JP2004327464A - Process for forming semiconductor wafer - Google Patents

Process for forming semiconductor wafer Download PDF

Info

Publication number
JP2004327464A
JP2004327464A JP2003115507A JP2003115507A JP2004327464A JP 2004327464 A JP2004327464 A JP 2004327464A JP 2003115507 A JP2003115507 A JP 2003115507A JP 2003115507 A JP2003115507 A JP 2003115507A JP 2004327464 A JP2004327464 A JP 2004327464A
Authority
JP
Japan
Prior art keywords
forming
wafer
semiconductor wafer
bump
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003115507A
Other languages
Japanese (ja)
Other versions
JP3798760B2 (en
Inventor
Hiroshi Matsuzaka
浩志 松坂
Takashi Sato
孝志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENZAN SEISAKUSHO KK
Original Assignee
ENZAN SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENZAN SEISAKUSHO KK filed Critical ENZAN SEISAKUSHO KK
Priority to JP2003115507A priority Critical patent/JP3798760B2/en
Publication of JP2004327464A publication Critical patent/JP2004327464A/en
Application granted granted Critical
Publication of JP3798760B2 publication Critical patent/JP3798760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for forming a semiconductor wafer in which electrode bumps having a constant shape are formed quickly with high precision by suppressing warp or bend incident to thinning of the semiconductor wafer. <P>SOLUTION: A glass substrate 33 is pasted in a protective member pasting process to a wafer 21 which is made thin in a back grind process, a gold deposition film 23 is formed on the circuit forming surface 22 of the wafer 21 (process g), a resist film 24 is formed on the gold deposition film 23 (process h), and coated with a photoresist film 25 on which a bump electrode pattern is formed (process i). Subsequently, the photoresist film 25 is exposed (process j) and the resist film 24 and the photoresist film 25 are removed except the part of the bump electrode pattern. Finally, etching is performed to leave the part masked with the resist film 24 and the photoresist film 25 thus forming bump electrodes 27. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウェハを形成する方法であって、特に、電気的接点となるバンプ電極を半導体ウェハの回路形成面に形成するための形成方法に関する。
【0002】
【従来の技術】
近年、ICカード、携帯電話、PDA等の携帯型電子機器の高性能化や小型薄型化に伴い、各種電子部品を基板の表面に実装することができる表面実装方式が多く採用されている。このような表面実装方式の電子デバイスを製造する場合は、ウェハプロセスの過程で電極用のバンプを形成するための工程が設けられている。
【0003】
図4及び図5は、従来のバンプ電極の形成を中心とした半導体ウェハの製造工程を示したものである。ここで、図4はバンプ形成工程で、図5はバックグラインド工程を示す。図4に示したバンプ形成工程では、所定厚みにスライスされた半導体ウェハ(ウェハ1)の回路形成面2に、UMB(アンダー・メタル・バンプ)スパッタリングを用いて金蒸着膜3を形成する(工程a,b)。そして、前記金蒸着膜3にレジスト膜4を形成し(工程c)、このレジスト膜4の上にバンプの形成パターンが描かれたフォトレジスト膜5を被着する(工程d)。次に、前記フォトレジスト膜5の上からレーザ光あるいは紫外線を照射して露光処理(工程e)を行った後、前記フォトレジスト膜5でマスクした以外の部分をエッチングによって除去することで、所定のバンプ電極7がウェハ1の回路形成面2上に形成される(工程f)。
【0004】
前記バンプ電極7が形成されたウェハ1は、図5に示されるように、バンプ電極7の形成面をバックグラインド処理用の作業台8に載置し、前記バンプ電極7の形成面と反対側の裏面9をバックグラインダ10を回転させながら押圧していき、所定の厚みになるまで研削して薄型化している(工程g,h)。
【0005】
【発明が解決しようとする課題】
しかしながら、上記ウェハ1にバンプ電極7を形成した後、バックグラインド工程に移行してウェハ1全体を薄く研削する方法では、バックグラインド処理中にバンプ形成面が作業台8に擦られて、先に形成されたバンプ電極7の形状が潰れてしまうといった問題がある。
【0006】
また、ある一定の厚み(500μm以下)に薄型化されたウェハにあっては、バックグラインド工程やバンプ形成工程における負荷に耐えきれずにウェハが反ったり、歪んだりしてしまうおそれがある。このようなことも原因となって、先に形成されたバンプ電極の形状が歪んでしまったり、潰れてしまったりする場合がある。
【0007】
以上のような問題が発生すると、ウェハ1自体が損傷すると共に、バンプ電極7の形成に関しても加工精度が悪くなるなどの悪影響を及ぼすこととなる。
【0008】
そこで、本発明の目的は、半導体ウェハの薄型化に伴う反りや湾曲を抑えることによって、形状の一定した電極用のバンプを高精度且つ迅速に形成する半導体ウェハの形成方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る半導体ウェハの形成方法は、半導体ウェハの裏面を研磨加工して厚みを薄くし、前記裏面に粘着剤を介して保護部材を貼着した後、前記半導体ウェハの表面にバンプ電極部を形成することを特徴とする。
【0010】
この発明によれば、研磨加工において半導体ウェハを所定の厚みに薄型化した後、前記半導体ウェハの裏面に一定の厚み及び強度を備えた保護部材を貼着することで、この後に実施するバンプ形成工程における半導体ウェハの反りや湾曲を防止することができる。このため、バンプ形成工程において、半導体ウェハに機械的な負荷が掛かったり、温度変動等が発生しても、精度よくバンプ電極を形成することができる。また、バンプ形成工程を研磨加工のような半導体ウェハに大きな負荷が掛かる工程の後に実施することによって、先に形成されたバンプ電極が潰れるといったような不具合も発生しなくなる。
【0011】
また、前記半導体ウェハに貼着する保護部材に石英ガラスを使用することで、衝撃や温度変化に対する耐性が高まるので、半導体ウェハのさらなる薄型化が図られる。
【0012】
【発明の実施の形態】
以下、添付図面に基づいて本発明の半導体ウェハの形成方法について説明する。図1乃至図3は、半導体ウェハのバックグラインド処理からバンプ電極を形成するまでの流れを示す工程図である。
【0013】
本実施形態における半導体ウェハの形成方法は、半導体ウェハ(以下、単にウェハという)の数あるプロセスの中にあって、バンプ電極の形成に関わる工程を中心としたものである。この一連の工程は、ウェハを一定厚みに研磨加工するバックグラインド工程、前記ウェハに補強用の保護部材を貼着する保護部材貼着工程、前記ウェハ面に電極用のバンプを形成するバンプ形成工程及び保護部材剥離工程とからなっている。なお、前記一連の工程における作業は、加工中のウェハに埃が付いたり、温度や湿度変化によって変形しないように、温度・湿度が管理された一定の減圧条件の下で行われる。
【0014】
前記バックグラインド工程では、図示しない前処理工程で回路形成面が形成されたウェハの裏面を研磨して薄く平坦化する作業が行われる。ここでは、図1(工程a,b)に示すように、前記ウェハ21の回路形成面22に保護シート(図示せず)を被せ、この回路形成面22を下にして作業台28に置き、ウェハ21の裏面29にバックグラインダ10を回転させながら押圧していき、前記ウェハ21を所定の厚みになるように均一に研磨加工する。このバックグラインド工程によって、前記ウェハ21は、通常500μm程度の厚みから250μm程度の厚みに研磨されるが、薄型化に対応した製品に使用される場合は、30μm程度にまで研磨することが可能である。
【0015】
次の保護部材貼着工程では、前記バックグラインド工程において薄型化されたウェハ21の裏面29に保護部材であるガラス基板が貼着される。このガラス基板の貼着にあたって、最初に前記薄型化されたウェハ21の裏面29にレジスト膜31を形成する(工程c)。そして、前記レジスト膜31が形成された面に粘着剤であるワックス32を均一に塗布する(工程d)。このワックス32は、樹脂とアルコールを混合した材料からなる液状体で、固化した後は200℃程度の高温に対しても一定の粘着力を保持できるようになっている。続いて、前記ワックス32が塗布された面にガラス基板33を載置し、押圧してウェハ21と接合する(工程e)。前記ガラス基板33は、貼着されるウェハ21と同径か、それよりも一回り大きい板体に形成されたもので、厚みが1000μm程度の石英ガラスが使用される。このような石英ガラスは、外部からの衝撃やウェハプロセス中に掛かる温度変動に対して、変形や腐蝕等の発生が抑えられる。なお、前記ガラス基板33との粘着性を高めるために、前記ウェハ21を100〜130℃に加熱してワックス32を軟化させた上で、接合面に気泡が入らないように、均等な圧力を掛けながら行う。
【0016】
図2に示すバンプ形成工程では、前記貼着したガラス基板33を下にしたウェハ21を作業台に載置し(工程f)、上面に露出した回路形成面22にUMBスパッタリングによって、金蒸着膜23を形成する(工程g)。この金蒸着膜23は、バンプ電極の下地部材であって、良質な導電性を備えている。次に、前記金蒸着膜23の上にレジスト膜24を形成し(工程h)、その上にバンプ電極パターンが形成されたフォトレジスト膜25を被着する(工程i)。そして、前記フォトレジスト膜25の上からレーザ光あるいは紫外線を照射して露光(工程j)することで、バンプ電極パターン以外の部分のレジスト膜24及びフォトレジスト膜25を除去する。続いて、前記レジスト膜24及びフォトレジスト膜25でマスクされた箇所を残してエッチングを行う。最後に前記バンプ電極27上に残ったレジスト膜24及びフォトレジスト膜25をきれいに除去して、バンプ電極27を上面に露出させる(工程k)。
【0017】
図3に示す保護部材剥離工程では、前記バンプ形成工程でバンプ電極27が形成されたウェハ21からガラス基板33を剥離する(工程l)。この剥離作業では、ガラス基板33との間に介在しているワックス32を溶融した上で、前記ウェハ21面に傷が付かないように静かに引き剥がす。最後に、ウェハ21の洗浄工程に移行して、前記ガラス基板33を剥離した後に残ったワックス32や微小な埃を洗い流す(工程m)。このような一連の工程を経たウェハ21は、ダイシング工程や組立工程等の後処理工程に移行して個別の半導体チップが形成される。
【0018】
以上説明したように、バックグラインド工程からバンプ形成工程に移行する間に保護部材貼着工程を設けたことで、薄く研削加工されたウェハ21を補強することができ、後のバンプ形成処理が容易となった。従来の形成方法では、ウェハの厚みが250μm以下になると、バンプ電極の形成不良率が多くなるため、薄型化が制限されていたが、本発明の形成方法によれば、バックグラインド工程で可能な30μm程度の薄さに対してもバンプ電極を精度よく形成することができる。また、前記バンプ形成工程をバックグラインド工程の後に実施することで、形成したバンプの形状がばらついたり、形が崩れるといったバンプ形成不良を低減させることができる。
【0019】
上記実施形態ではウェハを構成する原料がシリコンであったが、このようなシリコン以外にもセレン、ゲルマニウムなどの酸化物で構成されたウェハ等にも応用可能であり、ウェハのサイズについても限定されない。
【0020】
なお、本実施形態では、ウェハに貼着する保護部材に石英ガラスを用いたが、このような石英ガラスでなくとも同様な強度や厚みを備えた材料であれば、金属やシリコンでも問題なく使用することができる。
【0021】
【発明の効果】
以上説明したように、本発明に係る半導体ウェハの形成方法によれば、半導体ウェハに対してバックグラインド処理やバンプ電極形成処理を行う際に、前記半導体ウェハに補強用の支持部材を貼着して行うので、前記バックグラインド作業やバンプ形成作業中における衝撃や温度変化による撓み変形が発生しない。このため、薄型でありながら、品質の安定した半導体チップの大量生産が可能となる。
【図面の簡単な説明】
【図1】本発明に係る半導体ウェハの形成方法におけるバックグラインド工程及び保護部材貼着工程を示す説明図である。
【図2】上記半導体ウェハの形成方法におけるバンプ形成工程を示す説明図である。
【図3】上記半導体ウェハの形成方法における保護部材剥離工程を示す説明図である。
【図4】従来の半導体ウェハの形成方法におけるバンプ形成工程を示す説明図である。
【図5】上記従来の半導体ウェハの形成方法におけるバックグラインド工程を示す説明図である。
【符号の説明】
21 ウェハ
22 回路形成面
23 金蒸着膜
24 レジスト膜
25 フォトレジスト膜
27 バンプ電極
32 ワックス
33 ガラス基板(保護部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming a semiconductor wafer, and more particularly to a method for forming a bump electrode serving as an electrical contact on a circuit forming surface of a semiconductor wafer.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as portable electronic devices such as IC cards, mobile phones, and PDAs have become more sophisticated and smaller and thinner, a surface mounting method capable of mounting various electronic components on the surface of a substrate has been adopted in many cases. When manufacturing such a surface mount type electronic device, a process for forming a bump for an electrode in the course of a wafer process is provided.
[0003]
FIG. 4 and FIG. 5 show a process of manufacturing a semiconductor wafer mainly on formation of a conventional bump electrode. Here, FIG. 4 shows a bump forming step, and FIG. 5 shows a back grinding step. In the bump forming step shown in FIG. 4, a gold vapor-deposited film 3 is formed on a circuit forming surface 2 of a semiconductor wafer (wafer 1) sliced to a predetermined thickness by using UMB (under metal bump) sputtering (step). a, b). Then, a resist film 4 is formed on the gold vapor-deposited film 3 (step c), and a photoresist film 5 on which a bump formation pattern is drawn is deposited on the resist film 4 (step d). Next, after performing exposure processing (step e) by irradiating laser light or ultraviolet light from above the photoresist film 5, portions other than those masked by the photoresist film 5 are removed by etching, so that a predetermined Is formed on the circuit forming surface 2 of the wafer 1 (step f).
[0004]
As shown in FIG. 5, the wafer 1 on which the bump electrodes 7 are formed is placed on a work table 8 for back-grinding with the surface on which the bump electrodes 7 are formed, and is opposite to the surface on which the bump electrodes 7 are formed. The back surface 9 is pressed while rotating the back grinder 10 and ground to a predetermined thickness to reduce the thickness (steps g and h).
[0005]
[Problems to be solved by the invention]
However, in the method in which the bump electrode 7 is formed on the wafer 1 and then the process proceeds to a back grinding process and the entire wafer 1 is thinly ground, the bump forming surface is rubbed against the worktable 8 during the back grinding process, and the back surface is first rubbed. There is a problem that the shape of the formed bump electrode 7 is crushed.
[0006]
Further, in the case of a wafer thinned to a certain thickness (500 μm or less), the wafer may be warped or distorted because it cannot withstand the load in the back grinding step or the bump forming step. As a result, the shape of the previously formed bump electrode may be distorted or crushed.
[0007]
When the above problems occur, the wafer 1 itself is damaged, and the formation of the bump electrodes 7 has an adverse effect such as a deterioration in processing accuracy.
[0008]
Therefore, an object of the present invention is to provide a method for forming a semiconductor wafer, in which a bump for an electrode having a fixed shape is formed with high precision and speed by suppressing warpage and curvature due to thinning of the semiconductor wafer. .
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the method of forming a semiconductor wafer according to the present invention, polishing the back surface of the semiconductor wafer to reduce the thickness, after attaching a protective member to the back surface via an adhesive, A bump electrode portion is formed on a surface of a semiconductor wafer.
[0010]
According to the present invention, after the semiconductor wafer is thinned to a predetermined thickness in the polishing process, a protective member having a certain thickness and strength is attached to the back surface of the semiconductor wafer, so that the bump formation to be performed thereafter is performed. Warpage and bending of the semiconductor wafer in the process can be prevented. For this reason, in the bump formation step, even if a mechanical load is applied to the semiconductor wafer or a temperature change occurs, the bump electrodes can be formed with high accuracy. In addition, by performing the bump forming step after a step of applying a large load to the semiconductor wafer, such as polishing, a problem such that the previously formed bump electrode is crushed does not occur.
[0011]
In addition, by using quartz glass for the protection member to be attached to the semiconductor wafer, the resistance to impact and temperature change is increased, so that the semiconductor wafer can be further thinned.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for forming a semiconductor wafer according to the present invention will be described with reference to the accompanying drawings. FIGS. 1 to 3 are process diagrams showing the flow from the back grinding process of a semiconductor wafer to the formation of bump electrodes.
[0013]
The method of forming a semiconductor wafer according to the present embodiment is one of many processes for forming a semiconductor wafer (hereinafter, simply referred to as a wafer), and focuses on steps related to formation of bump electrodes. This series of steps includes a back grinding step of polishing the wafer to a constant thickness, a protective member attaching step of attaching a reinforcing protective member to the wafer, and a bump forming step of forming electrode bumps on the wafer surface. And a protective member peeling step. The operations in the series of steps are performed under a constant decompression condition where the temperature and humidity are controlled so that the wafer being processed does not become dusty or deformed due to changes in temperature or humidity.
[0014]
In the back-grinding step, an operation is performed to polish the back surface of the wafer on which the circuit formation surface is formed in a pre-processing step (not shown) so as to be thin and flat. Here, as shown in FIG. 1 (steps a and b), a protective sheet (not shown) is placed on the circuit forming surface 22 of the wafer 21 and placed on a work table 28 with the circuit forming surface 22 facing down. The back grinder 10 is pressed against the back surface 29 of the wafer 21 while rotating, and the wafer 21 is uniformly polished so as to have a predetermined thickness. By this back grinding process, the wafer 21 is usually polished from a thickness of about 500 μm to a thickness of about 250 μm, but when used for a product corresponding to thinning, it can be polished to about 30 μm. is there.
[0015]
In the following protective member attaching step, a glass substrate as a protective member is attached to the back surface 29 of the wafer 21 thinned in the back grinding step. When attaching the glass substrate, first, a resist film 31 is formed on the back surface 29 of the thinned wafer 21 (step c). Then, a wax 32 as an adhesive is uniformly applied to the surface on which the resist film 31 is formed (step d). The wax 32 is a liquid material made of a material obtained by mixing a resin and alcohol, and after being solidified, can maintain a constant adhesive strength even at a high temperature of about 200 ° C. Subsequently, the glass substrate 33 is placed on the surface to which the wax 32 has been applied, pressed and joined to the wafer 21 (step e). The glass substrate 33 is formed in a plate body having the same diameter as or slightly larger than the diameter of the wafer 21 to be adhered, and quartz glass having a thickness of about 1000 μm is used. Such quartz glass suppresses the occurrence of deformation, corrosion, and the like in response to an external impact or a temperature change applied during a wafer process. In addition, in order to increase the adhesiveness with the glass substrate 33, the wafer 21 is heated to 100 to 130 ° C. to soften the wax 32, and then an even pressure is applied so that air bubbles do not enter the bonding surface. Perform while hanging.
[0016]
In the bump forming step shown in FIG. 2, the wafer 21 with the glass substrate 33 attached thereon is placed on a work table (step f), and a gold vapor deposition film is formed on the circuit forming surface 22 exposed on the upper surface by UMB sputtering. 23 is formed (step g). The gold vapor-deposited film 23 is a base member of the bump electrode and has good conductivity. Next, a resist film 24 is formed on the gold deposition film 23 (step h), and a photoresist film 25 having a bump electrode pattern formed thereon is deposited thereon (step i). Then, the resist film 24 and the photoresist film 25 other than the bump electrode pattern are removed by irradiating laser light or ultraviolet light from above the photoresist film 25 to perform exposure (step j). Subsequently, etching is performed leaving portions masked by the resist film 24 and the photoresist film 25. Finally, the resist film 24 and the photoresist film 25 remaining on the bump electrode 27 are removed to expose the bump electrode 27 on the upper surface (step k).
[0017]
In the protective member peeling step shown in FIG. 3, the glass substrate 33 is peeled from the wafer 21 on which the bump electrodes 27 have been formed in the bump forming step (step l). In this peeling operation, the wax 32 interposed between the glass 21 and the glass substrate 33 is melted and then gently peeled off so that the surface of the wafer 21 is not damaged. Finally, the process shifts to the cleaning process of the wafer 21, and the wax 32 and minute dust remaining after the glass substrate 33 is peeled off are washed away (process m). The wafer 21 having undergone such a series of steps is transferred to a post-processing step such as a dicing step or an assembling step, and individual semiconductor chips are formed.
[0018]
As described above, by providing the protective member attaching step during the transition from the back grinding step to the bump forming step, the thinly ground wafer 21 can be reinforced and the subsequent bump forming processing can be easily performed. It became. In the conventional forming method, when the thickness of the wafer is 250 μm or less, the defective formation rate of the bump electrode increases, so that the thinning is limited. However, according to the forming method of the present invention, it is possible in the back grinding step. The bump electrode can be formed with high accuracy even for a thickness of about 30 μm. Further, by performing the bump formation step after the back grinding step, it is possible to reduce bump formation defects such as a variation in the shape of the formed bump or a loss of the shape.
[0019]
In the above embodiment, the raw material constituting the wafer is silicon. However, in addition to such silicon, the present invention can be applied to a wafer composed of an oxide such as selenium or germanium, and the size of the wafer is not limited. .
[0020]
In this embodiment, quartz glass is used for the protective member to be attached to the wafer. However, any material having the same strength and thickness can be used without any problem even if the material is metal or silicon. can do.
[0021]
【The invention's effect】
As described above, according to the method for forming a semiconductor wafer according to the present invention, when performing a back grinding process or a bump electrode forming process on the semiconductor wafer, a reinforcing support member is attached to the semiconductor wafer. Therefore, bending deformation due to impact or temperature change during the back grinding operation or the bump forming operation does not occur. For this reason, it is possible to mass-produce semiconductor chips having a stable quality while being thin.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a back grinding step and a protective member attaching step in a method for forming a semiconductor wafer according to the present invention.
FIG. 2 is an explanatory view showing a bump forming step in the method for forming a semiconductor wafer.
FIG. 3 is an explanatory view showing a protective member peeling step in the method for forming a semiconductor wafer.
FIG. 4 is an explanatory view showing a bump forming step in a conventional method for forming a semiconductor wafer.
FIG. 5 is an explanatory view showing a back grinding step in the conventional semiconductor wafer forming method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 21 Wafer 22 Circuit formation surface 23 Gold vapor deposition film 24 Resist film 25 Photoresist film 27 Bump electrode 32 Wax 33 Glass substrate (protective member)

Claims (3)

半導体ウェハの裏面を研磨加工して厚みを薄くし、前記裏面に粘着剤を介して保護部材を貼着した後、前記半導体ウェハの表面にバンプ電極部を形成することを特徴とする半導体ウェハの形成方法。Polishing the back surface of the semiconductor wafer to reduce its thickness, attaching a protective member to the back surface via an adhesive, and then forming a bump electrode portion on the front surface of the semiconductor wafer. Forming method. 半導体ウェハの裏面を研磨加工して厚みを薄くするバックグラインド工程と、前記裏面に保護部材を貼着する保護部材貼着工程と、前記半導体ウェハの表面に金メッキを形成するスパッタリング工程と、前記金メッキ上に電極パターンを形成するフォトレジスト工程と、前記電極パターン上にバンプ電極を形成するバンプ形成工程とを備えた半導体ウェハの形成方法。A back grinding step of polishing the back surface of the semiconductor wafer to reduce the thickness, a protective member attaching step of attaching a protective member to the back surface, a sputtering step of forming gold plating on the surface of the semiconductor wafer, and the gold plating A method for forming a semiconductor wafer, comprising: a photoresist step of forming an electrode pattern thereon; and a bump forming step of forming a bump electrode on the electrode pattern. 前記保護部材が耐熱性を備えた石英ガラスである請求項1又は2記載の半導体ウェハの形成方法。3. The method for forming a semiconductor wafer according to claim 1, wherein the protective member is a quartz glass having heat resistance.
JP2003115507A 2003-04-21 2003-04-21 Method for forming semiconductor wafer Expired - Fee Related JP3798760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115507A JP3798760B2 (en) 2003-04-21 2003-04-21 Method for forming semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115507A JP3798760B2 (en) 2003-04-21 2003-04-21 Method for forming semiconductor wafer

Publications (2)

Publication Number Publication Date
JP2004327464A true JP2004327464A (en) 2004-11-18
JP3798760B2 JP3798760B2 (en) 2006-07-19

Family

ID=33496035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115507A Expired - Fee Related JP3798760B2 (en) 2003-04-21 2003-04-21 Method for forming semiconductor wafer

Country Status (1)

Country Link
JP (1) JP3798760B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251781A (en) * 2007-03-30 2008-10-16 Oki Electric Ind Co Ltd Method of manufacturing semiconductor device
US7479455B2 (en) 2005-01-25 2009-01-20 Samsung Electronics Co., Ltd. Method for manufacturing semiconductor wafer
KR101537420B1 (en) * 2009-05-15 2015-07-16 엘지전자 주식회사 Cooker and manufacturing method thereof
CN105103272A (en) * 2013-09-27 2015-11-25 富士电机株式会社 Method for manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9227295B2 (en) 2011-05-27 2016-01-05 Corning Incorporated Non-polished glass wafer, thinning system and method for using the non-polished glass wafer to thin a semiconductor wafer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479455B2 (en) 2005-01-25 2009-01-20 Samsung Electronics Co., Ltd. Method for manufacturing semiconductor wafer
JP2008251781A (en) * 2007-03-30 2008-10-16 Oki Electric Ind Co Ltd Method of manufacturing semiconductor device
KR101537420B1 (en) * 2009-05-15 2015-07-16 엘지전자 주식회사 Cooker and manufacturing method thereof
CN105103272A (en) * 2013-09-27 2015-11-25 富士电机株式会社 Method for manufacturing semiconductor device
JP5983889B2 (en) * 2013-09-27 2016-09-06 富士電機株式会社 Manufacturing method of semiconductor device
US9666437B2 (en) 2013-09-27 2017-05-30 Fuji Electric Co., Ltd. Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3798760B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP5027460B2 (en) Wafer bonding method, thinning method, and peeling method
JP4343286B2 (en) Manufacturing method of semiconductor device
JP4860113B2 (en) Manufacturing method of semiconductor integrated circuit device
JP6147250B2 (en) Imaging device manufacturing method and semiconductor device manufacturing method
JPH11219873A (en) Improvement of single crystal silicon wafer in mechanical resistance
JP2004282035A (en) Method of manufacturing semiconductor device
CN101752273B (en) Method of manufacturing semiconductor device
JPWO2013179764A1 (en) Imaging device manufacturing method and semiconductor device manufacturing method
JP2007165706A (en) Manufacturing method of semiconductor integrated circuit device
TWI767022B (en) Substrate processing method and substrate processing system
JP2000299354A (en) Semiconductor device and manufacture thereof
JP2002299546A (en) Chip-like electronic component, manufacturing method therefor, pseudo wafer used for manufacturing and manufacturing method therefor
JP3798760B2 (en) Method for forming semiconductor wafer
JP2010239161A (en) Method of fabricating semiconductor integrated circuit device
JP3719921B2 (en) Semiconductor device and manufacturing method thereof
JP6482454B2 (en) Electronic component manufacturing method and electronic component manufacturing apparatus
US11764066B2 (en) Peeling method for peeling off substrate from support plate
JP2001085453A (en) Method of manufacturing semiconductor device
US20060137420A1 (en) Process applied to semiconductor
JPH08274286A (en) Manufacture of soi substrate
CN112951713A (en) Processing method of small-size wafer
KR20060085848A (en) Method of fabricating semiconductor wafer having bump forming process after back grinding
JP2007005366A (en) Method of manufacturing semiconductor device
TW200408050A (en) Method and structure for a wafer level packaging
JP4107896B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees