JP2004330212A - Analysis method for welded structure and analysis device for welded structure - Google Patents

Analysis method for welded structure and analysis device for welded structure Download PDF

Info

Publication number
JP2004330212A
JP2004330212A JP2003125673A JP2003125673A JP2004330212A JP 2004330212 A JP2004330212 A JP 2004330212A JP 2003125673 A JP2003125673 A JP 2003125673A JP 2003125673 A JP2003125673 A JP 2003125673A JP 2004330212 A JP2004330212 A JP 2004330212A
Authority
JP
Japan
Prior art keywords
welding
welded structure
line
model
welding line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003125673A
Other languages
Japanese (ja)
Inventor
Kazuhiro Saito
和宏 齊藤
Akira Tanaka
明 田中
Yoshiyasu Ito
義康 伊藤
Kazutoshi Takaishi
和年 高石
Takao Inukai
隆夫 犬飼
Daijiro Fukuda
大二郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003125673A priority Critical patent/JP2004330212A/en
Publication of JP2004330212A publication Critical patent/JP2004330212A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analysis method for a welded structure and an analysis device for the welded structure which can estimate welding deformation and the residual stress with further higher accuracy when the welding deformation and the residual stress of the welded structure are analyzed by using a finite element method. <P>SOLUTION: The analysis method for the welded structure has a step 2 of setting welding conditions which sets the type of the welding of a weld line and heat input conditions of a welding temperature, a step 3 of dividing the set weld line to weld line elements composed of an element unit of an FEM model, a step 6 of calculating an inherent strain distribution determined corresponding to the type of the welding, a heat input amount, and the distance from the weld line regarding individual elements constituting a finite element model, a step 8 of converting the calculated inherent strain of the individual elements to at least either of the coordinate systems of the entire coordinate system of the welded structure and a local coordinate system of the element, and a step 9 of preparing FEM analysis data for imparting the inherent strain, to which coordinate conversion is executed, to the individual elements as a load condition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、構造物を溶接する際に生成される熱ひずみの影響を受けて発生する構造物の溶接変形や残留応力を固有ひずみ法を用いて推定する溶接構造物の解析方法および溶接構造物の解析装置に関する。
【0002】
【従来の技術】
溶接構造物の産業分野では、構造物を溶接する際に生成される溶接部の熱的影響を受けて発生する構造物の溶接変形や残留応力を固有ひずみ法を用いて推定する研究が進められている。
【0003】
ここに、固有ひずみ法とは、溶接構造物の溶接変形や残留応力を推定するにあたり、まず、実際の溶接構造物に生成される固有の溶接変形や残留応力を計測し、あるいは、熱弾塑性FEM解析により求めてデータベース化しておき、次に、データベース化したひずみ値等のうち、適正値をモデル化した溶接構造物に与え、FEM(有限要素法)解析法を用いて溶接変形や残留応力などを推定する手法である。
【0004】
この手法は、予めデータベース化しておいた溶接構造物の固有ひずみ等のうち、適正値を選択して利用し、線形解析により溶接変形などを計算するので、構造物の形状が複雑であったり、大型の場合においても、熱弾塑性FEM構造解析に較べて短時間で構造物の溶接変形等を推定できる点で利便性が高い。
【0005】
この固有ひずみ法を用いて溶接構造物の溶接変形や残留応力を推定した技術として、例えば溶接学会全国大会講演概要第70集(2002−4)「固有ひずみ法を用いた複雑形状の溶接変形最適化」(非特許文献1)や特開平7−75835号公報(特許文献1)、特開平10−146621号公報(特許文献2)の「線状加熱による金属板の曲げ加工法」等数多くの文献が公表されている。
【0006】
【非特許文献1】
溶接学会全国大会講演概要第70集(2002−4)「固有ひずみ法を用いた複雑形状の溶接変形最適化」
【0007】
【特許文献1】
特開平7−75835号公報
【0008】
【特許文献2】
特開平10−146621号公報
【0009】
【発明が解決しようとする課題】
溶接構造物の溶接変形や残留応力等を推定する際に用いられるFEM解析法は、実際の溶接構造物をモデル化し、モデル化した溶接構造物を、例えば四辺形等の予め定められた形状の要素毎に細かに分割する、いわゆるメッシュ分割を行い、分割した個々の要素の力(応力)および変位(ひずみ)と、溶接構造物全体の力および変位との連続性から溶接構造物の変形および残留応力等を推定する計算法であり、モデルを構成する要素に溶接により生じる熱ひずみに相当する適切な分布のひずみ、すなわち、固有ひずみを入力して計算することで、構造、形状が複雑であっても、変化および残留応力を比較的短時間で推定できる。しかし、それでも幾つかの問題点が残されており、その1つに解析モデルの全体の座標系と溶接線まわりの固有ひずみ分布を決める座標系との整合性がある。
【0010】
すなわち、FEM解析法を用いて溶接構造物の固有ひずみおよび残留応力を推定する場合、座標系には、解析モデルとしての構造物全体の座標系のほかに、モデル化した溶接構造物の分割要素の特性によって決まる局所座標系と溶接構造物の溶接線の方向、および溶接施工位置によって決まる固有ひずみ座標系の3つがある。
【0011】
これら3つの座標系に整合性がないと、各分割要素に予めデータベース化したひずみ値を与えても誤差が大きく、場合によっては現実とかけ離れた固有ひずみ値になる等の問題があった。通常、FEM解析モデルはこれらの座標系が一致するようモデル化される場合が多いが、複雑な形状の3次元構造物の場合や溶接線の方向が多数にわたる場合には、FEM解析モデルの座標系と溶接線との座標系の整合を取りながらモデルを作ることが困難である。また、使用する要素の種別によっては、更に、個々の要素ごとに局所座標系との整合に関する問題が追加される。これらは、特に、曲面、鋭角的切欠や鋭角的交差部を持つ三次元溶接構造物では、その傾向が高い。
【0012】
このため、FEM解析モデルの段階において溶接線の方向や要素種別により生じる局所の座標系の整合性を維持させなくとも、簡易な手法を用いて精度の高い固有ひずみ値等をFEM解析データに与え、高い精度で溶接変形や残留応力分布を推定できる溶接構造物の解析手法の実現が望まれていた。
【0013】
本発明は、このような事情に基づいてなされたもので、データベース化した固有ひずみ値等を選択しモデル化した溶接構造物に与え、有限要素法を用いて溶接構造物の溶接変形、残留応力を解析するにあたり、より一層精度の高い溶接変形、残留応力を推定できる溶接構造物の解析方法および溶接構造物の解析装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明に係る溶接構造物の解析方法は、請求項1に記載したように、溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向を指定する一方、この溶接線の溶接の種類、溶接温度の入熱条件を設定する溶接施工条件設定ステップと、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割するステップと、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、前記有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて定まる固有ひずみ分布を算出するステップと、算出した個々の要素の固有ひずみを前記溶接構造物の全体座標系および要素の局所座標系のうち、少なくともいずれか一方の座標系に変換するステップと、座標変換した固有ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成するステップを有する方法である。
【0015】
また、本発明に係る溶接構造物の解析方法は、請求項2に記載したように、溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素を指定して行う方法である。
【0016】
また、本発明に係る溶接構造物の解析方法は、請求項3に記載したように、溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素内の節点を指定して行う方法である。
【0017】
また、本発明に係る溶接構造物の解析方法は、請求項4に記載したように、溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素と、この要素内の節点とを組み合わせたものを指定して行う方法である。
【0018】
また、本発明に係る溶接構造物の解析方法は、請求項5に記載したように、溶接線の位置、溶接線の方向の指定は、CRT画面に写した溶接構造物のモデルにおいて、ペンポインター、マウス、ナンバーキーのうち、いずれかを用い、少なくとも要素、節点、直線、曲線、弧のいずれか1つ以上を指定して行う方法である。
【0019】
また、本発明に係る溶接構造物の解析方法は、請求項6に記載したように、溶接施工条件のステップは、溶接の種類、溶接温度の入熱条件を固有ひずみデータベースから選択して溶接構造物のモデルをメッシュ分割した要素、節点およびこれらの組み合わせのうち、少なくともいずれか一方に与える方法である。
【0020】
本発明に係る溶接構造物の解析装置は、請求項7に記載したように、溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向とを指定する一方、該溶接線の溶接の種類、溶接温度の入熱条件を指定する、溶接施工条件設定する手段と、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割する手段と、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、溶接構造物の有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて決められる固有ひずみ分布を算出する手段と、算出した個々の要素の固有ひずみを溶接構造物全体座標系および要素の局所座標系のうち、少なくともいずれか一方の座標系に変換する手段と、座標変換した固有ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成する手段を有するものである。
【0021】
【発明の実施の形態】
以下、本発明に係る溶接構造物の解析方法およびその解析装置の実施形態を図面および図面に付した符号を引用して説明する。
【0022】
図1は、本発明に係る溶接構造物の解析方法およびその解析装置の実施形態を示すブロック図である。
【0023】
本実施形態は、まず、溶接構造物をモデル化し、モデル化した溶接構造物に初期データ、具体的には幾何学的情報を与えてメッシュ分割するとともに、メッシュ分割する要素毎に要素データ等の情報を与える(ステップ1)。
【0024】
次に、本実施形態は、モデル化した溶接構造物に溶接施工条件の情報を与えて溶接施工条件を設定した後(ステップ2)、モデル化した溶接構造物の溶接線を溶接線要素毎に分割する(ステップ3)。
【0025】
溶接線要素毎に分割した溶接構造物は、溶接線要素の方向、例えば軸方向、幅方向、深さ方向を決定するとともに(ステップ4)、上述ステップ1でメッシュ分割した個々の要素と上述ステップ3で分割した溶接線要素との距離および方向を計算し(ステップ5)、さらに上述ステップ1でメッシュ分割した個々の要素の固有ひずみを計算する(ステップ6)。
【0026】
個々の要素の固有ひずみの計算が終了すると、本実施形態は、上述ステップ6で求めた個々の要素の固有ひずみの成分を全体座標系に変換し(ステップ7)、さらにステップ7で求めた固有ひずみの各成分をFEM要素種別に応じた局所座標系に変換した後(ステップ8)、固有ひずみを入力したFEM解析データを作成し(ステップ9)、FEM解析計算を行い(ステップ10)、溶接構造物の溶接変形、残留応力を算出して推定する(ステップ11)。
【0027】
図2は、図1で示した各ステップの内容を今少し詳しく説明する概念手順図である。
【0028】
ステップ1は、モデル化した溶接構造物をメッシュに分割する際、例えば三角形、四辺形等の具体的な形状を指定し、指定した形状のうち、一つ一つを「要素」として用いるとともに、一つ一つの「要素」に幾つかの「節点」を指定する一方、一つ一つの「要素」に材料を指定する。
【0029】
また、ステップ1は、メッシュに分割した各「要素」に、ヤング率やポアソン比等の材料特性、外力や熱等の荷重、変位拘束等の境界条件のそれぞれのデータを与える。
【0030】
ステップ2は、ステップ1の情報を基にして図3のうち、(a)に示す実溶接構造物の各溶接部1,2,…における「溶接軸方向」、「溶接幅方向」、「溶接深さ方向」のそれぞれの指定技術事項を、(b)に示すモデル化した溶接構造物の溶接部1,2,…の「要素」、または「節点」A,B,C,…に与えるか、あるいは(c)に示す「要素」a,b,…に示すように、「節点」、および、または「要素」を基準にして「節点」、「要素」または、「節点」と「要素」との組み合わせの並び方として与えるとともに、固有ひずみデータベースから適正に選択する、例えばサブマージアーク溶接等の溶接の種類と、例えば溶接温度等の入熱溶接条件等とをこれら「節点」、および、または「要素」の並びからなる溶接線に与える。
【0031】
なお、溶接線の位置、溶接線の方向の指定は、CRT画面上にうつした有限要素解析モデルにおいて、ペンポインター、マウス、ナンバーキーなどにより、節点、要素を直接指定するだけでなく、線分、曲線、弧など、溶接線を代表する図形を指定することによっても行なうことができる。
【0032】
また、溶接線の位置が、要素や節点の並びから外れている場合にも、同じにオフセット量を入力することにより、溶接線の位置を決定できる。これらにより、溶接線を要素サイズレベルで分割した、複数の溶接線の集合とすることができる。
【0033】
ステップ3は、ステップ1とステップ2との情報を基にし、モデル化した溶接構造物における溶接部1,2,…の溶接線を「溶接線要素」毎に分割する。すなわち、「溶接線要素」は、図4(a)に示す「節点」A,B,Cを持つ「要素」に区画する溶接部1、「節点」D,E,Fを持つ「要素」に区画する溶接部2に対し、図4(b)に示すように、例えば溶接部1を溶接線要素▲1▼,▲2▼,…に分割する。
【0034】
ステップ3で、溶接部1,2,…を「溶接線要素」▲1▼,▲2▼,…に分割すると、ステップ4では、分割した「溶接線要素」▲1▼,▲2▼,…毎に方向を指定し、指定した「溶接線要素」▲1▼,▲2▼,…の方向をデータベース化する。
【0035】
このデータベース化した「溶接線要素」▲1▼,▲2▼,…は、具体的には図5のうち、(a)に示すモデル化した溶接構造物の溶接部1に「節点」A,B,Cを、溶接部2に「節点」D,E,Fをそれぞれ指定し、指定した「節点」A,B,C,…の中から選択して区画したものである。そして、「溶接線要素」▲1▼,▲2▼,…には、(c),(d)に示すように、例えば「節点」A,Eに対し、「溶接線方向」、「溶接幅方向」、「溶接深さ方向」のそれぞれの技術事項が指定される。
【0036】
また、ステップ4では、図6に示すように、ステップ1、ステップ2およびステップ3の情報を基に「溶接線要素」▲1▼,▲2▼,…のそれぞれに、「溶接線方向」V、「溶接幅方向」V、「溶接深さ方向」Vのそれぞれを指定する。
【0037】
これらの方向の指定については、溶接線が節点の並びで決められている場合、以下の手順で行なわれる。先ず、該溶接線要素を構成する2節点の並びが決まると、溶接線方向を決めることができる。さらに、それらの両節点が共通して属する要素を決定すると2つの要素と2つの節点が決まるので、他の要素、節点と共有していない表面を抽出することができる。これらの表面の代表点、例えば中心から、溶接線幅方向を規定でき、さらには、溶接線の深さ方向を決定する。溶接線が要素の並びで指定されている場合は、最初の溶接線方向は、要素の代表点、要素の表面の中心点などにより代表点をとり決定する。
【0038】
一方、ステップ5では、図7に示すように、ステップ3で分割した各「溶接線要素」▲1▼,▲2▼,…に対し、固有ひずみ等を与えた「要素」nとの距離Δiを計算し、距離Δi(Δ3,Δ4,Δ5)が最小となる「溶接線要素」の番号Kを探し(図7では「要素」nと「溶接線要素」▲4▼との距離が短かくなるのはΔ4)、「要素」nと「溶接線要素」の番号Kとの位置、具体的には溶接線軸方向、溶接線幅方向、溶接線深さ方向の距離を計算する。
【0039】
ステップ5で、「要素」nと最も近い距離の「溶接線要素」の溶接線軸方向、幅方向、深さ方向のそれぞれの距離が計算されると、ステップ6では、図8のうち、(a)に示すように、データベース化している「溶接線要素」の溶接線軸方向、幅方向、深さ方向のそれぞれの固有ひずみを「要素」に与えた後、溶接施工軸方向の固有ひずみ、溶接施工幅方向の固有ひずみ、溶接施工深さ方向の固有ひずみを計算する。
【0040】
ステップ6で計算した各方向の固有ひずみを、ステップ7では、図9のうち、(a)に示す「溶接線要素」の溶接軸方向、溶接幅方向、溶接深さ方向のそれぞれを定める溶接線要素座標系を、(b)に示す各方向の固有ひずみを全体座標系に変換する。
【0041】
なお、ステップ7では、溶接線要素局所座標系から溶接構造物全体の全体座標系に変換しているが、例えば、図10(a)に示すように、蒸気タービンノズルダイヤフラムの場合、全体座標系から板状の分割要素の局所座標系に変換する場合もある。この場合、ステップ8が加えられる。
【0042】
ステップ7またはステップ8で固有ひずみの各方向成分の座標変換をした後、ステップ9では、図2に示すように、固有ひずみと等価なデータに換算し、換算したデータにステップ1からの情報を参照してFEM解析データを作成する。
【0043】
固有ひずみの与え方としては、各要素へ与えるひずみと等価な応力を各要素の積分点に与える、あるいは、ひずみと等価な線膨張係数を各要素の物性値に与えた後、熱荷重を与える、あるいは、要素を構成する積分点に外力を与えて等価なひずみとするなどの方法がある。このデータを基にステップ10で計算を行い、最後のステップ11で溶接変形、残留応力を出力し、溶接構造物の溶接変形等を推定する。
【0044】
【発明の効果】
以上の説明のとおり、本発明に係る溶接構造物の解析方法および溶接構造物解析装置は、溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向とを指定する一方、該溶接線の溶接の種類、溶接温度の入熱条件を設定する、溶接施工条件設定ステップと、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割するステップと、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、溶接構造物の有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて決められる固有ひずみ分布を算出するステップと、算出した個々の要素の固有ひずみを溶接構造物全体座標系および要素の局所座標系のうち、少なくともいずれか一方の座標系に変換するステップとを経て、座標変換した固有ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成し、FEM解析を行い、溶接変形等を算出して溶接変形等を推定する新たな手法を構築するので、従来よりもより一層精度の高い溶接変形等を推定することができる。
【図面の簡単な説明】
【図1】本発明に係る溶接構造物の解析方法および溶接構造物の解析装置の実施形態を示すブロック図。
【図2】図1で示した各ステップの内容を説明する概念手順図。
【図3】図1および図2で示したステップ2の内容を説明する図で、(a)は実溶接構造物の溶接部を示す図、(b)はモデル化した溶接構造物のメッシュ分割した溶接部の節点を示す図、(c)はモデル化した溶接構造物のメッシュ分割した溶接部の要素を示す図。
【図4】図1および図2で示したステップ3の内容を説明する図で、(a)はモデル化した溶接構造物をメッシュ分割した溶接部の溶接線要素を示す図、(b)はモデル化した溶接構造物をメッシュ分割した溶接部の溶接線要素と節点との組を示すブロック図。
【図5】図1および図2で示したステップ4の内容を説明する図で、(a)は溶接部の節点を示す図、(b)は溶接部の溶接線要素の組を示すブロック図、(c)は組みた溶接線要素のうち、第1溶接線要素の溶接軸方向、溶接幅方向、溶接深さ方向を示すベクトル線図、(d)は組みた溶接線要素のうち、第2溶接線要素の溶接軸方向、溶接幅方向、溶接深さ方向を示すベクトル線図。
【図6】図1および図2で示したステップ4のうち、溶接線要素の方向決定を説明するブロック図。
【図7】図1および図2で示したステップ5の内容を説明するフロー図。
【図8】図1および図2で示したステップ6の内容を説明する図。
【図9】図1および図2で示したステップ7の内容を説明する図で、(a)は要素座標系における要素の溶接軸方向、溶接幅方向、溶接深さ方向を示すベクトル線図、(b)は溶接構造物の全体座標系に合わせる要素の溶接軸方向、溶接幅方向、溶接深さ方向を示すベクトル図。
【図10】図1および図2で示したステップ8の内容を説明する図で、(a)は蒸気タービンノズルダイヤフラムを一例に採った全体座標系を示す図、(b)は(a)のメッシュ分割から取り出した板状の分割要素の局所座標系を示す図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for analyzing a welded structure and a welded structure for estimating a weld deformation and a residual stress of a structure generated by the influence of thermal strain generated when welding the structure using an intrinsic strain method. To an analysis device.
[0002]
[Prior art]
In the industrial field of welded structures, research is underway to estimate the welding deformation and residual stress of structures generated by the thermal effect of welds generated when welding structures using the intrinsic strain method. ing.
[0003]
Here, the eigenstrain method is used to estimate the welding deformation and residual stress of a welded structure by first measuring the inherent welding deformation and residual stress generated in the actual welded structure, A database is obtained by FEM analysis, and appropriate values are then given to the modeled welded structure from among the strain values and the like stored in the database, and welding deformation and residual stress are determined using an FEM (finite element method) analysis method. It is a technique for estimating the like.
[0004]
This method selects and uses an appropriate value from among the inherent strains of the welded structure, etc., which have been made into a database in advance, and calculates welding deformation etc. by linear analysis, so the shape of the structure is complicated, Even in the case of a large size, the convenience is high in that the welding deformation and the like of the structure can be estimated in a short time as compared with the thermo-elasto-plastic FEM structural analysis.
[0005]
Techniques for estimating the welding deformation and residual stress of a welded structure using the inherent strain method include, for example, the 70th Annual Meeting of the Japan Welding Society (2002-4), “Optimal Welding Deformation for Complex Shapes Using the Eigenstrain Method. (Non-Patent Document 1), Japanese Patent Application Laid-Open No. 7-75835 (Patent Document 1), and Japanese Patent Application Laid-Open No. 10-146621 (Patent Document 2), "Bending method of metal plate by linear heating". The literature has been published.
[0006]
[Non-patent document 1]
Proceedings of the National Meeting of Welding Society, Vol. 70 (2002-4) "Optimization of Welding Deformation of Complex Shapes Using Eigenstrain Method"
[0007]
[Patent Document 1]
JP-A-7-75835
[Patent Document 2]
Japanese Patent Application Laid-Open No. Hei 10-146621
[Problems to be solved by the invention]
The FEM analysis method used when estimating welding deformation, residual stress, etc. of a welded structure, models an actual welded structure, and converts the modeled welded structure into a predetermined shape such as a quadrilateral. A so-called mesh division is performed, in which each element is finely divided, and the deformation (deformation) of the welded structure is determined based on the continuity of the force (stress) and displacement (strain) of each divided element and the force and displacement of the entire welded structure. This is a calculation method for estimating residual stress, etc., and by inputting and calculating the strain of an appropriate distribution corresponding to the thermal strain generated by welding to the constituent elements of the model, that is, the intrinsic strain, the structure and shape are complicated. Even if there is, change and residual stress can be estimated in a relatively short time. However, some problems still remain, one of which is consistency between the coordinate system of the entire analytical model and the coordinate system that determines the intrinsic strain distribution around the weld line.
[0010]
That is, when estimating the intrinsic strain and residual stress of a welded structure using the FEM analysis method, the coordinate system includes, in addition to the coordinate system of the entire structure as an analysis model, a divided element of the modeled welded structure. There are three types of coordinates: a local coordinate system determined by the characteristics of the above, the direction of the welding line of the welded structure, and an intrinsic strain coordinate system determined by the welding work position.
[0011]
If these three coordinate systems do not have consistency, there is a problem that even if a distortion value prepared in a database is given to each divided element, an error is large, and in some cases, an inherent distortion value far from the actual one is obtained. Normally, the FEM analysis model is often modeled so that these coordinate systems coincide with each other. However, in the case of a three-dimensional structure having a complicated shape or when the direction of the welding line extends over many directions, the coordinates of the FEM analysis model are used. It is difficult to make a model while matching the coordinate system between the welding system and the welding line. Further, depending on the type of the element used, a problem relating to matching with the local coordinate system is further added for each element. These tend to be particularly high in a three-dimensional welded structure having a curved surface, a sharp notch or a sharp intersection.
[0012]
Therefore, at the stage of the FEM analysis model, a high-precision intrinsic strain value or the like is given to the FEM analysis data using a simple method without maintaining the consistency of the local coordinate system caused by the direction of the welding line and the element type. It has been desired to realize a method for analyzing welded structures that can estimate welding deformation and residual stress distribution with high accuracy.
[0013]
The present invention has been made in view of the above circumstances, and gives a database of specific strain values and the like to a modeled welded structure, and uses the finite element method to perform welding deformation and residual stress of the welded structure. It is an object of the present invention to provide a method for analyzing a welded structure and an apparatus for analyzing a welded structure, which can estimate welding deformation and residual stress with higher accuracy when analyzing the welding structure.
[0014]
[Means for Solving the Problems]
In the method for analyzing a welded structure according to the present invention, the position of the weld line and the direction of the weld line are specified on the basis of the mesh division of the finite element model of the welded structure. A welding operation condition setting step of setting a welding type of a welding line and a heat input condition of a welding temperature; a step of dividing the set welding line into welding line elements composed of element units of an FEM model; While determining the direction, calculating the distance and direction between the elements constituting the finite element model of the welded structure and the welding line elements, for each element constituting the finite element model, the type of welding and heat input Calculating the intrinsic strain distribution determined according to the distance from the welding line, and the calculated intrinsic strain of each element of the overall coordinate system of the welded structure and the local coordinate system of the element, A method comprising the steps of creating and converting either one of the coordinate system, the FEM analysis data given as loading conditions of the inherent strain was coordinate transformation into individual elements even without.
[0015]
In the method for analyzing a welded structure according to the present invention, the position of the weld line and the direction of the weld line are specified by specifying an element obtained by dividing the model of the welded structure into meshes. How to do it.
[0016]
Further, in the method for analyzing a welded structure according to the present invention, the position of the weld line and the direction of the weld line are specified by selecting nodes in the element obtained by dividing the model of the welded structure into meshes. It is a method to specify.
[0017]
In the method for analyzing a welded structure according to the present invention, the position of the weld line and the designation of the direction of the weld line are determined by meshing a model of the welded structure, This method is performed by designating a combination of the nodes in the table.
[0018]
Further, in the method for analyzing a welded structure according to the present invention, the position of the weld line and the direction of the weld line are specified by a pen pointer in the model of the welded structure shown on the CRT screen. , A mouse, or a number key, and specifying at least one of an element, a node, a straight line, a curve, and an arc.
[0019]
Also, in the method for analyzing a welded structure according to the present invention, the step of the welding condition includes selecting the type of welding and the heat input condition of the welding temperature from the inherent strain database. This is a method in which a model of an object is given to at least one of an element, a node, and a combination thereof obtained by mesh division.
[0020]
The welding structure analysis apparatus according to the present invention, as described in claim 7, specifies the position of the welding line and the direction of the welding line with reference to the mesh division of the finite element model of the welding structure, Means for setting the welding operation conditions for designating the type of welding of the welding line and the heat input conditions for the welding temperature; means for dividing the set welding line into welding line elements composed of element units of the FEM model; Determine the direction of the line elements, while calculating the distance and direction between the elements constituting the finite element model of the welding structure and the welding line element, for the individual elements constituting the finite element model of the welding structure, Means for calculating the intrinsic strain distribution determined according to the type of welding, the heat input, and the distance from the welding line, and the calculated intrinsic strain of each element in the entire welded structure coordinate system and the local coordinate system of the element, And has a means for creating and means for converting either one of the coordinate system, the FEM analysis data given as loading conditions of the inherent strain was coordinate transformation into individual elements even without.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a method for analyzing a welded structure and an apparatus for analyzing the same according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.
[0022]
FIG. 1 is a block diagram showing an embodiment of a method for analyzing a welded structure and an apparatus for analyzing the same according to the present invention.
[0023]
In the present embodiment, first, a welded structure is modeled, initial data, specifically, geometrical information is given to the modeled welded structure, and mesh division is performed. Information is provided (step 1).
[0024]
Next, in the present embodiment, after setting welding operation conditions by giving information on welding operation conditions to the modeled welded structure (step 2), the welding line of the modeled welded structure is changed for each welding line element. Divide (step 3).
[0025]
The welding structure divided for each welding line element determines the direction of the welding line element, for example, the axial direction, the width direction, the depth direction (step 4), and the individual elements mesh-divided in step 1 and the step The distance and direction with respect to the welding line element divided in step 3 are calculated (step 5), and the intrinsic strain of each element divided in mesh in step 1 is calculated (step 6).
[0026]
When the calculation of the intrinsic strain of each element is completed, in the present embodiment, the component of the intrinsic strain of each element obtained in step 6 described above is converted into a global coordinate system (step 7), and the specific strain obtained in step 7 is further converted. After converting each component of the strain into a local coordinate system corresponding to the FEM element type (step 8), FEM analysis data to which the intrinsic strain is input is created (step 9), FEM analysis calculation is performed (step 10), and welding is performed. The welding deformation and residual stress of the structure are calculated and estimated (step 11).
[0027]
FIG. 2 is a conceptual procedure diagram for explaining the details of each step shown in FIG. 1 in a little more detail.
[0028]
In step 1, when dividing the modeled welded structure into meshes, for example, a specific shape such as a triangle or a quadrilateral is specified, and each of the specified shapes is used as an “element”. While several "nodes" are specified for each "element", materials are specified for each "element".
[0029]
In step 1, data of material characteristics such as Young's modulus and Poisson's ratio, load such as external force and heat, and boundary conditions such as displacement constraint are given to each "element" divided into meshes.
[0030]
Step 2 is based on the information of Step 1 in FIG. 3. In FIG. 3, “weld axial direction”, “weld width direction”, “weld direction” in each of the welded portions 1, 2,. Whether the designated technical items in the “depth direction” are given to “elements” or “nodes” A, B, C,... Of the welded parts 1, 2,. Or "elements" a, b,... Shown in (c), "nodes" and / or "elements", or "nodes", "elements", or "nodes" and "elements" based on "elements". While giving as the arrangement of the combination, and appropriately selected from the intrinsic strain database, for example, the type of welding, such as submerged arc welding, and the heat input welding conditions, such as, for example, the welding temperature, these "nodes", and or " To a welding line consisting of a sequence of "elements".
[0031]
The position of the welding line and the direction of the welding line can be specified not only by directly specifying nodes and elements using a pen pointer, a mouse, a number key, etc., but also by using a line segment in the finite element analysis model transmitted on the CRT screen. , Curves, arcs, etc., by designating a figure representing the welding line.
[0032]
Further, even when the position of the welding line is out of the arrangement of the elements and nodes, the position of the welding line can be determined by inputting the offset amount in the same manner. Thus, a set of a plurality of welding lines obtained by dividing the welding lines at the element size level can be obtained.
[0033]
In step 3, based on the information in step 1 and step 2, the welding line of the welded portions 1, 2, ... in the modeled welded structure is divided for each "welding line element". That is, the “weld line element” is a welded part 1 partitioned into “elements” having “nodes” A, B, and C shown in FIG. 4A, and an “element” having “nodes” D, E, and F. As shown in FIG. 4B, for example, the welded portion 1 is divided into welding line elements (1), (2),.
[0034]
In step 3, the welded parts 1, 2, ... are divided into "weld line elements" (1), (2), ..., and in step 4, the divided "weld line elements" (1), (2), ... The direction is designated for each, and the directions of the designated “welding line elements” (1), (2),.
[0035]
The “welding line elements” (1), (2),... Made in this database are specifically “joint points” A, “A” in the welded part 1 of the modeled welded structure shown in FIG. B and C are designated by "nodes" D, E, and F for the welded portion 2, respectively, and selected from the designated "nodes" A, B, C,. For example, as shown in (c) and (d), "weld line elements" (1), (2),. Each technical item of “direction” and “weld depth direction” is specified.
[0036]
In step 4, as shown in FIG. 6, the “weld line direction” V is assigned to each of the “weld line elements” (1), (2),. 1, "welding width" V 2, that specifies the respective "weld depth" V 3.
[0037]
The designation of these directions is performed in the following procedure when the welding line is determined by the arrangement of the nodes. First, when the arrangement of the two nodes constituting the welding line element is determined, the welding line direction can be determined. Further, when an element to which both of these nodes belong is determined, two elements and two nodes are determined, so that a surface not shared with other elements and nodes can be extracted. From the representative points of these surfaces, for example, the center, the weld line width direction can be defined, and further, the weld line depth direction is determined. When the welding line is specified by the arrangement of the elements, the first welding line direction is determined by taking a representative point from the representative point of the element, the center point of the surface of the element, and the like.
[0038]
On the other hand, in step 5, as shown in FIG. 7, each of the "welding line elements" (1), (2),... And find the number K of the “welding line element” that minimizes the distance Δi (Δ3, Δ4, Δ5) (in FIG. 7, the distance between the “element” n and the “welding line element” (4) is short). Δ4), the position of the “element” n and the number “K” of the “welding line element”, specifically, the distance in the welding line axis direction, the welding line width direction, and the welding line depth direction are calculated.
[0039]
In step 5, the respective distances in the welding line axis direction, the width direction, and the depth direction of the “welding line element” closest to the “element” n are calculated. In step 6, (a) in FIG. As shown in), after applying the inherent strain in the welding line axis direction, width direction, and depth direction of the "welding line element" in the database to the "element", the inherent strain in the welding construction axis direction and the welding construction Calculate the intrinsic strain in the width direction and the inherent strain in the welding depth direction.
[0040]
In step 7, the inherent strain in each direction calculated in step 6 is determined. In step 7, a welding line that determines each of the welding axis direction, the welding width direction, and the welding depth direction of the “welding line element” illustrated in FIG. The elemental coordinate system is converted from the intrinsic strain in each direction shown in FIG.
[0041]
In step 7, the welding line element local coordinate system is converted into the entire coordinate system of the entire welded structure. For example, as shown in FIG. 10A, in the case of a steam turbine nozzle diaphragm, the entire coordinate system is used. May be converted to a local coordinate system of a plate-shaped divided element. In this case, step 8 is added.
[0042]
After performing the coordinate transformation of each direction component of the intrinsic strain in step 7 or step 8, in step 9, as shown in FIG. 2, the data is converted into data equivalent to the intrinsic strain, and the information from step 1 is converted into the converted data. The FEM analysis data is created with reference to the data.
[0043]
As a method of giving the intrinsic strain, a stress equivalent to the strain given to each element is given to the integration point of each element, or a linear expansion coefficient equivalent to the strain is given to the physical property value of each element, and then a thermal load is given. Alternatively, there is a method in which an external force is applied to an integration point constituting an element to obtain an equivalent strain. Based on this data, calculation is performed in step 10, welding deformation and residual stress are output in the final step 11, and welding deformation and the like of the welded structure are estimated.
[0044]
【The invention's effect】
As described above, the welding structure analysis method and the welding structure analysis apparatus according to the present invention specify the position of the welding line and the direction of the welding line with reference to the mesh division of the finite element model of the welding structure. On the other hand, a welding execution condition setting step of setting a welding type of the welding line and a heat input condition of a welding temperature, a step of dividing the set welding line into welding line elements composed of element units of the FEM model, Determining the direction of the weld line element, and calculating the distance and direction between the elements constituting the finite element model of the welded structure and the weld line element, while the individual elements constituting the finite element model of the welded structure Calculating the intrinsic strain distribution determined according to the type of welding, the heat input, and the distance from the welding line, and applying the calculated intrinsic strain of each element to the overall coordinate system of the welded structure. Converting at least one of the local coordinate systems of the elements into a coordinate system, creating FEM analysis data for applying the coordinate-transformed intrinsic strain to each element as a load condition, performing FEM analysis, and performing welding. Since a new method of estimating welding deformation or the like by calculating deformation or the like is constructed, it is possible to estimate welding deformation or the like with higher accuracy than before.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a welding structure analysis method and a welding structure analysis apparatus according to the present invention.
FIG. 2 is a conceptual procedure diagram for explaining the contents of each step shown in FIG. 1;
3A and 3B are views for explaining the contents of step 2 shown in FIGS. 1 and 2, wherein FIG. 3A is a view showing a welded portion of an actual welded structure, and FIG. 3B is a mesh division of a modeled welded structure; The figure which shows the node of the welded part which carried out, (c) The figure which shows the element of the mesh-divided welded part of the modeled welding structure.
4A and 4B are views for explaining the contents of step 3 shown in FIGS. 1 and 2, wherein FIG. 4A is a view showing welding line elements of a welded portion obtained by dividing a modeled welding structure into meshes, and FIG. FIG. 4 is a block diagram showing a set of welding line elements and nodes of a welded portion obtained by dividing a modeled welded structure into meshes.
FIGS. 5A and 5B are diagrams for explaining the contents of step 4 shown in FIGS. 1 and 2, wherein FIG. 5A is a diagram showing nodes of a welding portion, and FIG. 5B is a block diagram showing a set of welding line elements of the welding portion; , (C) is a vector diagram showing a welding axis direction, a welding width direction, and a welding depth direction of the first welding line element among the assembled welding line elements, and (d) is a vector diagram showing the first welding line element among the assembled welding line elements. FIG. 4 is a vector diagram showing a welding axis direction, a welding width direction, and a welding depth direction of two welding line elements.
FIG. 6 is a block diagram illustrating the determination of the direction of a welding line element in step 4 shown in FIGS. 1 and 2;
FIG. 7 is a flowchart for explaining the contents of step 5 shown in FIGS. 1 and 2;
FIG. 8 is a view for explaining the contents of step 6 shown in FIGS. 1 and 2;
9A and 9B are diagrams for explaining the contents of step 7 shown in FIGS. 1 and 2, wherein FIG. 9A is a vector diagram showing a welding axis direction, a welding width direction, and a welding depth direction of an element in an element coordinate system; (B) is a vector diagram showing a welding axis direction, a welding width direction, and a welding depth direction of elements to be adjusted to the overall coordinate system of the welding structure.
10A and 10B are diagrams for explaining the contents of step 8 shown in FIGS. 1 and 2, wherein FIG. 10A is a diagram showing an entire coordinate system taking a steam turbine nozzle diaphragm as an example, and FIG. The figure which shows the local coordinate system of the plate-shaped division | segmentation element taken out from mesh division.

Claims (7)

溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向を指定する一方、この溶接線の溶接の種類、溶接温度の入熱条件を設定する溶接施工条件設定ステップと、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割するステップと、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、前記有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて定まる固有ひずみ分布を算出するステップと、算出した個々の要素の固有ひずみを前記溶接構造物の全体座標系および要素の局所座標系のうち、少なくともいずれか一方の座標系に変換するステップと、座標変換した固有ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成するステップを有することを特徴とする溶接構造物の解析方法。A welding work condition setting step for designating the position of the weld line and the direction of the weld line based on the mesh division of the finite element model of the welded structure, while setting the type of welding of the weld line and the heat input condition of the welding temperature. Dividing the set welding line into welding line elements composed of element units of the FEM model; determining the directions of the divided welding line elements; and forming the finite element model of the welding structure and the welding line. Calculating the distance and the direction to the element, and calculating the intrinsic strain distribution determined according to the type of welding, the heat input, and the distance from the welding line for each of the elements constituting the finite element model; Converting the inherent strain of each element into at least one of a coordinate system of the entire coordinate system of the welded structure and a local coordinate system of the element; The method of analysis welded structure characterized by having a step of creating a FEM analysis data given as loading conditions inherent strain into individual elements. 溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素を指定して行うことを特徴とする請求項1記載の溶接構造物の解析方法。The method for analyzing a welded structure according to claim 1, wherein the position of the weld line and the direction of the weld line are designated by designating an element obtained by dividing a model of the welded structure into meshes. 溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素内の節点を指定して行うことを特徴とする請求項1記載の溶接構造物の解析方法。The method for analyzing a welded structure according to claim 1, wherein the designation of the position of the weld line and the direction of the weld line are performed by designating a node in an element obtained by dividing the model of the welded structure into meshes. 溶接線の位置、溶接線の方向の指定は、溶接構造物のモデルをメッシュ分割した要素と、この要素内の節点とを組み合わせたものを指定して行うことを特徴とする請求項1記載の溶接構造物の解析方法。2. The method according to claim 1, wherein the designation of the position of the welding line and the direction of the welding line is performed by designating a combination of an element obtained by dividing the model of the welded structure into meshes and nodes within the element. Analysis method for welded structures. 溶接線の位置、溶接線の方向の指定は、CRT画面に写した溶接構造物のモデルにおいて、ペンポインター、マウス、ナンバーキーのうち、いずれかを用い、少なくとも要素、節点、直線、曲線、弧のいずれか1つ以上を指定して行うことを特徴とする請求項1記載の溶接構造物の解析方法。The position of the welding line and the direction of the welding line can be specified using at least one of a pen pointer, a mouse, and a number key on the model of the welded structure shown on the CRT screen, and at least elements, nodes, straight lines, curves, and arcs. The method for analyzing a welded structure according to claim 1, wherein the method is performed by designating at least one of the following. 溶接施工条件のステップは、溶接の種類、溶接温度の入熱条件を固有ひずみデータベースから選択して溶接構造物のモデルをメッシュ分割した要素、節点およびこれらの組み合わせのうち、少なくともいずれか一方に与えることを特徴とする請求項1記載の溶接構造物の解析方法。The welding operation condition step is to select at least one of an element, a node, and a combination of the mesh type by selecting the type of welding and the heat input condition of the welding temperature from the intrinsic strain database and meshing the model of the welded structure. The method for analyzing a welded structure according to claim 1, wherein: 溶接構造物の有限要素モデルのメッシュ分割を基準として、溶接線の位置、溶接線の方向とを指定する一方、該溶接線の溶接の種類、溶接温度の入熱条件を指定する、溶接施工条件設定する手段と、設定した溶接線をFEMモデルの要素単位からなる溶接線要素に分割する手段と、分割した溶接線要素の方向を決定し、前記溶接構造物の有限要素モデルを構成する要素と前記溶接線要素との距離および方向を算出する一方、溶接構造物の有限要素モデルを構成する個々の要素について、溶接の種類と入熱量と溶接線からの距離に応じて決められる固有ひずみ分布を算出する手段と、算出した個々の要素の固有ひずみを溶接構造物全体座標系および要素の局所座標系のうち、少なくともいずれか一方の座標系に変換する手段と、座標変換した固有ひずみを個々の要素へ荷重条件として与えるFEM解析データを作成する手段を有することを特徴とする溶接構造物の解析装置。Welding conditions, specifying the position of the welding line and the direction of the welding line based on the mesh division of the finite element model of the welded structure, while specifying the type of welding of the welding line and the heat input conditions of the welding temperature Means for setting, means for dividing the set welding line into welding line elements composed of the element units of the FEM model, and an element for determining a direction of the divided welding line element and constituting a finite element model of the welding structure. While calculating the distance and direction with the welding line element, for each element constituting the finite element model of the welded structure, the intrinsic strain distribution determined according to the type of welding and the heat input and the distance from the welding line. Means for calculating, a means for converting the calculated intrinsic strain of each element into at least one of the coordinate system of the entire welded structure and the local coordinate system of the element, Analyzer of welded structures, characterized in that it comprises means for creating a FEM analysis data given as loading conditions of the strain to the individual elements.
JP2003125673A 2003-04-30 2003-04-30 Analysis method for welded structure and analysis device for welded structure Pending JP2004330212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125673A JP2004330212A (en) 2003-04-30 2003-04-30 Analysis method for welded structure and analysis device for welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125673A JP2004330212A (en) 2003-04-30 2003-04-30 Analysis method for welded structure and analysis device for welded structure

Publications (1)

Publication Number Publication Date
JP2004330212A true JP2004330212A (en) 2004-11-25

Family

ID=33502866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125673A Pending JP2004330212A (en) 2003-04-30 2003-04-30 Analysis method for welded structure and analysis device for welded structure

Country Status (1)

Country Link
JP (1) JP2004330212A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247746A (en) * 2005-02-10 2006-09-21 Toyota Central Res & Dev Lab Inc Welding analysis method
KR100693996B1 (en) 2005-12-30 2007-03-12 삼성중공업 주식회사 A built-up material design apparatus and method
JP2008033528A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Numerical analysis data production device, numerical analysis data production method and program for making computer achieving its production method
KR100809531B1 (en) 2006-10-09 2008-03-04 삼성중공업 주식회사 Method and system welding deformation analysis for panel lines
KR100903904B1 (en) 2007-04-30 2009-06-19 삼성중공업 주식회사 Method for designing of automatic curved built up by using 1 dimensional equivalent thermal expansion coefficients
EP2363819A1 (en) 2010-02-03 2011-09-07 Hitachi, Ltd. Method for simulation of welding distortion
KR101099697B1 (en) 2008-06-23 2011-12-28 삼성중공업 주식회사 Automatic design system for welding margin sub-assembly part and method of thereof and record media recorded program for realizing the same
KR101110841B1 (en) 2010-04-09 2012-02-27 삼성중공업 주식회사 System for welding margin sub-assembly part and method of thereof
US8155933B2 (en) 2009-05-26 2012-04-10 King Fahd University Of Petroleum & Minerals Method of modeling residual stresses during laser cutting
US8160846B2 (en) 2009-05-18 2012-04-17 King Fahd University Of Petroleum & Minerals Method of modeling phase changes due to laser pulse heating
JP2012252470A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Connection line information automatic creation system
JP2013246830A (en) * 2012-05-29 2013-12-09 Livermore Software Technology Corp Numerical simulation of structure having heat-affected zone using finite element analysis model
CN103551712A (en) * 2013-10-29 2014-02-05 中国电子科技集团公司第三十八研究所 Method for predicting welding deformation of large radar structural part
KR101533682B1 (en) * 2009-01-14 2015-07-03 대우조선해양 주식회사 Design method and system on Inverse welding variation of ship plate parts for welding distortion control
KR101549159B1 (en) 2013-12-05 2015-09-02 삼성중공업 주식회사 System and method for setting welding margin
CN106513992A (en) * 2016-11-18 2017-03-22 中车青岛四方机车车辆股份有限公司 Process method for improving welding seam quality of lap laser welding
CN112149330A (en) * 2020-09-24 2020-12-29 河海大学常州校区 Method for predicting welding residual stress of oil seal platform of wind power tower and optimizing welding process
CN112214920A (en) * 2020-10-22 2021-01-12 岭澳核电有限公司 LBB evaluation processing method after pipeline damage
WO2023155295A1 (en) * 2022-02-16 2023-08-24 江苏科技大学 Sheet welding deformation model construction method and sheet welding deformation leveling method
JP7407095B2 (en) 2020-10-08 2023-12-28 日立造船株式会社 Element division preprocessing system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247746A (en) * 2005-02-10 2006-09-21 Toyota Central Res & Dev Lab Inc Welding analysis method
KR100693996B1 (en) 2005-12-30 2007-03-12 삼성중공업 주식회사 A built-up material design apparatus and method
JP2008033528A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Numerical analysis data production device, numerical analysis data production method and program for making computer achieving its production method
KR100809531B1 (en) 2006-10-09 2008-03-04 삼성중공업 주식회사 Method and system welding deformation analysis for panel lines
KR100903904B1 (en) 2007-04-30 2009-06-19 삼성중공업 주식회사 Method for designing of automatic curved built up by using 1 dimensional equivalent thermal expansion coefficients
KR101099697B1 (en) 2008-06-23 2011-12-28 삼성중공업 주식회사 Automatic design system for welding margin sub-assembly part and method of thereof and record media recorded program for realizing the same
KR101533682B1 (en) * 2009-01-14 2015-07-03 대우조선해양 주식회사 Design method and system on Inverse welding variation of ship plate parts for welding distortion control
US8160846B2 (en) 2009-05-18 2012-04-17 King Fahd University Of Petroleum & Minerals Method of modeling phase changes due to laser pulse heating
US8155933B2 (en) 2009-05-26 2012-04-10 King Fahd University Of Petroleum & Minerals Method of modeling residual stresses during laser cutting
EP2363819A1 (en) 2010-02-03 2011-09-07 Hitachi, Ltd. Method for simulation of welding distortion
KR101110841B1 (en) 2010-04-09 2012-02-27 삼성중공업 주식회사 System for welding margin sub-assembly part and method of thereof
JP2012252470A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Connection line information automatic creation system
JP2013246830A (en) * 2012-05-29 2013-12-09 Livermore Software Technology Corp Numerical simulation of structure having heat-affected zone using finite element analysis model
CN103551712A (en) * 2013-10-29 2014-02-05 中国电子科技集团公司第三十八研究所 Method for predicting welding deformation of large radar structural part
KR101549159B1 (en) 2013-12-05 2015-09-02 삼성중공업 주식회사 System and method for setting welding margin
CN106513992A (en) * 2016-11-18 2017-03-22 中车青岛四方机车车辆股份有限公司 Process method for improving welding seam quality of lap laser welding
CN112149330A (en) * 2020-09-24 2020-12-29 河海大学常州校区 Method for predicting welding residual stress of oil seal platform of wind power tower and optimizing welding process
CN112149330B (en) * 2020-09-24 2024-02-06 河海大学常州校区 Welding residual stress prediction and welding process optimization method for wind power tower oil seal platform
JP7407095B2 (en) 2020-10-08 2023-12-28 日立造船株式会社 Element division preprocessing system
CN112214920A (en) * 2020-10-22 2021-01-12 岭澳核电有限公司 LBB evaluation processing method after pipeline damage
CN112214920B (en) * 2020-10-22 2023-08-22 岭澳核电有限公司 LBB (local binary-coded bus) evaluation processing method after pipeline damage
WO2023155295A1 (en) * 2022-02-16 2023-08-24 江苏科技大学 Sheet welding deformation model construction method and sheet welding deformation leveling method

Similar Documents

Publication Publication Date Title
JP2004330212A (en) Analysis method for welded structure and analysis device for welded structure
EP2363819A1 (en) Method for simulation of welding distortion
Liu et al. Optimal process planning for laser forming of doubly curved shapes
US6618694B1 (en) Method, apparatus and computer program product for forming data to be analyzed by finite element method and calculation method based on finite element method
Yu et al. FEM simulation of laser forming of metal plates
Favre et al. A continuous crystallographic approach to generate cubic lattices and its effect on relative stiffness of architectured materials
JP5445529B2 (en) Method and apparatus for optimizing analysis of joint position of structure
KR100919468B1 (en) Automatic generation system for welding deformation analysis of ship construction
JP2007058508A (en) Structure analysis system and method by means of shape measurement
JP5649536B2 (en) Analysis device, evaluation device, analysis method and evaluation method
Kussmaul et al. A novel computational framework for structural optimization with patched laminates
Kirsch et al. Accurate displacement derivatives for structural optimization using approximate reanalysis
KR100903904B1 (en) Method for designing of automatic curved built up by using 1 dimensional equivalent thermal expansion coefficients
JP4981313B2 (en) Three-dimensional shape processing apparatus, curved surface creation program, and curved surface creation method
JPH06259404A (en) Analyzing method utilizing computer
JPH08147353A (en) Output method
JP2002207777A (en) Method for generating neutral plane model
JP3463843B2 (en) Free-form surface generation apparatus and free-form surface generation method
JP2004272782A (en) Method and system for generating shape data
Zheng et al. Topology abstraction of surface models for three-dimensional grid generation
JPH08297693A (en) Device and method for preparing assembly order
Weir et al. Wrap-around B-spline surface fitting to digitized data with applications to reverse engineering
Georgiou Interactive Structural Analysis and Form-Finding
JP2009064164A (en) Apparatus, method and program for generating curved surface shape
JP2016045836A (en) Calculation system and calculation program for constraint inherent deformation data, weld deformation predication system and weld deformation prediction program