JP2004327710A - Electronic application device - Google Patents

Electronic application device Download PDF

Info

Publication number
JP2004327710A
JP2004327710A JP2003120224A JP2003120224A JP2004327710A JP 2004327710 A JP2004327710 A JP 2004327710A JP 2003120224 A JP2003120224 A JP 2003120224A JP 2003120224 A JP2003120224 A JP 2003120224A JP 2004327710 A JP2004327710 A JP 2004327710A
Authority
JP
Japan
Prior art keywords
metal
electric field
electronic
resistor
application device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003120224A
Other languages
Japanese (ja)
Other versions
JP4262507B2 (en
Inventor
Takeshi Kanai
健 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003120224A priority Critical patent/JP4262507B2/en
Publication of JP2004327710A publication Critical patent/JP2004327710A/en
Application granted granted Critical
Publication of JP4262507B2 publication Critical patent/JP4262507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Accessory Devices And Overall Control Thereof (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Facsimiles In General (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic application instrument, noticing the electromagnetic field distribution determined by the size of a metallic casing, on which the electronic instrument is mounted, and the distribution of a current which flows on the surface of the metal casing, while being compatible with the reduction of leakage electromagnetic waves at the resonance frequency of the metal casing and a heat radiating effect especially, without complicating the constitution. <P>SOLUTION: In the electronic application device, installed in the metal casing 1, having electric field connecting elements 4, 14 with a resistor and a gap part 3 communicated with outside, in order to reduce electromagnetic interference waves generated in the electronic instrument, the electric field connecting elements 4, 14 with the resistor are provided at positions operated by a predetermined formula so that the resistor 4b is positioned between the metal casing 1 and the electric field connecting elements 4, 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器にて生じる電磁妨害波を低減させるために、電磁波ノイズ対策を備えた電子応用装置に関するものである。
【0002】
【従来の技術】
複写機において、画像読み取り部および画像書き込み部および画信号を補正処理する1次信号処理部などの電子部品からなる電子機器部分を、アースされた導電性の筐体内部に収納して電磁波シールドを図り、筐体外部へ漏洩する電磁波ノイズを低減しようとする構成は従来から知られており(例えば、特許文献1参照)、また筐体内の電磁界の共振に着目して筐体内容積を変化させて電磁波レベルを変化させることも知られている(例えば、特許文献2参照)。
現在、電子機器が搭載される各種の装置が存在しているが、近年の電子機器の高機能化、高クロック化に伴い電子機器から発生する電磁波による障害が問題となってきている。とくに複写機などの画像読み取り部においては高画質化のためにクロック数が高くなっており、漏洩する電磁波ノイズの各部への影響がさらに問題となってきている。
【特許文献1】特開平5−199340号公報
【特許文献2】特開2001−185886公報
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来の複写機においては、導電性の筐体に収容した電子機器からの放熱のため筐体に隙間部はどうしても必要である。そのため隙間部から電磁波ノイズが漏洩して放熱効果と電磁波ノイズのシールドの両立ができないという問題点がる。
とくに前記従来の複写機において、画像読み取り部のスキャナを構成する筐体には、高周波数の作動クロックの読み取り装置および信号処理部が設置されるため導電性の筐体に収容しても小さな放熱用の隙間部から電磁波ノイズが漏れてしまう。
そこで本発明の目的は、上記の問題点を解決するために、電子機器が搭載される金属筐体寸法で決まる共振周波数の電磁界分布、および金属筐体表面を流れる電流分布に着目し、構成を複雑にすることなく、とくに金属筐体の共振周波数での漏洩電磁波の低減と放熱効果を両立した電子応用機器を提供することにある。
【0004】
【課題を解決するための手段】
前記の課題を解決するために、請求項1記載の発明では、電子機器にて生じる電磁妨害波を低減させるために、抵抗体付きの電界結合素子と外部に通じる隙間部分を有する金属筐体内部に設置される電子応用装置において、所定の数式によって算出された位置に前記抵抗体付きの電界結合素子を設け、前記抵抗体が前記金属筐体と前記電界結合素子の間にある電子応用装置を最も主要な特徴とする。
請求項2記載の発明では、さらに、磁界プローブ、磁界プローブ位置移動装置、周波数解析装置、制御装置、表示装置により筐体の近傍磁界を計測し、これから前記金属筐体内周回磁界分布の中心位置を推定し、この位置に前記抵抗体付きの電界結合型素子を設ける請求項1記載の電子応用装置を主要な特徴とする。
請求項3記載の発明では、前記金属筐体が複数の微小な穴を設けており、この穴に周波数解析装置が接続された電界結合素子を挿入し、出力の大きい位置に抵抗体付きの電界結合素子を設ける請求項1または2のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項4記載の発明では、前記金属筐体内部で電気−光変換素子、光ファイバ、光−電気変換素子、周波数解析装置付きの電界結合素子の位置を動かし、出力の大きい位置に前記抵抗体付きの電界結合素子を設ける請求項1記載の電子応用装置を主要な特徴とする。
請求項5記載の発明では、前記電界結合素子が2つの金属棒と1つの抵抗体で構成されており、2つの金属棒の間に抵抗体があり、前記金属棒の端は前記金属筐体に接合している請求項1ないし4のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項6記載の発明では、前記電界結合素子が1つの金属棒と1つの抵抗体で構成されており、前記金属棒と前記金属筐体との間に抵抗体がある請求項1ないし4のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項7記載の発明では、前記金属棒がL字型に曲がっている請求項6記載の電子応用装置を主要な特徴とする。
【0005】
請求項8記載の発明では、前記金属棒がヒートパイプである請求項5ないし7のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項9記載の発明では、前記金属棒にコイルを接続する請求項5ないし8のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項10記載の発明では、前記電界結合素子が金属シート層、電気抵抗層、粘着層から構成されている請求項1ないし4のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項11記載の発明では、前記電界結合素子が複数存在する請求項5ないし10のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項12記載の発明では、前記金属筐体の接合面が前記電界結合素子を設置した位置に通るようにする請求項1ないし11のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項13記載の発明では、前記金属筐体に金属管を設け、その金属管の開口部の幅が低減する周波数の波長の半分以下とする請求項1ないし11のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項14記載の発明では、さらに、電気−光変換素子と光−電気変換素子と光ファイバを設け、前記金属筐体内の電子機器の信号を前記電気−光変換素子により光信号に変換し、前記光ファイバを隙間部分から前記金属筐体外部に出し、前記光−電気変換素子により電気信号に変換する請求項1ないし11のいずれか1項記載の電子応用装置を主要な特徴とする。
請求項15記載の発明では、さらに、電気−赤外線変換素子と赤外線−電気変換素子を設け、前記金属筐体内の電子機器の信号を前記電気−赤外線変換素子により赤外線信号に変換し、赤外線を隙間部分から前記金属筐体外部に出し、前記赤外線−電気変換素子により電気信号に変換する請求項1ないし11のいずれか1項記載の電子応用装置を主要な特徴とする。
【0006】
【発明の実施の形態】
以下、図面により本発明の実施の形態を詳細に説明する。図1は本発明による電子応用装置の第1の実施の形態を示す概略図である。図において金属筐体1内には、金属筐体1に内蔵されたプリント基板2があり、金属筐体1の外壁には複数のスリット3が設けてある。金属筐体1における共振周波数は、金属筐体1のX、Y、Z方向の長さをa、b、cとして電磁波の速さをvとすれば、数1に示す式で表される。
【数1】

Figure 2004327710
m、n、qは、それぞれX、Y、Z方向の磁界パターンの数を示す。
図2はm=3、n=2、q=0での共振周波数における磁界の分布をZ軸から見た図である。図2には、金属筐体1、この金属筐体1内での周回する磁界分布5、周回する磁界の中心位置C1、1〜C3、2が示されている。図2のCm1、n1(m1=1、2〜m、n1=1、2〜n)の位置は数2で表わされる。
【数2】
Figure 2004327710
ここで、金属筐体1においてa=200mm、b=200mm、c=50mmとすれば、一番低い共振周波数はm=1、n=1、q=0としてf=1.061GHzとなる。
図3は図1をZ軸から見た概略図である。図3には周波数は1.061GHzとして、金属筐体1は複数のスリット3を備え、金属筐体1内の磁界分布で1つの周回する磁界分布5が示されている。
【0007】
図4は筐体中央位置を中心とした磁界分布を示す概略図である。数式2でm=1、n=1、q=0、m1=1、n1=1からC1、1=(a/2、−b/2)となり、筐体中央位置5を中心とした磁界分布となりちょうど符号6の位置にZ軸方向の電界が発生する。
そして図4に示すように金属棒4aおよび抵抗体4bからなる抵抗体付きの電界結合素子を置くことによって金属筐体1内に発生する電界エネルギを抵抗体4bが熱エネルギに変えて金属筐体1からの漏洩電磁波が減少する。
図5は電界結合素子の配置を示す概略図である。図6は図5の配置に使用される電界結合素子を示す概略図である。実際の効果を実験により検証する。
本実施の形態である図5の符号6aの位置に金属棒4a、抵抗体4b付きの電界結合素子を設置した形状(ケース1)と、金属棒4a、抵抗体4b付きの電界結合素子を設置しない形状(ケース2)と、周波数1.061GHzでは数式2に対応しない位置である符号6bの位置に金属棒4a、抵抗体4b付きの電界結合素子を設置した形状(ケース3)について、実際に金属筐体を製作し、漏洩電磁波の比較実験を行った。
またこの実験ではプリント基板2の代わりにモノポールアンテ2cを使用したが、プリント基板線路方向と同様にモノポールアンテナを設置したので放射磁界パターンはほとんど変わらない。
【0008】
図7は漏洩磁界の計測を行う装置を示す斜視図である。図7に示されるように、スペクトルアナライザ8のトラッキングジェネレータ出力をモノポールアンテナ2cに接続し、ループアンテナ7で漏洩磁界の計測を行った。金属筐体の寸法はa=200mm、b=200mm、c=50mmとする。
図8はケース1でのループアンテナの出力を示す特性図である。一番低い共振周波数はm=1、n=1、q=0としてf=1.061GHzとなる。モノポールアンテナ2cは60mmとして、電界結合素子4aは33mmとした。
図9はケース2でのループアンテナの出力を示す特性図である。図8はケース2でのループアンテナの出力を示す特性図である。これから分かるようにケース2では−31.08dBmあったループアンテナ7の出力はケース1では−50.17dBmになり、20dBも低下している(磁界強度換算で1/100程度)。
図10はケース3でのループアンテナの出力を示す特性図である。またケース3では−31.75dBmとCASE2と同等なレベルとなっている。これから金属筐体1内で電磁界の共振モードが発生している場合、周回磁界分布の中心に電界結合素子であるモノポールアンテナ2cを設置し、これに負荷端を結合したときの漏洩電磁界の低減効果が確認できた。
【0009】
図11は本発明による電子応用装置の第2の実施の形態を示す概略図である。図において金属筐体1内には、金属筐体1に内蔵された電磁界放射源2があり、この電子応用装置はさらにループアンテナ7、回転ステージ9、直線ステージ10、周波数解析装置11、制御装置12および表示装置13を備えている。
周波数解析装置11であるネットワークアナライザの出力をモノポールアンテナ2で構成されている電磁界放射源に印加して金属筐体1内部を励振する。金属筐体1内部の電磁界共振分布は金属筐体壁面を伝わって金属筐体近傍磁界と内部電磁界共振分布はほぼ同等である。
制御装置12により直線ステージ10が動き、ループアンテナ7を所定の位置に移動する。ループアンテナ7は回転ステージ9に設置されており、回転することでX、Y成分の磁界を分離して検出可能である。ループアンテナ7の出力はネットワークアナライザ11の入力端に接続されており、各測定位置での特定周波数の磁界強度、位相が計測可能である。
制御装置12によりネットワークアナライザ11から各測定位置での特定周波数の磁界強度、位相を取り込み、表示装置13で表示することで金属筐体1の各測定位置での特定周波数の磁界強度、位相情報を可視化することが可能となる。
この情報により共振モードでの周回磁界分布の中心に負荷端付きの電界結合素子を設置することによって共振モードでの漏洩電磁界の低減が可能である。また金属筐体内部に構造体があって、周回磁界分布の中心位置が数式2の位置からずれていても正確に共振モードでの周回磁界分布の中心位置を知ることができる。
図12は本発明による電子応用装置の第3の実施の形態を示す概略図である。図10の装置は金属筐体1、電磁界放射源2、電界結合型素子14、金属筐体1に設けた複数の穴15、周波数解析装置11を有している。
周波数解析装置11であるスペクトルアナライザのトラッキングジェネレータの出力を電磁界放射源2であるモノポールアンテナのコネクタに入力する。モノポールアンテナ2からの放射電磁界により金属筐体1内に共振モードが発生する。金属筐体1には複数の穴15が設けられている。
一般には穴15の直径が電磁界の波長の1/20ならば漏洩電磁波はほぼ問題ないと言われている。それぞれの穴15に電界結合素子14、例えばモノポールアンテナ2を挿入する。それぞれの穴15にモノポールアンテナ2を挿入してスペクトルアナライザ11でモノポールアンテナ2の出力を計測する。
そして出力の最も高い位置が周回磁界分布の中心であるので、その位置に負荷端付きの電界結合素子14を設置することで共振モードでの漏洩電磁界の低減が可能である。また簡便なシステムで実施が可能である。
【0010】
図13は本発明による電子応用装置の第4の実施の形態を示す概略図である。図13には、金属筐体1、電磁界放射源2、電界結合型素子14、電気−光変換素子16、光ファイバ17、光−電気変換素子18が示してある。
周波数解析装置であるスペクトルアナライザ11のトラッキングジェネレータの出力を電磁界放射源2であるモノポールアンテナのコネクタに入力する。モノポールアンテナ2からの放射電磁界により金属筐体1内に共振モードが発生する。金属筐体1内には電界結合素子14であるモノポールアンテナ2があり、この出力は電気−光変換素子16で光信号に変換され、光ファイバ17で光−電気変換素子18に伝達される。
ここで筐体内にケーブルがあるとその境界条件で電磁界の分布が変わるが、光ファイバ17であるためにその影響はない。光−電気変換素子18の出力はスペクトルアナライザ11に繋がる。
そして出力の最も高い位置が周回磁界分布の中心であるので、その位置に負荷端付きの電界結合素子14を設置することで共振モードでの漏洩電磁界の低減が可能である。またケーブルによる金属筐体1内部の電磁界分布の乱れによる影響も排除できる。
図14は本発明による電子応用装置の第5の実施の形態を示す概略図である。図14には金属筐体1が示され、金属筐体1には金属棒4aおよび抵抗体4bからなるダイポールアンテナ4が示されている。
ダイポールアンテナ4が周回する磁界の中心に位置することで効果的に共振モードでの電磁界のエネルギを熱に変換して吸収する。そして金属筐体1からの漏洩電磁界を低減可能である。また金属棒4aが金属筐体1壁面に接合しているため構造が強固である。
【0011】
図15は本発明による電子応用装置の第6の実施の形態を示す概略図である。この装置は金属筐体1、金属棒4aおよび抵抗体4bからなる負荷端付きのモノポールアンテナ4を備えている。負荷端付きの電界結合素子をモノポールアンテナ4とすることで簡便な構造ですみ、利便性が向上する。
図16は本発明による電子応用装置の第7の実施の形態を示す概略図である。この装置は金属筐体1、L字型の金属棒4cおよび抵抗体4b、筐体内構造体19を備えている。
たまたま筐体内構造体19が周回磁界分布の中心にあった場合、L字型の金属棒4cを抵抗体4bに着けて、筐体内構造体19に設置する。これにより筐体内構造体19が周回磁界分布の中心にあっても、抵抗体4bで共振モードでの電磁界のエネルギを熱に変換して吸収する。そして金属筐体1からの漏洩電磁界を低減可能である。
図17は本発明による電子応用装置の第8の実施の形態を示す概略図である。この装置は金属筐体1、電子回路基板20、ヒートシンク21、ヒートパイプ4d、抵抗体4bを有している。
電子回路基板20でヒートシンク21が金属筐体1内の周回磁界分布中心位置になるように設置する。ヒートパイプ4dがヒートシンク21に接合するようにする。そして抵抗体4bを介して金属筐体1上部に接合する。
これによりヒートパイプ4dがモノポールアンテナとして機能する。またヒートパイプ4dがヒートシンク21の熱を伝え抵抗体4bを介して金属筐体1上部に熱を逃す。これにより放熱効果も期待できる。
図18は本発明による電子応用装置の第9の実施の形態を示す概略図である。この装置は金属筐体1、金属棒4a、抵抗体4b、コイル4eを含んでいる。一般にはモノポールアンテナは1/4波長のとき、共振して効果的に電磁界エネルギを吸収する。しかし、金属筐体1の寸法の制限でアンテナ長が十分に取れない場合にコイル4eの誘導成分でアンテナの電気長を長くして共振し、効果的に電磁界エネルギを吸収する。
【0012】
図19は本発明による電子応用装置の第10の実施の形態を示す概略図である。図20は図19の金属シートの折り曲げを示す概略図である。図21は図19の構造体の金属筐体への設置を示す概略図である。
この実施の形態では金属シート22、電気抵抗層23、粘着層24、金属シート22に形成したコの字型の切れ込み22bを備えた構造体Aを有している。図20に示すように、金属シート22をコの字型の切れ込み22bに沿って折り曲げる。
そして図21に示すように粘着層24が金属筐体1の壁面に接するようにして金属筐体1内に構造体Aを設置する。これにより負荷端付きの電界結合素子をより簡便に設置することができる。
図22は本発明による電子応用装置の第11の実施の形態を示す概略図である。この実施の形態では金属シート22、電気抵抗層23、粘着層24、金属シート22に形成した複数のコの字型の切れ込み22cを備えた構造体Aを有している。
第10の実施の形態と同様に金属シート22をコの字型の切れ込みに沿って折り曲げる。剣山のようにコの字型の切れ込み22cが突出した金属シート22を粘着層24が金属筐体1壁面に接するようにして設置する。これにより複数周波数の共振モードに対応できる。
図23は本発明による電子応用装置の第12の実施の形態を示す概略図である。この実施の形態は金属筐体1、開口部3、電磁界放射源2c、金属棒4a、抵抗体4b、金属筐体1内部の周回磁界分布で発生した誘導電流25、筐体接合部分26を有している。
金属棒4a、抵抗体4bで構成される負荷端付きモノポールアンテナは、本実施の形態では周回磁界分布の中心に位置させるために、誘導電流25がモノポールアンテナを中心に放射状に分布する。誘導電流25は内部磁界をシールドするために、その分布を乱さないことが重要である。
金属筐体1を2つの筐体部分から構成した場合に、筐体接合部分26が金属棒4a、抵抗体4bで構成される負荷端付きモノポールアンテナを通るようにすると、誘導電流25の向きと一致して、より効果的なシールド効果が期待できる。
【0013】
図24は本発明による電子応用装置の第13の実施の形態を示す概略図である。図には金属筐体1、内蔵電子機器2、開口部3、金属棒4a、抵抗体4bで構成される負荷端付きモノポールアンテナ4、金属管27、この金属管27の開口部27b、開口部27bの幅27cが示されている。
ここで金属管27の開口部27bの高さより、幅27cの方を大きくする。一般には金属矩形導波管では半波長以下の管幅で電磁波は伝達しない。そこでEMI規制の上限周波数を1GHzとすると、半波長0.165mである。これで幅27cの寸法を0.165mとすると1GHz以下の電磁波は開口部27bから漏洩しないので、ここから電子機器2の信号線を引くことが可能となる。
図25は本発明による電子応用装置の第14の実施の形態を示す概略図である。この装置は電気−光変換素子27で、光ファイバ28および光−電気変換素子29を備えている。2の電子機器からの信号を電気−光変換素子27に送り、光信号に変える。
変換された光信号は光ファイバ28でスリット3の隙間から金属筐体1の外部に出て、光−電気変換素子29で電気信号に変換される。この構成で金属筐体1外部との信号のやり取りができ、また信号伝送用開口部からの全周波数での電磁波漏洩がなくなる。
図26は本発明による電子応用装置の第15の実施の形態を示す概略図である。図には電気−赤外線変換素子29で、放射された赤外線30および赤外線−電気変換素子31が示してある。2の電子機器からの信号を電気−赤外線変換素子29に送り、赤外線信号30に変える。
変換された赤外線信号はスリット3の隙間から金属筐体1の外部に出て、赤外線−電気変換素子31で電気信号に変換される。この構成で金属筐体1外部との信号のやり取りができ、また信号伝送用開口部からの全周波数での電磁波漏洩がなくなる。そして比較的安価に実施可能である。
【0014】
【発明の効果】
以上説明したように、請求項1によれば、電子応用装置において共振周波数での漏洩電磁波を低減することができる。
請求項2によれば、金属筐体内に構造体などがあって内部磁界分布が乱れても共振周波数での漏洩電磁波を低減することができる。
請求項3によれば、金属筐体内に構造体などがあって内部磁界分布が乱れても安価に共振周波数での漏洩電磁波を低減することができる。
請求項4によれば、筐体において電界結合素子の位置を決めるためのセンサケーブルによる影響を排除できる。
請求項5によれば、電磁界エネルギを吸収する電界結合素子をより構造強固にできる。
請求項6によれば、電磁界エネルギを吸収する電界結合素子をより簡便な構造にできる。
請求項7によれば、金属筐体内で本来電界結合素子を置く位置に構造体があっても効果的に共振周波数での漏洩電磁波を低減することができる。
請求項8によれば、より効果的に放熱することができる。
請求項9によれば、電界結合素子の電磁界エネルギを吸収効果が上がる。
請求項10によれば、電界結合素子をより簡便に設置できる。
請求項11によれば、複数の共振周波数での漏洩電磁波を低減できる。
請求項12によれば、筐体接合面からの漏洩電磁波を低減できる。
請求項13によれば、電磁妨害波低減用電子応用装置において信号線を通す金属管からは低減する周波数より低い周波数の電磁波は漏洩できない。
請求項14によれば、電磁妨害波低減用電子応用装置において金属筐体外部との信号やりとりが行え、また信号伝送用開口部からの完全に電磁波漏洩がなくなる。
請求項15によれば、電磁妨害波低減用電子応用装置において金属筐体外部との信号やりとりが行え、また信号伝送用開口部からの全周波数での電磁波漏洩がなくなり、さらに安価にシステムを構築できる。
【図面の簡単な説明】
【図1】本発明による電子応用装置の第1の実施の形態を示す概略図である。
【図2】m=3、n=2、q=0での共振周波数における磁界の分布をZ軸から見た図である。
【図3】図1をZ軸から見た概略図である。
【図4】金属筐体中央位置を中心とした磁界分布を示す概略図である。
【図5】電界結合素子の配置を示す概略図である。
【図6】図5の配置に使用される電界結合素子を示す概略図である。
【図7】漏洩磁界の計測を行う装置を示す斜視図である。
【図8】ケース1でのループアンテナの出力を示す特性図である。
【図9】ケース2でのループアンテナの出力を示す特性図である。
【図10】ケース3でのループアンテナの出力を示す特性図である。
【図11】本発明による電子応用装置の第2の実施の形態を示す概略図である。
【図12】本発明による電子応用装置の第3の実施の形態を示す概略図である。
【図13】本発明による電子応用装置の第4の実施の形態を示す概略図である。
【図14】本発明による電子応用装置の第5の実施の形態を示す概略図である。
【図15】本発明による電子応用装置の第6の実施の形態を示す概略図である。
【図16】本発明による電子応用装置の第7の実施の形態を示す概略図である。
【図17】本発明による電子応用装置の第8の実施の形態を示す概略図である。
【図18】本発明による電子応用装置の第9の実施の形態を示す概略図である。
【図19】本発明による電子応用装置の第10の実施の形態を示す概略図である。
【図20】図19の金属シートの折り曲げを示す概略図である。
【図21】図19の構造体の金属筐体への設置を示す概略図である。
【図22】本発明による電子応用装置の第11の実施の形態を示す概略図である。
【図23】本発明による電子応用装置の第12の実施の形態を示す概略図である。
【図24】本発明による電子応用装置の第13の実施の形態を示す概略図である。
【図25】本発明による電子応用装置の第14の実施の形態を示す概略図である。
【図26】本発明による電子応用装置の第15の実施の形態を示す概略図である。
【符号の説明】
1 金属筐体、2 プリント基板(電磁界放射源)、2c モノポールアンテナ(電磁界放射源)、3 スリット(金属筐体の)、4 電解結合素子、4a 金属棒、4b 抵抗体、4d ヒートパイプ(モノポールアンテナ)、5 磁界分布、7 ループアンテナ、8 スペクトルアナライザ、10 直線ステージ(磁界プローブ位置移動装置)、11 周波数解析装置(ネットワークアナライザ)、12 制御装置、13 表示装置、14 電解結合素子、15 穴、16 電気−光変換素子、17 光ファイバ、18 光−電気変換素子、20 電子回路基板、21 ヒートシンク、22 金属シート、22b 切れ込み、23 電気抵抗層、24 粘着層、26 金属管、26b 開口部(金属管の)、26c幅(開口部の)、27 電気−光変換素子、28 光ファイバ、29 光−電気変換素子、30 赤外線、31 赤外線−電気変換素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic application device provided with an electromagnetic wave noise countermeasure in order to reduce electromagnetic interference generated in an electronic device.
[0002]
[Prior art]
2. Description of the Related Art In a copying machine, an electronic device portion including electronic components such as an image reading section, an image writing section, and a primary signal processing section for correcting an image signal is housed in a grounded conductive casing to provide an electromagnetic wave shield. Conventionally, a configuration for reducing electromagnetic wave noise leaking to the outside of the housing has been known (for example, see Patent Document 1), and the volume of the housing is changed by focusing on the resonance of the electromagnetic field in the housing. It is also known that the electromagnetic wave level is changed by using an electromagnetic wave (for example, see Patent Document 2).
At present, there are various types of devices on which electronic devices are mounted. However, as electronic devices have become more sophisticated and clocked in recent years, problems due to electromagnetic waves generated from the electronic devices have become a problem. Particularly, in an image reading unit such as a copying machine, the number of clocks is increased in order to improve image quality, and the influence of leaked electromagnetic wave noise on each unit is becoming more problematic.
[Patent Document 1] JP-A-5-199340
[Patent Document 2] JP-A-2001-185886
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional copying machine, a gap is absolutely necessary in the housing for heat radiation from the electronic device housed in the conductive housing. For this reason, there is a problem that the electromagnetic wave noise leaks from the gap and the heat radiation effect and the shielding of the electromagnetic wave noise cannot be achieved at the same time.
In particular, in the above-mentioned conventional copying machine, the housing constituting the scanner of the image reading unit is provided with a high-frequency operation clock reading device and a signal processing unit. Electromagnetic noise leaks from the gaps for use.
In view of the above, an object of the present invention is to solve the above-described problems, paying attention to an electromagnetic field distribution of a resonance frequency determined by dimensions of a metal housing on which an electronic device is mounted, and a distribution of a current flowing through the surface of the metal housing. It is an object of the present invention to provide an electronic device in which the reduction of electromagnetic radiation at the resonance frequency of the metal housing and the heat radiation effect are both achieved without complicating the structure.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the invention according to claim 1, in order to reduce electromagnetic interference generated in an electronic device, an inside of a metal housing having an electric field coupling element with a resistor and a gap portion communicating with the outside is provided. In the electronic application device installed in the electronic application device provided with the resistor at a position calculated by a predetermined mathematical formula, wherein the resistor is between the metal housing and the electric field coupling device The most important feature.
According to the second aspect of the present invention, a magnetic field probe, a magnetic field probe position moving device, a frequency analysis device, a control device, and a display device measure a magnetic field near the housing. The electronic application device according to claim 1 is characterized by providing an electric field coupling element with the resistor at this position.
According to the third aspect of the present invention, the metal casing has a plurality of minute holes, and an electric field coupling element to which a frequency analyzer is connected is inserted into the holes, and an electric field with a resistor is provided at a position where the output is large. An electronic application device according to any one of claims 1 and 2, wherein a coupling element is provided.
According to the fourth aspect of the present invention, the positions of an electric-optical conversion element, an optical fiber, an optical-electric conversion element, and an electric field coupling element with a frequency analyzer are moved inside the metal housing, and the resistor is moved to a position where the output is large. The main feature of the present invention is an electronic application device according to claim 1, wherein an electric field coupling element provided with the tag is provided.
In the invention according to claim 5, the electric field coupling element is constituted by two metal rods and one resistor, there is a resistor between the two metal rods, and an end of the metal rod is the metal housing. An electronic application device according to any one of claims 1 to 4, wherein the electronic application device is a main feature.
In the invention according to claim 6, the electric field coupling element is constituted by one metal bar and one resistor, and there is a resistor between the metal bar and the metal housing. The electronic application device according to any one of the above is a main feature.
According to a seventh aspect of the invention, the main feature of the electronic application device according to the sixth aspect is that the metal bar is bent in an L shape.
[0005]
According to an eighth aspect of the invention, the main feature of the electronic application device according to any one of the fifth to seventh aspects is that the metal rod is a heat pipe.
According to a ninth aspect of the present invention, a main feature of the electronic application device according to any one of the fifth to eighth aspects is that a coil is connected to the metal rod.
According to a tenth aspect of the present invention, the electronic application device according to any one of the first to fourth aspects is characterized in that the electric field coupling element includes a metal sheet layer, an electric resistance layer, and an adhesive layer.
An eleventh aspect of the present invention is characterized mainly by the electronic application device according to any one of the fifth to tenth aspects, wherein a plurality of the electric field coupling elements exist.
According to a twelfth aspect of the present invention, a main feature of the electronic application device according to any one of the first to eleventh aspects is that the joining surface of the metal housing passes through a position where the electric field coupling element is installed. .
According to a thirteenth aspect of the present invention, there is provided the electronic device according to any one of the first to eleventh aspects, wherein a metal tube is provided in the metal housing, and the width of the opening of the metal tube is set to be equal to or less than half the wavelength of the frequency at which the width is reduced. The main features are applied devices.
In the invention according to claim 14, further, an electro-optical conversion element, an optical-electric conversion element, and an optical fiber are provided, and a signal of an electronic device in the metal housing is converted into an optical signal by the electro-optical conversion element, The main feature of the electronic application device according to any one of claims 1 to 11, wherein the optical fiber is led out of the metal housing through a gap portion and converted into an electric signal by the optical-electrical conversion element.
In the invention according to claim 15, an electric-to-infrared conversion element and an infrared-to-electricity conversion element are further provided, and a signal of an electronic device in the metal casing is converted into an infrared signal by the electric-to-infrared conversion element, and infrared rays are separated by a gap. The electronic application device according to any one of claims 1 to 11, wherein the electronic application device is extracted from the portion to the outside of the metal housing and converted into an electric signal by the infrared-electric conversion element.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a first embodiment of an electronic application device according to the present invention. In the figure, a printed circuit board 2 built in a metal housing 1 is provided in a metal housing 1, and a plurality of slits 3 are provided on an outer wall of the metal housing 1. The resonance frequency in the metal housing 1 is expressed by the following equation (1), where the lengths of the metal housing 1 in the X, Y, and Z directions are a, b, and c, and the speed of the electromagnetic wave is v.
(Equation 1)
Figure 2004327710
m, n, and q indicate the number of magnetic field patterns in the X, Y, and Z directions, respectively.
FIG. 2 is a diagram showing the distribution of the magnetic field at the resonance frequency when m = 3, n = 2, and q = 0, as viewed from the Z axis. FIG. 2 shows the metal housing 1, the orbiting magnetic field distribution 5 in the metal housing 1, and the center positions C1, 1 to C3 and 2 of the orbiting magnetic field. The positions of Cm1, n1 (m1 = 1, 2 to m, n1 = 1, 2 to n) in FIG.
(Equation 2)
Figure 2004327710
Here, if a = 200 mm, b = 200 mm, and c = 50 mm in the metal housing 1, the lowest resonance frequency is f = 1.061 GHz, where m = 1, n = 1, and q = 0.
FIG. 3 is a schematic view of FIG. 1 viewed from the Z axis. FIG. 3 shows a metal case 1 provided with a plurality of slits 3 at a frequency of 1.061 GHz and one orbiting magnetic field distribution 5 in the metal case 1.
[0007]
FIG. 4 is a schematic diagram showing a magnetic field distribution centering on the center position of the housing. In Expression 2, m = 1, n = 1, q = 0, m1 = 1, and n1 = 1 are changed to C1, 1 = (a / 2, −b / 2), and the magnetic field distribution is centered on the housing center position 5. An electric field in the Z-axis direction is generated exactly at the position of reference numeral 6.
Then, as shown in FIG. 4, by placing an electric field coupling element with a resistor composed of a metal rod 4a and a resistor 4b, the electric field energy generated in the metal casing 1 is converted into heat energy by the resistor 4b, and 1 reduces the leakage electromagnetic waves.
FIG. 5 is a schematic diagram showing the arrangement of the electric field coupling elements. FIG. 6 is a schematic diagram showing an electric field coupling element used in the arrangement of FIG. The actual effect is verified by experiments.
In the present embodiment, a shape (case 1) in which an electric field coupling element with a metal rod 4a and a resistor 4b is installed at a position 6a in FIG. 5 and an electric field coupling element with a metal rod 4a and a resistor 4b are installed. Actually, the shape (case 2) in which the metal rod 4a and the electric field coupling element with the resistor 4b are installed at the position indicated by reference numeral 6b, which is a position that does not correspond to Expression 2 at a frequency of 1.061 GHz, at the frequency of 1.061 GHz. A metal housing was manufactured and a comparative experiment of leaked electromagnetic waves was performed.
In this experiment, a monopole antenna 2c was used instead of the printed circuit board 2. However, since a monopole antenna was installed in the same manner as in the printed circuit board line direction, the radiation magnetic field pattern hardly changed.
[0008]
FIG. 7 is a perspective view showing an apparatus for measuring a leakage magnetic field. As shown in FIG. 7, the tracking generator output of the spectrum analyzer 8 was connected to the monopole antenna 2c, and the leakage magnetic field was measured by the loop antenna 7. The dimensions of the metal housing are a = 200 mm, b = 200 mm, and c = 50 mm.
FIG. 8 is a characteristic diagram showing the output of the loop antenna in case 1. The lowest resonance frequency is f = 1.061 GHz with m = 1, n = 1 and q = 0. The monopole antenna 2c was 60 mm, and the electric field coupling element 4a was 33 mm.
FIG. 9 is a characteristic diagram showing the output of the loop antenna in case 2. FIG. 8 is a characteristic diagram showing the output of the loop antenna in case 2. As can be seen from this, the output of the loop antenna 7 which was −31.08 dBm in case 2 is −50.17 dBm in case 1 and is reduced by 20 dB (about 1/100 in terms of magnetic field strength).
FIG. 10 is a characteristic diagram showing the output of the loop antenna in case 3. In Case 3, the level is -31.75 dBm, which is equivalent to CASE2. From now on, when a resonance mode of an electromagnetic field is generated in the metal housing 1, a monopole antenna 2c which is an electric field coupling element is installed at the center of the circulating magnetic field distribution, and a leakage electromagnetic field when the load end is coupled to the monopole antenna 2c. The effect of reduction was confirmed.
[0009]
FIG. 11 is a schematic diagram showing a second embodiment of the electronic applied device according to the present invention. In the figure, a metal housing 1 has an electromagnetic field radiation source 2 built in the metal housing 1. This electronic application device further includes a loop antenna 7, a rotary stage 9, a linear stage 10, a frequency analysis device 11, A device 12 and a display device 13 are provided.
The output of the network analyzer as the frequency analyzer 11 is applied to an electromagnetic field radiation source constituted by the monopole antenna 2 to excite the inside of the metal housing 1. The electromagnetic field resonance distribution inside the metal housing 1 is transmitted along the metal housing wall surface, and the magnetic field near the metal housing and the internal electromagnetic field resonance distribution are almost equal.
The linear stage 10 is moved by the control device 12 to move the loop antenna 7 to a predetermined position. The loop antenna 7 is installed on the rotating stage 9 and can separate and detect X and Y component magnetic fields by rotating. The output of the loop antenna 7 is connected to the input terminal of the network analyzer 11, and can measure the magnetic field strength and phase of a specific frequency at each measurement position.
The control device 12 captures the magnetic field strength and phase of a specific frequency at each measurement position from the network analyzer 11 and displays the information on the display device 13 so that the magnetic field strength and phase information of the specific frequency at each measurement position of the metal housing 1 can be obtained. It can be visualized.
With this information, it is possible to reduce the leakage electromagnetic field in the resonance mode by installing an electric field coupling element with a load end at the center of the orbiting magnetic field distribution in the resonance mode. Further, even if there is a structure inside the metal housing and the center position of the circulating magnetic field distribution deviates from the position of Expression 2, the center position of the circulating magnetic field distribution in the resonance mode can be accurately known.
FIG. 12 is a schematic view showing a third embodiment of the electronic applied device according to the present invention. The apparatus shown in FIG. 10 includes a metal housing 1, an electromagnetic field radiation source 2, an electric field coupling element 14, a plurality of holes 15 provided in the metal housing 1, and a frequency analysis device 11.
The output of the tracking generator of the spectrum analyzer that is the frequency analysis device 11 is input to the connector of the monopole antenna that is the electromagnetic field radiation source 2. A resonance mode is generated in the metal housing 1 by the electromagnetic field radiated from the monopole antenna 2. The metal housing 1 is provided with a plurality of holes 15.
Generally, if the diameter of the hole 15 is 1/20 of the wavelength of the electromagnetic field, it is said that the leakage electromagnetic wave has almost no problem. The electric field coupling element 14, for example, the monopole antenna 2 is inserted into each hole 15. The monopole antenna 2 is inserted into each hole 15 and the output of the monopole antenna 2 is measured by the spectrum analyzer 11.
Since the position where the output is highest is the center of the orbiting magnetic field distribution, the leakage electromagnetic field in the resonance mode can be reduced by installing the electric field coupling element 14 with the load end at that position. Further, it can be implemented with a simple system.
[0010]
FIG. 13 is a schematic view showing a fourth embodiment of the electronic applied device according to the present invention. FIG. 13 shows the metal casing 1, the electromagnetic field radiation source 2, the electric field coupling element 14, the electro-optical conversion element 16, the optical fiber 17, and the optical-electric conversion element 18.
The output of the tracking generator of the spectrum analyzer 11 which is a frequency analyzer is input to the connector of the monopole antenna which is the electromagnetic field radiation source 2. A resonance mode is generated in the metal housing 1 by the electromagnetic field radiated from the monopole antenna 2. A monopole antenna 2 which is an electric field coupling element 14 is provided in the metal housing 1, and its output is converted into an optical signal by an electro-optical conversion element 16 and transmitted to an optical-electric conversion element 18 by an optical fiber 17. .
Here, if there is a cable in the housing, the distribution of the electromagnetic field changes depending on the boundary conditions, but the effect is not affected by the optical fiber 17. The output of the photoelectric conversion device 18 is connected to the spectrum analyzer 11.
Since the position where the output is highest is the center of the orbiting magnetic field distribution, the leakage electromagnetic field in the resonance mode can be reduced by installing the electric field coupling element 14 with the load end at that position. Further, the influence of disturbance of the electromagnetic field distribution inside the metal housing 1 due to the cable can be eliminated.
FIG. 14 is a schematic view showing a fifth embodiment of the electronic applied device according to the present invention. FIG. 14 shows a metal housing 1, and the metal housing 1 shows a dipole antenna 4 including a metal rod 4a and a resistor 4b.
Since the dipole antenna 4 is positioned at the center of the circulating magnetic field, the energy of the electromagnetic field in the resonance mode is effectively converted into heat and absorbed. Then, the leakage electromagnetic field from the metal housing 1 can be reduced. In addition, since the metal rod 4a is joined to the wall of the metal housing 1, the structure is strong.
[0011]
FIG. 15 is a schematic view showing a sixth embodiment of the electronic applied device according to the present invention. This device includes a monopole antenna 4 having a load end and including a metal housing 1, a metal rod 4a, and a resistor 4b. By using the monopole antenna 4 as the electric field coupling element with the load end, a simple structure is required and the convenience is improved.
FIG. 16 is a schematic view showing a seventh embodiment of the electronic applied device according to the present invention. This device includes a metal housing 1, an L-shaped metal bar 4 c and a resistor 4 b, and an internal structure 19.
If the in-housing structure 19 happens to be at the center of the orbiting magnetic field distribution, the L-shaped metal rod 4c is attached to the resistor 4b and installed on the in-housing structure 19. Thus, even if the in-housing structure 19 is at the center of the orbiting magnetic field distribution, the energy of the electromagnetic field in the resonance mode is converted into heat and absorbed by the resistor 4b. Then, the leakage electromagnetic field from the metal housing 1 can be reduced.
FIG. 17 is a schematic view showing an eighth embodiment of the electronic applied device according to the present invention. This device has a metal housing 1, an electronic circuit board 20, a heat sink 21, a heat pipe 4d, and a resistor 4b.
The electronic circuit board 20 is installed such that the heat sink 21 is located at the center position of the orbiting magnetic field distribution in the metal housing 1. The heat pipe 4d is joined to the heat sink 21. Then, it is joined to the upper part of the metal housing 1 via the resistor 4b.
Thereby, the heat pipe 4d functions as a monopole antenna. Further, the heat pipe 4d transmits the heat of the heat sink 21 and releases the heat to the upper portion of the metal housing 1 via the resistor 4b. Thereby, a heat radiation effect can also be expected.
FIG. 18 is a schematic view showing a ninth embodiment of the electronic applied device according to the present invention. This device includes a metal housing 1, a metal rod 4a, a resistor 4b, and a coil 4e. In general, a monopole antenna resonates at a quarter wavelength and effectively absorbs electromagnetic field energy. However, when the antenna length cannot be sufficiently obtained due to the limitation of the size of the metal housing 1, the antenna 4 is extended by the induction length of the coil 4e to resonate and effectively absorb electromagnetic field energy.
[0012]
FIG. 19 is a schematic view showing a tenth embodiment of the electronic applied device according to the present invention. FIG. 20 is a schematic view showing bending of the metal sheet of FIG. FIG. 21 is a schematic view showing installation of the structure of FIG. 19 on a metal housing.
In this embodiment, a structure A having a metal sheet 22, an electric resistance layer 23, an adhesive layer 24, and a U-shaped notch 22b formed in the metal sheet 22 is provided. As shown in FIG. 20, the metal sheet 22 is bent along the U-shaped cut 22b.
Then, the structure A is installed in the metal housing 1 so that the adhesive layer 24 is in contact with the wall surface of the metal housing 1 as shown in FIG. This makes it possible to more easily install the electric field coupling element with the load end.
FIG. 22 is a schematic view showing an eleventh embodiment of the electronic applied device according to the present invention. In this embodiment, a structure A having a metal sheet 22, an electric resistance layer 23, an adhesive layer 24, and a plurality of U-shaped cuts 22c formed in the metal sheet 22 is provided.
Similarly to the tenth embodiment, the metal sheet 22 is bent along the U-shaped cut. A metal sheet 22 having a U-shaped notch 22c protruding like a sword mountain is placed so that the adhesive layer 24 is in contact with the wall of the metal housing 1. This makes it possible to cope with resonance modes of a plurality of frequencies.
FIG. 23 is a schematic view showing a twelfth embodiment of the electronic applied device according to the present invention. In this embodiment, a metal housing 1, an opening 3, an electromagnetic field radiation source 2c, a metal rod 4a, a resistor 4b, an induced current 25 generated by a circulating magnetic field distribution inside the metal housing 1, and a housing joint portion 26 are formed. Have.
In the present embodiment, since the monopole antenna with the load end composed of the metal rod 4a and the resistor 4b is located at the center of the circulating magnetic field distribution, the induced current 25 is distributed radially around the monopole antenna. It is important that the induced current 25 does not disturb its distribution in order to shield the internal magnetic field.
When the metal housing 1 is composed of two housing parts, if the housing joint part 26 passes through a monopole antenna with a load end composed of the metal rod 4a and the resistor 4b, the direction of the induced current 25 According to the above, a more effective shielding effect can be expected.
[0013]
FIG. 24 is a schematic view showing a thirteenth embodiment of the electronic applied device according to the present invention. The figure shows a metal housing 1, a built-in electronic device 2, an opening 3, a monopole antenna 4 with a load end composed of a metal rod 4a and a resistor 4b, a metal tube 27, an opening 27b of the metal tube 27, and an opening. The width 27c of the portion 27b is shown.
Here, the width 27c is made larger than the height of the opening 27b of the metal tube 27. In general, an electromagnetic wave is not transmitted in a metal rectangular waveguide with a width of less than half a wavelength. Therefore, assuming that the upper limit frequency of the EMI regulation is 1 GHz, the half wavelength is 0.165 m. If the width 27c is set to 0.165 m, the electromagnetic wave of 1 GHz or less does not leak from the opening 27b, so that the signal line of the electronic device 2 can be drawn therefrom.
FIG. 25 is a schematic view showing a fourteenth embodiment of the electronic applied device according to the present invention. This device is an electro-optical conversion device 27 and includes an optical fiber 28 and an optical-electric conversion device 29. The signal from the second electronic device is sent to the electro-optical conversion element 27 and converted into an optical signal.
The converted optical signal exits the metal housing 1 through the gap between the slits 3 via the optical fiber 28, and is converted into an electric signal by the optical-electrical conversion element 29. With this configuration, signals can be exchanged with the outside of the metal housing 1 and electromagnetic wave leakage at all frequencies from the signal transmission opening is eliminated.
FIG. 26 is a schematic view showing a fifteenth embodiment of the electronic applied device according to the present invention. In the figure, an infrared-ray 30 and an infrared-electric conversion element 31 radiated by the electric-infrared conversion element 29 are shown. The signal from the second electronic device is sent to the electric-infrared conversion element 29 and converted into an infrared signal 30.
The converted infrared signal goes out of the metal casing 1 through the gap of the slit 3 and is converted into an electric signal by the infrared-electric conversion element 31. With this configuration, signals can be exchanged with the outside of the metal housing 1 and electromagnetic wave leakage at all frequencies from the signal transmission opening is eliminated. And it can be implemented relatively inexpensively.
[0014]
【The invention's effect】
As described above, according to the first aspect, it is possible to reduce the leakage electromagnetic wave at the resonance frequency in the electronic application device.
According to the second aspect, even if the internal magnetic field distribution is disturbed due to a structure or the like in the metal housing, it is possible to reduce the leakage electromagnetic wave at the resonance frequency.
According to the third aspect, even if there is a structure or the like in the metal housing and the internal magnetic field distribution is disturbed, the leakage electromagnetic wave at the resonance frequency can be reduced at low cost.
According to the fourth aspect, the influence of the sensor cable for determining the position of the electric field coupling element in the housing can be eliminated.
According to the fifth aspect, the structure of the electric field coupling element that absorbs electromagnetic field energy can be further strengthened.
According to the sixth aspect, the electric field coupling element that absorbs electromagnetic field energy can have a simpler structure.
According to claim 7, it is possible to effectively reduce the leakage electromagnetic wave at the resonance frequency even if the structure is located at the position where the electric field coupling element is originally placed in the metal housing.
According to claim 8, heat can be dissipated more effectively.
According to the ninth aspect, the effect of absorbing the electromagnetic field energy of the electric field coupling element is enhanced.
According to the tenth aspect, the electric field coupling element can be more easily installed.
According to the eleventh aspect, leakage electromagnetic waves at a plurality of resonance frequencies can be reduced.
According to the twelfth aspect, it is possible to reduce the leakage electromagnetic wave from the joint surface of the housing.
According to the thirteenth aspect, an electromagnetic wave having a frequency lower than the frequency to be reduced cannot be leaked from the metal tube through which the signal line passes in the electronic apparatus for reducing electromagnetic interference waves.
According to the fourteenth aspect, in the electronic apparatus for reducing electromagnetic interference waves, signals can be exchanged with the outside of the metal housing, and leakage of the electromagnetic waves from the signal transmission opening is completely eliminated.
According to the fifteenth aspect, in the electronic apparatus for reducing electromagnetic interference waves, signals can be exchanged with the outside of the metal housing, and electromagnetic wave leakage at all frequencies from the signal transmission opening is eliminated, so that a system can be constructed more inexpensively. it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first embodiment of an electronic application device according to the present invention.
FIG. 2 is a diagram showing a distribution of a magnetic field at a resonance frequency when m = 3, n = 2, and q = 0, as viewed from the Z axis.
FIG. 3 is a schematic view of FIG. 1 as viewed from the Z axis.
FIG. 4 is a schematic diagram showing a magnetic field distribution centered on a metal housing center position.
FIG. 5 is a schematic diagram showing an arrangement of an electric field coupling element.
FIG. 6 is a schematic diagram showing an electric field coupling element used in the arrangement of FIG.
FIG. 7 is a perspective view showing an apparatus for measuring a leakage magnetic field.
FIG. 8 is a characteristic diagram showing the output of the loop antenna in case 1.
FIG. 9 is a characteristic diagram showing the output of the loop antenna in case 2.
FIG. 10 is a characteristic diagram showing an output of a loop antenna in case 3;
FIG. 11 is a schematic view showing a second embodiment of the electronic applied device according to the present invention.
FIG. 12 is a schematic view showing a third embodiment of the electronic applied device according to the present invention.
FIG. 13 is a schematic view showing a fourth embodiment of the electronic applied device according to the present invention.
FIG. 14 is a schematic view showing a fifth embodiment of the electronic applied device according to the present invention.
FIG. 15 is a schematic view showing a sixth embodiment of the electronic applied device according to the present invention.
FIG. 16 is a schematic view showing a seventh embodiment of the electronic applied device according to the present invention.
FIG. 17 is a schematic view showing an eighth embodiment of the electronic applied device according to the present invention.
FIG. 18 is a schematic view showing a ninth embodiment of the electronic applied device according to the present invention.
FIG. 19 is a schematic view showing a tenth embodiment of the electronic applied device according to the present invention.
FIG. 20 is a schematic view showing bending of the metal sheet of FIG. 19;
FIG. 21 is a schematic diagram showing installation of the structure of FIG. 19 on a metal housing.
FIG. 22 is a schematic view showing an eleventh embodiment of the electronic applied device according to the present invention.
FIG. 23 is a schematic view showing a twelfth embodiment of the electronic applied device according to the present invention.
FIG. 24 is a schematic view showing a thirteenth embodiment of the electronic applied device according to the present invention.
FIG. 25 is a schematic view showing a fourteenth embodiment of the electronic applied device according to the present invention.
FIG. 26 is a schematic view showing a fifteenth embodiment of the electronic applied device according to the present invention.
[Explanation of symbols]
Reference Signs List 1 metal housing, 2 printed circuit board (electromagnetic field radiation source), 2c monopole antenna (electromagnetic field radiation source), 3 slit (of metal housing), 4 electrolytic coupling element, 4a metal rod, 4b resistor, 4d heat Pipe (monopole antenna), 5 magnetic field distribution, 7 loop antenna, 8 spectrum analyzer, 10 linear stage (magnetic field probe position moving device), 11 frequency analysis device (network analyzer), 12 control device, 13 display device, 14 electrolytic coupling Element, 15 holes, 16 electro-optical conversion element, 17 optical fiber, 18 optical-electric conversion element, 20 electronic circuit board, 21 heat sink, 22 metal sheet, 22b cut, 23 electric resistance layer, 24 adhesive layer, 26 metal tube 26b opening (of metal tube), 26c width (of opening), 27 electro-optical conversion element, 28 optical fiber, 2 Light - electricity conversion element, 30 infrared, 31 IR - electrical transducer element

Claims (15)

電子機器にて生じる電磁妨害波を低減させるために、抵抗体付きの電界結合素子と外部に通じる隙間部分を有する金属筐体内部に設置される電子応用装置において、所定の数式によって算出された金属筐体内部の適所に前記抵抗体付きの電界結合素子を設け、前記抵抗体が前記金属筐体と前記電界結合素子の間にあることを特徴とする電子応用装置。In order to reduce the electromagnetic interference generated in the electronic equipment, in an electronic application device installed inside a metal housing having an electric field coupling element with a resistor and a gap portion communicating with the outside, the metal calculated by a predetermined mathematical formula An electronic application device, wherein an electric field coupling element with a resistor is provided at an appropriate position inside a housing, and the resistor is between the metal housing and the electric field coupling element. さらに、磁界プローブ、磁界プローブ位置移動装置、周波数解析装置、制御装置、表示装置により筐体の近傍磁界を計測し、この計測結果から前記金属筐体内周回磁界分布の中心位置を推定し、この位置に前記抵抗体付きの電界結合型素子を設けることを特徴とする請求項1記載の電子応用装置。Further, a magnetic field probe, a magnetic field probe position moving device, a frequency analyzing device, a control device, and a display device are used to measure a magnetic field near the housing, and from this measurement result, a center position of the magnetic field inside the metal housing is estimated. 2. The electronic application device according to claim 1, further comprising an electric field coupling element provided with the resistor. 前記金属筐体が複数の微小な穴を備えており、この穴に周波数解析装置が接続された電界結合素子を挿入し、出力の大きい位置に抵抗体付きの電界結合素子を設けることを特徴とする請求項1または2のいずれか1項記載の電子応用装置。The metal housing is provided with a plurality of minute holes, an electric field coupling element to which a frequency analysis device is connected is inserted into the hole, and an electric field coupling element with a resistor is provided at a position where the output is large. The electronic application device according to claim 1. 前記金属筐体内部で電気−光変換素子、光ファイバ、光−電気変換素子、周波数解析装置付きの電界結合素子の位置を動かし、出力の大きい位置に前記抵抗体付きの電界結合素子を設けることを特徴とする請求項1記載の電子応用装置。Moving the position of an electric-optical conversion element, an optical fiber, an optical-electric conversion element, and an electric field coupling element with a frequency analyzer inside the metal housing, and providing the electric field coupling element with the resistor at a position where the output is large. The electronic application device according to claim 1, wherein: 前記電界結合素子が2つの金属棒と1つの抵抗体で構成されており、2つの金属棒の間に抵抗体があり、前記金属棒の端は前記金属筐体に接合していることを特徴とする請求項1ないし4のいずれか1項記載の電子応用装置。The electric field coupling element is composed of two metal bars and one resistor, there is a resistor between the two metal bars, and an end of the metal bar is joined to the metal housing. The electronic application device according to any one of claims 1 to 4, wherein 前記電界結合素子が1つの金属棒と1つの抵抗体で構成されており、前記金属棒と前記金属筐体との間に抵抗体があることを特徴とする請求項1ないし4のいずれか1項記載の電子応用装置。5. The electric field coupling device according to claim 1, wherein the electric field coupling element includes one metal bar and one resistor, and a resistor is provided between the metal bar and the metal housing. An electronic application device according to the item. 前記金属棒がL字型に曲がっていることを特徴とする請求項6記載の電子応用装置。The electronic application device according to claim 6, wherein the metal bar is bent in an L shape. 前記金属棒がヒートパイプであることを特徴とする請求項5ないし7のいずれか1項記載の電子応用装置。8. The electronic application device according to claim 5, wherein the metal rod is a heat pipe. 前記金属棒にコイルを接続することを特徴とする請求項5ないし8のいずれか1項記載の電子応用装置。The electronic application device according to any one of claims 5 to 8, wherein a coil is connected to the metal rod. 前記電界結合素子が金属シート層、電気抵抗層、粘着層から構成されていることを特徴とする請求項1ないし4のいずれか1項記載の電子応用装置。The electronic application device according to any one of claims 1 to 4, wherein the electric field coupling element includes a metal sheet layer, an electric resistance layer, and an adhesive layer. 前記電界結合素子が複数存在することを特徴とする請求項5ないし10のいずれか1項記載の電子応用装置。11. The electronic application device according to claim 5, wherein a plurality of said electric field coupling elements exist. 前記金属筐体の接合面が前記電界結合素子を設置した位置を通るように構成したことを特徴とする請求項1ないし11のいずれか1項記載の電子応用装置。12. The electronic application device according to claim 1, wherein a joining surface of the metal casing is configured to pass through a position where the electric field coupling element is installed. 前記金属筐体に金属管を設け、その金属管の開口部の幅を低減する周波数の波長の半分以下とすることを特徴とする請求項1ないし11のいずれか1項記載の電子応用装置。The electronic application device according to claim 1, wherein a metal tube is provided in the metal housing, and the width of the opening of the metal tube is set to be equal to or less than half a wavelength of a frequency that reduces the width of the opening. さらに、電気−光変換素子と光−電気変換素子と光ファイバを設け、前記金属筐体内の電子機器の信号を前記電気−光変換素子により光信号に変換し、前記光ファイバを隙間部分から前記金属筐体外部に出し、前記光−電気変換素子により電気信号に変換することを特徴とする請求項1ないし11のいずれか1項記載の電子応用装置。Further, an electro-optical conversion element, an optical-electric conversion element, and an optical fiber are provided, a signal of an electronic device in the metal casing is converted into an optical signal by the electro-optical conversion element, and the optical fiber is removed from the gap through the gap. The electronic application device according to any one of claims 1 to 11, wherein the electronic device is taken out of a metal housing and converted into an electric signal by the optical-electrical conversion element. さらに、電気−赤外線変換素子と赤外線−電気変換素子を設け、前記金属筐体内の電子機器の信号を前記電気−赤外線変換素子により赤外線信号に変換し、赤外線を隙間部分から前記金属筐体外部に出し、前記赤外線−電気変換素子により電気信号に変換することを特徴とする請求項1ないし11のいずれか1項記載の電子応用装置。Further, an electric-infrared conversion element and an infrared-electric conversion element are provided, a signal of an electronic device in the metal housing is converted into an infrared signal by the electric-infrared conversion element, and infrared light is transmitted from the gap to the outside of the metal housing. The electronic application apparatus according to claim 1, wherein the electronic apparatus converts the signal into an electric signal using the infrared-electric conversion element.
JP2003120224A 2003-04-24 2003-04-24 Installation method of electric field coupling element Expired - Fee Related JP4262507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120224A JP4262507B2 (en) 2003-04-24 2003-04-24 Installation method of electric field coupling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120224A JP4262507B2 (en) 2003-04-24 2003-04-24 Installation method of electric field coupling element

Publications (2)

Publication Number Publication Date
JP2004327710A true JP2004327710A (en) 2004-11-18
JP4262507B2 JP4262507B2 (en) 2009-05-13

Family

ID=33499213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120224A Expired - Fee Related JP4262507B2 (en) 2003-04-24 2003-04-24 Installation method of electric field coupling element

Country Status (1)

Country Link
JP (1) JP4262507B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182742A (en) * 2009-02-03 2010-08-19 Sony Corp Radiation level reducing device
WO2016067394A1 (en) * 2014-10-29 2016-05-06 三菱電機株式会社 High-frequency device and method for manufacturing high-frequency device
JPWO2022003960A1 (en) * 2020-07-03 2022-01-06

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329398A (en) * 1989-06-27 1991-02-07 Akzo Kashima Ltd Electronic wave absorber
JPH104285A (en) * 1996-06-14 1998-01-06 Kajima Corp Cable through-hole processing structure of electromagnetic shield layer
WO1998015161A1 (en) * 1996-10-04 1998-04-09 Matsushita Electric Industrial Co., Ltd. Electromagnetic field shielding device
JP2000049487A (en) * 1998-07-29 2000-02-18 Hitachi Ltd Method and apparatus for absorption of electromagnetic waves as well as electronic component and electronic apparatus
JP2003309389A (en) * 2002-04-17 2003-10-31 Canon Inc Printed board and electronic apparatus mounted with the printed board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329398A (en) * 1989-06-27 1991-02-07 Akzo Kashima Ltd Electronic wave absorber
JPH104285A (en) * 1996-06-14 1998-01-06 Kajima Corp Cable through-hole processing structure of electromagnetic shield layer
WO1998015161A1 (en) * 1996-10-04 1998-04-09 Matsushita Electric Industrial Co., Ltd. Electromagnetic field shielding device
JP2000049487A (en) * 1998-07-29 2000-02-18 Hitachi Ltd Method and apparatus for absorption of electromagnetic waves as well as electronic component and electronic apparatus
JP2003309389A (en) * 2002-04-17 2003-10-31 Canon Inc Printed board and electronic apparatus mounted with the printed board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182742A (en) * 2009-02-03 2010-08-19 Sony Corp Radiation level reducing device
JP4655156B2 (en) * 2009-02-03 2011-03-23 ソニー株式会社 Radiation reduction device
WO2016067394A1 (en) * 2014-10-29 2016-05-06 三菱電機株式会社 High-frequency device and method for manufacturing high-frequency device
JPWO2016067394A1 (en) * 2014-10-29 2017-04-27 三菱電機株式会社 High-frequency device and method for manufacturing high-frequency device
JPWO2022003960A1 (en) * 2020-07-03 2022-01-06
JP7350178B2 (en) 2020-07-03 2023-09-25 三菱電機株式会社 high frequency equipment

Also Published As

Publication number Publication date
JP4262507B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
CN100381829C (en) Electromagnetic detector for electromagnetic compatible diagnostic test in vehicle
US8605457B2 (en) Antenna for wireless utility meters
JP5017827B2 (en) Electromagnetic wave source search method and current probe used therefor
US7241954B2 (en) Method for reducing electromagnetic disturbance wave and housing structure
US7355413B2 (en) Testing method/arrangement measuring electromagnetic interference of noise in a to-be-tested printed circuit board
KR20130137215A (en) Resonance-type non-contact power supply system
JP5355584B2 (en) Antenna apparatus and magnetic resonance inspection apparatus
JP2004327710A (en) Electronic application device
US7604484B2 (en) Circuit board including arrangement for measuring current through a junction part or connector of said circuit board
JP2008047839A (en) Device for reducing disturbance electromagnetic wave
US20130119977A1 (en) Sensing element for sensor assembly
Satav et al. Do-it-yourself fabrication of an open TEM cell for EMC pre-compliance
EP4134689A1 (en) Electromagnetic field sensor
JP2006220511A (en) Immunity test apparatus against radiation of electromagnetic field
CN209882478U (en) Electromagnetic shielding protective shell, detection assembly and detector
JP2009139208A (en) Electromagnetic characteristic evaluating method of conductive case
JP2008082945A (en) Near electromagnetic field distribution measurement apparatus
JP6322870B2 (en) Flow rate measuring device and wireless device used for flow rate measuring device
CN101794932B (en) Broadband high-gain magnetic field annular test antenna based on resonance principle and design method
JP2000009775A (en) Current measuring device and specifying method for current generating source
CN109922647B (en) Electromagnetic shielding protective housing, detection subassembly and detector
JP2005217120A (en) Electromagnetic wave shield and loop antenna device using the same
JP2014120996A (en) Electronic apparatus and method for communication using it
JP2006098191A (en) Electromagnetic wave source survey method and survey device
JP2006003114A (en) Reference signal detecting method in apparatus for measuring distribution of electromagnetic-field vector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees