示したトーチ基準位置を基にして溶接パス毎の溶接開始位置及び溶接線一周後の溶接終了位置を算出決定する始終端位置算出手段と、事前に入力設定又は算出設定する溶接パス毎の定常溶接区間の溶接条件パラメータ,溶接開始区間及び終端区間の溶接始終条件を出力制御する条件出力制御手段とを設けた自動溶接装置を提案する。
【0024】
また、上記の自動溶接装置において、前記開先継手の開先肩幅,深さ,ギャップ,溶接部のビード幅,左右方向の開先中心ずれをリアルタイムで検出する視覚センサ及び画像処理装置と、溶接前にセンサ基準位置合せを前記トーチ基準位置又は該トーチ基準位置近傍に設定するセンサ基準位置設定手段と、前記ギャップ又はビード幅又は開先肩幅の大きさからウィービング幅を算出して制御し、溶接部のビード幅,深さ,開先肩幅の大きさから溶着面積及び溶接速度を算出して制御し、開先中心ずれをなくす方向にトーチ位置を修正制御する算出制御処理手段とをさらに設けた自動溶接装置とすることもできる。
【0025】
すなわち、本発明では、溶接前に前記円周多層盛溶接の基準となるトーチ基準位置を前記開先継手の所望の開先中心位置に教示すると、円周溶接すべき開先継手のトーチ基準位置を確実に決定することができる。また、初層1パス目の溶接開始位置を前記トーチ基準位置と同じ位置に設定し、初層後の2パス目から最終層のNパス目までの各溶接開始位置を前記トーチ基準位置より溶接線方向に第1の所定角度ずつ又は第1の所定距離ずつ前進させた位置又は後退させた位置に各々設定すると、溶接パス毎の溶接開始位置を一箇所に集中させないで各々分散することができ、それぞれ異なる溶接開始位置に所望の溶接始端ビードが形成可能になる。
【0026】
各円周溶接のビード継ぎ部の終了側では、前記初層1パス目から最終層Nパス目までの各溶接終了位置を前記各溶接開始位置から溶接線方向に一周させた位置より第2の所定角度又は第2の所定距離だけ前進させた位置に各々設定すると、溶接パス毎の溶接開始部と終端部とのビード継ぎ部を各々分散することができ、欠陥のない平滑で良好なビード継ぎ部の終端重ねビードが形成可能になる。また、事前に設定した定常溶接区間の溶接パス毎の溶接条件パラメータと溶接開始区間及び終了区間の溶接始終条件とを出力させて前記パルスアーク溶接又は直流アーク溶接を行うと、溶接ワイヤを電極にする従来のパルスアーク溶接や直流アーク溶接の溶融形態及び溶接ビード形状と異なり、溶接パス毎に溶接開始部から定常溶接の円周部及び一周後の開始部と終端部とのビード継ぎ部まで欠陥のない平滑で良好な円周溶接ビードを得ることができる。
【0027】
また、本発明では、少なくとも奇数番号の溶接パスに該当する第1の溶接開始位置と偶数番号の溶接パスに該当する第2の溶接開始位置とを異なる位置に設定することにより、2箇所以上に分散でき、所望の溶接始端ビードが形成可能になる。円周溶接のビード継ぎ部の終了側では、奇数番号の溶接パスに該当する第1の溶接終了位置を前記第1の溶接開始位置から、また、偶数番号の溶接パスに該当する第2の溶接終了位置を第2の溶接開始位置からそれぞれ溶接線方向に一周させた位置より第2の所定角度又は第2の所定距離だけ前進させた位置に各々設定することにより、溶接パス毎の溶接開始部と終端部とのビード継ぎ部を2箇所以上に分散でき、欠陥のない平滑で良好なビード継ぎ部の終端重ねビードが形成可能になる。また、上述したように、定常溶接区間の溶接パス毎の溶接条件パラメータと溶接開始区間及び終了区間の溶接始終条件とを出力させて前記パルスアーク溶接又は直流アーク溶接を行うことにより、溶接パス毎に溶接開始部から定常溶接の円周部及び一周後の開始部と終端部とのビード継ぎ部まで欠陥のない平滑で良好な円周溶接ビードを得ることができる。
【0028】
特に、溶接パス毎の開始側では、溶接開始位置で溶接トーチ先端よりシールドガス流出の雰囲気内で小電流のアークを発生させ、小電流のアップスロープ時間経過後に定常溶接のパルスアークのピーク電流・ベース電流又は直流アークの平均電流に到達させ、溶接トーチを開先左右方向に揺動させることにより、溶接開始位置の直下の開先部を徐々に溶融して所望の大きさの溶融プールが形成できる。その後に、前記アーク中及び溶融プール内にワイヤを送給すると共に、溶接線方向に所定速度で前記溶接トーチを走行させ又は母材の開先継手側を回転させながら定常状態の円周溶接を行うと、余盛り高さの緩やかな溶接始端ビードが良好に形成できると共に、開先内の両壁に融合不良やアンダーカットのない滑らかで良好な円周溶接ビードが形成できる。
【0029】
また、各ビード継ぎ部の終了側では、前記溶接終了位置に溶接トーチが到達した地点で、前記ピーク電流・ベース電流又は直流電流をダウンスロープさせると共に前記ワイヤを停止して引上げ、溶接トーチの走行又は母材の回転を停止させ、ダウンスロープ時間経過後に小電流のアークを停止させ、シールドガスの停止後に溶接トーチを上昇回避させることにより、溶接ワイヤを電極にする従来のパルスアーク溶接や直流アーク溶接と異なるビード継ぎの溶接制御を適正に行うことができ、溶接始端ビードを良好に再溶融した後にアーク直下の溶融プールを確実に縮小して欠陥のない平滑で良好なビード継ぎ部を得ることができる。同時に、ワイヤ先端の母材溶着を未然に防止し、溶接トーチの外周部又は該溶接トーチ先端の電極と母材(開先継手)との接触を防止することもできる。
【0030】
また、定常溶接区間で出力すべき溶接パス毎の溶接条件パラメータと、溶接開始区間及び終了区間で出力すべき前記溶接始終条件と、溶接パス毎の左右上下方向のトーチ位置と、溶接線方向の溶接開始位置及び終了位置と、溶接の制御や計算に用いる各定数及び補正データとを書込み設定及び引出し可能な溶接データファイルを設けることにより、初層溶接から最終層の溶接まで一連の円周多層溶接で必要な溶接データを引出して正確に出力させることができる。また、この溶接データファイルに基づいてパルスアーク溶接又は直流アーク溶接の制御を行うことにより、溶接パス毎に溶接開始から定常溶接及び終了まで一連の溶接動作及び制御を確実に実行することができる。
【0031】
さらに、前記開先継手の開先肩幅,深さ,ギャップ,溶接部のビード幅,左右方向の開先中心ずれをリアルタイムで検出する視覚センサ及び画像処理装置を設けると、溶接中の制御で必要な検出情報をリアルタイムで得ることができる。また、この視覚センサ及び画像処理装置による検出データを用いて、ギャップ又はビード幅又は開先肩幅の大きさに応じて前記溶接トーチを左右に揺動させるウィービング幅を適応制御し、溶接部のビード幅,深さ,開先肩幅の大きさに応じて溶接すべきビード高さが一定高さになるように溶着面積及び溶接速度を算出して適応制御し、前記開先中心ずれをなくす方向にトーチ位置を修正制御すると、ギャップや開先肩幅が変化、溶接線の曲がりやずれがある開先継手であっても、溶接条件の適応制御,トーチ位置の修正制御によって対応でき、良好な溶接結果を得ることができ、円周多層盛溶接の自動化による溶接作業の工数低減,生産性の向上や省力化を図ることができる。
【0032】
また、最終層Nパス目の溶接又は該最終層Nパス目及び前層(N−1)パス目の溶接を実行する時には、前記視覚センサ及び画像処理装置による検出動作を停止して、最後に検出及び制御した前層溶接で記録した検出データを再使用し、前記ウィービング幅の適応制御と溶接速度の適応制御とトーチ位置の修正制御とを行うことにより、検出が困難な開先画像の状態になっていても、制御不可に陥ることなく適正な溶接制御に対応でき、良好な仕上溶接結果を得ることができ、最終層の溶接まで自動化することができる。
【0033】
また、本発明の自動溶接装置では、溶接前に前記円周多層盛溶接の基準となるトーチ基準位置を前記開先継手の所望の開先中心位置に教示する位置教示手段と、教示したトーチ基準位置を基にして溶接パス毎の溶接開始位置及び溶接線一周後の溶接終了位置を算出決定する始終端位置算出手段と、事前に入力設定又は算出設定する溶接パス毎の定常溶接区間の溶接条件パラメータ,溶接開始区間及び終端区間の溶接始終条件を出力制御する条件出力制御手段とを設けることにより、上述したように、溶接パス毎に溶接開始部から定常溶接の円周部及び一周後の開始部と終端部とのビード継ぎ部まで欠陥のない平滑で良好な円周溶接ビードを得ることができる。
【0034】
さらに、前記開先継手の開先肩幅,深さ,ギャップ,溶接部のビード幅,左右方向の開先中心ずれをリアルタイムで検出する視覚センサ及び画像処理装置と、溶接前にセンサ基準位置合せを前記トーチ基準位置又は該トーチ基準位置近傍に設定するセンサ基準位置設定手段と、前記ギャップ又はビード幅又は開先肩幅の大きさからウィービング幅を算出して制御し、溶接部のビード幅,深さ,開先肩幅の大きさから溶着面積及び溶接速度を算出して制御し、開先中心ずれをなくす方向にトーチ位置を修正制御する算出制御処理手段とを設けることにより、ギャップや開先肩幅が変化、溶接線の曲がりやずれがある開先継手であっても、溶接条件の適応制御,トーチ位置の修正制御によって対応でき、良好な溶接結果を得ることができ、円周多層盛溶接の自動化による溶接作業の工数低減,生産性の向上や省力化を図ることができる。
【0035】
【発明の実施の形態】
図1は、本発明の円周多層盛溶接のビード継ぎ方法に係わる自動溶接装置を示す構成図である。円周の開先継手1を有する一対の厚板管材(母材)6a,6bを回転装置9に設置し、所望の速度で回転できるようにしている。開先継手1の上部には、非消耗性電極4を有する溶接トーチ3と溶接中に送給するワイヤ5とを配置している。また、溶接トーチ3前方の開先継手1の上面位置に視覚センサ7aも配置している。溶接トーチ3とワイヤ5は、駆動装置11により上下方向及び左右方向の任意位置に可動できるようにしている。TIG溶接電源12には、トーチケーブル17を経由して溶接トーチ3にシールドガスを供給するためのガスボンベ14と、冷却水を循環するための冷却水循環装置とが接続されている。シールドガスはアーク溶接部及び非消耗性の電極を大気から保護するための不活性ガスであり、例えばArガスを使用している。Arガスの代わりにAr+H 混合ガスやHeガスを使用することも可能である。また、TIG溶接電源12には、溶接トーチ3と開先継手1の間にアークを発生させ、所望の大きさの電流を出力給電できるように給電ケーブル15a,15bが接続されている。画像処理装置8は、センサ制御7bを経由して視覚センサ7aによって撮像する開先断面画像を処理して、開先肩幅、開先深さ,ギャップ,ビード幅,開先中心ずれなどを検出できるようにしている。溶接制御装置10は、溶接を実行する時に駆動装置11を経由して溶接トーチ3及びワイヤ5を制御し、TIG溶接電源12の出力を制御し、視覚センサ7aと一対の画像処理装置8に指令して検出データを情報処理し、溶接パス毎の溶接条件パラメータ,溶接始終端条件,溶接トーチ3位置を制御し、溶接の開始から終了に至る一連の動作及び構成機器を統括管理するものである。また、この溶接制御装置10には、溶接パス毎の定常溶接区間で出力すべき溶接条件パラメータ,溶接開始区間及び終了区間で出力すべき溶接始終端条件,溶接の制御や計算に用いる各定数及び補正データなどの書込み設定及び引出し可能な溶接データファイルを具備している。この溶接データファイルに基づいて、溶接パス毎のパルスアーク溶接又は直流アーク溶接の制御を行うことができるようにしている。さらに、視覚センサ7a及び画像処理装置による検出データに基づいて、ウィービング幅の適応制御,溶接速度の適応制御,トーチ位置の修正制御を行うこともできるようにしている。
【0036】
図2は、図1に示した厚板管材6a,6bの開先継手1の一つであるU開先の多層盛溶接を示す断面図である。図2(1)は4層4パス溶接の場合、図2(2)はさらにパス数の多いN層Nパス溶接(例えばN=8パス,P=1 to N)の場合を示している。図中に記載の番号は溶接順位のパス番号である。また、記号のTは板厚、fは開先底部のルートフエイス、Dは管内径、h1,h2〜h(p)は積層溶接すべきパス毎のビード高さ(例えば2〜3mm程度)を示している。また、●印はパス毎の溶接トーチ位置であり、例えば、初層1パス目の左右上下方向のトーチ位置はQ1(Y1,Z1)で示し、最終層Nパス目の左右上下方向のトーチ位置はQp(Yp,Zp)で示している。左右方向の各トーチ位置Y1〜Ypはほぼ開先中心位置であり、上下方向の各トーチ位置は、前層溶接までの各ビード高さを累計した累計高さ位置である。
【0037】
図3は、溶接前に行うトーチ基準位置の設定方法を示す図である。図1に示した溶接制御装置10と一対の操作ボックス(省略)からの手動操作により溶接トーチ3及び母材6a,6bを可動させて、溶接トーチ3の電極4先端を開先継手1内の開先中心位置に合せて位置教示する。教示した○印の位置が円周多層盛溶接におけるトーチ基準位置(Xo,Yo,Zo)となる。
【0038】
図4は、本発明の円周多層盛溶接のビード継ぎ方法に係わる溶接パス毎のトーチ位置の設定を示す説明図である。Xoは溶接線方向のトーチ基準位置(○印)であり、図3に示したように溶接前に管材の開先継手1(母材)の所望の開先中心位置に教示している。1w1〜1w4は溶接パス毎の溶接線であり、矢印の方向16に母材を回転させながら円周多層盛及びパス毎のビード継ぎ溶接を行う場合の一実施例である。Xs1〜Xs4は溶接パス毎の溶接開始位置(●印)であり、Xe1〜Xe4は円周の溶接線を一周させた後の溶接終了位置(◆印)である。また、Ceは溶接パス毎の開始位置Xs1〜Xs4と終了位置Xe1〜Xe4との距離を示す始終端重ね長さであり、例えば10〜20mm程度にするとよい。初層1パス目の開始位置Xs1は、トーチ基準位置Xoと同じ位置に設定している。また、初層後の2パス目からNパス目(N=4)までの各溶接開始位置Xs2〜Xs4は、所定角度α1ずつ前進させた位置にしている。この前進角度α1の値は、例えば10〜20度程度にするとよい。
【0039】
初層1パス目の溶接から最終層Nパス目(P=1 to N)の溶接まで各溶接開始位置Xs(p)は、下記の(1)式で求められる。同様に、パス毎の溶接終了位置Xe(p)は、(1)式より算出するパス毎の溶接開始位置Xs(p)より円周の溶接線を一周させた位置より始終端重ね長さCeだけ前進させた位置であり、(2)式で求められる。なお、Dw(p)はパス毎(P=1 to N)の前層溶接の表面外径であり、溶接すべき開先継手の管内径をD,開先底部のルートフェイスをf,パス毎に積層すべき前層までの累計ビード高さHb(p−1)とすると、下記の(3)式で算出することができる。
【0040】

Figure 2004330227
このように算出することによりパス毎の溶接開始位置Xs(p)と終了位置Xe(p)を正確に設定でき、溶接パス毎の開始位置及び終了位置とを一箇所に集中させないで各々分散することができる。また、各々分散した位置で溶接の開始部と終端部とのビード継ぎ溶接が行え、所望の溶接始端ビードが形成可能になる。所定角度α1の代わりに所定距離L1ずつ前進させた位置又は後退(−α1か−L1を代入する)させた位置を算出して設定することも容易にできる。
【0041】
上述したパス毎の溶接開始位置Xs(p)及び終了位置Xe(p)は、始終端位置算出手段によって算出可能であり、溶接制御装置10の内部の配備すればよい。また、この算出結果を例えば溶接データファイルに記録保存し、溶接を実行する時に、この溶接データファイルを引出して使用するとよい。
【0042】
図5は、図4に示したトーチ位置の設定方法と異なる設定方法を示す説明図であり、各記号は同じである。ここでは、奇数番号の溶接パス(P=1,3)に相当する溶接開始位置(Xs1,Xs3)をトーチ基準位置Xo(○印)より溶接線方向に所定角度α1だけ前進させた位置(●印)に設定している。これに対して、偶数番号の溶接パス(P=2,4)に相当する溶接開始位置(Xs2,Xs4)は、前記奇数番号の開始位置と異なる正反対の位置(●印)に設定している。したがって、溶接パス毎(P=1 to N)の開始位置Xs(p)は、下記の(4)式及び(5)式で求められる。また、パス毎の溶接終了位置(Xe1〜Xe4)は、(4)式及び(5)式で算出した開始位置Xs(p)より円周の溶接線を一周させた位置より始終端重ね長さCeだけ前進させた位置(◆印)であり、上述した(2)式及び(3)式より算出できる。
【0043】
奇数番号の溶接開始位置:Xs(p)=Xo+α1 …(4)
偶数番号の溶接開始位置:Xs(p)=Xo−α1 …(5)
このように算出することによりパス毎の溶接開始位置Xs(p)と終了位置Xe(p)を正確に設定でき、溶接パス毎の開始位置及び終了位置とを一箇所に集中させないで2箇所以上に分散することができる。また、分散した2箇所以上の各位置で溶接の開始部と終端部とのビード継ぎ溶接が行え、所望の溶接始端ビードが形成可能になる。所定角度α1の代わりに所定距離L1を代入し算出してもよい。また、奇数番号の開始位置をα1と少し異なるα2だけ後退させた位置に変更することも容易である。
【0044】
図6は、本発明の円周多層盛溶接のビード継ぎ方法の一実施例を示す条件制御ブロック線図である。図6(1)と(3)には、円周溶接の終了側と開始側とで制御するパルスアーク溶接の電流31波形,電圧32波形,溶接トーチを左右に揺動させるウィーブ幅33(ウィービング幅),ワイヤ5の送り速度34,溶接速度35(回転速度に該当)の溶接パラメータ及び溶接始終条件を示している。また、図6(2)には、溶接開始側の始端ビード2s,定常溶接部の溶接ビード2,始端ビード2sとのビード継ぎをする溶接終端側の終端ビード2eの様子を示している。Xs(●印)は、図4及び図5に示した溶接パス毎の溶接開始位置(Xs1,Xs2,Xs3,Xs4に該当)であり、また、Xe(◆印)は溶接線一周後の終了位置(Xe1,Xe2,Xe3,Xe4に該当)である。Ceは開始位置Xsと終了位置Xeとの距離を示す始終端重ね長さである。
【0045】
すなわち、図6(2)(3)に示すように円周溶接の開始側では、シールドガス流出(省略)の雰囲気内で開始点Xs(●印)の位置より溶接トーチ3先端の非消耗性電極4と母材(開先継手1)との間に小電流Isのアークを発生させ、アップスロープ時間T2経過後にパルスアークのピーク電流I,ベース電流Ibに到達させ、溶接トーチ3を左右に揺動(ウィーブ幅Uw)させる。該溶接トーチ3の揺動は、ピーク電流Ipの時間Tpとベース電流Ibの時間Tbとに同期させている。溶接開始位置の直下の開先低部又は前層溶接のビード表面部を徐々に溶融して所望の大きさの溶融プールが形成できる。その後に、アーク中及び溶融プール内にワイヤを送給Wp,Wbすると共に、所定速度Vで母材を回転走行させながら定常状態の円周溶接を行う。
【0046】
このように溶接条件を適正に制御することにより、溶接開始部の余盛り高さの緩やかな始端ビード2sが良好に形成できると共に、開先内の両壁に融合不良やアンダーカットのない滑らかで良好な円周溶接ビード2が形成できる。
【0047】
一方、図6(1)に示したように、始端ビード2sとのビード継ぎが必要な溶接終了側では、終了位置Xe(◆印)に溶接トーチが到達した地点で、ピーク電流Ip,ベース電流Ibをダウンスロープさせると共に、ワイヤ送りWp,Wbを停止させる。ワイヤ送りの停止直後に、ワイヤ5先端を短時間T7又は所定長さだけ引き戻して溶融プールから引上げる。走行停止遅れ時間T8後に母材の回転走行を停止させ、ダウンスロープ時間T6経過後に小電流Ieのアークを停止させる。その後に、省略してあるシールドガスを停止し、溶接トーチ3を上昇回避させる。例えば図7に示すパス毎の定常溶接部で出力すべき溶接条件パラメータや、図6に示した溶接開始部及び終了部で出力すべき溶接始終条件を事前に作成する溶接データファイルに記録保存するとよい。
【0048】
このように溶接条件を制御することにより、ワイヤを電極にする従来のアーク溶接の溶融形態及び溶接ビード形状と異なり、溶接パス毎に溶接開始部から定常溶接の円周部及び一周後の開始部と終端部とのビード継ぎ部まで欠陥のない平滑で良好な円周溶接ビードを得ることができる。同時に、ワイヤ先端の母材溶着を未然に防止し、溶接トーチの外周部又は該溶接トーチ先端の電極と母材との接触を防止することもできる。また、溶接データファイルに基づいてパルスアーク溶接又は直流アーク溶接の制御を行うことにより、溶接パス毎に溶接開始から定常溶接及び終了まで一連の溶接動作及び制御を確実に実行することができる。
【0049】
なお、図6(1)(3)に示したアップスロープ時間T2及びダウンスロープ時間T6における傾斜状の電流波形をパルス状の電流波形に変更してもよい。また、パルスアーク溶接の代わりに直流アーク溶接を用いて、平均電流と平均ワイヤ送りを出力させて円周溶接及び始終端のビード継ぎを良好に行うことも可能である。また、母材側を回転走行させる代わりに溶接台車に搭載する溶接トーチ3を回転走行させて、上述の円周多層盛溶接及びビード継ぎを行うことも可能である。
【0050】
図8は、図3に示したトーチ基準位置の設定後に行うセンサ基準位置の設定方法を示す検出図である。上述したトーチ基準位置(Xo,Yo,Zo)又はこの位置近傍に視覚センサ7aを相対移動させ、この視覚センサ7aと一対の画像処理装置8にセンサ基準位置の検出及び設定を行わせる。開先形状断面の線画像36,37を画像処理して検出した開先の肩幅中心位置及び低部中心位置をセンサ基準位置(Ys=0,Zs=0)にしている。このセンサ基準位置の検出設定により、円周溶接における開先部の中心位置ずれ(ΔYs,ΔZs)を溶接中に検出することができる。
【0051】
図9は、任意の充填溶接時に検出される開先部の開先形状寸法及び開先中心位置ずれを示す検出図である。視覚センサ7aと一対の画像処理装置8により開先形状断面の線画像36,37を画像処理し、開先上面部の開先肩幅Ws,段違いks,開先底部のビード幅Bs,開先底部までの深さHs,開先内の断面積As,初期設定のセンサ基準位置(Ys=0,Zs=0)との中心位置ずれΔYs,ΔZsをリアルタイムで検出する。初層溶接時には、ビード幅Bsの代わりにギャップ幅Gsを検出すればよい。これらの検出データは溶接制御装置10で各々の値を分類し平均化処理している。また、平均化処理の検出データに基づいて、トーチ位置の修正量やウィービング幅の制御量や溶接速度の制御量をリアルタイムで計算処理して制御するようにしている。このように検出データ処理及び計算処理することにより溶接条件の適応制御及びトーチ位置の修正制御が可能になる。
【0052】
次に、円周多層盛溶接で必要なウィービング動作の制御方法について説明する。図10は、溶接中のウィービング幅とビード高さの制御方法を示す図である。充填層溶接(P=2 to N−1又はN−2)の時は、ビード幅Bsの検出値を平均化処理[Bs=(Bs1+Bs2+・・+Bsa)/a]して用い、このビード幅Bsの大きさに比例させてウィービング幅Uwを広くする。1パス目の初層溶接(P=1)の時には、ギャップ幅Gsの検出値を平均化処理[Gs=(Gs1+Gs2+・・+Gsa)/a]して用い、このギャップ幅Gsが大きい(Gs>C1)時にウィービング幅Uwを適正に増減制御する。ギャップ幅Gsが小さい(0≦Gs≦C1)時には、ウィービング幅Uwを0にしてウィービングを停止にする。初層溶接及び充填層溶接のウィービング幅Uwは下記の(6)式〜(8)式で求められる。ただし、C1,C2はウィービングの幅定数である。
【0053】
一方、最終層の仕上げ溶接(P=N)や仕上げ前の前層溶接(P=N−1)の時には、検出が困難になる可能性があるため、ここでは、視覚センサ7a及び画像処理装置による検出動作を停止して、最後に検出及び制御した前層溶接で記録(例えばPk=N−2のパス)した検出データを再使用する。開先肩幅Wsの検出値を平均化処理[Ws=(Ws1+Ws2+・・+Wsa)/a]して用い、この開先肩幅Wsの大きさに比例させてウィービング幅Uwを広くする。最終仕上層のウィービング幅Uwは(9)式で求められる。ただし、C3はウィービングの幅定数である。さらに、溶接パス毎の揺動速度Vuは、図6で述べたベース時間Tb(又は左右停止時間)に関係しており、(10)式で求められる。このように計算して制御することにより、ギャップGs又はビード幅Bs,開先肩幅Wsが変化する開先継手であっても、溶接トーチを左右に揺動させるウィービング幅Uwを適正に制御でき、開先両壁部で生じ易いアンダーカットや溶融不良を防止して良好な溶接ビードを得ることができる。
【0054】
初層のウィービング幅(Gs>C1の時):Uw=Gs−C1 …(6)
初層のウィービング幅(0≦Gs≦C1の時):Uw=0 …(7)
充填層のウィービング幅:Uw=Bs−C2 …(8)
仕上層のウィービング幅:Uw=Ws−C3 …(9)
パス毎の揺動速度:Vu=Uw/Tb …(10)
次に、充填層(Pパス目)の溶接中のビード高さh(p)が一定になるように溶接すべき溶着面積S及び溶接速度Vを算出して適正に制御する方法について説明する。図9において、Hsは溶接されていない残存部分の開先深さを平均化処理[(Hs=Hs1+Hs2・・+Hsa)/a]した検出値であり、また、Hb(p−1)は前層溶接までに積層予定の累計ビード高さ、S(p)はPパス目の溶接で予定している基準溶着面積、Δhはビード高さずれである。このビード高さずれΔhは、残存部分の開先深さHsと板厚Tとルートフエイスfと前層溶接までの累計ビードHb(p−1)に関係しており、下記の(11)式より求められる。また、溶接すべき溶着面積Sは、該当溶接パス(Pパス目)の基準溶着面積S(p)とビード高さずれΔhに相当する部分の面積とを加算した値になり、(12)式より求められる。したがって、適応制御に必要な溶接速度Vは、(11)(12)式で算出したビード高さずれΔh及び溶着面積Sと、該当溶接パス(Pパス目)で溶接部分に送給すべき平均ワイヤ送り速度Wf(p)[平均値:Wf(p)=(Wp*Tp+Wb*Tb)/(Tp+Tb)]とに関係しており、(13)式より求められる。ただし、C4は面積補正定数、C5はワイヤ溶着率係数、dはワイヤ径、θは開先角度である。これらの算出式や定数を用いて計算及び制御する算出制御手段(省略)は溶接制御装置10の内部に配備すればよい。
【0055】
ビード高さずれ:Δh=Hs−T+f+Hb(p−1) …(11)
溶着面積:S=S(p)+C4*Δh*(Bs+Δh*tan(θ/2))…(12)
溶接速度:V=(10*d*d*π*C5*Wf(p))/(4*S)…(13)
上述したように最終層の仕上溶接(P=N)や仕上前の前層溶接(P=N−1)の時には、視覚センサ7a及び画像処理装置による検出動作を停止して、最後に検出及び制御した前層溶接で記録(例えばPk=N−2のパス)した検出データ(平均化処理後の検出値)を再使用する。また、ビード高さずれΔhを算出する時には、上記累計ビード高さHb(p−1)の代わりに、再使用する検出データの前層溶接までの累計ビード高さHb(pk−1)を(11)式に代入すればよい。また、最終仕上層(P=N)で溶接すべき溶着面積Sは、下記の(14)式で概算することができる。最終仕上層の溶接速度Vは(14)式で算出した溶着面積Sを上記の(13)式に代入して算出すればよい。ただし、hsは仕上ビード高さ、b1は仕上ビードの幅定数である。
【0056】
仕上層の溶着面積:S=hs*(Ws+b1)*2/3 …(14)
このように計算して制御することにより、残存部分の開先深さHsやビード幅Bsや開先肩幅Wsが変化する開先継手であっても、ビード高さずれΔhをなくすように溶着面積S及び溶接速度Vを適正に制御でき、積層ビード高さが均一で平滑な溶接ビードを得ることができる。また、センサによる検出が困難になり易い最終仕上層の溶接や仕上前の前層溶接であっても、最後に検出及び制御した前層溶接で記録した検出データを再使用することにより、適正な溶着面積S及び溶接速度Vを算出して確実に制御することができる。
【0057】
溶接パス毎の左右トーチ位置Y(ワイヤ位置も含む)の制御については、図8に示した開先中心ずれΔYsをなくす方向に位置修正することにより、トーチ位置及びワイヤ位置を適正な開先中心位置に制御することができる。また、溶接パス毎の上下トーチ位置(ワイヤ位置も含む)の制御については、図8に示した上下方向の位置ずれΔZsをなくす方向に位置修正するとよい。又は溶接中のアーク長がほぼ一定になるようにアーク電圧Eaを検出してトーチ高さを修正制御することも可能である。このようにトーチ位置を修正制御することにより、溶接線の曲がりやずれがある開先継手であっても、トーチ位置を適正な位置に修正制御でき、良好な溶接結果を得ることができる。
【0058】
【発明の効果】
本発明によれば、厚板管材の開先継手に対して、溶接パス毎に溶接開始部から定常溶接の円周部及び一周後の開始部と終端部とのビード継ぎ部まで欠陥のない平滑で良好な円周溶接ビードを得ることができる。また、ギャップや開先肩幅が変化、溶接線の曲がりやずれがある開先継手であっても、溶接条件の適応制御,トーチ位置の修正制御によって自動溶接することができ、溶接作業の工数低減,生産性の向上や省力化を図ることができる。
【図面の簡単な説明】
【図1】本発明の円周多層盛溶接のビード継ぎ方法に係わる自動溶接装置を示す構成図である。
【図2】図1に示した厚板管材6a,6bの開先継手1の一つであるU開先の多層盛溶接を示す断面図である。
【図3】溶接前に行うトーチ基準位置の設定方法を示す図である。
【図4】本発明の円周多層盛溶接のビード継ぎ方法に係わる溶接パス毎のトーチ位置の設定を示す説明図である。
【図5】図4に示したトーチ位置の設定方法と異なる設定方法を示す説明図である。
【図6】本発明の円周多層盛溶接のビード継ぎ方法の一実施例を示す条件制御ブロック線図である。
【図7】溶接パス毎の溶接条件パラメータの一実施例を示す溶接データ図である。
【図8】図3に示したトーチ基準位置の設定後に行うセンサ基準位置の設定方法を示す検出図である。
【図9】任意の充填溶接時に検出される開先部の開先形状寸法及び開先中心位置ずれを示す検出図である。
【図10】溶接中のウィービング幅とビード高さの制御方法を示す図である。
【符号の説明】
1…開先継手、2…溶接ビード、2s…始端ビード、2e…終端ビード、3…溶接トーチ、4…非消耗性電極、5…ワイヤ、6a,6b…厚板管材、7a…視覚センサ、8…画像処理装置、10…溶接制御装置、11…駆動装置,12…TIG溶接電源。[0001]
TECHNICAL FIELD OF THE INVENTION
SUMMARY OF THE INVENTION The present invention provides a bead joint for circumferential multi-pass welding in which pulse arc welding or DC arc welding is performed on a grooved joint of a thick plate material requiring a bead joint for each welding pass with a welding torch using a non-consumable electrode. The present invention relates to a method and an automatic welding device.
[0002]
[Prior art]
When performing circumferential welding of a circular or elliptical grooved joint such as a container, a pipe, or a guide tube, it is necessary to perform a bead joint welding between a welding start portion and an end portion. In particular, in the case of a grooved joint made of a thick pipe material, it is necessary to perform circumferential welding of a multi-layer pile and bead joint welding for each welding pass. When welding high-grade materials such as stainless steel, high-quality welding results are required. Generally, pulse arc welding or DC arc welding using non-consumable tungsten as an electrode is used. Also in the case of the pulse arc welding and the DC arc welding, it is necessary to perform control suitable for circumferential multi-layer welding and bead joining.
[0003]
Conventionally, several control methods relating to bead seam welding have been proposed. For example, in the circumferential welding method of Patent Document 1, arc welding using a welding wire as an electrode is used, and a welding current flowing at a welding end portion of a lap section between a start bead at the start of welding and an end bead at the end of welding is used in a main welding section. It has been proposed that the starting bead be melted into the end bead by making the welding current value larger than the above.
[0004]
In addition, in the welding start and end processing method of Patent Document 2, when welding progresses in the circumferential direction and reaches a position just before the welding start end, the current is increased at the same time as the direction of the welding torch is inclinedly moved to the welding start end side. It has been proposed that the shape of the starting end be corrected smoothly to restore the orientation of the welding torch, and then the welding end be superimposed on the starting end of the welding by regular work.
[0005]
In addition, in the single-sided butt-welding method of the fixed pipe of Patent Document 3, two welding torches that respectively perform left half circumference and right half circumference welding are arranged, and each welding torch is tilted and melt pooled at the start and end of welding. It is proposed that the bead starting end splicing and the bead end splicing be performed by integrating the two.
[0006]
Further, in the welding method and the welding structure of Patent Document 4, the progress of the welding torch is temporarily stopped at the end position of the welding bead, and the welding torch is returned at least by the length of the molten pool generated rearward in the welding progress direction. It is proposed to perform crater processing at the return end position.
[0007]
Further, in the method for controlling the bead splicing welding of Patent Document 5, the combination of the bead splicing is determined in advance, and the current and voltage are smaller on the starting side of the bead splicing welding than at the position where the bead end of the existing welding starts to be concave. After the arc is generated and the welding torch is run, the low-current arc is shifted to a high-current, high-voltage arc for steady-state welding, and the welding speed is temporarily switched to a high speed. At the end of the bead splicing welding with respect to the bead start end of the existing welding, the welding torch reaches the bead start end boundary position and travels a predetermined distance before the arc welding. Decrease the voltage and suspend the running of the welding torch, and then run the welding torch again while maintaining the small current arc to the end point. It has been proposed to terminate the arc welding after arrival.
[0008]
On the other hand, in the multi-pass welding control method and the multi-pass welding described in Patent Document 6, the area difference magnification is calculated from the unwelded area extracted from the detection data group detected by the optical sensor, and based on the characteristics of the area difference magnification. It has been proposed to increase or decrease the welding speed and the welding current or wire speed, and to correct and control the torch position based on the groove center deviation. In addition, there is no description about bead joint welding at the beginning and end of welding. Also, there is no description of control for swinging the welding torch left and right.
[0009]
[Patent Document 1]
JP-A-62-267073 (Claims)
[Patent Document 2]
JP-A-3-42179 (Claims)
[Patent Document 3]
Japanese Patent Application Laid-Open No. 8-155538 (abstract, claims)
[Patent Document 4]
JP-A-10-099965 (abstract, claims)
[Patent Document 5]
JP-A-11-077305 (Claims)
[Patent Document 6]
Japanese Patent Application Laid-Open No. 10-216940 (abstract, claims)
[0010]
[Problems to be solved by the invention]
In the case of Patent Literature 1, a contrivance has been made to obtain a weld start / end bead having no fusion failure. However, since the welding current is increased in the lap section of the start and end beads, the width of the bead at the end of the weld increases with an increase in the amount of molten metal (increase in the number of welding wires), which may deteriorate the weld appearance. . In addition, it is presumed that the circumferential welding is a one-pass finish and cannot be directly applied to multipass welding of two or more passes.
[0011]
In the case of Patent Literature 2, the control for obtaining a weld start / end bead free from fusion failure is devised, and is a method that can achieve a tentative purpose. However, since it is arc welding using a welding wire as an electrode, it cannot be applied to circumferential multi-layer welding of a groove joint which requires arc welding using non-consumable tungsten as an electrode or pulse arc welding.
[0012]
In the case of Patent Literature 3, a control has been devised for performing good bead joining between the start ends and bead joining between the end portions in the distribution welding of the left half circumference and the right half circumference. However, when the two welding torches are tilted at the start and end of welding to integrate each arc and the molten pool, interference between the arcs due to the generation of an electromagnetic field, frequent occurrence of spatters, and bead build-up due to multiple molten metals. There is a possibility that problems such as the above will occur. Further, two sets of welding carts for driving and controlling the two welding torches are required, and there is a problem that the apparatus needs to be enlarged and complicated control is required.
[0013]
In the case of Patent Literature 4, control is devised to prevent a dent at the welding end portion. However, it is presumed that it cannot be directly applied to multipass welding of two or more passes because it is circumferential welding of one pass finish as in Patent Documents 1 and 2. Further, since arc welding is performed using a welding wire as an electrode, the method cannot be applied to circumferential multi-layer welding of a groove joint which requires DC arc welding or pulse arc welding using non-consumable tungsten as an electrode.
[0014]
Patent Document 5 is a control method of bead splicing welding proposed by the present inventors, but is directed to arc welding using a welding wire as an electrode, not arc welding using non-consumable tungsten as an electrode. .
[0015]
Patent Document 6 is a control method and a multi-layer welding apparatus for multi-layer welding proposed by the present inventors, and is effective for controlling welding conditions and controlling a torch position. It has not been. Therefore, a new control technique for obtaining a good bead joint at the beginning and end of welding and a circumferential weld at each welding pass is required.
[0016]
SUMMARY OF THE INVENTION An object of the present invention is to provide a welded product consisting of a grooved joint of a thick pipe material requiring multi-pass welding and bead joining at each welding pass by pulse arc welding of a non-consumable electrode or DC arc welding at each welding pass. Circular multi-layer weld bead that can obtain a smooth and good circumferential weld bead free from defects from the welding start part to the circumferential part of steady welding and the bead joint between the start part and the end part after one round An object of the present invention is to provide a joining method and an automatic welding device.
[0017]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides a pulse welding method using a welding torch with a non-consumable electrode to weld a grooved joint of a thick plate material that requires at least two passes or more of multipass welding and bead joining for each welding pass. In the bead joining method of circumferential multi-layer welding for performing DC arc welding, a torch reference position serving as a reference of the circumferential multi-layer welding is set to a desired groove center position of the groove joint before welding, and the first layer is formed. The welding start position of the first pass is set to the same position as the torch reference position, and each welding start position from the second pass after the first layer to the Nth pass of the final layer is set to the first position in the welding line direction from the torch reference position. At a predetermined angle or at a first predetermined distance, or at a position retracted by a first predetermined distance, and at the end side of the bead joint of each circumferential weld, the first layer first pass to the final layer N pass Before each welding end position up to A welding condition parameter for each welding pass of a preset steady welding section, which is set at a position advanced by a second predetermined angle or a second predetermined distance from a position that has made one round in the welding line direction from each welding start position. And the welding start and end conditions of the welding start section and the end section are output to perform the pulse arc welding or the DC arc welding.
[0018]
Further, in order to achieve the above object, the present invention provides a pulsed arc welding method using a welding torch using a non-consumable electrode, in which a grooved joint of a thick pipe material requiring at least two passes or more of multipass welding and bead joining at each welding pass is required. In the bead joining method of circumferential multi-pass welding to perform welding or DC arc welding, a torch reference position serving as a reference for the circumferential multi-pass welding before welding is set to a desired groove center position of the groove joint, A first welding start position corresponding to at least an odd-numbered welding path is set to a position advanced or retracted by a first predetermined angle or a first predetermined distance in the welding line direction from the torch reference position, A second welding start position corresponding to an even-numbered welding path is set at a position directly opposite to or different from the first welding start position, and at the end side of the bead joint of each circumferential weld, the odd number is set. Turn Is set to a position advanced by a second predetermined angle or a second predetermined distance from a position that makes a full circle in the direction of the welding line from the first welding start position, and the even-numbered number is set. Is set to a position advanced by the second predetermined angle or the second predetermined distance from a position that has made one round in the welding line direction from the second welding start position, and The pulse arc welding or the DC arc welding is performed by outputting the set welding condition parameters for each welding pass of the set steady welding section and the welding start and end conditions of the welding start section and the end section. We propose a bead joining method.
[0019]
In particular, on the start side of each welding pass, the welding torch is relatively moved to the welding start position of the corresponding welding pass, and after the movement is stopped, an arc of a small current is generated in an atmosphere of a shield gas outflow from the welding torch tip, After the elapse of the upslope time of the small current, the peak current and the base current of the pulse arc of the steady welding or the average current of the DC arc are reached, and the welding torch is swung in a groove left and right direction. Along with feeding the wire into the pool, running the welding torch at a predetermined speed in the direction of the welding line or rotating the bevel joint side of the base metal to perform steady-state circumferential welding, and the end side of the bead joint portion At the point where the welding torch reaches the welding end position, the peak current / base current or average current is down-slope and the wire is stopped. Raised, the travel or rotation of the base material of the welding torch is stopped to stop the arc of a small current after the lapse downslope time, the welding torch after stopping the shielding gas may increase avoided.
[0020]
Also, the peak current / base current or average current, peak voltage / average voltage, peak time / base time or stop time / movement time, peak wire / base wire feed speed or average for each welding pass to be output in the steady welding section. Welding condition parameters such as wire feed speed, weaving width, welding speed or rotation speed, welding start and end conditions to be output in the welding start section and end section, and the torch position in the left, right, up and down directions and welding line direction for each welding pass The welding start position and the end position, and a constant and correction data used for welding control and calculation are provided in a welding data file which can be set and extracted, and when performing welding for each pass, the welding of the welding data file is performed. It is preferable to control the pulse arc welding or the DC arc welding based on the data.
[0021]
Further, there is further provided a visual sensor and an image processing device for detecting in real time the groove shoulder width, depth and gap of the groove joint, the bead width of the welded portion, and the center deviation of the groove in the left-right direction. The alignment is set at the torch reference position or in the vicinity of the torch reference position, and when performing welding for each pass, data detected by the visual sensor and the image processing device is used, and the size of the gap or bead width or groove shoulder width is used. The weaving width for swinging the welding torch right and left is adaptively controlled according to the bead width, and the bead height to be welded becomes constant according to the bead width, depth, and the size of the shoulder width of the groove. Thus, the welding area and the welding speed may be calculated and adaptively controlled, and the torch position may be corrected and controlled in a direction to eliminate the groove center deviation.
[0022]
Further, at least when the welding of the Nth pass of the final layer or the welding of the Nth pass of the final layer and the (N-1) th pass is performed, the detection operation by the visual sensor and the image processing device is stopped, and It is preferable to perform the adaptive control of the weaving width, the adaptive control of the welding speed, and the correction control of the torch position by reusing the detection data recorded in the pre-layer welding detected and controlled in the above.
[0023]
Further, in order to achieve the above object, the present invention provides a welding torch using a non-consumable electrode for a grooved joint of a thick tubing material requiring at least two passes or more of multipass welding and bead joining at each welding pass. A TIG welding power supply capable of outputting a pulse arc or a DC arc, a base material rotating device capable of controlling rotation of the groove joint or a welding cart capable of controlling rotation of a welding torch, and a wire and a welding torch. Performs multi-layer circumferential welding and bead joint welding using a drive device capable of drive control of up, down, left and right positions, and a welding control device that integrally controls a series of operations and components from welding start to end for each pass. In an automatic welding apparatus, a position teaching means for teaching a torch reference position to be a reference of the circumferential multi-layer welding to a desired groove center position of the groove joint before welding, and a taught torch reference position. Starting and ending position calculating means for calculating and determining a welding start position for each welding pass and a welding end position after one round of the welding line; welding condition parameters for a steady welding section for each welding pass to be input or calculated in advance; An automatic welding apparatus provided with condition output control means for controlling output of welding start and end conditions in a start section and an end section is provided.
[0024]
Further, in the above automatic welding apparatus, a visual sensor and an image processing apparatus for detecting in real time the groove shoulder width, depth, gap, bead width of the welded portion, and lateral center deviation of the groove in the groove joint; Sensor reference position setting means for setting the sensor reference position to the torch reference position or the vicinity of the torch reference position beforehand, and calculating and controlling the weaving width from the size of the gap or bead width or groove shoulder width, and performing welding. Calculation control processing means for calculating and controlling the welding area and welding speed from the bead width, depth, and groove shoulder width of the portion, and correcting and controlling the torch position in a direction to eliminate the groove center deviation. An automatic welding device can also be used.
[0025]
That is, in the present invention, when the torch reference position serving as the reference for the circumferential multi-pass welding is taught to the desired groove center position of the groove joint before welding, the torch reference position of the groove joint to be circumferentially welded is provided. Can be reliably determined. Also, the welding start position of the first pass of the first layer is set to the same position as the torch reference position, and each welding start position from the second pass after the first layer to the Nth pass of the last layer is welded from the torch reference position. By setting the position to be advanced or retracted by the first predetermined angle or the first predetermined distance in the line direction, the welding start position for each welding pass can be dispersed without being concentrated at one place. Thus, desired welding start beads can be formed at different welding start positions.
[0026]
On the end side of the bead joint portion of each circumferential welding, each welding end position from the first pass of the first layer to the Nth pass of the final layer is set at a second position from a position obtained by making a full circle from the welding start position in the welding line direction. When each is set at a predetermined angle or at a position advanced by a second predetermined distance, the bead seam between the welding start part and the end part for each welding pass can be dispersed, and a smooth and good bead seam free from defects. The end lap bead of the part can be formed. Further, when the pulse arc welding or the DC arc welding is performed by outputting a welding condition parameter for each welding pass of a steady welding section set in advance and welding start and end conditions of a welding start section and an end section, the welding wire is used as an electrode. Unlike conventional pulsed arc welding and direct current arc welding, which are different from the molten form and weld bead shape, defects occur from the welding start part to the circumferential part of steady welding and the bead joint between the start part and the end part after one round for each welding pass. Smooth and good circumferential weld bead can be obtained.
[0027]
Further, in the present invention, by setting at least the first welding start position corresponding to the odd-numbered welding path and the second welding start position corresponding to the even-numbered welding path to different positions, the number of the two or more positions is increased. It can be dispersed and a desired weld start bead can be formed. On the end side of the bead joint portion of the circumferential welding, the first welding end position corresponding to the odd-numbered welding pass is set from the first welding start position, and the second welding corresponding to the even-numbered welding pass. By setting the end position to a position that is advanced by a second predetermined angle or a second predetermined distance from a position that makes a full circle in the welding line direction from the second welding start position, the welding start portion for each welding pass is set. The bead joint portion between the end portion and the end portion can be dispersed at two or more places, and a smooth and good bead joint end portion bead having no defect can be formed. Also, as described above, the pulse arc welding or the DC arc welding is performed by outputting the welding condition parameters for each welding pass in the steady welding section and the welding start and end conditions in the welding start section and the end section, so that each welding pass is performed. In addition, a smooth and good circumferential weld bead free from defects can be obtained from the welding start portion to the circumferential portion of the steady welding and the bead joint portion between the start portion and the end portion after one round.
[0028]
In particular, on the start side of each welding pass, a small current arc is generated in the atmosphere of the shielding gas outflow from the tip of the welding torch at the welding start position, and the peak current and pulse current By reaching the base current or the average current of the DC arc and oscillating the welding torch in the horizontal direction of the groove, the groove immediately below the welding start position is gradually melted to form a molten pool of the desired size. it can. Thereafter, the wire is fed into the arc and into the molten pool, and the welding torch is run at a predetermined speed in the direction of the welding line, or the circumferential welding in the steady state is performed while rotating the groove joint side of the base material. By doing so, a weld start bead with a gently raised height can be formed favorably, and a smooth and good circumferential weld bead can be formed on both walls within the groove without defective fusion or undercut.
[0029]
On the end side of each bead joint, at the point where the welding torch reaches the welding end position, the peak current / base current or DC current is down-slope, and the wire is stopped and pulled up, and the welding torch travels. Or, by stopping the rotation of the base material, stopping the arc with a small current after the elapse of the downslope time, and avoiding raising the welding torch after stopping the shielding gas, conventional pulse arc welding or DC arc using the welding wire as an electrode Welding control of bead joints different from welding can be properly performed, and after remelting the bead at the beginning of the weld well, the molten pool immediately below the arc is reliably reduced to obtain a smooth and good bead joint without defects Can be. At the same time, welding of the base material at the wire tip can be prevented beforehand, and contact between the outer peripheral portion of the welding torch or the electrode at the welding torch tip and the base material (groove joint) can also be prevented.
[0030]
Also, the welding condition parameters for each welding pass to be output in the steady welding section, the welding start and end conditions to be output in the welding start section and the end section, the torch position in the left, right, up and down directions for each welding path, and the welding line direction Welding start and end positions, and constants and correction data used for control and calculation of welding can be written and set, and by providing a welding data file that can be extracted, a series of circumferential multilayers from the first welding to the last welding Welding data necessary for welding can be extracted and output accurately. Further, by controlling the pulse arc welding or the DC arc welding based on this welding data file, a series of welding operations and controls from the start of welding to the steady welding and the end can be reliably performed for each welding pass.
[0031]
Further, if a visual sensor and an image processing device for detecting in real time the groove shoulder width, depth and gap of the groove joint, the bead width of the welded portion, and the center deviation of the groove in the right and left direction are provided, it is necessary for control during welding. Detection information can be obtained in real time. Further, using the visual sensor and the data detected by the image processing device, adaptively controlling the weaving width for swinging the welding torch right and left in accordance with the size of the gap or bead width or the width of the groove shoulder, and controlling the bead of the welded portion. The welding area and welding speed are calculated and adaptively controlled so that the bead height to be welded is constant according to the width, depth, and the size of the groove shoulder width. If the torch position is corrected and controlled, gaps and groove shoulder widths can be changed, and even groove joints with weld line bends or deviations can be handled by adaptive control of welding conditions and torch position correction control, resulting in good welding results. Thus, the number of welding operations can be reduced, productivity can be improved, and labor can be saved by automating circumferential multi-pass welding.
[0032]
When performing the welding of the Nth pass of the final layer or the welding of the Nth pass of the final layer and the (N-1) th pass, the detection operation by the visual sensor and the image processing device is stopped, and finally, By reusing the detection data recorded in the detected and controlled front layer welding and performing adaptive control of the weaving width, adaptive control of the welding speed, and correction control of the torch position, the state of a groove image that is difficult to detect Even if it is, it is possible to cope with proper welding control without falling out of control, obtain a good finish welding result, and automate the welding of the final layer.
[0033]
Further, in the automatic welding apparatus of the present invention, a position teaching means for teaching a torch reference position serving as a reference for the circumferential multipass welding to a desired groove center position of the groove joint before welding, Starting and ending position calculating means for calculating and determining a welding start position for each welding pass and a welding end position after one round of the welding line based on the position, and welding conditions for a steady welding section for each welding pass to be input or calculated in advance. As described above, by providing a parameter, a condition output control means for controlling the output of the welding start section and the welding start and end conditions of the end section, the welding is performed from the welding start portion to the circumferential portion of the steady welding and the start after one round for each welding pass. It is possible to obtain a smooth and good circumferential weld bead having no defect up to the bead joint between the portion and the terminal portion.
[0034]
Further, a visual sensor and an image processing device for detecting in real time the groove shoulder width, depth, gap, weld bead width of the groove joint, and lateral center deviation of the groove, and a sensor reference alignment before welding. A sensor reference position setting means that is set at or near the torch reference position, and a weaving width is calculated and controlled from the size of the gap or bead width or the groove shoulder width, and the bead width and depth of the welded portion are controlled. Calculating and controlling the welding area and welding speed from the size of the groove shoulder width, and calculating control processing means for correcting and controlling the torch position in a direction to eliminate the groove center deviation, the gap and the groove shoulder width are reduced. Even in the case of a grooved joint having a change or a bent or displaced welding line, it can be handled by adaptive control of the welding conditions and correction control of the torch position, and a good welding result can be obtained. Steps reduce the welding operation by automating buttering, it is possible to improve and labor saving productivity.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration diagram showing an automatic welding apparatus according to a bead joining method for circumferential multi-layer welding of the present invention. A pair of thick pipe materials (base materials) 6a and 6b having a circumferential grooved joint 1 are installed on a rotating device 9 so as to be able to rotate at a desired speed. Above the groove joint 1, a welding torch 3 having a non-consumable electrode 4 and a wire 5 to be fed during welding are arranged. Further, a visual sensor 7a is also provided at a position on the upper surface of the groove joint 1 in front of the welding torch 3. The welding torch 3 and the wire 5 can be moved to an arbitrary position in the vertical and horizontal directions by the driving device 11. The TIG welding power supply 12 is connected to a gas cylinder 14 for supplying a shielding gas to the welding torch 3 via a torch cable 17 and a cooling water circulation device for circulating cooling water. The shielding gas is an inert gas for protecting the arc welded portion and the non-consumable electrode from the atmosphere, and uses, for example, Ar gas. Ar + H instead of Ar gas 2 It is also possible to use a mixed gas or He gas. Power supply cables 15a and 15b are connected to the TIG welding power supply 12 so as to generate an arc between the welding torch 3 and the groove joint 1 and output and supply a current of a desired magnitude. The image processing device 8 can process a groove cross-sectional image captured by the visual sensor 7a via the sensor control 7b to detect a groove shoulder width, a groove depth, a gap, a bead width, a groove center shift, and the like. Like that. The welding control device 10 controls the welding torch 3 and the wire 5 via the driving device 11 when performing welding, controls the output of the TIG welding power supply 12, and instructs the visual sensor 7a and the pair of image processing devices 8 And processes the detected data to control the welding condition parameters, welding start and end conditions, and the position of the welding torch 3 for each welding pass, and comprehensively manages a series of operations and components from the start to the end of welding. . Further, the welding control device 10 includes welding condition parameters to be output in a steady welding section for each welding pass, welding start and end conditions to be output in a welding start section and an end section, constants used for control and calculation of welding, and the like. It has a writing data file such as correction data and a welding data file that can be extracted. Based on this welding data file, control of pulse arc welding or DC arc welding for each welding pass can be performed. Further, adaptive control of the weaving width, adaptive control of the welding speed, and correction control of the torch position can be performed based on the data detected by the visual sensor 7a and the image processing device.
[0036]
FIG. 2 is a cross-sectional view showing multi-pass welding of a U-groove, which is one of the groove joints 1 of the thick pipe members 6a and 6b shown in FIG. FIG. 2A shows a case of four-layer four-pass welding, and FIG. 2B shows a case of N-layer N-pass welding with a larger number of passes (for example, N = 8 passes, P = 1 to N). The numbers described in the figure are the pass numbers of the welding order. The symbol T is the plate thickness, f is the root face at the bottom of the groove, D is the inner diameter of the pipe, and h1, h2 to h (p) are the bead height (for example, about 2 to 3 mm) for each pass to be laminated and welded. Is shown. The mark ● represents the welding torch position for each pass. For example, the torch position in the left-right and up-down direction of the first pass of the first layer is indicated by Q1 (Y1, Z1), and the torch position in the left-right up-down direction of the Nth pass of the final layer. Is indicated by Qp (Yp, Zp). Each of the torch positions Y1 to Yp in the left-right direction is substantially the center position of the groove, and each torch position in the up-down direction is a cumulative height position obtained by accumulating the bead heights up to the front layer welding.
[0037]
FIG. 3 is a diagram illustrating a method of setting a torch reference position performed before welding. The welding torch 3 and the base materials 6a and 6b are moved by manual operation from the welding control device 10 shown in FIG. 1 and a pair of operation boxes (omitted), and the tip of the electrode 4 of the welding torch 3 is moved into the groove joint 1. The position is taught according to the groove center position. The position of the taught circle becomes the torch reference position (Xo, Yo, Zo) in the circumferential multipass welding.
[0038]
FIG. 4 is an explanatory view showing the setting of the torch position for each welding pass according to the bead joining method of circumferential multi-layer welding of the present invention. Xo is a torch reference position (marked by a circle) in the direction of the welding line, and as shown in FIG. 3, is taught to a desired groove center position of the groove joint 1 (base material) of the pipe material before welding. Reference numerals 1w1 to 1w4 denote welding lines for each welding pass, which is an embodiment of the case where the circumferential multi-layer building and the bead joining welding for each pass are performed while rotating the base material in the direction 16 of the arrow. Xs1 to Xs4 are welding start positions (毎 marks) for each welding pass, and Xe1 to Xe4 are welding end positions (◆ marks) after making one round of the circumferential welding line. Ce is a start / end overlap length indicating the distance between the start positions Xs1 to Xs4 and the end positions Xe1 to Xe4 for each welding pass, and may be, for example, about 10 to 20 mm. The start position Xs1 of the first layer first pass is set to the same position as the torch reference position Xo. Further, the welding start positions Xs2 to Xs4 from the second pass to the Nth pass (N = 4) after the initial layer are at positions advanced by a predetermined angle α1. The value of the advance angle α1 may be, for example, about 10 to 20 degrees.
[0039]
From the welding of the first pass of the first layer to the welding of the Nth pass of the final layer (P = 1 to N), each welding start position Xs (p) is obtained by the following equation (1). Similarly, the welding end position Xe (p) for each pass is determined by the starting and ending overlap length Ce from the position obtained by making a full circle of the welding line from the welding start position Xs (p) for each pass calculated by equation (1). Is the position advanced only by the forward movement, and is obtained by equation (2). Dw (p) is the surface outer diameter of the front layer welding for each pass (P = 1 to N), D is the pipe inner diameter of the groove joint to be welded, f is the root face of the groove bottom, and P is the pass face. Assuming that the total bead height Hb (p-1) up to the previous layer to be laminated is calculated by the following equation (3).
[0040]
Figure 2004330227
By calculating in this manner, the welding start position Xs (p) and the end position Xe (p) for each pass can be set accurately, and the start position and the end position for each welding pass are dispersed without being concentrated at one place. be able to. In addition, bead joint welding between the start portion and the end portion of welding can be performed at the dispersed positions, and a desired weld start end bead can be formed. Instead of the predetermined angle α1, a position advanced by a predetermined distance L1 or a position retracted (by substituting −α1 or −L1) can be easily calculated and set.
[0041]
The above-described welding start position Xs (p) and end position Xe (p) for each pass can be calculated by the start / end position calculation means, and may be provided inside the welding control device 10. Further, the calculation result may be recorded and stored in, for example, a welding data file, and when performing welding, the welding data file may be extracted and used.
[0042]
FIG. 5 is an explanatory view showing a setting method different from the method of setting the torch position shown in FIG. 4, and each symbol is the same. Here, the welding start position (Xs1, Xs3) corresponding to the odd-numbered welding path (P = 1, 3) is advanced by a predetermined angle α1 in the welding line direction from the torch reference position Xo (marked by ○) (●). Mark). On the other hand, the welding start positions (Xs2, Xs4) corresponding to the even-numbered welding paths (P = 2, 4) are set at positions directly opposite to the odd-numbered start positions (marked by ●). . Therefore, the start position Xs (p) for each welding pass (P = 1 to N) is obtained by the following equations (4) and (5). Further, the welding end position (Xe1 to Xe4) for each pass is defined as a start / end overlap length from a position obtained by making a full circle of the welding line from the start position Xs (p) calculated by the equations (4) and (5). This is the position advanced by Ce (marked by ◆), and can be calculated from the above-described equations (2) and (3).
[0043]
Odd number welding start position: Xs (p) = Xo + α1 (4)
Even numbered welding start position: Xs (p) = Xo-α1 (5)
By calculating in this way, the welding start position Xs (p) and the ending position Xe (p) for each pass can be accurately set, and the starting position and the ending position for each welding pass are not concentrated on one place but at two or more places. Can be dispersed. In addition, bead joint welding between the welding start portion and the end portion can be performed at two or more dispersed positions, and a desired welding start end bead can be formed. The predetermined distance L1 may be substituted for the predetermined angle α1 for calculation. It is also easy to change the start position of the odd number to a position retracted by α2 slightly different from α1.
[0044]
FIG. 6 is a condition control block diagram showing one embodiment of the bead joining method for circumferential multipass welding of the present invention. FIGS. 6 (1) and 6 (3) show the current 31 waveform and voltage 32 waveform of the pulse arc welding controlled on the end side and the start side of the circumferential welding, and the weave width 33 (weaving) for swinging the welding torch right and left. (Width), a feed speed 34 of the wire 5, a welding speed 35 (corresponding to a rotation speed), and welding start and end conditions. FIG. 6 (2) shows the state of the start bead 2s on the welding start side, the weld bead 2 on the steady welding portion, and the end bead 2e on the weld end side for bead joining with the start end bead 2s. Xs (●) is a welding start position (corresponding to Xs1, Xs2, Xs3, Xs4) for each welding pass shown in FIGS. 4 and 5, and Xe (◆) is the end after one round of the welding line. Position (corresponding to Xe1, Xe2, Xe3, Xe4). Ce is a start / end overlap length indicating a distance between the start position Xs and the end position Xe.
[0045]
That is, as shown in FIGS. 6 (2) and 3 (3), on the starting side of the circumferential welding, the non-consumable property of the tip of the welding torch 3 from the position of the starting point Xs (indicated by ●) in the atmosphere of the shielding gas outflow (omitted). An arc having a small current Is is generated between the electrode 4 and the base material (the groove joint 1), and after the up slope time T2, the peak current I and the base current Ib of the pulse arc are reached, and the welding torch 3 is moved right and left. Swing (weave width Uw). The swing of the welding torch 3 is synchronized with the time Tp of the peak current Ip and the time Tb of the base current Ib. A molten pool having a desired size can be formed by gradually melting the lower part of the groove immediately below the welding start position or the bead surface part of the preceding layer welding. Thereafter, the wires are fed Wp and Wb into the arc and into the molten pool, and a steady-state circumferential welding is performed while rotating the base material at a predetermined speed V.
[0046]
By appropriately controlling the welding conditions in this manner, the starting bead 2s having a gentle margin at the welding start portion can be formed satisfactorily, and both walls within the groove are smooth and free from poor fusion and undercut. A good circumferential weld bead 2 can be formed.
[0047]
On the other hand, as shown in FIG. 6A, on the welding end side where bead joining with the starting end bead 2s is necessary, the peak current Ip and the base current Ip are reached at the point where the welding torch reaches the end position Xe (marked by ◆). Ib is down-slope and the wire feeds Wp and Wb are stopped. Immediately after the wire feed is stopped, the tip of the wire 5 is pulled back for a short time T7 or a predetermined length and pulled up from the molten pool. After the traveling stop delay time T8, the rotation traveling of the base material is stopped, and after the elapse of the down slope time T6, the arc of the small current Ie is stopped. Thereafter, the omitted shielding gas is stopped, and the welding torch 3 is prevented from rising. For example, when the welding condition parameters to be output in the steady welding portion for each pass shown in FIG. 7 and the welding start and end conditions to be output in the welding start and end portions shown in FIG. 6 are recorded and saved in a welding data file created in advance. Good.
[0048]
By controlling the welding conditions in this way, unlike the melting form and the weld bead shape of the conventional arc welding using a wire as an electrode, the welding starts from the welding start portion to the circumferential portion of the steady welding and the start portion after one round for each welding pass. It is possible to obtain a smooth and good circumferential weld bead having no defect up to the bead joint between the end portion and the bead. At the same time, welding of the base material at the wire tip can be prevented beforehand, and contact between the outer peripheral portion of the welding torch or the electrode at the tip of the welding torch and the base material can be prevented. In addition, by controlling the pulse arc welding or the DC arc welding based on the welding data file, a series of welding operations and controls from the start of welding to the steady welding and the end can be reliably performed for each welding pass.
[0049]
The sloped current waveform at the up slope time T2 and the down slope time T6 shown in FIGS. 6A and 6B may be changed to a pulsed current waveform. It is also possible to output the average current and the average wire feed using DC arc welding instead of pulse arc welding, and to perform circumferential welding and bead joining at the beginning and end satisfactorily. Further, instead of rotating the base material side, the welding torch 3 mounted on the welding cart can be rotated to perform the above-described circumferential multi-layer welding and bead joining.
[0050]
FIG. 8 is a detection diagram showing a method of setting a sensor reference position performed after setting the torch reference position shown in FIG. The visual sensor 7a is relatively moved to or near the aforementioned torch reference position (Xo, Yo, Zo), and the visual sensor 7a and the pair of image processing devices 8 detect and set the sensor reference position. The center position of the shoulder width and the center position of the lower part of the groove detected by performing image processing on the line images 36 and 37 of the groove shape section are set as sensor reference positions (Ys = 0, Zs = 0). By the detection setting of the sensor reference position, the center position deviation (ΔYs, ΔZs) of the groove portion in circumferential welding can be detected during welding.
[0051]
FIG. 9 is a detection diagram showing a groove shape dimension and a groove center position shift of a groove portion detected at an arbitrary filling welding. The line images 36 and 37 of the groove section are image-processed by the visual sensor 7a and the pair of image processing devices 8, and the groove shoulder width Ws at the groove upper surface, the step ks, the bead width Bs at the groove bottom, and the groove bottom. , And the center position deviations ΔYs and ΔZs from the initially set sensor reference position (Ys = 0, Zs = 0) are detected in real time. At the time of initial layer welding, the gap width Gs may be detected instead of the bead width Bs. These detection data are classified and averaged by the welding control device 10 for each value. Further, based on the detection data of the averaging process, the correction amount of the torch position, the control amount of the weaving width, and the control amount of the welding speed are calculated and controlled in real time. By performing the detection data processing and the calculation processing in this way, adaptive control of welding conditions and correction control of a torch position can be performed.
[0052]
Next, a method of controlling the weaving operation necessary for the circumferential multi-pass welding will be described. FIG. 10 is a diagram illustrating a method of controlling the weaving width and the bead height during welding. In the case of filling layer welding (P = 2 to N−1 or N−2), the detected value of the bead width Bs is averaged [Bs = (Bs1 + Bs2 +... + Bsa) / a] and used. The weaving width Uw is increased in proportion to the size of the weaving. In the first pass first layer welding (P = 1), the detected value of the gap width Gs is averaged [Gs = (Gs1 + Gs2 +... + Gsa) / a] and used, and the gap width Gs is large (Gs>). At C1), the weaving width Uw is appropriately increased or decreased. When the gap width Gs is small (0 ≦ Gs ≦ C1), the weaving width Uw is set to 0 to stop weaving. The weaving width Uw of the initial layer welding and the filling layer welding is obtained by the following equations (6) to (8). Here, C1 and C2 are weaving width constants.
[0053]
On the other hand, in the case of the finish welding of the final layer (P = N) or the welding of the front layer before finishing (P = N−1), the detection may be difficult, so the visual sensor 7a and the image processing device are used here. Is stopped, and the detection data recorded (for example, the pass of Pk = N−2) by the previously detected and controlled front-layer welding is reused. The detected value of the groove shoulder width Ws is used in the averaging process [Ws = (Ws1 + Ws2 +... + Wsa) / a], and the weaving width Uw is increased in proportion to the size of the groove shoulder width Ws. The weaving width Uw of the final finish layer is obtained by the equation (9). Here, C3 is a width constant of weaving. Further, the swing speed Vu for each welding pass is related to the base time Tb (or the left and right stop time) described in FIG. 6 and is obtained by Expression (10). By calculating and controlling in this manner, even in a groove joint where the gap Gs or the bead width Bs and the groove shoulder width Ws change, the weaving width Uw for swinging the welding torch right and left can be appropriately controlled, A good weld bead can be obtained by preventing undercut and poor melting that are likely to occur on both walls of the groove.
[0054]
First layer weaving width (when Gs> C1): Uw = Gs-C1 (6)
Weaving width of first layer (when 0 ≦ Gs ≦ C1): Uw = 0 (7)
Weaving width of the packed layer: Uw = Bs-C2 (8)
Weaving width of finish layer: Uw = Ws-C3 (9)
Swing speed for each pass: Vu = Uw / Tb (10)
Next, a method of calculating and appropriately controlling the welding area S to be welded and the welding speed V so that the bead height h (p) during welding of the filling layer (Pth pass) becomes constant will be described. In FIG. 9, Hs is a detection value obtained by averaging the groove depth of the remaining portion that has not been welded [(Hs = Hs1 + Hs2 ·· + Hsa) / a], and Hb (p−1) is the front layer. The cumulative bead height to be laminated by welding, S (p) is the reference welding area scheduled for the P-th welding, and Δh is the bead height deviation. The bead height deviation Δh is related to the groove depth Hs of the remaining portion, the plate thickness T, the root face f, and the total bead Hb (p−1) up to the preceding layer welding. More required. The welding area S to be welded is a value obtained by adding the reference welding area S (p) of the corresponding welding pass (Pth pass) and the area of the portion corresponding to the bead height deviation Δh. More required. Therefore, the welding speed V necessary for the adaptive control is determined by the bead height deviation Δh and the welding area S calculated by the equations (11) and (12), and the average to be fed to the welding portion in the corresponding welding pass (Pth pass). It is related to the wire feed speed Wf (p) [average value: Wf (p) = (Wp * Tp + Wb * Tb) / (Tp + Tb)], and is obtained from Expression (13). Here, C4 is an area correction constant, C5 is a wire welding rate coefficient, d is a wire diameter, and θ is a groove angle. Calculation control means (omitted) for calculating and controlling using these calculation formulas and constants may be provided inside the welding control device 10.
[0055]
Bead height deviation: Δh = Hs−T + f + Hb (p−1) (11)
Welding area: S = S (p) + C4 * Δh * (Bs + Δh * tan (θ / 2)) (12)
Welding speed: V = (10 * d * d * π * C5 * Wf (p)) / (4 * S) (13)
As described above, at the time of finish welding of the final layer (P = N) or preceding layer welding before finishing (P = N−1), the detection operation by the visual sensor 7a and the image processing device is stopped, and the detection and the final detection are performed. The detection data (the detection value after the averaging process) recorded (for example, the pass of Pk = N−2) in the controlled front layer welding is reused. When calculating the bead height deviation Δh, instead of the total bead height Hb (p−1), the total bead height Hb (pk−1) of the detection data to be reused up to the previous layer welding is calculated as ( It suffices to substitute into equation (11). Further, the welding area S to be welded in the final finish layer (P = N) can be roughly calculated by the following equation (14). The welding speed V of the final finishing layer may be calculated by substituting the welding area S calculated by the equation (14) into the above equation (13). Here, hs is the finish bead height, and b1 is the width constant of the finish bead.
[0056]
Welding area of finishing layer: S = hs * (Ws + b1) * 2/3 (14)
By calculating and controlling in this manner, even in a groove joint in which the groove depth Hs, bead width Bs, or groove shoulder width Ws of the remaining portion changes, the welding area is adjusted so as to eliminate the bead height deviation Δh. S and the welding speed V can be appropriately controlled, and a uniform weld bead having a uniform lamination bead height can be obtained. In addition, even in the case of welding of the final finish layer or front layer welding before finishing, which is likely to be difficult to be detected by the sensor, proper detection can be performed by reusing the detection data recorded in the last layer of detected and controlled front layer welding. The welding area S and the welding speed V can be calculated and reliably controlled.
[0057]
Regarding the control of the right and left torch position Y (including the wire position) for each welding pass, the torch position and the wire position are adjusted to the proper groove center by correcting the position to eliminate the groove center deviation ΔYs shown in FIG. Can be controlled in position. Further, regarding the control of the vertical torch position (including the wire position) for each welding pass, it is preferable to correct the position in the direction to eliminate the vertical position shift ΔZs shown in FIG. Alternatively, the torch height can be corrected and controlled by detecting the arc voltage Ea so that the arc length during welding is substantially constant. By controlling the correction of the torch position in this way, the torch position can be corrected and controlled to an appropriate position even with a groove joint having a bent or displaced welding line, and a good welding result can be obtained.
[0058]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, with respect to the groove joint of a thick pipe material, from a welding start part to a circumferential part of steady welding and a bead joint part of a start part and a terminal part after one round, a defect-free smoothness for every welding pass. And a good circumferential weld bead can be obtained. In addition, even in the case of groove joints where the gap or groove shoulder width changes and the welding line bends or shifts, automatic welding can be performed by adaptive control of welding conditions and correction control of the torch position, reducing the man-hour for welding work. In addition, productivity can be improved and labor can be saved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an automatic welding apparatus according to a bead joining method for circumferential multi-layer welding of the present invention.
FIG. 2 is a cross-sectional view showing a multi-pass welding of a U-groove, which is one of the groove joints 1 of the thick pipe members 6a and 6b shown in FIG.
FIG. 3 is a diagram showing a method of setting a torch reference position performed before welding.
FIG. 4 is an explanatory diagram showing the setting of the torch position for each welding pass according to the bead joining method for circumferential multipass welding of the present invention.
FIG. 5 is an explanatory diagram showing a setting method different from the torch position setting method shown in FIG. 4;
FIG. 6 is a condition control block diagram showing an embodiment of a bead joining method for circumferential multipass welding according to the present invention.
FIG. 7 is a welding data diagram showing an example of welding condition parameters for each welding pass.
8 is a detection diagram showing a method of setting a sensor reference position performed after setting the torch reference position shown in FIG.
FIG. 9 is a detection diagram showing a groove shape dimension and a groove center position shift of a groove portion detected during arbitrary filling welding.
FIG. 10 is a diagram showing a method of controlling a weaving width and a bead height during welding.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bevel joint 2 ... Weld bead 2s ... Start bead 2e ... End bead 3 ... Welding torch 4 ... Non-consumable electrode 5 ... Wire 6a, 6b ... Thick plate material 7a ... Visual sensor 8 image processing device, 10 welding control device, 11 drive device, 12 TIG welding power supply.

Claims (8)

少なくとも2パス以上の多層盛溶接及び溶接パス毎のビード継ぎが必要な厚板管材の開先継手を非消耗性電極による溶接トーチでパルスアーク溶接又は直流アーク溶接を行う円周多層盛溶接のビード継ぎ方法において、
溶接前に前記円周多層盛溶接の基準となるトーチ基準位置を前記開先継手の所望の開先中心位置に設定し、初層1パス目の溶接開始位置を前記トーチ基準位置と同じ位置に設定し、初層後の2パス目から最終層Nパス目までの各溶接開始位置を前記トーチ基準位置より溶接線方向に第1の所定角度ずつ又は第1の所定距離ずつ前進させた位置又は後退させた位置に各々設定し、各円周溶接のビード継ぎ部の終了側では、前記初層1パス目から最終層Nパス目までの各溶接終了位置を前記各溶接開始位置から溶接線方向に一周させた位置より第2の所定角度又は第2の所定距離だけ前進させた位置に各々設定し、事前に設定した定常溶接区間の溶接パス毎の溶接条件パラメータと溶接開始区間及び終了区間の溶接始終条件とを出力させて前記パルスアーク溶接又は直流アーク溶接を行うことを特徴とする円周多層盛溶接のビード継ぎ方法。
Circumferential multi-pass welding in which pulse arc welding or direct current arc welding is performed with a welding torch using a non-consumable electrode at a groove joint of a thick pipe material that requires multi-pass welding at least two passes or bead joining at each welding pass In the splicing method,
Before welding, a torch reference position serving as a reference for the circumferential multipass welding is set to a desired groove center position of the groove joint, and a welding start position of the first pass of the first layer is set to the same position as the torch reference position. A position where each welding start position from the second pass after the first layer to the Nth pass of the final layer is advanced by a first predetermined angle or a first predetermined distance in the welding line direction from the torch reference position, or At the end of the bead joint of each girth weld, each welding end position from the first pass of the first layer to the Nth pass of the last layer is set in the retracted position from the welding start position to the welding line direction. The welding condition parameters for each welding pass of the preset steady welding section and the welding start section and the end section of the welding path are set at a position advanced by a second predetermined angle or a second predetermined distance from the position where the circuit has made one round. The welding start and end conditions are output and the Bead splicing method circumference multi-pass welding and performing Suaku welding or DC arc welding.
少なくとも2パス以上の多層盛溶接及び溶接パス毎のビード継ぎが必要な厚板管材の開先継手を非消耗性電極による溶接トーチでパルスアーク溶接又は直流アーク溶接を行う円周多層盛溶接のビード継ぎ方法において、
溶接前に前記円周多層盛溶接の基準となるトーチ基準位置を前記開先継手の所望の開先中心位置に設定し、奇数番号の溶接パスに該当する第1の溶接開始位置を前記トーチ基準位置より溶接線方向に第1の所定角度又は第1の所定距離だけ前進させた位置又は後退させた位置に設定し、偶数番号の溶接パスに該当する第2の溶接開始位置を前記第1の溶接開始位置と異なる正反対の位置又は該位置近傍に設定し、円周溶接のビード継ぎ部の終了側では、前記奇数番号に該当する第1の溶接終了位置を前記第1の溶接開始位置から溶接線方向に一周させた位置より第2の所定角度又は第2の所定距離だけ前進させた位置に設定し、前記偶数番号に該当する第2の溶接終了位置を前記第2の溶接開始位置から溶接線方向に一周させた位置より前記第2所定角度又は前記第2の所定距離だけ前進させた位置に設定し、事前に設定した定常溶接区間の溶接パス毎の溶接条件パラメータと溶接開始区間及び終了区間の溶接始終条件とを出力させて前記パルスアーク溶接又は直流アーク溶接を行うことを特徴とする円周多層盛溶接のビード継ぎ方法。
Circumferential multi-pass welding in which pulse arc welding or direct current arc welding is performed with a welding torch using a non-consumable electrode at a groove joint of a thick pipe material that requires multi-pass welding at least two passes or bead joining at each welding pass In the splicing method,
Before welding, a torch reference position serving as a reference for the circumferential multipass welding is set to a desired groove center position of the groove joint, and a first welding start position corresponding to an odd-numbered welding pass is set to the torch reference. The position is set at a position advanced or retracted by a first predetermined angle or a first predetermined distance in the welding line direction from the position, and the second welding start position corresponding to the even-numbered welding path is set to the first welding position. The first welding end position corresponding to the odd number is welded from the first welding start position to the first welding end position corresponding to the odd number on the end side of the bead joint portion of the circumferential welding, which is set at a position directly opposite to or different from the welding start position. It is set at a position advanced by a second predetermined angle or a second predetermined distance from a position that has made one round in the line direction, and a second welding end position corresponding to the even number is welded from the second welding start position. From the position of one round in the line direction (2) Set to a predetermined angle or a position advanced by the second predetermined distance, and output the welding condition parameters for each welding pass of the steady welding section and the welding start and end conditions of the welding start section and the end section set in advance. A bead joining method for circumferential multi-pass welding, wherein the pulse arc welding or the DC arc welding is performed.
請求項1又は2において、溶接パス毎の開始側では、前記溶接トーチを該当する溶接パスの前記溶接開始位置に相対移動させ、移動停止後に溶接トーチ先端よりシールドガス流出の雰囲気内で小電流のアークを発生させ、前記小電流のアップスロープ時間経過後に定常溶接のパルスアークのピーク電流・ベース電流又は直流アークの平均電流に到達させ、溶接トーチを開先左右方向に揺動させ、その後に、前記アーク中及び溶融プール内にワイヤを送給すると共に、溶接線方向に所定速度で前記溶接トーチを走行させ又は母材の開先継手側を回転させながら定常状態の円周溶接を行い、ビード継ぎ部の終了側では、前記溶接終了位置に溶接トーチが到達した地点で、前記ピーク電流・ベース電流又は平均電流をダウンスロープさせると共に前記ワイヤを停止して引上げ、溶接トーチの走行又は母材の回転を停止させ、ダウンスロープ時間経過後に小電流のアークを停止させ、前記シールドガスの停止後に溶接トーチを上昇回避させることを特徴とする円周多層盛溶接のビード継ぎ方法。3. The method according to claim 1, wherein, on the starting side of each welding pass, the welding torch is relatively moved to the welding start position of the corresponding welding pass, and after stopping the movement, a small current is applied in an atmosphere in which a shielding gas flows out from the tip of the welding torch. An arc is generated, and after the elapse of the upslope time of the small current, the peak current and the base current of the pulse arc of the steady welding or the average current of the DC arc are reached, and the welding torch is swung in a groove left and right direction. Along with feeding the wire into the arc and into the molten pool, the welding torch is run at a predetermined speed in the direction of the welding line or a circumferential welding in a steady state is performed while rotating the groove joint side of the base material, and the bead is formed. At the end of the joint, at the point where the welding torch reaches the welding end position, the peak current / base current or average current is down-slope and Stopping and raising the wire, stopping the running of the welding torch or the rotation of the base material, stopping the arc with a small current after the elapse of the downslope time, and avoiding raising the welding torch after stopping the shield gas. Bead joining method for circumferential multi-layer welding. 請求項1〜3のいずれかにおいて、定常溶接区間で出力すべき溶接パス毎のピーク電流/ベース電流又は平均電流,ピーク電圧又は平均電圧,ピーク時間/ベース時間又は停止時間/移動時間,ピークワイヤ/ベースワイヤの送り速度又は平均ワイヤの送り速度,ウィービング幅,溶接速度や回転速度などの溶接条件パラメータと、溶接開始区間及び終了区間で出力すべき溶接始終条件と、溶接パス毎の左右上下方向のトーチ位置,溶接線方向の前記溶接開始位置及び終了位置と、溶接の制御や計算に用いる各定数及び補正データとを書込み設定及び引出し可能な溶接データファイルを設け、パス毎の溶接を実行する時には、前記溶接データファイルの溶接データに基づいて前記パルスアーク溶接又は直流アーク溶接の制御を行うことを特徴とする円周多層盛溶接のビード継ぎ方法。The peak current / base current or average current, peak voltage or average voltage, peak time / base time or stop time / moving time, peak wire for each welding pass to be output in the steady welding section according to any one of claims 1 to 3. / Welding condition parameters such as base wire feed speed or average wire feed speed, weaving width, welding speed and rotation speed, welding start and end conditions to be output in welding start section and end section, left and right and up and down directions for each welding pass A welding data file capable of setting and drawing out the torch position, the welding start position and the end position in the welding line direction, and constants and correction data used for welding control and calculation, and performing welding for each pass. Sometimes, the pulse arc welding or the DC arc welding is controlled based on the welding data of the welding data file. Bead splicing method of the circumference multi-pass welding to. 請求項1〜4のいずれかにおいて、前記開先継手の開先肩幅,深さ,ギャップ,溶接部のビード幅,左右方向の開先中心ずれをリアルタイムで検出する視覚センサ及び画像処理装置をさらに設け、溶接前にセンサ基準位置合せを前記トーチ基準位置又は該トーチ基準位置近傍に設定し、パス毎の溶接を実行する時には、前記視覚センサ及び画像処理装置による検出データを使用し、前記ギャップ又はビード幅又は開先肩幅の大きさに応じて前記溶接トーチを左右に揺動させるウィービング幅を適応制御し、溶接部のビード幅,深さ,開先肩幅の大きさに応じて溶接すべきビード高さが一定高さになるように溶着面積及び溶接速度を算出して適応制御し、前記開先中心ずれをなくす方向にトーチ位置を修正制御することを特徴とする円周多層盛溶接のビード継ぎ方法。The visual sensor and the image processing device according to any one of claims 1 to 4, further comprising a real-time detecting groove width, a depth, a gap, a bead width of a welded portion, and a lateral center deviation of the groove in the groove joint. Before welding, the sensor reference alignment is set to the torch reference position or in the vicinity of the torch reference position, and when performing welding for each pass, using the detection data by the visual sensor and the image processing device, the gap or The weaving width for swinging the welding torch right and left according to the size of the bead width or the groove shoulder width is adaptively controlled, and the bead to be welded according to the bead width, depth, and the size of the groove shoulder width of the welded portion. Circumferential multi-layer asperity wherein the welding area and the welding speed are calculated and adaptively controlled so that the height becomes a constant height, and the torch position is corrected and controlled in a direction to eliminate the groove center deviation. Bead splicing method of contact. 請求項5において、少なくとも最終層Nパス目の溶接又は該最終層Nパス目及び前層(N−1)パス目の溶接を実行する時には、前記視覚センサ及び画像処理装置による検出動作を停止して、最後に検出及び制御した前層溶接で記録した検出データを再使用し、前記ウィービング幅の適応制御と溶接速度の適応制御とトーチ位置の修正制御とを行うことを特徴とする円周多層盛溶接のビード継ぎ方法。6. The detection operation by the visual sensor and the image processing apparatus according to claim 5, wherein at least the welding of the Nth pass of the final layer or the welding of the Nth pass of the final layer and the (N-1) th pass is stopped. A circumferential multi-layer structure wherein the detected data recorded in the last-layer welding detected and controlled last is reused to perform the adaptive control of the weaving width, the adaptive control of the welding speed, and the correction control of the torch position. Bead welding method for stake welding. 少なくとも2パス以上の多層盛溶接及び溶接パス毎のビード継ぎが必要な厚板管材の開先継手に対して、非消耗性電極による溶接トーチと、パルスアーク又は直流アークの出力可能なTIG溶接電源と、前記開先継手の回転走行が制御可能な母材回転装置又は溶接トーチの回転走行が制御可能な溶接台車と、ワイヤ及び溶接トーチの上下左右位置の駆動制御可能な駆動装置と、パス毎の溶接開始から終了に至る一連の動作及び構成機器を統括管理する溶接制御装置とを用いて、円周多層盛溶接及びビード継ぎ溶接を行う自動溶接装置において、
溶接前に前記円周多層盛溶接の基準となるトーチ基準位置を前記開先継手の所望の開先中心位置に教示する位置教示手段と、教示したトーチ基準位置を基にして溶接パス毎の溶接開始位置及び溶接線一周後の溶接終了位置を算出決定する始終端位置算出手段と、事前に入力設定又は算出設定する溶接パス毎の定常溶接区間の溶接条件パラメータ,溶接開始区間及び終端区間の溶接始終条件を出力制御する条件出力制御手段とを設けたことを特徴とする自動溶接装置。
A TIG welding power source capable of outputting a welding torch with non-consumable electrodes and a pulse arc or a DC arc for a grooved joint of a thick pipe material requiring at least two passes or more of multi-pass welding and bead joining at each welding pass A base material rotating device capable of controlling the rotational travel of the groove joint or a welding cart capable of controlling the rotational travel of the welding torch; a drive device capable of controlling the drive of the wire and the welding torch in the vertical and horizontal positions; Using a welding control device that supervises a series of operations and components from the welding start to the end of the welding, in an automatic welding device that performs multi-layer circumferential welding and bead seam welding,
Position teaching means for teaching a torch reference position serving as a reference for the circumferential multi-pass welding to a desired groove center position of the groove joint before welding, and welding for each welding pass based on the taught torch reference position. Start and end position calculation means for calculating and determining the start position and the welding end position after one round of the welding line, welding condition parameters for the steady welding section for each welding pass to be input or calculated in advance, and welding for the welding start and end sections An automatic welding apparatus, comprising: condition output control means for controlling output of start and end conditions.
請求項7において、前記開先継手の開先肩幅,深さ,ギャップ,溶接部のビード幅,左右方向の開先中心ずれをリアルタイムで検出する視覚センサ及び画像処理装置と、溶接前にセンサ基準位置合せを前記トーチ基準位置又は該トーチ基準位置近傍に設定するセンサ基準位置設定手段と、前記ギャップ又はビード幅又は開先肩幅の大きさからウィービング幅を算出して制御し、溶接部のビード幅,深さ,開先肩幅の大きさから溶着面積及び溶接速度を算出して制御し、開先中心ずれをなくす方向にトーチ位置を修正制御する算出制御処理手段とをさらに設けたことを特徴とする自動溶接装置。8. A visual sensor and an image processing device for detecting in real time the groove shoulder width, depth, gap, bead width of a welded portion, and lateral deviation of a groove center of the groove joint, and a sensor reference before welding. A sensor reference position setting means for setting the alignment to the torch reference position or the vicinity of the torch reference position, and calculating and controlling the weaving width from the size of the gap or bead width or the groove shoulder width, and controlling the bead width of the welded portion. Calculation processing means for calculating and controlling the welding area and the welding speed from the size of the groove and the width of the groove shoulder, and correcting and controlling the torch position in a direction to eliminate the groove center deviation. Automatic welding equipment.
JP2003127643A 2003-05-06 2003-05-06 Automatic welding equipment Expired - Fee Related JP4788094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127643A JP4788094B2 (en) 2003-05-06 2003-05-06 Automatic welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127643A JP4788094B2 (en) 2003-05-06 2003-05-06 Automatic welding equipment

Publications (2)

Publication Number Publication Date
JP2004330227A true JP2004330227A (en) 2004-11-25
JP4788094B2 JP4788094B2 (en) 2011-10-05

Family

ID=33504065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127643A Expired - Fee Related JP4788094B2 (en) 2003-05-06 2003-05-06 Automatic welding equipment

Country Status (1)

Country Link
JP (1) JP4788094B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487680B1 (en) * 2013-05-09 2015-02-06 삼성중공업 주식회사 method of auto TIG welding of pipes
JP2018153816A (en) * 2017-03-15 2018-10-04 住友重機械工業株式会社 Multilayer welding method and multilayer welding joint
JP2020509935A (en) * 2017-02-27 2020-04-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Manufacturing system and method for boiler tube with synchronous rotation of tube related to automatic welding
WO2021205858A1 (en) * 2020-04-10 2021-10-14 株式会社神戸製鋼所 Gas shield arc welding method and steel pipe manufacturing method
CN113941762A (en) * 2020-12-17 2022-01-18 武昌船舶重工集团有限公司 All-position automatic wire filling TIG welding method for steel pipe
CN114054907A (en) * 2021-12-27 2022-02-18 中建安装集团有限公司 S31254 and T91 dissimilar steel welding and heat treatment method
CN114682949A (en) * 2022-03-30 2022-07-01 河北省机电一体化中试基地有限公司 Automatic pipeline welding control system
CN115533259A (en) * 2022-11-09 2022-12-30 郑州煤矿机械集团股份有限公司 Method for restraining lack of narrow gap welding seam of oil cylinder of coal mine hydraulic support

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575883A (en) * 1978-12-01 1980-06-07 Hitachi Ltd Automatic welding method of pipe joint and device thereof
JPS5581070A (en) * 1978-12-13 1980-06-18 Sumikin Yousetsubou Kk Automatic circumferential welding method
JPS5835064A (en) * 1981-08-24 1983-03-01 Nippon Kokan Kk <Nkk> Arc welding method
JPS59206172A (en) * 1983-05-09 1984-11-21 Mitsubishi Heavy Ind Ltd Automatic welding method
JPS62252679A (en) * 1986-04-25 1987-11-04 Mitsubishi Electric Corp Arc length control device for welding machine
JPH05138354A (en) * 1991-11-25 1993-06-01 Mitsubishi Heavy Ind Ltd Automatic welding profiling device
JPH06198442A (en) * 1992-12-28 1994-07-19 Nippon Steel Corp Welding equipment and method for square steel pipes
JPH06320270A (en) * 1993-05-14 1994-11-22 Taisei Corp Position control method for arc start and arc end in turning system automatic welding for reinforcing bar
JPH06344143A (en) * 1993-06-02 1994-12-20 Takata Kogyosho:Kk Automatic tig multi-layer welding method and its equipment
JPH08150474A (en) * 1994-11-25 1996-06-11 Mitsubishi Heavy Ind Ltd Method for automatic control of bead shape
JPH0910938A (en) * 1995-06-30 1997-01-14 Kawasaki Steel Corp Automatic welding method for fixed steel tube
JPH09271948A (en) * 1996-04-04 1997-10-21 Hitachi Ltd Automatic welding equipment
JPH1043858A (en) * 1996-08-02 1998-02-17 Hitachi Zosen Corp Method for setting welding condition in butt welding
JPH1177305A (en) * 1997-09-12 1999-03-23 Hitachi Ltd Control method for lap welding of bead joint
JPH11267842A (en) * 1998-03-23 1999-10-05 Japan Steel & Tube Constr Co Ltd Mag automatic welding method
JP2002336962A (en) * 2001-05-11 2002-11-26 Kobe Steel Ltd Automatic welding method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575883A (en) * 1978-12-01 1980-06-07 Hitachi Ltd Automatic welding method of pipe joint and device thereof
JPS5581070A (en) * 1978-12-13 1980-06-18 Sumikin Yousetsubou Kk Automatic circumferential welding method
JPS5835064A (en) * 1981-08-24 1983-03-01 Nippon Kokan Kk <Nkk> Arc welding method
JPS59206172A (en) * 1983-05-09 1984-11-21 Mitsubishi Heavy Ind Ltd Automatic welding method
JPS62252679A (en) * 1986-04-25 1987-11-04 Mitsubishi Electric Corp Arc length control device for welding machine
JPH05138354A (en) * 1991-11-25 1993-06-01 Mitsubishi Heavy Ind Ltd Automatic welding profiling device
JPH06198442A (en) * 1992-12-28 1994-07-19 Nippon Steel Corp Welding equipment and method for square steel pipes
JPH06320270A (en) * 1993-05-14 1994-11-22 Taisei Corp Position control method for arc start and arc end in turning system automatic welding for reinforcing bar
JPH06344143A (en) * 1993-06-02 1994-12-20 Takata Kogyosho:Kk Automatic tig multi-layer welding method and its equipment
JPH08150474A (en) * 1994-11-25 1996-06-11 Mitsubishi Heavy Ind Ltd Method for automatic control of bead shape
JPH0910938A (en) * 1995-06-30 1997-01-14 Kawasaki Steel Corp Automatic welding method for fixed steel tube
JPH09271948A (en) * 1996-04-04 1997-10-21 Hitachi Ltd Automatic welding equipment
JPH1043858A (en) * 1996-08-02 1998-02-17 Hitachi Zosen Corp Method for setting welding condition in butt welding
JPH1177305A (en) * 1997-09-12 1999-03-23 Hitachi Ltd Control method for lap welding of bead joint
JPH11267842A (en) * 1998-03-23 1999-10-05 Japan Steel & Tube Constr Co Ltd Mag automatic welding method
JP2002336962A (en) * 2001-05-11 2002-11-26 Kobe Steel Ltd Automatic welding method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487680B1 (en) * 2013-05-09 2015-02-06 삼성중공업 주식회사 method of auto TIG welding of pipes
JP2020509935A (en) * 2017-02-27 2020-04-02 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Manufacturing system and method for boiler tube with synchronous rotation of tube related to automatic welding
US11554437B2 (en) 2017-02-27 2023-01-17 General Electric Technology Gmbh System, method and apparatus for welding tubes
JP2018153816A (en) * 2017-03-15 2018-10-04 住友重機械工業株式会社 Multilayer welding method and multilayer welding joint
JP7092462B2 (en) 2017-03-15 2022-06-28 住友重機械工業株式会社 Multi-layer welding method and multi-layer welded joint
WO2021205858A1 (en) * 2020-04-10 2021-10-14 株式会社神戸製鋼所 Gas shield arc welding method and steel pipe manufacturing method
JP7376417B2 (en) 2020-04-10 2023-11-08 株式会社神戸製鋼所 Gas shielded arc welding method and steel pipe manufacturing method
CN113941762A (en) * 2020-12-17 2022-01-18 武昌船舶重工集团有限公司 All-position automatic wire filling TIG welding method for steel pipe
CN114054907A (en) * 2021-12-27 2022-02-18 中建安装集团有限公司 S31254 and T91 dissimilar steel welding and heat treatment method
CN114682949A (en) * 2022-03-30 2022-07-01 河北省机电一体化中试基地有限公司 Automatic pipeline welding control system
CN115533259A (en) * 2022-11-09 2022-12-30 郑州煤矿机械集团股份有限公司 Method for restraining lack of narrow gap welding seam of oil cylinder of coal mine hydraulic support
CN115533259B (en) * 2022-11-09 2023-08-22 郑州煤矿机械集团股份有限公司 Narrow-gap weld defect suppression method for hydraulic support cylinder of coal mine

Also Published As

Publication number Publication date
JP4788094B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
US11759879B2 (en) Synchronized rotating arc welding method and system
US7397015B2 (en) Metal cored electrode for open root pass welding
CN105473267B (en) The system and method welded using hot weld silk TIG positioning thermal controls
EP1004389B1 (en) Short circuit welder
KR102134045B1 (en) Adaptable rotating arc welding method and system
EP2698223B1 (en) A process of welding to repair thick sections using two arc welding devices and a laser device
KR20150037981A (en) Method of and system for using moving consumable wire with weld puddle
JP2005095915A (en) Circumferential multilayer sequence welding method, and automatic welding equipment
JP4109911B2 (en) Multi-layer welding method
JP7028658B2 (en) Weaving control method and weaving control system
JP4788094B2 (en) Automatic welding equipment
JP5990784B2 (en) Arc welding method and arc welding apparatus
JP4761689B2 (en) Multi-layer prime welding method and multi-layer prime automatic welding apparatus
KR101505733B1 (en) Automatic Welding Apparatus for pipe
JP2505965B2 (en) Welding method and apparatus for fixed piping
JP7132550B2 (en) butt welding method
JP4117526B2 (en) Multi-layer prime welding method for X groove joint
WO2024089469A1 (en) Adaptive welding
JP2656423B2 (en) Vertical automatic welding method
JPH0966363A (en) Method for repair-welding existent weld zone
KR20140123638A (en) A new welding method for the bottom side shell&#39;s butt joints
JPS6364268B2 (en)
JPH08281428A (en) Automatic welding method
JPS5932235B2 (en) Vertical welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees