JP2004327768A - Processor and operating method thereof - Google Patents

Processor and operating method thereof Download PDF

Info

Publication number
JP2004327768A
JP2004327768A JP2003121219A JP2003121219A JP2004327768A JP 2004327768 A JP2004327768 A JP 2004327768A JP 2003121219 A JP2003121219 A JP 2003121219A JP 2003121219 A JP2003121219 A JP 2003121219A JP 2004327768 A JP2004327768 A JP 2004327768A
Authority
JP
Japan
Prior art keywords
path
dry air
supply
processing space
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003121219A
Other languages
Japanese (ja)
Other versions
JP4167114B2 (en
Inventor
Takayasu Asano
貴庸 浅野
Noriaki Kodama
法明 兒玉
Satoshi Uemura
聡 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003121219A priority Critical patent/JP4167114B2/en
Publication of JP2004327768A publication Critical patent/JP2004327768A/en
Application granted granted Critical
Publication of JP4167114B2 publication Critical patent/JP4167114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable employing an operating method, corresponding to the conditions of a transfer space side. <P>SOLUTION: A dry air supply device 30, for supplying dry air in which moisture and organic matters are removed, is connected to a processing space 20. The dry air supply device 30 is provided with two rotors 4a, 4b, each having a rotating zone which is formed so as to be divided into at least a suction zone and a reproducing zone by a partition member 3; a driving means 5 thereof; an inlet port 6 for introducing air from the outside; a supply port 7 for supplying the dry air which passes the suction zone of each of the rotors to remove the moisture and the organic matter and; a discharge port 9 for heating one part of the dry air and allowing air to pass through the regeneration zone of each of the rotors, to remove the moisture content and the organic matters of an absorbent and discharging the air. Switching valves V1-V5 are provided on a supply path 21 for supplying the dry air to the processing space from the supply port 7, a return path 22 for returning the dry air discharged from the processing space to the inlet port, a bypass path 23 for connecting the supplying path to the return path, a discharge path 24 for discharging air from the returning path to the outside, and for regenerating path 28, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、処理装置及びその運転方法に関する。
【0002】
【従来の技術】
半導体装置の製造においては、被処理体例えば半導体ウエハに酸化、拡散、CVD等の各種の処理を施す工程があり、これらの工程を実行するために各種の処理装置(例えば熱処理装置等)が使用されている。例えば、縦型の熱処理装置においては、複数例えば25枚のウエハを収容した運搬容器と、前記ウエハを収容して所定の処理を施す処理容器との間でウエハの搬送を行う処理空間(ローディングエリアとも言う)を有している。
【0003】
従来、前記処理空間におけるウエハの自然酸化膜の成長を抑制するために、処理空間に不活性ガス例えば窒素ガスを多量(250〜400リットル/分)に供給して、処理空間の酸素濃度を30ppm以下の雰囲気にしていた。また、前記処理空間における有機系のガスを除去するために、ケミカルフィルタを設けていた。しかしながら、高価な窒素ガスを多量に消費するためランニングコストが多くかかるだけでなく、窒素ガスによる酸欠の危険性があった。また、ケミカルフィルタにより有機物を除去することは可能であったが、ケミカルフィルタに付着した有機物を除去しケミカルフィルタを再生することは困難であった。
【0004】
そこで、この問題を解決するために、本出願人は、処理空間に不活性ガスの代りに乾燥空気を供給することにより被処理体の自然酸化膜の成長を抑制することができ、また酸欠の危険性を回避することができると共にパーティクルの発生を防止することができる乾燥空気供給装置及び処理装置を先に出願した(特願2002−274214号、未公開)。
【0005】
なお、関連する技術として、処理空間に低露点の乾燥気体を供給する発明(例えば、特開平6−267933号公報参照)や、低露点の乾燥気体を得る乾式減湿装置の発明(例えば、特開2000−296309号公報、特開昭63−50047号公報等参照)がなされている。
【0006】
【特許文献1】
特開平6−267933号公報
【特許文献2】
特開2000−296309号公報
【特許文献3】
特開昭63−50047号公報
【0007】
【発明が解決しようとする課題】
ところで、処理装置においては、処理空間内に外部からパーティクル等が浸入するのを防止するために処理空間内を正圧に維持する運転方法等がある。しかしながら、前記乾燥空気供給装置を備えた処理装置にあっては、経路(流路)を切替える手段を備えていなかったので、処理空間側の条件に対応した運転方法をとることが困難であった。
【0008】
本発明は、前記事情を考慮してなされたもので、処理空間側の条件に対応した運転方法をとることができる処理装置及びその運転方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のうち、請求項1の発明は、処理空間に水分及び有機物を除去した乾燥空気を供給する乾燥空気供給装置を接続した処理装置であって、前記乾燥空気供給装置は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成された2つロータと、該2つのロータを回転駆動する駆動手段と、外部から空気を取込む取込口と、該取込口から取込まれた空気を各ロータの吸着ゾーンに通過させて水分及び有機物を除去した乾燥空気を供給する供給口と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させ吸着剤の水分及び有機物を脱離させて排気する排気口とを備え、前記供給口から処理空間に乾燥空気を供給する供給経路と、前記処理空間から排気される乾燥空気を取込口に戻す戻り経路とを設け、供給経路と戻り経路をバイパス経路で接続すると共に、戻り経路に乾燥空気を外部に排気する排気経路を接続し、前記再生ゾーンに加熱した乾燥空気を供給する再生経路、供給経路、戻り経路、バイパス経路及び排気経路に切替弁を設けたことを特徴とする。これにより、処理空間側の条件に対応した運転方法をとることができる。
【0010】
請求項2の発明は、請求項1記載の処理装置において、前記バイパス経路は、供給経路に設けられた切替弁の上流側と、前記戻り経路に設けられた切替弁の下流側とを接続していることを特徴とする。これにより、供給口から供給される乾燥空気を処理空間に供給すること無く取込口に戻すことができ、いわゆるウォーミングアップ運転を確実に行うことができる。
【0011】
請求項3の発明は、請求項1または2記載の処理装置において、前記処理空間には、供給された乾燥空気が設定圧以上となったときに外部に排気するためのリリーフ弁を備えていることを特徴とする。これにより、いわゆる封入運転(陽圧運転)を確実に行うことができ、処理空間内へのパーティクル等の侵入を防止することができる。
【0012】
請求項4の発明は、請求項1から3の何れかに記載の処理装置において、前記切替弁の制御を行う制御部を備えていることを特徴とする。これにより、処理装置の自動化が可能となる。
【0013】
請求項5の発明は、請求項1から4の何れかに記載の処理装置において、前記処理空間は、被処理体の搬送を行う搬送空間であることを特徴とする。これにより、搬送空間内における被処理体の自然酸化膜の成長やパーティクルの発生を防止することができる。
【0014】
請求項6の発明は、請求項1から5の何れかに記載の処理装置において、前記取込口には、外部から空気を取込む取込経路が設けられ、該取込経路に取込み空気量を調整する流量調整弁が設けられていることを特徴とする。これにより、いわゆるリターン運転時に処理空間から戻される乾燥空気の流量を補充するために外部から取込む空気の流量を調整することができる。
【0015】
請求項7の発明は、処理空間に水分及び有機物を除去した乾燥空気を供給する乾燥空気供給装置を接続した処理装置の運転方法であって、前記乾燥空気供給装置は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成された2つロータと、該2つのロータを回転駆動する駆動手段と、外部から空気を取込む取込口と、該取込口から取込まれた空気を各ロータの吸着ゾーンに通過させて水分及び有機物を除去した乾燥空気を供給する供給口と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させ吸着剤の水分及び有機物を脱離させて排気する排気口とを備え、前記供給口から処理空間に乾燥空気を供給する供給経路と、前記処理空間から排気される乾燥空気を取込口に戻す戻り経路とを設け、供給経路と戻り経路をバイパス経路で接続すると共に、戻り経路に乾燥空気を外部に排気する排気経路を接続し、前記再生ゾーンに加熱した乾燥空気を供給する再生経路、供給経路、戻り経路、バイパス経路及び排気経路に切替弁を設け、 前記バイパス経路、戻り経路、排気経路に設けられた切替弁を遮断し、供給経路から処理空間に乾燥空気を供給して、処理空間内を外部の圧力よりも高い圧力にする第1運転と、前記バイパス経路、戻り経路に設けられた切替弁を遮断し、供給経路から処理空間に供給された乾燥空気を外部に排気する一方向の流れを形成する第2運転と、前記バイパス経路、排気経路に設けられた切替弁を遮断し、供給経路から処理空間に供給された乾燥空気を乾燥空気供給装置に戻す第3運転と、前記供給経路、戻り経路、排気経路に設けられた切替弁を遮断し、2つのロータを通過した乾燥空気を取込口に戻す第4運転と、前記再生経路、バイパス経路に設けられた切替弁を遮断し、処理空間に供給される乾燥空気の供給量を増量する第5運転と、のうちの何れか1つを選択して実行することを特徴とする。これにより、処理空間側の条件に対応した運転方法をとることができる。
【0016】
【発明の実施の形態】
以下に、本発明の実施の形態を添付図面に基いて詳述する。図1は本発明の実施の形態を示す処理装置の封入運転時の状態を示す図、図2は同処理装置の一方向運転時の状態を示す図、図3は同処理装置の循環運転時の状態を示す図、図4は同処理装置のウォーミングアップ運転時の状態を示す図、図5は同処理装置の増量運転時の状態を示す図、図6はロータの一例を示す概略的斜視図、図7は支持枠の一例を示す概略的斜視図である。
【0017】
図1〜図5において、1は処理装置例えば縦型熱処理装置で、外郭を形成する筐体内には所定枚数例えば1〜150枚程度の半導体ウエハを収容して所定の処理例えばCVD処理を施すための処理容器例えば縦型熱処理炉が設けられ、処理容器の下方にはウエハの搬送等の処理を行うための処理空間(例えば搬送空間、ローディングエリア)20が設けられている。
【0018】
処理空間20には処理容器の炉口を開閉する蓋体が昇降機構を介して昇降可能に設けられ、この蓋体の上部に多数例えば100枚程度のウエハを上下方向に所定間隔で保持搭載するボートが載置されている。昇降機構によって処理容器に対するボートの搬入(ロード)、搬出(アンロード)が行われるようになっている。前記処理装置1には、その処理空間20に低露点の乾燥空気(ドライエア)を供給するための乾燥空気供給装置30が接続されている。
【0019】
この乾燥空気供給装置30は後述の支持枠2(図7参照)に回転可能に支持され、吸着剤を担持して構成されると共に、支持枠2に設けた仕切部材3により両端の回転域が少なくとも吸着ゾーンS及び再生ゾーンUに区画形成された2つのロータ4a,4bと、2つのロータ4a,4bを回転駆動する駆動手段例えば電動モータ5と、外部から空気を取込む取込口6と、この取込口6から取込まれた空気を各ロータ4a,4bの吸着ゾーンSに通過させて水分及び有機物を除去した乾燥空気を供給する供給口7と、前記乾燥空気の一部を加熱して各ロータ4a,4bの再生ゾーンUに通過させ吸着剤の水分及び有機物を脱離させて排気する排気口9とを備えている。
【0020】
また、乾燥空気供給装置30は、取込口6から取込んだ空気を各ロータ4a,4bの吸着ゾーンSに順に通過させて水分及び有機物を除去した乾燥空気を供給口7に供給する乾燥経路27と、前記乾燥空気の一部を加熱して各ロータ4a,4bの再生ゾーンUに通過させて吸着剤から水分及び有機物を脱離させ、吸着材を再生させる再生経路28とを備えている。そして、前記供給口7から処理空間20に乾燥空気を供給する供給経路21と、前記処理空間20から排気される乾燥空気を取込口6に戻す戻り経路22とを設け、供給経路21と戻り経路22をバイパス経路23で接続すると共に、戻り経路22に乾燥空気を外部に排気する排気経路24を分岐接続している。
【0021】
前記ロータ4a,4bは、図6に示すように両端が開口された円筒体8と、この円筒体8の軸心部に配置された回転軸10と、この回転軸10から放射状に延びて円筒体8の内周面に固定されると共に円筒体8内を複数例えば8つの断面扇形の部屋に仕切るスポーク11と、各部屋内に取付けられ基材に吸着剤を担持させた断面扇形のハニカム構造体12とから主に構成されている。ハニカム構造体12はロータ4a,4bの軸方向に空気を通流させる過程で、空気中に含まれる水分や有機物を吸着剤に吸着させて除去し、乾燥空気を得ることができる。
【0022】
前段のロータ4aの吸着剤としては、プレ除湿(出口露点温度−20℃)として水分を効率良く吸着すると共に有機物をも効率よく吸着するために、例えばフォージャサイトY型のゼオライト(A56Si136384)が好ましい。後段のロータ4bの吸着剤としては、低露点除湿(出口露点温度−80℃)として水分を吸着するために、例えばフォージャサイトX型のゼオライト(A96Si96384)が好ましい。
【0023】
一方、ハニカム構造体12の基材としては、耐熱性、耐摩耗性等に優れることから、無機繊維紙が好ましい。ハニカム構造体12は、無機繊維紙をハニカム状に成形してなる。前記基材に吸着剤を担持させる方法としては、例えば、吸着剤を含有するスラリーをスプレーや刷毛塗り等により基材に含浸させ、乾燥する方法が用いられる。ロータ4a,4bは、回転軸10を有する場合には、例えば図7に示すような箱状または枠状の支持枠2に回転可能に支持されている。図示例の場合、支持枠2の両端部にはロータ4a,4bの両端部と対応する開口部13が形成され、この開口部13に仕切部材3が取付けられている。前記開口部13の中央部には前記回転軸10の両端部を回転自在に支持する軸受14が仕切部材3を介して設けられている。
【0024】
仕切部材3は、ロータないし円筒体8の端部の周縁部に対応する環状の周方向部材3aと、その中心例えば軸受から周方向部材3aにかけて設けられた径方向部材3bとからなり、径方向部材3bにはハニカム構造体12の端面(ロータの端面)に近接して隣接するゾーンS,U,T間をシールする径方向シール部材が設けられている。周方向部材3aには、ロータないし円筒体8の端縁に有するフランジ8aに近接してその内部と外部間をシールする周方向シール部材が設けられている。
【0025】
前段のロータ4aの両端の回転域には、吸着ゾーンS及び再生ゾーンUが仕切部材3により区画形成されている。後段のロータ4bの両端の回転域には、吸着ゾーンS及び再生ゾーンUの他に冷却ゾーンTが仕切部材3により区画形成されている。仕切部材3にはその表面を覆うカバー部材(図示省略)が設けられ、このカバー部材に各ゾーンS,U或いはTと連通する配管が連結される。
【0026】
乾燥経路27は、取込口6から空気を前段のロータ4aの吸着ゾーンSに導入する吸引配管27aと、前段のロータ4aの吸着ゾーンSを通過して水分及び有機物が除去された低露点の乾燥空気を後段のロータ4bの吸着ゾーンSに導入する中間配管27bと、後段のロータ4bの吸着ゾーンSを通過して水分及び有機物が更に除去された低露点の乾燥空気を供給口7に供給する供給配管27cとから構成されている。
【0027】
前記吸引配管27aには取込口6から空気を吸引し、ロータ4a,4bを介して供給口7、延いては処理空間20へ送るためのファン15が設けられ、中間配管27bには水分及び有機物が除去された低露点の乾燥空気を所定の温度例えば15℃程度に冷却するための冷却手段であるクーラー16が設けられている。乾燥空気供給装置30に起因する処理空間におけるウエハのパーティクル汚染を防止するために、前記供給経路21にはロータ4a,4bと仕切部材3のシール部材の接触部等から発生するパーティクルを除去するためのフィルタ(図示省略)が設けられていることが好ましい。図中40は乾燥空気供給装置30を含む処理装置1を運用ないし運転するシステムを示している。
【0028】
前記再生経路28は、後段のロータ4b直後の供給配管27cから分岐され、低露点の清浄な乾燥空気の一部を取出して冷却用気体として後段のロータ4bの冷却ゾーンTに導入する第1配管28aと、該冷却ゾーンTを通過した乾燥空気を再生用気体として再生ゾーンUに導入する第2配管28bと、該再生ゾーンUを通過した空気を前段のロータ4aの再生ゾーンUに導入する第3配管28cと、該再生ゾーンUを通過した空気を排気する第4配管28dとから構成されている。第2配管28bには空気を再生用気体とするために所定の温度に加熱する加熱手段例えばヒータ17が設けられ、第4配管28dには排気用のファン18が設けられている。前記排気口9には再生用の乾燥空気を外部(例えば工場排気系)に排出するための排気管29が接続されている。
【0029】
通常運転時には、再生用の空気をヒータ17により130〜200℃程度の温度に加熱して再生ゾーンUに供給することにより吸着剤に吸着している水分やガス状不純物(有機物)を脱離させるが、高沸点有機化合物を吸着剤から脱離させる場合には、再生用の空気をヒータ17により250〜400℃程度の高温に加熱して再生ゾーンUに定期的に供給するようにすることが好ましい。
【0030】
ロータ4a,4bを回転駆動するためにモータ5の回転軸にはベルト車(プーリとも言う)25が取付けられ、このベルト車25とロータ4a,4bとの間に無端ベルト26が巻き掛けられている。2つのロータを2つのモータで個別に駆動するように構成されていてもよく、或いは共通の1つのモータで駆動するように構成されていてもよい。
【0031】
前後のロータ4a,4bにおけるハニカム構造体12に担持させた吸着剤に水分及び有機物を効率よく吸着させ、水分及び有機物を吸着した吸着剤から水分及び有機物を脱離させて吸着剤を効率よく再生するために、前段のロータ4aの吸着ゾーンSと再生ゾーンUの面積比(図示例では1:1)、或いは後段のロータ4bの吸着ゾーンSと再生ゾーンUと冷却ゾーンTの面積比(図示例では2:1:1)にもよるが、図示例の場合、例えば、前段のロータ4aの回転数が10r.p.h、後段のロータ4bの回転数が0.5r.p.hに調整ないし設定されている。
【0032】
そして、供給経路21、戻り経路22、バイパス経路23、排気経路24及び再生経路28には、前記処理空間20側の条件に合せて経路を切替えるための切替弁V1,V2,V3,V4,V5が設けられている。前記バイパス経路23は、供給経路21に設けられた切替弁V1の上流側と、前記戻り経路22に設けられた切替弁V2の下流側とを接続している。
【0033】
前記取込口6には、外部から空気を取込む取込経路32が設けられ、この取込経路32に取込み空気量を調整する流量調整弁V7が設けられていることが好ましい。実施例では、取込口6近傍の戻り経路22に取込経路32が分岐接続されている。流量調整弁V7は、リターン運転時に処理空間20から戻される乾燥空気の流量を補充するために外部から取込む空気の流量を調整するために用いられ、他の運転時には開状態とされている。処理空間20には封入運転時に処理空間20内を所定の圧力(陽圧)例えば+50mmAqに保つために、供給された乾燥空気が設定圧例えば+50mmAq以上となったときに外部に排気するためのリリーフ弁V6が設けられている。
【0034】
前記乾燥空気供給装置30を含む処理装置1ないしこの処理装置1を運用ないし運転するシステム40は、処理空間20の必要とする条件に合せて前記切替弁V1〜V5の切替え制御を行うための制御部36を備えており、弁V1〜V5の切替えにより以下に説明するような封入(陽圧)運転(第1運転)、一方向運転(第2運転)、リターン運転(第3運転)、ウォーミングアップ運転(第4運転)或いは増量運転(第5運転)のうちの何れか1つを選択して実行することができるように構成されている。
【0035】
先ず、封入運転(第1運転)は、図1に示すように戻り経路22、前記バイパス経路23、排気経路24に設けられた切替弁V2,V3,V4を遮断し(閉状態にし)、供給経路21、再生経路28に設けられた切替弁V1,V5を開状態にし、供給経路21から処理空間20に乾燥空気を供給して処理空間20内を外部の圧力より高い圧力例えば+5〜+100mmAqに維持するように制御する。この封入運転によれば、処理空間20内へのパーティクル等の浸入を防止することができる。
【0036】
一方向運転(第2運転)は、図2に示すように前記戻り経路22、バイパス経路23に設けられたた切替弁V2,V3を遮断し、供給経路21、排気経路24、再生経路28に設けられた弁V1,V4,V5を開状態にし、供給経路21から処理空間20に供給された乾燥空気を排気経路24を介して外部に排気する一方向の流れを形成する。この一方向運転によれば、処理空間内に水分、有機物及びパーティクルが除去された乾燥空気の一方向の流れを形成させて処理空間内の露点及び有機物濃度を低減させることができる。
【0037】
リターン運転(第3運転)は、図3に示すように前記バイパス経路23、排気経路24に設けられた切替弁V3,V4を遮断し、供給経路21、戻り経路22、再生経路28に設けられた弁V1,V2,V5を開状態にし、供給経路21から処理空間20に供給された乾燥空気を乾燥空気供給装置30の取込口6に戻して循環させる。このリターン運転によれば、処理空間20に供給される乾燥空気の露点及び有機物濃度を更に低減することができる。戻り経路22から取込口6に供給される乾燥空気量を補充させることができる。
【0038】
ウォーミングアップ運転(第4運転)は、図4に示すように処理空間20で乾燥空気を必要としない時(期間)に乾燥空気供給装置30の運転も停止するのではなく、供給経路21、戻り経路23、排気経路24に設けられた切替弁V1,V2,V4を遮断し、バイパス経路24、再生経路28に設けられた弁V3,V5を開状態にし、2つのロータ4a,4bを通過した乾燥空気をバイパス経路23を介して取込口6に戻し、ロータ4a,4bに常に再生用の空気を供給して稼動状態にしておくことである。このウォーミングアップ運転によれば、ロータ4a,4bへの水分の自然吸着を防止することができ、処理空間20で乾燥空気を必要になった時には直ちに低露点の清浄な乾燥空気を供給することができる。
【0039】
増量運転(第5運転)は、図5に示すように前記処理空間20で通常時の流量よりも多い乾燥空気を必要とするときに、前記戻り経路22、バイパス経路23、再生経路28に設けられた切替弁V2,V3,V5を遮断し、供給経路21、排気経路24に設けられた弁V1,V4を開状態にし、前記再生経路28に向かう乾燥空気の流れを遮断して処理空間20に供給される乾燥空気の供給量を増加させることである。増量運転によれば、通常運転時の乾燥空気の供給量を2m/分とすると、再生経路28の弁V5を遮断することにより処理空間20への乾燥空気の供給量を2倍の4m/分にすることができる。なお、この増量運転時には、吸着剤の再生が停止されるため、時間の経過と共に乾燥吸気の露点が上昇する。このため、前記増量運転は、乾燥空気の露点を検出し、所定の露点になるまでの所定時間例えば6〜9分間行い、その後、切替弁V1を閉じ、切替弁V3,V5を開けることによりウォーミングアップ運転に切替えて吸着剤の再生を行う。すなわち、この増量運転は、必要なときに所定時間行ない、必要でないとき(例えば12〜14分)にはウォーミングアップ運転に切替えられるという具合に間欠的に行われる。なお、増量運転で、実施例では切替弁V4を閉、切替弁V4を開にしているが、切替弁V4を開、切替弁V4を閉にしてもよい。
【0040】
以上、本発明の実施の形態を図面により詳述してきたが、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の設計変更等が可能である。例えば、前記仕切部材にはロータとの間をシールするためにロータに摺接する接触式のシール部材が用いられいるが、シール部材としては非接触式のものを採用することも可能である。また、2つのロータは仕切部材を介して直列に配置した一体的構造であっても良く、この場合、ロータ間の配管及びクーラーを省略することができ、装置のコンパクト化が図れる。この場合、前段のロータには後段のロータと対応するように冷却ゾーンが設けられ、再生用の乾燥空気が前段のロータの冷却ゾーンから後段のロータの冷却ゾーンに通流される。
【0041】
【発明の効果】
以上説明したように本発明によれば、処理空間側の条件に対応した運転方法をとることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す処理装置の封入運転時の状態を示す図である。
【図2】同処理装置の一方向運転時の状態を示す図である。
【図3】同処理装置のリターン運転時の状態を示す図である。
【図4】同処理装置のウォーミングアップ運転時の状態を示す図である。
【図5】同処理装置の増量運転時の状態を示す図である。
【図6】ロータの一例を示す概略的斜視図である。
【図7】支持枠の一例を示す概略的斜視図である。
【符号の説明】
1 処理装置
3 仕切部材
4a,4b ロータ
5 駆動手段
6 取込口
7 供給口
9 排気口
20 処理空間
21 供給経路
22 戻り経路
23 バイパス経路
24 排気経路
28 再生経路
30 乾燥空気供給装置
32 取込経路
V1〜V5 切替弁
V6 リリーフ弁
V7 流量調整弁
36 制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a processing device and a method for operating the same.
[0002]
[Prior art]
2. Description of the Related Art In the manufacture of semiconductor devices, there are steps of performing various processes such as oxidation, diffusion, and CVD on an object to be processed, for example, a semiconductor wafer, and various processing apparatuses (for example, heat treatment apparatuses) are used to execute these steps. Have been. For example, in a vertical heat treatment apparatus, a processing space (loading area) for transferring a wafer between a transport container that stores a plurality of, for example, 25 wafers, and a processing container that stores the wafer and performs a predetermined process. Also called).
[0003]
Conventionally, in order to suppress the growth of a natural oxide film on a wafer in the processing space, a large amount (250 to 400 liters / minute) of an inert gas such as nitrogen gas is supplied to the processing space to reduce the oxygen concentration in the processing space to 30 ppm. The atmosphere was as follows. In addition, a chemical filter is provided to remove organic gases in the processing space. However, since a large amount of expensive nitrogen gas is consumed, not only running cost is increased, but also there is a risk of oxygen deficiency due to nitrogen gas. Further, although it was possible to remove organic substances by using a chemical filter, it was difficult to remove organic substances attached to the chemical filter and regenerate the chemical filter.
[0004]
In order to solve this problem, the present applicant has been able to suppress the growth of the natural oxide film on the processing object by supplying dry air instead of the inert gas to the processing space, The applicant has previously filed a dry air supply device and a processing device that can avoid the danger of generating particles and can prevent the generation of particles (Japanese Patent Application No. 2002-274214, not disclosed).
[0005]
As related techniques, an invention for supplying a dry gas with a low dew point to the processing space (for example, see Japanese Patent Application Laid-Open No. Hei 6-267933) and an invention for a dry dehumidifier for obtaining a dry gas with a low dew point (for example, (See Japanese Unexamined Patent Publication No. 2000-296309 and Japanese Patent Application Laid-Open No. 63-50047).
[0006]
[Patent Document 1]
JP-A-6-267933 [Patent Document 2]
JP 2000-296309 A [Patent Document 3]
JP-A-63-50047
[Problems to be solved by the invention]
Meanwhile, in the processing apparatus, there is an operation method or the like that maintains the inside of the processing space at a positive pressure in order to prevent particles or the like from entering the processing space from the outside. However, in the processing apparatus provided with the dry air supply device, since there is no means for switching the path (flow path), it is difficult to take an operation method corresponding to the conditions on the processing space side. .
[0008]
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a processing apparatus and an operation method thereof that can employ an operation method corresponding to a condition on a processing space side.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is a processing apparatus connected to a dry air supply apparatus for supplying dry air from which moisture and organic substances have been removed to a processing space, wherein the dry air supply apparatus carries an adsorbent. And two rotors whose rotation areas are defined at least in an adsorption zone and a regeneration zone by a partition member, driving means for rotating the two rotors, and an intake port for taking in air from outside And a supply port for supplying dry air from which moisture and organic substances have been removed by passing the air taken in from the intake port through the adsorption zone of each rotor, and heating a part of the dry air to supply the dry air to each rotor. An exhaust port for passing through the regeneration zone to remove moisture and organic matter of the adsorbent and exhausting the same; a supply path for supplying dry air from the supply port to the processing space; and a dry path exhausted from the processing space. Intake A return path is provided, a supply path and a return path are connected by a bypass path, a return path is connected to an exhaust path for exhausting dry air to the outside, and a regeneration path for supplying heated dry air to the regeneration zone. A switching valve is provided in the supply path, the return path, the bypass path, and the exhaust path. As a result, it is possible to take an operation method corresponding to the conditions on the processing space side.
[0010]
According to a second aspect of the present invention, in the processing apparatus according to the first aspect, the bypass path connects an upstream side of a switching valve provided in a supply path and a downstream side of a switching valve provided in the return path. It is characterized by having. Thereby, the dry air supplied from the supply port can be returned to the intake port without being supplied to the processing space, and the so-called warm-up operation can be reliably performed.
[0011]
According to a third aspect of the present invention, in the processing apparatus according to the first or second aspect, the processing space includes a relief valve for exhausting the supplied dry air to the outside when the supplied dry air becomes equal to or higher than a set pressure. It is characterized by the following. Thus, a so-called enclosing operation (positive pressure operation) can be reliably performed, and intrusion of particles or the like into the processing space can be prevented.
[0012]
According to a fourth aspect of the present invention, in the processing apparatus according to any one of the first to third aspects, a control unit that controls the switching valve is provided. This makes it possible to automate the processing device.
[0013]
According to a fifth aspect of the present invention, in the processing apparatus according to any one of the first to fourth aspects, the processing space is a transport space for transporting an object to be processed. Thus, it is possible to prevent the growth of the natural oxide film of the object to be processed and the generation of particles in the transfer space.
[0014]
According to a sixth aspect of the present invention, in the processing apparatus according to any one of the first to fifth aspects, the intake port is provided with an intake path for taking in air from outside, and the intake path has an intake air amount. Characterized in that a flow control valve for adjusting the pressure is provided. This makes it possible to adjust the flow rate of air taken in from outside to supplement the flow rate of dry air returned from the processing space during the so-called return operation.
[0015]
The invention according to claim 7 is a method for operating a processing apparatus in which a dry air supply apparatus for supplying dry air from which moisture and organic substances have been removed is connected to the processing space, wherein the dry air supply apparatus carries an adsorbent. And two rotors whose rotation areas are formed at least in an adsorption zone and a regeneration zone by a partition member, driving means for rotating and driving the two rotors, an intake port for taking in air from outside, A supply port for supplying dry air from which moisture and organic substances have been removed by passing air taken in from the intake port through an adsorption zone of each rotor, and a regeneration zone for each rotor by heating a portion of the dry air. A supply path for supplying dry air from the supply port to the processing space; and an intake port for supplying dry air from the supply port to the processing space. Back to mouth A return path, a supply path and a return path connected by a bypass path, a return path connected to an exhaust path for exhausting dry air to the outside, a regeneration path for supplying heated dry air to the regeneration zone, A switching valve is provided in a path, a return path, a bypass path, and an exhaust path. The switching valves provided in the bypass path, the return path, and the exhaust path are shut off, and dry air is supplied from the supply path to the processing space, thereby processing the processing space. A first operation in which the inside pressure is higher than the outside pressure, and a one-way in which a switching valve provided in the bypass path and the return path is shut off and dry air supplied to the processing space from the supply path is exhausted to the outside. And a third operation of shutting off a switching valve provided in the bypass path and the exhaust path and returning dry air supplied from the supply path to the processing space to the dry air supply device. A fourth operation of shutting off the switching valves provided in the supply path, the return path, and the exhaust path and returning the dry air passing through the two rotors to the intake port; and a switching valve provided in the regeneration path and the bypass path. And the fifth operation for increasing the supply amount of dry air supplied to the processing space is selected and executed. As a result, it is possible to take an operation method corresponding to the conditions on the processing space side.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a state of a processing apparatus according to an embodiment of the present invention during a sealing operation, FIG. 2 is a view showing a state of the processing apparatus during one-way operation, and FIG. FIG. 4 is a view showing a state of the processing apparatus during a warm-up operation, FIG. 5 is a view showing a state of the processing apparatus during an increase operation, and FIG. 6 is a schematic perspective view showing an example of a rotor. FIG. 7 is a schematic perspective view showing an example of a support frame.
[0017]
1 to 5, reference numeral 1 denotes a processing apparatus, for example, a vertical heat treatment apparatus for accommodating a predetermined number of, for example, about 1 to 150 semiconductor wafers in a housing forming an outer shell and performing a predetermined processing, for example, a CVD processing. For example, a vertical heat treatment furnace is provided, and a processing space (for example, a transport space, a loading area) 20 for performing processing such as wafer transfer is provided below the processing container.
[0018]
A lid for opening and closing the furnace port of the processing container is provided in the processing space 20 so as to be able to move up and down via an elevating mechanism, and a large number of, for example, about 100 wafers are held and mounted on the upper part of the lid at predetermined intervals in the vertical direction. A boat is mounted. The loading / unloading (unloading) of the boat into / from the processing container is performed by the lifting / lowering mechanism. The processing device 1 is connected to a dry air supply device 30 for supplying dry air (dry air) having a low dew point to the processing space 20.
[0019]
The dry air supply device 30 is rotatably supported by a support frame 2 (see FIG. 7) described later, is configured to carry an adsorbent, and has a rotation region at both ends by a partition member 3 provided on the support frame 2. At least two rotors 4a, 4b partitioned into at least an adsorption zone S and a regeneration zone U, a driving means for rotating the two rotors 4a, 4b, such as an electric motor 5, and an intake port 6 for taking in air from outside. A supply port 7 for supplying the dry air from which moisture and organic substances have been removed by passing the air taken in from the intake port 6 to the adsorption zone S of each of the rotors 4a and 4b, and heating a part of the dry air. And an exhaust port 9 for passing through the regeneration zone U of each of the rotors 4a and 4b to desorb water and organic matter of the adsorbent and exhaust the same.
[0020]
The drying air supply device 30 supplies the drying air from the intake port 6 to the suction port S of each of the rotors 4a and 4b in order to remove the moisture and the organic matter and supply the drying air to the supply port 7. 27, and a regeneration path 28 for heating a part of the dry air to pass through the regeneration zone U of each of the rotors 4a and 4b to desorb moisture and organic substances from the adsorbent and regenerate the adsorbent. . A supply path 21 for supplying dry air from the supply port 7 to the processing space 20 and a return path 22 for returning dry air exhausted from the processing space 20 to the intake port 6 are provided. The path 22 is connected by a bypass path 23, and an exhaust path 24 for exhausting dry air to the outside is branched and connected to the return path 22.
[0021]
As shown in FIG. 6, the rotors 4a and 4b include a cylindrical body 8 having both ends opened, a rotating shaft 10 disposed at the axial center of the cylindrical body 8, and a cylindrical member extending radially from the rotating shaft 10. Spokes 11 fixed to the inner peripheral surface of the body 8 and partitioning the inside of the cylindrical body 8 into a plurality of, for example, eight sector-shaped rooms, and a honeycomb structure having a sector-shaped cross-section attached to each room and carrying an adsorbent on a substrate. It is mainly composed of the body 12. In the process of flowing air in the axial direction of the rotors 4a and 4b, the honeycomb structure 12 removes moisture and organic substances contained in the air by adsorbing the adsorbent to obtain dry air.
[0022]
The adsorbent of the rotor 4a in the former stage is, for example, a faujasite Y-type zeolite (A 56 Si) in order to efficiently adsorb moisture as pre-dehumidification (exit dew point temperature −20 ° C.) and also efficiently adsorb organic matter. 136 O 384 ) are preferred. The adsorbent of the rotor 4b at the subsequent stage is preferably, for example, a faujasite X-type zeolite (A 96 Si 96 O 384 ) in order to adsorb moisture as low dew point dehumidification (outlet dew point temperature −80 ° C.).
[0023]
On the other hand, as a substrate of the honeycomb structure 12, inorganic fiber paper is preferable because of excellent heat resistance, abrasion resistance and the like. The honeycomb structure 12 is formed by forming inorganic fiber paper into a honeycomb shape. As a method of supporting the adsorbent on the base material, for example, a method of impregnating the base material with a slurry containing the adsorbent by spraying, brushing, or the like, and drying is used. When the rotors 4a and 4b have the rotating shaft 10, they are rotatably supported by, for example, a box-shaped or frame-shaped support frame 2 as shown in FIG. In the illustrated example, openings 13 corresponding to both ends of the rotors 4 a and 4 b are formed at both ends of the support frame 2, and the partition member 3 is attached to the openings 13. A bearing 14 that rotatably supports both ends of the rotary shaft 10 is provided at the center of the opening 13 via a partition member 3.
[0024]
The partition member 3 includes an annular circumferential member 3a corresponding to the peripheral edge of the end of the rotor or the cylindrical body 8, and a radial member 3b provided at the center, for example, from the bearing to the circumferential member 3a. The member 3b is provided with a radial seal member that seals between the zones S, U, and T adjacent to and adjacent to the end face of the honeycomb structure 12 (end face of the rotor). The circumferential member 3a is provided with a circumferential seal member that seals between the inside and the outside in the vicinity of the flange 8a provided at the edge of the rotor or the cylindrical body 8.
[0025]
An adsorption zone S and a regeneration zone U are defined by the partition member 3 in the rotation regions at both ends of the preceding rotor 4a. A cooling zone T is defined by the partition member 3 in addition to the adsorption zone S and the regeneration zone U in the rotation regions at both ends of the rotor 4 b at the subsequent stage. The partition member 3 is provided with a cover member (not shown) for covering the surface thereof, and a pipe communicating with each zone S, U or T is connected to the cover member.
[0026]
The drying path 27 includes a suction pipe 27a that introduces air from the intake port 6 into the adsorption zone S of the preceding rotor 4a, and a low dew point that has passed through the adsorption zone S of the preceding rotor 4a to remove moisture and organic substances. An intermediate pipe 27b for introducing dry air into the adsorption zone S of the subsequent rotor 4b, and dry air with a low dew point from which moisture and organic substances are further removed through the adsorption zone S of the latter rotor 4b are supplied to the supply port 7. And a supply pipe 27c.
[0027]
The suction pipe 27a is provided with a fan 15 for sucking air from the intake port 6 and sending it to the supply port 7 through the rotors 4a and 4b, and further to the processing space 20, and the intermediate pipe 27b is provided with moisture and water. A cooler 16 is provided as cooling means for cooling the dry air having a low dew point from which organic substances have been removed to a predetermined temperature, for example, about 15 ° C. In order to prevent particle contamination of the wafer in the processing space caused by the dry air supply device 30, the supply path 21 is used to remove particles generated from a contact portion between the rotors 4 a and 4 b and the seal member of the partition member 3. It is preferable that a filter (not shown) is provided. In the figure, reference numeral 40 denotes a system for operating or operating the processing apparatus 1 including the dry air supply apparatus 30.
[0028]
The regeneration path 28 is branched from a supply pipe 27c immediately after the latter rotor 4b, and is a first pipe that extracts a part of the clean dry air with a low dew point and introduces it as a cooling gas into the cooling zone T of the latter rotor 4b. A second pipe 28b for introducing dry air passing through the cooling zone T to the regeneration zone U as a regeneration gas, and a second pipe 28b for introducing air passing through the regeneration zone U to the regeneration zone U of the rotor 4a in the preceding stage. It comprises a third pipe 28c and a fourth pipe 28d for exhausting air that has passed through the regeneration zone U. The second pipe 28b is provided with a heating means, for example, a heater 17, for heating the air to a predetermined temperature in order to make the air a regeneration gas, and the fourth pipe 28d is provided with an exhaust fan 18. The exhaust port 9 is connected to an exhaust pipe 29 for discharging dry air for regeneration to the outside (for example, a factory exhaust system).
[0029]
During normal operation, the air for regeneration is heated to a temperature of about 130 to 200 ° C. by the heater 17 and supplied to the regeneration zone U to desorb moisture and gaseous impurities (organic substances) adsorbed on the adsorbent. However, when the high boiling organic compound is desorbed from the adsorbent, the air for regeneration may be heated to a high temperature of about 250 to 400 ° C. by the heater 17 and supplied to the regeneration zone U periodically. preferable.
[0030]
A belt wheel (also referred to as a pulley) 25 is attached to the rotation shaft of the motor 5 to rotationally drive the rotors 4a and 4b. An endless belt 26 is wound around the belt wheel 25 and the rotors 4a and 4b. I have. The two rotors may be configured to be driven individually by two motors, or may be configured to be driven by one common motor.
[0031]
The adsorbents carried on the honeycomb structure 12 in the front and rear rotors 4a and 4b efficiently adsorb moisture and organic substances, and desorb moisture and organic substances from the adsorbents adsorbing moisture and organic substances to efficiently regenerate the adsorbent. For this purpose, the area ratio between the adsorption zone S and the regeneration zone U of the preceding rotor 4a (1: 1 in the illustrated example) or the area ratio between the adsorption zone S, the regeneration zone U, and the cooling zone T of the subsequent rotor 4b (see FIG. In the illustrated example, although it depends on 2: 1: 1), in the illustrated example, for example, the rotation speed of the preceding rotor 4a is 10 r. p. h, the rotational speed of the rotor 4b at the subsequent stage is 0.5 r. p. h is adjusted or set.
[0032]
The supply path 21, the return path 22, the bypass path 23, the exhaust path 24, and the regeneration path 28 are provided with switching valves V1, V2, V3, V4, V5 for switching paths according to the conditions on the processing space 20 side. Is provided. The bypass path 23 connects the upstream side of the switching valve V1 provided in the supply path 21 and the downstream side of the switching valve V2 provided in the return path 22.
[0033]
The intake port 6 is provided with an intake path 32 for taking in air from the outside, and it is preferable that the intake path 32 is provided with a flow rate adjusting valve V7 for adjusting the amount of intake air. In the embodiment, the intake path 32 is branched and connected to the return path 22 near the intake port 6. The flow rate adjustment valve V7 is used to adjust the flow rate of air taken in from outside to supplement the flow rate of dry air returned from the processing space 20 during the return operation, and is open during other operations. In order to maintain the inside of the processing space 20 at a predetermined pressure (positive pressure), for example, +50 mmAq during the enclosing operation, a relief for exhausting the supplied dry air to the outside when the supplied dry air becomes equal to or higher than the set pressure, for example, +50 mmAq. A valve V6 is provided.
[0034]
The processing apparatus 1 including the dry air supply apparatus 30 and the system 40 for operating or operating the processing apparatus 1 are configured to control the switching of the switching valves V1 to V5 in accordance with the required conditions of the processing space 20. A portion 36 is provided, and switching (closing (positive pressure) operation (first operation), one-way operation (second operation), return operation (third operation), and warming-up as described below is performed by switching valves V1 to V5. It is configured such that any one of the operation (fourth operation) and the increase operation (fifth operation) can be selected and executed.
[0035]
First, in the enclosing operation (first operation), as shown in FIG. 1, the switching valves V2, V3, and V4 provided in the return path 22, the bypass path 23, and the exhaust path 24 are shut off (closed), and the supply is performed. The switching valves V1 and V5 provided in the path 21 and the regeneration path 28 are opened, and dry air is supplied from the supply path 21 to the processing space 20 to increase the pressure inside the processing space 20 to a pressure higher than the external pressure, for example, +5 to +100 mmAq. Control to maintain. According to this enclosing operation, it is possible to prevent particles and the like from entering the processing space 20.
[0036]
In the one-way operation (second operation), as shown in FIG. 2, the switching valves V2 and V3 provided in the return path 22 and the bypass path 23 are shut off, and the supply path 21, the exhaust path 24, and the regeneration path 28 The provided valves V1, V4, and V5 are opened to form a one-way flow in which the dry air supplied from the supply path 21 to the processing space 20 is exhausted to the outside via the exhaust path 24. According to the one-way operation, a one-way flow of dry air from which moisture, organic substances, and particles have been removed can be formed in the processing space to reduce the dew point and the organic substance concentration in the processing space.
[0037]
In the return operation (third operation), as shown in FIG. 3, the switching valves V3 and V4 provided on the bypass path 23 and the exhaust path 24 are shut off, and the return operation is provided on the supply path 21, the return path 22, and the regeneration path 28. The valves V1, V2, and V5 are opened, and the dry air supplied to the processing space 20 from the supply path 21 is returned to the intake port 6 of the dry air supply device 30 and circulated. According to this return operation, the dew point and the organic matter concentration of the dry air supplied to the processing space 20 can be further reduced. The amount of dry air supplied to the intake 6 from the return path 22 can be replenished.
[0038]
The warming-up operation (fourth operation) does not stop the operation of the dry air supply device 30 when dry air is not required in the processing space 20 (period) as shown in FIG. 23, the switching valves V1, V2, and V4 provided in the exhaust path 24 are shut off, the valves V3 and V5 provided in the bypass path 24 and the regeneration path 28 are opened, and drying passing through the two rotors 4a and 4b is performed. The air is returned to the intake port 6 via the bypass path 23, and the air for regeneration is always supplied to the rotors 4a and 4b to keep the rotor 4a in operation. According to the warm-up operation, natural adsorption of moisture to the rotors 4a and 4b can be prevented, and when dry air is required in the processing space 20, clean dry air with a low dew point can be supplied immediately. .
[0039]
The increasing operation (fifth operation) is provided in the return path 22, the bypass path 23, and the regeneration path 28 when the processing space 20 requires more dry air than the normal flow rate as shown in FIG. The switching valves V2, V3, and V5 are shut off, the valves V1 and V4 provided in the supply path 21 and the exhaust path 24 are opened, and the flow of the dry air toward the regeneration path 28 is shut off. Is to increase the supply amount of dry air supplied to the apparatus. According to the increasing operation, assuming that the supply amount of the dry air during the normal operation is 2 m 3 / min, the supply amount of the dry air to the processing space 20 is doubled to 4 m 3 by shutting off the valve V5 of the regeneration path 28. / Min. During the increasing operation, the regeneration of the adsorbent is stopped, so that the dew point of the dry intake air increases with time. For this reason, the increasing operation is performed for a predetermined time, for example, 6 to 9 minutes, until the dew point of the dry air is detected and the predetermined dew point is reached. Thereafter, the switching valve V1 is closed and the switching valves V3 and V5 are opened to warm up. Switch to operation and regenerate the adsorbent. That is, the increase operation is performed intermittently for a predetermined time when necessary, and when not necessary (for example, 12 to 14 minutes), the operation is switched to the warm-up operation. Although the switching valve V4 is closed and the switching valve V4 is opened in the embodiment in the increasing operation, the switching valve V4 may be opened and the switching valve V4 may be closed.
[0040]
As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the present invention is not limited to the above embodiments, and various design changes and the like can be made without departing from the gist of the present invention. is there. For example, a contact-type seal member that slides on the rotor is used as the partition member to seal the space between the rotor and the rotor, but a non-contact type seal member may be used as the seal member. Further, the two rotors may have an integral structure arranged in series with a partition member interposed therebetween. In this case, piping and a cooler between the rotors can be omitted, and the apparatus can be made compact. In this case, a cooling zone is provided in the former rotor so as to correspond to the latter rotor, and dry air for regeneration flows from the cooling zone of the former rotor to the cooling zone of the latter rotor.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to take an operating method corresponding to the conditions on the processing space side.
[Brief description of the drawings]
FIG. 1 is a diagram showing a state of a processing apparatus according to an embodiment of the present invention during a sealing operation.
FIG. 2 is a diagram showing a state during one-way operation of the processing apparatus.
FIG. 3 is a diagram showing a state during a return operation of the processing apparatus.
FIG. 4 is a diagram showing a state during a warm-up operation of the processing apparatus.
FIG. 5 is a diagram showing a state of the processing apparatus during an increasing operation.
FIG. 6 is a schematic perspective view showing an example of a rotor.
FIG. 7 is a schematic perspective view showing an example of a support frame.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing apparatus 3 Partition member 4a, 4b Rotor 5 Drive means 6 Intake port 7 Supply port 9 Exhaust port 20 Processing space 21 Supply path 22 Return path 23 Bypass path 24 Exhaust path 28 Regeneration path 30 Dry air supply device 32 Intake path V1 to V5 Switching valve V6 Relief valve V7 Flow control valve 36 Control unit

Claims (7)

処理空間に水分及び有機物を除去した乾燥空気を供給する乾燥空気供給装置を接続した処理装置であって、
前記乾燥空気供給装置は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成された2つロータと、該2つのロータを回転駆動する駆動手段と、外部から空気を取込む取込口と、該取込口から取込まれた空気を各ロータの吸着ゾーンに通過させて水分及び有機物を除去した乾燥空気を供給する供給口と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させ吸着剤の水分及び有機物を脱離させて排気する排気口とを備え、
前記供給口から処理空間に乾燥空気を供給する供給経路と、前記処理空間から排気される乾燥空気を取込口に戻す戻り経路とを設け、供給経路と戻り経路をバイパス経路で接続すると共に、戻り経路に乾燥空気を外部に排気する排気経路を接続し、前記再生ゾーンに加熱した乾燥空気を供給する再生経路、供給経路、戻り経路、バイパス経路及び排気経路に切替弁を設けたことを特徴とする処理装置。
A processing apparatus connected to a dry air supply apparatus that supplies dry air from which moisture and organic substances have been removed to a processing space,
The dry air supply device is configured to support an adsorbent, and has two rotors whose rotation areas are divided at least into an adsorption zone and a regeneration zone by a partition member, and a driving unit that rotationally drives the two rotors. An intake port for taking in air from outside, a supply port for supplying dry air from which moisture and organic substances have been removed by passing the air taken in from the intake port through an adsorption zone of each rotor, An exhaust port for heating a part of the air and passing it through the regeneration zone of each rotor to desorb the moisture and organic matter of the adsorbent and exhaust it,
A supply path for supplying dry air from the supply port to the processing space and a return path for returning dry air exhausted from the processing space to the intake port are provided, and the supply path and the return path are connected by a bypass path, An exhaust path for exhausting dry air to the outside is connected to the return path, and a switching valve is provided for a regeneration path for supplying heated dry air to the regeneration zone, a supply path, a return path, a bypass path, and an exhaust path. Processing equipment.
前記バイパス経路は、供給経路に設けられた切替弁の上流側と、前記戻り経路に設けられた切替弁の下流側とを接続していることを特徴とする請求項1記載の処理装置。2. The processing apparatus according to claim 1, wherein the bypass path connects an upstream side of a switching valve provided in a supply path and a downstream side of a switching valve provided in the return path. 前記処理空間には、供給された乾燥空気が設定圧以上となったときに外部に排気するためのリリーフ弁を備えていることを特徴とする請求項1または2記載の処理装置。3. The processing apparatus according to claim 1, wherein the processing space includes a relief valve for exhausting the supplied dry air to the outside when the supplied dry air becomes equal to or higher than a set pressure. 4. 前記切替弁の制御を行う制御部を備えていることを特徴とする請求項1から3の何れかに記載の処理装置。The processing device according to claim 1, further comprising a control unit configured to control the switching valve. 前記処理空間は、被処理体の搬送を行う搬送空間であることを特徴とする請求項1から4の何れかに記載の処理装置。The processing apparatus according to claim 1, wherein the processing space is a transport space for transporting a target object. 前記取込口には、外部から空気を取込む取込経路が設けられ、該取込経路に取込み空気量を調整する流量調整弁が設けられていることを特徴とする請求項1から5の何れかに記載の処理装置。6. The intake port according to claim 1, wherein an intake path for taking in air from the outside is provided at the intake port, and a flow rate adjusting valve for adjusting an intake air amount is provided on the intake path. A processing device according to any one of the above. 処理空間に水分及び有機物を除去した乾燥空気を供給する乾燥空気供給装置を接続した処理装置の運転方法であって、
前記乾燥空気供給装置は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成された2つロータと、該2つのロータを回転駆動する駆動手段と、外部から空気を取込む取込口と、該取込口から取込まれた空気を各ロータの吸着ゾーンに通過させて水分及び有機物を除去した乾燥空気を供給する供給口と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させ吸着剤の水分及び有機物を脱離させて排気する排気口とを備え、
前記供給口から処理空間に乾燥空気を供給する供給経路と、前記処理空間から排気される乾燥空気を取込口に戻す戻り経路とを設け、供給経路と戻り経路をバイパス経路で接続すると共に、戻り経路に乾燥空気を外部に排気する排気経路を接続し、前記再生ゾーンに加熱した乾燥空気を供給する再生経路、供給経路、戻り経路、バイパス経路及び排気経路に切替弁を設け、
前記バイパス経路、戻り経路、排気経路に設けられた切替弁を遮断し、供給経路から処理空間に乾燥空気を供給して、処理空間内を外部の圧力よりも高い圧力にする第1運転と、
前記バイパス経路、戻り経路に設けられた切替弁を遮断し、供給経路から処理空間に供給された乾燥空気を外部に排気する一方向の流れを形成する第2運転と、
前記バイパス経路、排気経路に設けられた切替弁を遮断し、供給経路から処理空間に供給された乾燥空気を乾燥空気供給装置に戻す第3運転と、
前記供給経路、戻り経路、排気経路に設けられた切替弁を遮断し、2つのロータを通過した乾燥空気を取込口に戻す第4運転と、
前記再生経路、バイパス経路に設けられた切替弁を遮断し、処理空間に供給される乾燥空気の供給量を増量する第5運転と、
のうちの何れか1つを選択して実行することを特徴とする処理装置の運転方法。
A method of operating a processing apparatus connected to a dry air supply apparatus that supplies dry air from which moisture and organic substances have been removed to a processing space,
The dry air supply device is configured to support an adsorbent, and has two rotors whose rotation areas are divided at least into an adsorption zone and a regeneration zone by a partition member, and a driving unit that rotationally drives the two rotors. An intake port for taking in air from outside, a supply port for supplying dry air from which moisture and organic substances have been removed by passing the air taken in from the intake port through an adsorption zone of each rotor, An exhaust port for heating a part of the air and passing it through the regeneration zone of each rotor to desorb the moisture and organic matter of the adsorbent and exhaust it,
A supply path for supplying dry air from the supply port to the processing space and a return path for returning dry air exhausted from the processing space to the intake port are provided, and the supply path and the return path are connected by a bypass path, An exhaust path for exhausting dry air to the outside is connected to the return path, and a switching valve is provided in a regeneration path for supplying heated dry air to the regeneration zone, a supply path, a return path, a bypass path, and an exhaust path,
A first operation in which a switching valve provided in the bypass path, the return path, and the exhaust path is shut off, dry air is supplied from the supply path to the processing space, and the pressure in the processing space is higher than an external pressure;
A second operation for shutting off the switching valve provided in the bypass path and the return path and forming a unidirectional flow for exhausting dry air supplied to the processing space from the supply path to the outside;
A third operation of shutting off the switching valve provided in the bypass path and the exhaust path and returning dry air supplied to the processing space from the supply path to the dry air supply device;
A fourth operation of shutting off the switching valve provided in the supply path, the return path, and the exhaust path, and returning the dry air that has passed through the two rotors to the intake port;
A fifth operation of shutting off the switching valve provided in the regeneration path and the bypass path and increasing the supply amount of dry air supplied to the processing space;
Operating method of the processing device, wherein any one of the above is selected and executed.
JP2003121219A 2003-04-25 2003-04-25 Processing apparatus and operation method thereof Expired - Fee Related JP4167114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121219A JP4167114B2 (en) 2003-04-25 2003-04-25 Processing apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121219A JP4167114B2 (en) 2003-04-25 2003-04-25 Processing apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004327768A true JP2004327768A (en) 2004-11-18
JP4167114B2 JP4167114B2 (en) 2008-10-15

Family

ID=33499858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121219A Expired - Fee Related JP4167114B2 (en) 2003-04-25 2003-04-25 Processing apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP4167114B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175602A (en) * 2005-12-27 2007-07-12 Hitachi Plant Technologies Ltd Low dew point air-conditioning system
JP2008068210A (en) * 2006-09-14 2008-03-27 Hitachi Plant Technologies Ltd Environmental maintenance system
JP2010075819A (en) * 2008-09-25 2010-04-08 Shin Nippon Air Technol Co Ltd Dehumidification apparatus and method for operation control of the same
JP2011187851A (en) * 2010-03-11 2011-09-22 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
US9558972B2 (en) 2013-05-31 2017-01-31 Tokyo Electron Limited Liquid treatment apparatus including return path and switching mechanism
CN114585431A (en) * 2019-10-29 2022-06-03 五和工业株式会社 Dehumidification system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175602A (en) * 2005-12-27 2007-07-12 Hitachi Plant Technologies Ltd Low dew point air-conditioning system
JP4596370B2 (en) * 2005-12-27 2010-12-08 株式会社日立プラントテクノロジー Low dew point air conditioning system
JP2008068210A (en) * 2006-09-14 2008-03-27 Hitachi Plant Technologies Ltd Environmental maintenance system
JP2010075819A (en) * 2008-09-25 2010-04-08 Shin Nippon Air Technol Co Ltd Dehumidification apparatus and method for operation control of the same
JP2011187851A (en) * 2010-03-11 2011-09-22 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
US9558972B2 (en) 2013-05-31 2017-01-31 Tokyo Electron Limited Liquid treatment apparatus including return path and switching mechanism
CN114585431A (en) * 2019-10-29 2022-06-03 五和工业株式会社 Dehumidification system
CN114585431B (en) * 2019-10-29 2024-05-07 五和工业株式会社 Dehumidifying system

Also Published As

Publication number Publication date
JP4167114B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US7207123B2 (en) Dry air-supplying apparatus and treating apparatus
JP3896343B2 (en) Dry air supply device
JP7480249B2 (en) Substrate Processing Equipment
WO2006109670A1 (en) Sterilization system
JP5631011B2 (en) Clean room system and operation method thereof
JP4167114B2 (en) Processing apparatus and operation method thereof
JP4578615B2 (en) Heat treatment equipment
JP2004160444A (en) Dry air feeding device and treatment apparatus
TWI763906B (en) Drying room for gas replacement
JP3896344B2 (en) Operation method of dry air supply device
US10850232B2 (en) Dry room for gas substitution
JP6420115B2 (en) Gas processing apparatus and function regeneration method of gas processing apparatus
JP3538725B2 (en) Exhaust gas treatment equipment
TWI816980B (en) Drying room for gas replacement
JP2002143632A (en) Device for removing ethylene and refrigerator provided with device for removing ethylene
JP2004033925A (en) Clean air supply system and its operation method
JP2020089858A (en) Air purifier
JP3631395B2 (en) Substrate rotating dryer
JPH10288442A (en) Continuous cooling device for article
JP2023146112A (en) Exhaust processing device and granule processing system
JPH0722378A (en) Exhauster of substrate spin drying equipment
CN117379924A (en) Recovery device
JP2001023944A (en) Substrate rotating dryer
JP2004105786A (en) Organic matter removing apparatus
JP2001023943A (en) Substrate rotating dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080701

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees