JP2004325570A - Method for manufacturing electrophotographic photoreceptor and photoreceptor - Google Patents

Method for manufacturing electrophotographic photoreceptor and photoreceptor Download PDF

Info

Publication number
JP2004325570A
JP2004325570A JP2003117153A JP2003117153A JP2004325570A JP 2004325570 A JP2004325570 A JP 2004325570A JP 2003117153 A JP2003117153 A JP 2003117153A JP 2003117153 A JP2003117153 A JP 2003117153A JP 2004325570 A JP2004325570 A JP 2004325570A
Authority
JP
Japan
Prior art keywords
immersion liquid
substrate
layer
tank
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117153A
Other languages
Japanese (ja)
Inventor
Katsuya Takano
克也 高野
Shinya Mimura
晋也 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003117153A priority Critical patent/JP2004325570A/en
Publication of JP2004325570A publication Critical patent/JP2004325570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrophotographic photoreceptor which causes no density unevenness to a halftone image, etc., by using an overflow system dip coating method by which uniform superior photosensitive layers can be reliably formed on various conductive substrates, and to provide the photoreceptor and an image forming apparatus using the same. <P>SOLUTION: In the method for manufacturing an electrophotographic photoreceptor, a conductive substrate is dipped into a dip solution, and when the substrate is pulled up, the dip solution is allowed to overflow and the level of the dip solution is kept at a nearly prescribed height during pull-up. The dip solution covering the outer surface of the substrate is formed as a photosensitive layer. The viscosity of the dip solution is in a range of 200 to 900 mPa s and the flow rate of overflow of the dip solution during at least pull-up of the conductive substrate is 1.0 to 2.0 cm/s. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体の製造法及びその感光体に関するものであり、より詳細には、導電性基体を浸漬液(感光層形成溶液)に浸漬し、その基体を引き上げる際に、少なくとも上記浸漬液を下方から上方に向けてフローさせてその浸漬液面を所定の高さに維持させながら引き上げて、該基体外面に付着する浸漬液を均一にして感光層として形成させてなる電子写真感光体の製造方法及びその感光体に関するものである。
【0002】
【従来の技術】
近年、電子写真感光体(以下、単に「感光体」とも称す。)において有機系の光導電性材料(OPC)の開発が進み、従来から用いられてきた酸化亜鉛、硫化カドミウム、アモルファスセレンおよびアモルファスシリコンなどに代表される無機系の光導電性材料よりも多く使用されるようになっている。有機系光導電性材料を用いた電子写真感光体は、感度、耐久性および環境に対する安定性などに若干の問題はあるが、毒性、原価、材料設計の自由度などの点において無機材料に比べ多くの利点がある。
【0003】
そこで、精力的な検討の中から、種々の増感法が提案されている。有機電子写真感光体には、光導電層である感光層が単層型のものと積層型のものがある。中でも光を照射したときに電荷担体を発生する物質(以下、「電荷発生物質(CGM)」と称す。)を含む層(以下、「電荷発生層(CGL)」と称す。)と、電荷発生層(CGL)で発生した電荷担体を受け入れ、それを輸送する物質(以下、「電荷輸送物質(CTM)」と称す。)を主体とする層(以下、「電荷輸送層(CTL)」と称す。)とからなる積層型の感光体(以下、「機能分離型感光体」と称す)が優れた増感性を示すことから、現在実用化されている有機感光体構成の大部分を占めてきている。また、近年の耐久性向上から今後感光体の主流として期待されている。
【0004】
さらに、帯電性改善、導電性基体からの不要な電荷注入の阻止、導電性基体上の欠陥の被覆、ピンホール発生の防止および感光層の接着性の改善などのために、基体上に下引き層(UCL)を設けることで、耐久性も向上してきている。
これらの感光層は、各層を構成するための有機系光導電性材料を結着樹脂とともに、有機溶剤に溶解または分散させて感光材料を含有する感光層用塗布液を調製し、この感光層用塗布液を導電性基体上に順次、塗布して乾燥させることにより形成される。
【0005】
従来、電子写真感光体の感光層の形成方法として、浸漬塗布(又は浸漬コーティング)、スプレー塗布、スピンナー塗布、ワイヤーバー塗布、ブレード塗布、ローラ塗布等の種々の塗布方法が知られているが、主として浸漬塗布とスプレー塗布が用いられている。なかでも、浸漬塗布は円筒状の被塗布物(導電性基体等)に均一な膜の形成が可能で、比較的機構が簡単かつ生産性およびコストの点で優れているため、電子写真感光体を製造する場合に多く利用されている。
浸漬塗布方法は、浸漬液を収容した槽内に導電性基体等の被浸漬物を浸漬し、次いでこの被浸漬物を引き上げることにより、被浸漬物の外周面上に均一な膜を形成しようとするものである。しかしながら、被浸漬物の浸漬、引上げに伴う浸漬液面の上下動により、槽側壁の内周面に浸漬液が付着し、付着した浸漬液が乾燥して、浸漬液中に乾固物、異物が混入したり、浸漬液の成分変化、劣化を生じたりするため膜ムラを起こす。
【0006】
また、感光体のサイズは使用される複写機などの寿命・コピースピード等の要求仕様によって異なり、大径、小径と多岐にわたる。各々の感光体径に適した槽径で浸されるべきだが、生産上の作業効率(浸漬液の入れ替え、清掃)を考慮して、同一槽で行われることが多い。
被膜厚は基体面と浸漬液との間の相対移動速度で決まり、一般に相対移動速度が速いと被膜厚は厚く、逆に遅いと薄くなる。このため前記の場合、従来の浸漬塗布では、異なる径の基体で同一の被膜厚を得るには、たとえば、小径基体の場合には上記移動速度を速く、大径基体の場合は移動速度を遅くする必要がある。このため著しく基体径が異なる場合、昇降機に対して広い動作(速度)範囲が必要となり、設備費用が大きくなる。また膜厚は浸漬液の粘度にも依存しており、具体的には速度一定の時、粘度が高いと厚くなり、粘度が低いと薄くなる。
【0007】
生産中で溶剤蒸発や浸漬液の補填等による粘度変化等に対応するために微調整を行う際、大径基体ではわずかな速度調整で微調整を行う必要が生じ、高精度のモーターが必要となる。一方、塗布槽から基体を引き上げる際には、基体径(体積)に応じて浸漬液面が下がるが、小径基体の場合ではあまり液面が下がらない。しかし、大径基体の場合、液面の低下が著しく大きく、引き上げ速度が遅いため、槽中の浸漬液面の高さと槽内壁面との空間に溜まった液溶剤蒸気層を長く通過することになり、基体の長手方向で蒸気の濃度差が大きくなるため膜厚に不均一が生じやすい。例えば、基体上部では接する溶剤蒸気層が薄く・短いため、浸漬液の乾燥が早くなり膜厚は厚くなるが、下部では溶剤蒸気層が濃く・長くなるため乾きが遅くなり、タレが原因となり膜厚が薄くなる。これらの影響を極力小さくするために大径の槽を用いることが考えられるが、小径基体に対しては、必要な浸漬液量が多くなりすぎるために、浸漬液の使用効率が悪くなる。また、浸漬液が可燃物であるために多数量を管理する場合には、防爆等の対応をする必要が生じる。
【0008】
このような欠点を防止する方法として、いわゆるオーバーフロー方式のものが知られている(例えば特開平2−173754号公報参照)。
上述のようなオーバーフロー方式によると、処理中も常に塗布槽外縁から浸積液がオーバーフローされるために、槽内壁面に乾固物が付着することが無く、液面が一定であるために基体径の大小にかかわらず同じ引き上げ速度で同じ膜厚がとれるために、上記制御が容易である。また、基体長手方向の蒸気層差が無いために基体上下での膜厚も均一なものとなる。
【0009】
【特許文献1】
特開平2−173754号公報
【0010】
【発明が解決しようとする課題】
しかしながら、上記のオーバーフロー方式では特に、浸漬液粘度や、基体径に対する最適な槽径、オーバーフロー流量が提案されておらず、浸漬粘度が高い場合にオーバーフロー時の浸漬流量によって、槽の上縁からのオーバーフローが不均一になったり、液面の波立ちで円筒状基体の膜厚の周方向のバラツキが大きくなったりしていた。このため、感光層にムラが生じ、その結果、画像形成装置においてはハーフトーン画像に濃度ムラが発生する。この現象は近年の環境対応による感光体の高耐刷性・高寿命の要求を満たすために、厚膜の感光層を塗布する場合に、特に顕著であった。このように従来のオーバーフロー方式では、粘度が高い浸漬液で感光体ドラムの周方向に膜厚のバラツキが小さくなるような適正な条件が見いだされていない。
【0011】
従って、本発明の目的は、種々の基体にムラのない優れた感光層を確実に形成することができるオーバーフロー方式の浸積塗布方法を用いることにより、ハーフトーン画像などに濃度ムラを発生させることがない電子写真感光体の製造方法、その感光体、及びそれを用いた画像形成装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明者等は、オーバーフロー方式の浸漬塗布方法において、浸漬液から被浸漬体である導電性基体を引き上げる際に、浸漬液の粘度を所定の範囲に維持し、そして、浸漬液のフロー速度、即ち流速を1.0乃至2.0cm/secの範囲にきめ細かく条件設定して浸漬塗布方法を行うと、その基体にムラのない優れた感光層を確実に形成することができることを見出し、本発明に至ったものである。
即ち、本発明は以下の(1)乃至(8)構成及び条件を満たすことを特徴とするものである。
【0013】
(1)被浸漬体である導電性基体を浸漬液に浸漬し、該基体を引き上げる際に、該浸漬液を上部でオーバーフローさせてその浸漬液面をほぼ所定の高さに維持させながら引き上げて、該基体外面を被覆する浸漬液を感光層として形成させてなる電子写真感光体の製造方法において、上記浸漬液の粘度が200〜900mPa・sの範囲にあり、少なくとも円筒状導電性基体を引き上げる際の浸漬液のオーバーフローの流速が1.0〜2.0cm/secであることを特徴とする電子写真感光体の製造方法。
【0014】
(2)上記浸漬液を槽に収容し、所定の高さに形成された該槽の上縁から浸漬液をオーバーフローさせながら上記浸漬液面の高さを維持してなることを特徴とする上記(1)記載の製造方法。
【0015】
(3)上記槽の内径を2R(mm)とし、円筒状に形成された上記導電性基体の外径を2r(mm)とすると、0.5<r/R<0.85、かつR−r≦30、で表される関係式を満たすようにして上記基体に感光層を形成することを特徴とする上記(2)記載の製造方法。
(4)上記基体の引上げ速度をv(mm/sec)とし、vが1.0<v<5.0の関係を満たすように上記基体に感光層を形成することを特徴とする上記(1)乃至(3)に記載の製造方法。
(5)上記感光層の膜厚をd(μm)とし、dがd≧25の関係を満たすようにして上記基体に感光層を形成することを特徴とする上記(1)乃至(4)に記載の製造方法。
【0016】
(6)上記基体面に少なくとも電荷発生層(CGL)、及び電荷輸送層を順次積層して上記感光層を形成する場合に、上記浸漬液を少なくとも電荷輸送層の層成形液とすることを特徴とする上記(1)乃至(5)に記載の製造方法。
【0017】
(7)感光体の感光層が上記(1)乃至(6)に記載の製造方法によって形成されていることを特徴とする感光体。
【0018】
(8)感光体が上記(7)に記載された感光体であることを特徴とする画像形成装置。
【0019】
本発明に係る電子写真感光体の製造方法は、被浸漬体である導電性基体を浸漬液に浸漬し、該基体を引き上げる際に、該浸漬液を上部でオーバーフローさせて浸漬液面をほぼ所定の高さに維持させながら引き上げて、該基体外面を被覆する浸漬液を感光層として形成させてなるものである。
そして、電子写真感光体の製造方法においては、上記浸漬液の粘度が200〜900mPa・sの範囲にあり、少なくとも円筒状導電性基体を引き上げる際の浸漬液のオーバーフローの流速が1.0〜2.0cm/secである。
【0020】
所定体積を有する基体を浸漬液から引き上げる際に、浸漬液面は一般に変動を来すが、本発明においてはかかる浸漬液面がほぼ所定の高さに維持できるようにするため、浸漬液が所定の流速を有しなるものである。この場合、好ましい方法としては、上記浸漬液を槽に収容し、所定の高さに形成された該槽の上縁から浸漬液をオーバーフローさせながら上記浸漬液面の高さを維持してなることである。
本発明においては通常、槽の下方から浸漬液を送り込んで流れを形成するが、この場合、必ずしも槽の上縁から溢れさせる必要はなく、浸漬液面が所定の高さに実質的に維持される限り、槽などの上部壁の所定位置にフロー孔等を設けても良い。但し、槽内壁面に乾固物の付着の回避、また、基体長手方向の蒸気層差を無くすためには上記のように槽の上縁からのオーバーフローが望ましい。また、使用する槽においても必ずしも円筒状とする必要はないが、基体等が円筒或いは円柱状であれば、それに対応するような槽の形状であることが望ましい。
【0021】
本発明に係る電子写真感光体の製造方法では、浸漬液の粘度が200〜900mPa・sの範囲にある場合、導電性基体を引き上げる際の浸漬液のオーバーフローの流速が1.0〜2.0cm/secの範囲にあると、オーバーフロー時の浸漬液の片流れ(チャンネリング)などがなく、オーバーフローが不均一となることがなく、また、浸漬液面の波立ちが抑制される。このため、基体を被覆する浸漬液の膜厚の周方向のバラツキがなくなる。そして、その結果として基体の感光層にはムラが生じず、このように製造した感光体を用いた画像形成装置においては、ハーフトーン画像を鮮明に出すことができる。特に、膜厚の厚い感光層の場合でも、従来のオーバーフロー方式に比べて、粘度の高い浸漬液でも、基体の周方向での膜厚のバラツキが小さくなる。
【0022】
また、本発明に係る電子写真感光体の製造方法を適用する場合に、感光体層は電荷発生材料及び電荷輸送材料を含む一層の感光層としても良いし、電荷発生層(CGL)、電荷輸送層(CTL)を積層したものでも良い。
ここで、電荷発生層(CGL)、電荷輸送層(CTL)を積層した感光層とした場合には、特に電荷輸送層用の浸漬液等が上述の条件を満たす浸漬液であれば、高品質な有機電子写真感光体を提供することができる。
従って、このような製造方法で製造される感光体を本発明に係る電子写真感光体とすることができ、更にこのような感光体を本発明に係る画像形成装置に組み込むことができ、優れた画像形成をすることができる。
【0023】
【発明の実施の形態】
以下、添付図面を参照しながら本発明に係る電子写真感光体の製造方法、電子写真感光体、及びそれを用いた画像形成装置について具体的な実施の形態に基づいて詳説する。なお、本発明に係る電子写真感光体の製造方法はこれらに限るものではない。
図1は本発明に係る電子写真感光体の製造方法に使用されるオーバーフロー方式の浸漬塗布装置の概略図である。
【0024】
図1に示すように浸漬塗布装置において、被浸漬体である円筒状導電性基体1を浸漬液3に浸漬し、基体1を引き上げる(図1の矢印Aの方向に上げる)際に、該浸漬液3を上部でオーバーフローさせてその浸漬液面3aをほぼ所定の高さに維持させながら引き上げて、該基体外面を被覆する浸漬液3を感光層として形成させてなる。本図では基体は1本のみであるが、基体を複数本同時に用いる方法であっても、本発明を用いることが可能である。
この場合、図1に示す浸漬塗布装置の形態にあっては浸漬液3をほぼ円筒状の槽2に収容し、所定の高さに形成された槽2の上縁2aから浸漬液3をオーバーフローさせながら浸漬液面3aの高さを維持してなるものである。
【0025】
即ち、浸漬塗布装置20にあっては、円筒状槽2内に所定の浸漬液3が収容され、槽2の側壁の周囲には受け皿5が設けられている。浸漬液3は、タンク8からポンプ9によって送り出され、フィルター10を介して、液の供給口7より矢印Bで示すように槽2内へと供給される。浸漬液3は下方から上方に流れ、槽2側壁の上縁2aを越えて槽2の放射方向或いは半径方向へと均一に溢流し、受け皿5で捕集される。オーバーフローした浸漬液は受け皿5の排出口6よりタンク8へと戻される。従って、浸漬液は円筒状槽2とタンク8との間を循環させられている。
円筒状導電性基体1は、浸漬液3内に浸漬され、次いで矢印Aで示す方向に所定の引き上げ速度で引き上げられ、浸漬塗布が施される。この浸漬塗布時に、上述のように浸漬液3が槽2の上縁部を越えて溢流し続けているので、浸漬液3の液面の高さはほぼ一定に保たれる。
【0026】
浸漬液3の粘度は200〜900mPa・sであり、浸漬液3から基体1を引き上げる際に、浸漬液3のオーバーフローの流速が1.0〜2.0cm/secの範囲にある。オーバーフローの流速とは、(オーバーフロー流量)/(槽(又は浸漬液面)の面積−基体の断面積)で示される基体1を含む槽2で仕切られるエリアを流れる浸漬液の上昇速度である。
【0027】
浸漬液3の粘度が200〜900mPa・sの場合において、オーバーフロー流速が1.0cm/secより遅いと、浸漬液3がオーバーフローする際に片流れ(チャネリング)、即ち、浸漬液3が槽2側壁の上縁部2aで片流れを起こし易くなり、基体1を被覆する浸漬液3で形成される膜厚は、基体の周方向にバラツキが発生しやすくなる。
また、オーバーフロー流速が2.0cm/secより速いと液面の揺れが大きくなるために、これもまた基体1を被覆する浸漬液3で形成される膜厚は、基体の周方向にバラツキが発生しやすくなるため、膜欠陥ひいては画像欠陥の多い感光体となってしまう。
【0028】
浸漬液3の粘度が900mPa・sを超える場合には、所望膜厚を得るために処理速度が遅くなり生産性が悪くなる。また、浸漬液3の粘度が200mPa・sより小さい場合には、タレが大きくなるので感光体寿命を長くするための厚膜の形成ができなくなる。
このように、本発明によれば、粘度が最適な範囲にある浸漬液を用いて高品質な有機電子写真感光体を提供することが可能である。
【0029】
また、円筒状槽2の内径を2R(mm)とし、基体1の外径を2r(mm)とすると、0.5<r/R<0.85、かつR−r≦30、で表される関係式を満たすようにして基体1に感光層を形成することが望ましい。
この関係の時、簡単な制御で高品質な有機電子写真感光体を提供することが可能である。
r/R≦0.5では、基体1の径に対して槽2の径が大きくなり、基体1が小さくても浸漬液量を多く必要とし、浸漬液3の使用効率が悪くなる。浸漬液3が危険物であると、多数量を管理する場合に防爆等の対応をする必要が生じるので好ましくない。また、r/R≧0.85では、基体1と槽2壁の距離が近くなるため、浸漬液3が槽2の側壁の上縁部2aを越えて溢流する際に、その液面3aが基体1の引き上げの影響を受けやすくなり、液面3aの波立ちが大きくなるために上述の膜厚にバラツキが発生しやすくなり、感光層欠陥、画像形成装置に用いた場合は画像欠陥の多い感光体となってしまう。なお、R−r>30では、基体1の径に対して槽2の径が大きくなり、浸漬液3の使用効率が悪くなり、浸漬液3が危険物であると、多数量を管理する場合に防爆等の対応をする必要が生じるので好ましくない。また槽が円筒形でない場合には、槽の平面の面積より円相当径を求めることによって、Rを算出する。なお、多数本同時塗布の場合には、槽の平面の面積を処理本数で除した値から円相当径を求めることにより、Rを算出する。
【0030】
次いで、基体1の引上げ速度をv(mm/sec)とし、vが1.0<v<5.0の関係を満たすように上記基体に浸漬液の膜を形成することが望ましい。
上記引き上げ速度vであれば、高品質な有機電子写真感光体を得ることが容易にできる。引き上げ速度が1.0(mm/sec)未満の場合には、感光体を生産する場合において、生産効率が悪くなりコストが増大してしまう。また、引き上げ速度が5.0(mm/sec)を超える場合には、感光体基体1を引き上げる際に、液面3aの波立ちが大きくなるために上述の膜厚のバラツキが発生しやすくなり、感光層の欠陥ひいては画像欠陥の多い感光体となってしまう。また、オーバーフロー流速を維持するためにポンプ9の容量の大きなものが必要となり、さらなる設備投資が必要となる。
【0031】
また製造に際しては、基体1に形成する感光層の膜厚をd(μm)とすると、dはd≧25の関係を満たすようにして基体1に感光層を形成することが望ましい。
近年の環境対応による感光体の高耐刷性・高寿命の要求を満たすために、上記関係をみたしていれば、高寿命の高品質な有機電子写真感光体とすることができる。
【0032】
また、電子写真感光体の製造方法では、基体1面に少なくとも電荷発生層(CGL)、及び電荷輸送層を順次積層して上記感光層を形成する際に、少なくとも上記浸漬液を電荷輸送層の層成形液とすることを特徴とすることができる。
感光体は、電荷発生材料及び電荷輸送材料を含む一層の感光層としても良いし、電荷発生層(CGL)、電荷輸送層(CTL)を積層したものでも良い。
ここで、電荷発生層(CGL)、電荷輸送層(CTL)を積層した感光層とした場合は、本発明では電荷輸送層用或いは電荷発生層用の少なくとも一方を上述の条件に従う浸漬液とすることができ、特に、上記浸漬液を電荷輸送層用とすれば、粘度の高い浸漬液の使用に対して高品質な有機電子写真感光体を提供することができる。
【0033】
次に、本発明の電子写真感光体の製造方法に使用する材料について簡単に説明する。なお、本発明の製造方法に使用する感光体材料は以下に記載の内容に何ら限定されるものではない。
本発明で用いる導電性基体としては、アルミニウム、銅、ニッケル、ステンレス、真ちゅう等の金属の基体または薄膜シート、またはアルミニウム、錫合金、酸化インジウム等をポリエステルフィルムあるいは紙、金属フィルムの基体などに蒸着したものが挙げられる。
形成される感光体層との接着性改良、付着性改良、基体上の欠陥の被覆及び基体から電荷発生層(CGL)への電荷注入性改良などのために下引き層(UCL)を設けても良い。
【0034】
下引き層(UCL)の材料としては、ポリアミド、共重合ナイロン、カゼイン、ポリビニルアルコール、セルロース、ゼラチン等の樹脂が知られている。これらを各種有機溶剤に溶解し、膜厚が0.1〜5μm程度になるように導電性基体上に塗布される。また、下引層中には、必要に応じて、特に下引層の体積抵抗率の設計、低温/低湿環境下での繰り返えしエージング特性の改善等の理由で、酸化亜鉛、酸化チタン、酸化錫、酸化インジウム、シリカ、酸化アンチモン等の無機顔料が分散含有されることが知られている。
【0035】
電荷発生層(CGL)は、光照射により電荷を発生する電荷発生材料を主成分とし、必要に応じて公知の結合剤、可塑剤、増感剤を含有し、乾燥膜厚が0.1μm以下となるように形成される。
電荷発生材料としては、ペリレン系顔料、多環キノン系顔料、フタロシアニン顔料、金属フタロシアニン系顔料、スクエアリウム色素、アズレニウム色素、チアピリリウム色素、及びカルバソール骨格、スチリルスチルベン骨格、トリフェニルアミン骨格、ジベンゾチオフェン骨格、オキサジアゾール骨格、フルオレノン骨格、ビススチルベン骨格、ジスチリルオキサジアゾール骨格またはジスチリルカルバゾール骨格を有するアゾ顔料などが挙げられる。
【0036】
電荷輸送層(CTL)は、電荷発生材料が発生した電荷を受け入れこれを輸送する能力を有する電荷輸送材料及び結着剤を必須成分とし、必要に応じて公知のレベリング剤、可塑剤、増感剤を含有し、乾燥膜厚が5〜70μmとなるように形成される。
電荷輸送材料としては、ポリ−N−ビニルカルバゾール及びその誘導体、ポリ−r−カルバゾリルエチルグルタメート及びその誘導体、ピレン−ホルムアルデヒド縮合物及びその誘導体、ポリビニルピレン、ポリビニルフェナントレン、オキサゾール誘導体、オキソジアゾール誘導体、イミダゾール誘導体、9−(p−ジエチルアミノスチリル)アントラセン、1,1−ビス(4−ジベンジルアミノフェニル)プロパン、スチリルアントラセン、スチリルピラゾリン、フェニルヒドラゾン類、ヒドラゾン誘導体等の電子供与性物質、或いはフルオレノン誘導体、ジベンゾチオフェン誘導体、インデノチオフェン誘導体、フェナンスレンキノン誘導体、インデノピリジン誘導体、チオキサントン誘導体、ベンゾ[c]シンノリン誘導体、フェナジンオキサイド誘導体、テトラシアノエチレン、テトラシアノキノジメタン、プロマニル、クロラニル、ベンゾキノン等の電子受容性物質などが挙げられる。
【0037】
電荷輸送層(CTL)を構成する結着剤としては、電荷輸送材料と相溶性を有するものであれば良く、例えばポリカーボネート、ポリビニルブチラール、ポリアミド、ポリエステル、ポリケトン、エポキシ樹脂、ポリウレタン、ポリビニルケトン、ポリスチレン、ポリアクリルアミド、フェノール樹脂、フェノキシ樹脂等が挙げられる。
【0038】
浸漬液は、例えば、上述の電荷発生材料が必要に応じて、結合剤、可塑剤、増感剤と共に適当な溶剤、例えば、シクロヘキサノン、ベンゼン、クロロホルム、ジクロロエタン、エチルエーテル、アセトン、エタノール、クロルベンゼン、メチルエチルケトン等に分散されて用いられる。
このような浸漬液3に基体1を浸漬し、上述した条件のもとで引き上げ、乾燥して導電性基体上に電荷発生層(CGL)を形成する。
【0039】
また次に、浸漬液は、例えば、上述した電荷輸送材料及び結着剤が、必要に応じてレベリング剤、可塑剤、増感剤とし共に適当な溶剤、例えば、ジクロロエタン、ベンゼン、クロロホルム、シクロヘキサン、エチルエーテル、アセトン、エタノール、ジクロロベンゼン、メチルエチルケトン等に溶解して用いられる。
このような浸漬液3に、上記の電荷発生層(CGL)が形成された基体1を浸漬し、上述した条件のもとで引き上げ、乾燥して電荷輸送層(CTL)を形成する。
【0040】
【実施例】
次に本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
また実施例1以下の様にして、円筒状導電性基体上に電荷輸送層(CTL)を形成し、電荷輸送層(CTL)の周方向膜厚を測定することにより、電荷輸送層(CTL)の膜バラツキを判断した。ここで、基体に下引き層(UCL)および電荷発生層(CGL)の形成を行っていないが、ともに電荷輸送層(CTL)に比べて薄膜であるために基体での膜厚のバラツキには大きな影響を及ぼさないと考えられる。
【0041】
(実施例1)
テトラヒドロフラン8重量部にヒドラゾン系化合物(4−ジエチルアミノベンズアルデヒド−N,N−ジフェニルヒドラゾン)1重量部とポリカーボネート樹脂(Z−400:三菱ガス化学社製)1重量部とシリコーン系レベリング剤(SH−200:東レシリコーン社製)0.01重量部を混合したものを攪拌溶解調整した電荷輸送層用浸漬液を調製した。浸漬液の粘度は267mPa・sである。次いで図1に示すオーバーフロー方式の浸漬塗布装置を用いて、ポンプ9の流量を調整して、オーバーフロー流速が1.8cm/secとなるようにして、内径80mmのアルミ製円筒状導電性基体を内径95mmの円筒状槽に浸漬し、乾燥後28μmになるよう電荷輸送層(CTL)を形成して擬似感光体ドラムを作製した。作成した擬似感光体ドラムは、MCPD−1100(大塚電子社製)を用いて、基体上部・中部・下部の周方向の膜厚を12点測定し、膜厚の標準偏差により膜厚バラツキを判断した。その結果、表1に示した。ここで、膜厚バラツキが0.4μm以下の場合を○、0.4μmより大きい場合を×とする。
【0042】
(実施例2)
実施例1と同じ液を作成し、ポンプ9の流量を調整して、オーバーフロー流速が1.2cm/secとなるようにし、それ以外は実施例1と同様にして擬似感光体ドラムを作製した。
実施例1および実施例2の製造方法では、表1に示すように、膜厚バラツキが0.4μm以下となり、粘度の高い塗液を用いて、膜厚バラツキが小さく、均一な電荷輸送層(CTL)を形成できた。
【0043】
(比較例1)
実施例1と同じ液を作成し、ポンプ9の流量を調整して、オーバーフロー流速が0.8cm/secとなるようにし、それ以外は実施例1と同様にして擬似感光体ドラムを作製した。
【0044】
(比較例2)
実施例1と同じ液を作成し、ポンプ9の流量を調整して、オーバーフロー流速が3.0cm/secとなるようにし、それ以外は実施例1と同様にして擬似感光体ドラムを作製した。
比較例1および比較例2の製造方法では、表1に示すように、膜厚のバラツキが0.4μm以上となり、膜厚のバラツキが大きいため、均一な電荷輸送層(CTL)を形成できなかった。
【0045】
(実施例3)
テトラヒドロフラン7.5重量部にヒドラゾン系化合物(4−ジエチルアミノベンズアルデヒド−N,N−ジフェニルヒドラゾン)1.25重量部とポリカーボネート樹脂(Z−400:三菱ガス化学社製)1.25重量部とシリコーン系レベリング剤(SH−200:東レシリコーン社製)0.01重量部を混合したものを攪拌溶解調整した電荷輸送層用浸漬液を調製した。浸漬液の粘度は853mPa・sである。それ以外は実施例1と同様にして擬似感光体ドラムを作製した。
実施例3の製造方法では、表1に示すように、膜厚バラツキが0.4μm以下となり、粘度が高い塗液を用いて、膜厚バラツキが小さく、均一な電荷輸送層(CTL)を形成できた。
【0046】
(比較例3)
テトラヒドロフラン7.4重量部にヒドラゾン系化合物(4−ジエチルアミノベンズアルデヒド−N,N−ジフェニルヒドラゾン)1.3重量部とポリカーボネート樹脂(Z−400:三菱ガス化学社製)1.3重量部とシリコーン系レベリング剤(SH−200:東レシリコーン社製)0.01重量部を混合したものを攪拌溶解調整した電荷輸送層用浸漬液を調製した。浸漬液の粘度は953mPa・sである。それ以外は実施例1と同様にして擬似感光体ドラムを作製した。比較例3の製造方法では、表1で示すように、膜厚のバラツキが小さく、均一な電荷輸送層(CTL)を形成できたが、乾燥後28μmになるよう電荷輸送層(CTL)を形成して擬似感光体ドラムを作製した場合、引き上げ速度が1.0(mm/sec)より遅くなり、感光体を生産する場合において、生産効率が悪くなりコストが増大してしまう。
【0047】
(比較例4)
テトラヒドロフラン8.4重量部にヒドラゾン系化合物(4−ジエチルアミノベンズアルデヒド−N,N−ジフェニルヒドラゾン)0.8重量部とポリカーボネート樹脂(Z−400:三菱ガス化学社製)0.8重量部とシリコーン系レベリング剤(SH−200:東レシリコーン社製)0.01重量部を混合したものを攪拌溶解調整した電荷輸送層用浸漬液を調製した。浸漬液の粘度は157mPa・sである。それ以外は実施例1と同様にして擬似感光体ドラムを作製した。比較例4の製造方法では、粘度が低いためにタレが大きくなるので感光体寿命を長くするための厚膜形成が困難となり、膜厚が23μmにしかならなかった。また、表1に示すように、膜厚のバラツキが0.4μm以上となり、膜厚のバラツキが大きいため、均一な電荷輸送層(CTL)を塗布できなかった。
【0048】
(実施例4)
内径80mmのアルミ製円筒状導電性基体に内径134mmの塗布槽を使用し、それ以外は実施例1と同様にして擬似感光体ドラムを作製した。
【0049】
実施例4の製造方法では、表1に示すように、膜厚のバラツキが0.4μm以下となり、膜厚のバラツキが小さく、均一な電荷輸送層(CTL)を塗布できた。
【0050】
(比較例5)
内径65mmのアルミ製円筒状導電性基体に内径70mmの塗布槽を使用し、それ以外は実施例1と同様にして擬似感光体ドラムを作製した。
比較例5の製造方法では、表1に示すように、膜厚のバラツキが0.4μm以上となり、膜厚のバラツキが大きいため、均一な電荷輸送層(CTL)を形成できなかった。一方、内径30mmのアルミ製の円筒状導電性基体に対して内径70mmの槽を使用する場合には、つまりr/R=0.42では感光体径に対して槽径が大きくなり、必要な浸漬液量が多くなりすぎるために、浸漬液の使用効率が悪くなる。
【0051】
【表1】

Figure 2004325570
【0052】
【発明の効果】
以上のように、本発明に係る電子写真感光体の製造方法によれば、オーバーフロー流速を1.0〜2.0cm/secに設定することにより、浸漬液の粘度200〜900mPa・sにおいて、種々の導電性基体にムラのない優れた感光層を確実に形成することができる。また、このようなオーバーフロー方式の浸漬塗布の条件により、ハーフトーン画像などに濃度ムラを発生させない高品質な有機電子写真感光体を製造することがでる。そして、かかる製造方法を利用して、優れた電子写真感光体及びそれを用いた画像形成装置を提供することができる。
【図面の簡単な説明】
【図1】図1は本発明に係る電子写真感光体の製造方法に使用されるオーバーフロー方式の浸漬塗布装置の概略図である。
【符号の説明】
1 導電性基体
2 槽
3 浸漬液
5 受け皿
6 排出口
7 供給口
8 タンク
9 ポンプ
10 フィルター
20 浸漬塗布装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an electrophotographic photoreceptor and a photoreceptor thereof. More specifically, the present invention relates to a method for immersing a conductive substrate in an immersion liquid (photosensitive layer forming solution). An electrophotographic photoreceptor comprising: a liquid flowing from the bottom upward and a liquid layer being pulled up while maintaining the immersion liquid surface at a predetermined height to uniformly form an immersion liquid adhered to the outer surface of the substrate to form a photosensitive layer. And a photoreceptor thereof.
[0002]
[Prior art]
In recent years, the development of organic photoconductive materials (OPCs) for electrophotographic photoreceptors (hereinafter, also simply referred to as “photoreceptors”) has been progressing, and zinc oxide, cadmium sulfide, amorphous selenium, and amorphous It is being used more frequently than inorganic photoconductive materials such as silicon. Electrophotographic photoreceptors using organic photoconductive materials have some problems such as sensitivity, durability, and environmental stability, but they are less expensive than inorganic materials in terms of toxicity, cost, and flexibility in material design. There are many advantages.
[0003]
Therefore, various sensitization methods have been proposed from vigorous studies. Organic electrophotographic photoreceptors include a single-layer type and a multi-layer type in which the photoconductive layer is a photoconductive layer. Above all, a layer containing a substance that generates charge carriers when irradiated with light (hereinafter, referred to as “charge generation substance (CGM)”) (hereinafter, referred to as “charge generation layer (CGL)”), and charge generation. A layer mainly composed of a substance that receives and transports charge carriers generated in the layer (CGL) (hereinafter, referred to as “charge transport substance (CTM)”) (hereinafter, referred to as “charge transport layer (CTL)”) )) (Hereinafter, referred to as a “separated-function photoconductor”) exhibits excellent sensitizing properties, and thus has occupied most of organic photoconductors currently in practical use. I have. Further, it is expected to become the mainstream of photoconductors in the future due to the improvement in durability in recent years.
[0004]
In addition, subbing is performed on the substrate to improve chargeability, prevent unnecessary charge injection from the conductive substrate, cover defects on the conductive substrate, prevent pinholes, and improve the adhesion of the photosensitive layer. By providing the layer (UCL), the durability has been improved.
These photosensitive layers are prepared by dissolving or dispersing an organic photoconductive material for constituting each layer together with a binder resin in an organic solvent to prepare a photosensitive layer coating solution containing the photosensitive material. It is formed by sequentially applying and drying a coating liquid on a conductive substrate.
[0005]
Conventionally, as a method for forming a photosensitive layer of an electrophotographic photosensitive member, various coating methods such as dip coating (or dip coating), spray coating, spinner coating, wire bar coating, blade coating, and roller coating are known. Dip coating and spray coating are mainly used. Above all, dip coating is capable of forming a uniform film on a cylindrical object to be coated (such as a conductive substrate), has a relatively simple mechanism, and is excellent in productivity and cost. It is often used when manufacturing.
In the dip coating method, an object to be immersed, such as a conductive substrate, is immersed in a tank containing an immersion liquid, and then the object to be immersed is lifted up to form a uniform film on the outer peripheral surface of the object to be immersed. Is what you do. However, immersion liquid adheres to the inner peripheral surface of the tank side wall due to the vertical movement of the immersion liquid surface caused by immersion and pulling of the immersion object, and the attached immersion liquid is dried. Is mixed, or the components of the immersion liquid are changed or deteriorated, thereby causing film unevenness.
[0006]
The size of the photoreceptor varies depending on the required specifications such as the life of the copying machine used and the copy speed, etc., and varies from a large diameter to a small diameter. Although it should be immersed in a tank diameter suitable for each photoconductor diameter, it is often performed in the same tank in consideration of production efficiency (replacement of immersion liquid, cleaning).
The coating thickness is determined by the relative moving speed between the substrate surface and the immersion liquid. In general, the higher the relative moving speed, the thicker the coating, and the slower the relative moving speed, the thinner the coating. For this reason, in the above case, in the conventional dip coating, in order to obtain the same film thickness on substrates having different diameters, for example, the moving speed is increased in the case of a small-diameter substrate, and the moving speed is decreased in the case of a large-diameter substrate. There is a need to. For this reason, when the diameter of the substrate is significantly different, a wide operation (speed) range is required for the elevator, and the equipment cost is increased. The film thickness also depends on the viscosity of the immersion liquid. Specifically, at a constant speed, the higher the viscosity, the thicker the film, and the lower the viscosity, the thinner the film.
[0007]
When making fine adjustments to respond to changes in viscosity due to solvent evaporation or immersion liquid compensation during production, etc., it is necessary to make fine adjustments with a small speed adjustment for large diameter substrates, and a high precision motor is required. Become. On the other hand, when the substrate is pulled up from the coating tank, the immersion liquid level drops according to the diameter (volume) of the substrate, but the liquid level does not drop much in the case of a small diameter substrate. However, in the case of a large-diameter substrate, the liquid level drops significantly and the pulling speed is slow, so that the liquid solvent vapor layer accumulated in the space between the height of the immersion liquid level in the tank and the inner wall surface of the tank has to be long. Therefore, the difference in vapor concentration in the longitudinal direction of the substrate becomes large, so that the film thickness tends to be non-uniform. For example, in the upper part of the substrate, the solvent vapor layer in contact is thinner and shorter, so the drying of the immersion liquid is faster and the film thickness is thicker. The thickness decreases. It is conceivable to use a large-diameter tank in order to minimize these effects. However, for a small-diameter substrate, the required amount of immersion liquid is too large, and the use efficiency of the immersion liquid deteriorates. In addition, in the case where a large amount is controlled because the immersion liquid is a combustible material, it is necessary to take measures such as explosion proof.
[0008]
As a method for preventing such a defect, a so-called overflow method is known (for example, see Japanese Patent Application Laid-Open No. 2-173754).
According to the overflow method as described above, the immersion liquid always overflows from the outer edge of the coating tank even during the processing, so that the dried matter does not adhere to the inner wall surface of the tank and the liquid level is constant. The above control is easy because the same film thickness can be obtained at the same pulling speed regardless of the diameter. Further, since there is no difference in the vapor layer in the longitudinal direction of the substrate, the film thicknesses above and below the substrate become uniform.
[0009]
[Patent Document 1]
JP-A-2-173754
[0010]
[Problems to be solved by the invention]
However, in the above overflow method, particularly, the immersion liquid viscosity, the optimal tank diameter for the substrate diameter, and the overflow flow rate have not been proposed.When the immersion viscosity is high, the immersion flow rate at the time of overflow causes The overflow was non-uniform, and the fluctuation of the liquid level in the circumferential direction of the film thickness of the cylindrical substrate was large. For this reason, unevenness occurs in the photosensitive layer, and as a result, in the image forming apparatus, density unevenness occurs in the halftone image. This phenomenon has been particularly remarkable when a thick photosensitive layer is applied in order to satisfy the demands for high printing durability and long life of the photoconductor in response to recent environmental requirements. As described above, in the conventional overflow method, no appropriate condition has been found so that the variation in the film thickness in the circumferential direction of the photosensitive drum can be reduced with the immersion liquid having a high viscosity.
[0011]
Accordingly, an object of the present invention is to generate uneven density in a halftone image or the like by using an overflow immersion coating method capable of reliably forming an excellent photosensitive layer without unevenness on various substrates. An object of the present invention is to provide a method of manufacturing an electrophotographic photosensitive member without the above, a photosensitive member, and an image forming apparatus using the same.
[0012]
[Means for Solving the Problems]
The present inventors, in the overflow-type dip coating method, when pulling up the conductive substrate as the object to be immersed from the immersion liquid, maintain the viscosity of the immersion liquid in a predetermined range, and, the flow rate of the immersion liquid, That is, it has been found that an excellent photosensitive layer without unevenness can be surely formed on the substrate by performing the dip coating method by setting the flow rate in the range of 1.0 to 2.0 cm / sec in detail. It has been reached.
That is, the present invention is characterized by satisfying the following configurations (1) to (8) and conditions.
[0013]
(1) A conductive substrate, which is an object to be immersed, is immersed in an immersion liquid, and when the substrate is pulled up, the immersion liquid overflows at the upper portion and is pulled up while maintaining the immersion liquid surface at a substantially predetermined height. In a method for producing an electrophotographic photoreceptor, wherein a immersion liquid covering the outer surface of the substrate is formed as a photosensitive layer, the viscosity of the immersion liquid is in the range of 200 to 900 mPa · s, and at least the cylindrical conductive substrate is pulled up. A process for producing an electrophotographic photosensitive member, wherein the flow rate of overflow of the immersion liquid is 1.0 to 2.0 cm / sec.
[0014]
(2) The immersion liquid is stored in a tank, and the height of the immersion liquid is maintained while overflowing the immersion liquid from the upper edge of the tank formed at a predetermined height. (1) The production method according to (1).
[0015]
(3) If the inner diameter of the tank is 2R (mm) and the outer diameter of the cylindrical conductive substrate is 2r (mm), 0.5 <r / R <0.85 and R− The method according to (2), wherein a photosensitive layer is formed on the substrate so as to satisfy a relational expression represented by r ≦ 30.
(4) The photosensitive layer is formed on the substrate such that the pulling speed of the substrate is v (mm / sec) and v satisfies the relationship of 1.0 <v <5.0. ) To (3).
(5) The method according to (1) to (4), wherein the photosensitive layer is formed on the substrate such that the thickness of the photosensitive layer is d (μm) and d satisfies the relationship of d ≧ 25. The manufacturing method as described.
[0016]
(6) When the photosensitive layer is formed by sequentially laminating at least a charge generation layer (CGL) and a charge transport layer on the substrate surface, the immersion liquid is at least a layer forming liquid for the charge transport layer. (1) to (5).
[0017]
(7) A photoreceptor, wherein the photosensitive layer of the photoreceptor is formed by the manufacturing method described in (1) to (6).
[0018]
(8) An image forming apparatus, wherein the photoconductor is the photoconductor described in (7) above.
[0019]
In the method of manufacturing an electrophotographic photoreceptor according to the present invention, the conductive substrate, which is an object to be immersed, is immersed in an immersion liquid, and when the substrate is pulled up, the immersion liquid overflows at an upper portion to substantially maintain the immersion liquid surface at a predetermined level. The immersion liquid for coating the outer surface of the substrate is formed as a photosensitive layer while maintaining the height of the substrate.
In the method for producing an electrophotographic photoreceptor, the viscosity of the immersion liquid is in the range of 200 to 900 mPa · s, and the flow velocity of the immersion liquid at least when the cylindrical conductive substrate is pulled up is 1.0 to 2 0.0 cm / sec.
[0020]
When a substrate having a predetermined volume is pulled up from the immersion liquid, the immersion liquid level generally fluctuates. In the present invention, the immersion liquid is maintained at a predetermined level so that the immersion liquid level can be maintained at a substantially predetermined height. Having a flow velocity of In this case, as a preferable method, the immersion liquid is contained in a tank, and the height of the immersion liquid is maintained while overflowing the immersion liquid from the upper edge of the tank formed at a predetermined height. It is.
In the present invention, the immersion liquid is usually fed from below the tank to form a flow, but in this case, the immersion liquid does not necessarily need to overflow from the upper edge of the tank, and the immersion liquid level is substantially maintained at a predetermined height. As long as possible, a flow hole or the like may be provided at a predetermined position on an upper wall such as a tank. However, in order to avoid adhesion of the dried matter to the inner wall surface of the tank and to eliminate the difference in the vapor layer in the longitudinal direction of the base, the overflow from the upper edge of the tank is desirable as described above. Also, the tank used does not necessarily need to be cylindrical, but if the substrate or the like is cylindrical or columnar, it is desirable that the tank has a corresponding shape.
[0021]
In the method for producing an electrophotographic photoreceptor according to the present invention, when the viscosity of the immersion liquid is in the range of 200 to 900 mPa · s, the flow rate of the overflow of the immersion liquid when pulling up the conductive substrate is 1.0 to 2.0 cm. In the range of / sec, there is no one-sided flow (channeling) of the immersion liquid at the time of overflow, the overflow does not become uneven, and the waving of the immersion liquid surface is suppressed. For this reason, there is no variation in the circumferential direction of the film thickness of the immersion liquid coating the substrate. As a result, unevenness does not occur in the photosensitive layer of the substrate, and a halftone image can be clearly produced in an image forming apparatus using the photosensitive member manufactured as described above. In particular, even in the case of a thick photosensitive layer, even in the case of an immersion liquid having a high viscosity, variation in the thickness in the circumferential direction of the substrate is reduced as compared with the conventional overflow method.
[0022]
When the method for manufacturing an electrophotographic photoreceptor according to the present invention is applied, the photoreceptor layer may be a single photosensitive layer containing a charge generating material and a charge transporting material, or may be a charge generating layer (CGL), a charge transporting material. A stack of layers (CTL) may be used.
Here, when the photosensitive layer is formed by laminating the charge generation layer (CGL) and the charge transport layer (CTL), a high-quality immersion liquid or the like for the charge transport layer can be used as long as the immersion liquid satisfies the above conditions. Organic electrophotographic photoreceptor can be provided.
Therefore, the photoreceptor manufactured by such a manufacturing method can be used as the electrophotographic photoreceptor according to the present invention, and further, such a photoreceptor can be incorporated in the image forming apparatus according to the present invention. An image can be formed.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method of manufacturing an electrophotographic photosensitive member, an electrophotographic photosensitive member, and an image forming apparatus using the same according to the present invention will be described in detail with reference to the accompanying drawings. The method for producing the electrophotographic photosensitive member according to the present invention is not limited to these.
FIG. 1 is a schematic view of an overflow type dip coating apparatus used in the method of manufacturing an electrophotographic photosensitive member according to the present invention.
[0024]
As shown in FIG. 1, in a dip coating apparatus, a cylindrical conductive substrate 1 which is an object to be immersed is immersed in an immersion liquid 3, and when the substrate 1 is pulled up (in the direction of arrow A in FIG. 1), the immersion is performed. The liquid 3 overflows at the upper portion and is pulled up while maintaining the immersion liquid surface 3a at a substantially predetermined height to form the immersion liquid 3 for coating the outer surface of the substrate as a photosensitive layer. Although only one substrate is shown in this drawing, the present invention can be applied to a method using a plurality of substrates simultaneously.
In this case, in the form of the dip coating apparatus shown in FIG. 1, the dip liquid 3 is stored in the substantially cylindrical tank 2 and overflows from the upper edge 2a of the tank 2 formed at a predetermined height. The height of the immersion liquid surface 3a is maintained while the immersion is performed.
[0025]
That is, in the dip coating apparatus 20, a predetermined immersion liquid 3 is stored in the cylindrical tank 2, and the tray 5 is provided around the side wall of the tank 2. The immersion liquid 3 is sent out of the tank 8 by the pump 9, and is supplied through the filter 10 from the liquid supply port 7 into the tank 2 as shown by the arrow B. The immersion liquid 3 flows upward from below, flows over the upper edge 2 a of the side wall of the tank 2, uniformly overflows in the radial direction or the radial direction of the tank 2, and is collected by the receiving tray 5. The overflowed immersion liquid is returned to the tank 8 from the outlet 6 of the receiving tray 5. Therefore, the immersion liquid is circulated between the cylindrical tank 2 and the tank 8.
The cylindrical conductive substrate 1 is immersed in the immersion liquid 3, then pulled up in a direction indicated by an arrow A at a predetermined lifting speed, and subjected to dip coating. During the immersion coating, the immersion liquid 3 continues to overflow beyond the upper edge of the tank 2 as described above, so that the level of the immersion liquid 3 is kept substantially constant.
[0026]
The viscosity of the immersion liquid 3 is 200 to 900 mPa · s, and when the substrate 1 is pulled up from the immersion liquid 3, the overflow flow rate of the immersion liquid 3 is in the range of 1.0 to 2.0 cm / sec. The overflow flow rate is the rate of rise of the immersion liquid flowing through an area partitioned by the tank 2 including the substrate 1 and represented by (overflow flow rate) / (area of the tank (or immersion liquid surface) -cross-sectional area of the substrate).
[0027]
In the case where the viscosity of the immersion liquid 3 is 200 to 900 mPa · s, if the overflow flow rate is lower than 1.0 cm / sec, the immersion liquid 3 overflows in one side (channeling), that is, the immersion liquid 3 One-sided flow is likely to occur at the upper edge portion 2a, and the thickness of the film formed by the immersion liquid 3 covering the substrate 1 is likely to vary in the circumferential direction of the substrate.
If the overflow flow rate is higher than 2.0 cm / sec, the fluctuation of the liquid surface becomes large, so that the film thickness formed by the immersion liquid 3 covering the substrate 1 also varies in the circumferential direction of the substrate. As a result, the photosensitive member has many film defects and, consequently, many image defects.
[0028]
When the viscosity of the immersion liquid 3 exceeds 900 mPa · s, the processing speed is reduced to obtain a desired film thickness, and the productivity is deteriorated. On the other hand, if the viscosity of the immersion liquid 3 is less than 200 mPa · s, the sagging becomes large, so that it is impossible to form a thick film for extending the life of the photoconductor.
As described above, according to the present invention, it is possible to provide a high-quality organic electrophotographic photoreceptor using an immersion liquid having a viscosity within an optimum range.
[0029]
Further, when the inner diameter of the cylindrical tank 2 is 2R (mm) and the outer diameter of the base 1 is 2r (mm), 0.5 <r / R <0.85 and Rr ≦ 30. It is desirable to form a photosensitive layer on the substrate 1 so as to satisfy the following relational expression.
In this connection, it is possible to provide a high-quality organic electrophotographic photosensitive member with a simple control.
When r / R ≦ 0.5, the diameter of the tank 2 becomes larger than the diameter of the base 1, and even if the base 1 is small, a large amount of the immersion liquid is required, and the use efficiency of the immersion liquid 3 deteriorates. When the immersion liquid 3 is a dangerous substance, it is not preferable because it is necessary to take measures such as explosion-proof when managing a large amount. When r / R ≧ 0.85, the distance between the substrate 1 and the wall of the tank 2 is short, so that when the immersion liquid 3 overflows beyond the upper edge 2a of the side wall of the tank 2, the liquid level 3a Are more likely to be affected by the lifting of the substrate 1, and the ripples on the liquid surface 3a become larger, so that the above-mentioned variation in film thickness is more likely to occur, and there are many photosensitive layer defects and many image defects when used in an image forming apparatus. It becomes a photoreceptor. When R−r> 30, the diameter of the tank 2 becomes larger than the diameter of the substrate 1, and the use efficiency of the immersion liquid 3 is deteriorated. When the immersion liquid 3 is a dangerous substance, a large amount is controlled. It is not preferable because it is necessary to take measures such as explosion proof. When the tank is not cylindrical, R is calculated by obtaining the circle-equivalent diameter from the plane area of the tank. In the case of simultaneous application of a large number of tanks, R is calculated by obtaining an equivalent circle diameter from a value obtained by dividing the area of the flat surface of the tank by the number of processing tanks.
[0030]
Next, it is preferable that a film of the immersion liquid is formed on the substrate 1 such that the pulling speed of the substrate 1 is v (mm / sec) and v satisfies the relationship of 1.0 <v <5.0.
With the lifting speed v, a high-quality organic electrophotographic photosensitive member can be easily obtained. If the pulling speed is less than 1.0 (mm / sec), the production efficiency is deteriorated and the cost is increased when producing the photoconductor. When the lifting speed exceeds 5.0 (mm / sec), when the photosensitive member substrate 1 is pulled up, the ripples on the liquid surface 3a become large, so that the above-mentioned variation in the film thickness is likely to occur, The photosensitive member has many defects in the photosensitive layer and thus many image defects. In addition, a pump having a large capacity is required to maintain the overflow flow rate, and further capital investment is required.
[0031]
In the production, when the thickness of the photosensitive layer formed on the substrate 1 is d (μm), it is desirable that the photosensitive layer be formed on the substrate 1 so that d satisfies the relationship d ≧ 25.
If the above relationship is satisfied in order to satisfy the requirements of high printing durability and long life of the photoreceptor in response to recent environmental requirements, a high quality organic electrophotographic photoreceptor having a long life can be obtained.
[0032]
Further, in the method of manufacturing an electrophotographic photoreceptor, when at least a charge generation layer (CGL) and a charge transport layer are sequentially laminated on the surface of the substrate 1 to form the photosensitive layer, at least the immersion liquid is applied to the charge transport layer. It can be characterized as a layer forming liquid.
The photoconductor may be a single photosensitive layer containing a charge generation material and a charge transport material, or may be a laminate of a charge generation layer (CGL) and a charge transport layer (CTL).
Here, when the photosensitive layer is formed by laminating the charge generation layer (CGL) and the charge transport layer (CTL), in the present invention, at least one of the charge transport layer and the charge generation layer is an immersion liquid according to the above-described conditions. In particular, when the immersion liquid is used for the charge transport layer, a high-quality organic electrophotographic photoreceptor can be provided with respect to the use of a high-viscosity immersion liquid.
[0033]
Next, materials used in the method of manufacturing an electrophotographic photoreceptor of the present invention will be briefly described. The photosensitive material used in the production method of the present invention is not limited to the contents described below.
As the conductive substrate used in the present invention, a metal substrate or a thin film sheet of aluminum, copper, nickel, stainless steel, brass, or the like, or aluminum, a tin alloy, indium oxide, or the like is deposited on a polyester film, paper, or a metal film substrate. What was done.
An undercoat layer (UCL) is provided to improve the adhesion to the formed photoreceptor layer, improve the adhesion, cover defects on the substrate, and improve the charge injection from the substrate to the charge generation layer (CGL). Is also good.
[0034]
As a material of the undercoat layer (UCL), resins such as polyamide, copolymerized nylon, casein, polyvinyl alcohol, cellulose, and gelatin are known. These are dissolved in various organic solvents and applied on a conductive substrate so that the film thickness becomes about 0.1 to 5 μm. If necessary, the undercoat layer may contain zinc oxide, titanium oxide, etc., particularly for the purpose of designing the volume resistivity of the undercoat layer and improving the repeated aging characteristics in a low-temperature / low-humidity environment. It is known that inorganic pigments such as tin oxide, indium oxide, silica and antimony oxide are dispersed and contained.
[0035]
The charge generation layer (CGL) contains, as a main component, a charge generation material that generates charges by light irradiation, and contains a known binder, a plasticizer, and a sensitizer, if necessary, and has a dry film thickness of 0.1 μm or less. It is formed so that
Examples of the charge generation material include a perylene pigment, a polycyclic quinone pigment, a phthalocyanine pigment, a metal phthalocyanine pigment, a squarium dye, an azulhenium dye, a thiapyrylium dye, and a carbazole skeleton, a styrylstilbene skeleton, a triphenylamine skeleton, and a dibenzothiophene skeleton. And an azo pigment having an oxadiazole skeleton, a fluorenone skeleton, a bistilbene skeleton, a distyryloxadiazole skeleton or a distyrylcarbazole skeleton.
[0036]
The charge transport layer (CTL) contains a charge transport material having a capability of receiving and transporting charges generated by the charge generating material and a binder as essential components, and if necessary, a known leveling agent, a plasticizer, and a sensitizer. And a dry film thickness of 5 to 70 μm.
Examples of charge transport materials include poly-N-vinylcarbazole and its derivatives, poly-r-carbazolylethylglutamate and its derivatives, pyrene-formaldehyde condensate and its derivatives, polyvinylpyrene, polyvinylphenanthrene, oxazole derivatives, oxodiazole Electron-donating substances such as derivatives, imidazole derivatives, 9- (p-diethylaminostyryl) anthracene, 1,1-bis (4-dibenzylaminophenyl) propane, styrylanthracene, styrylpyrazoline, phenylhydrazones, and hydrazone derivatives; Alternatively, fluorenone derivatives, dibenzothiophene derivatives, indenothiophene derivatives, phenanthrenequinone derivatives, indenopyridine derivatives, thioxanthone derivatives, benzo [c] cinnoline derivatives, phena Emissions oxide derivatives, tetracyanoethylene, tetracyanoquinodimethane, Puromaniru, chloranil, and electron accepting substance benzoquinone and the like.
[0037]
The binder constituting the charge transport layer (CTL) may be any one that is compatible with the charge transport material, such as polycarbonate, polyvinyl butyral, polyamide, polyester, polyketone, epoxy resin, polyurethane, polyvinyl ketone, and polystyrene. , Polyacrylamide, phenol resin, phenoxy resin and the like.
[0038]
The immersion liquid is, for example, the above-mentioned charge generating material, if necessary, together with a binder, a plasticizer, and a sensitizer, together with a suitable solvent such as cyclohexanone, benzene, chloroform, dichloroethane, ethyl ether, acetone, ethanol, and chlorobenzene. , Methyl ethyl ketone and the like.
The substrate 1 is immersed in such an immersion liquid 3, pulled up under the conditions described above, and dried to form a charge generation layer (CGL) on the conductive substrate.
[0039]
Next, the immersion liquid is, for example, the above-described charge transport material and binder, if necessary as a leveling agent, a plasticizer, a suitable solvent together with a sensitizer, for example, dichloroethane, benzene, chloroform, cyclohexane, It is used by dissolving it in ethyl ether, acetone, ethanol, dichlorobenzene, methyl ethyl ketone and the like.
The substrate 1 on which the above-described charge generation layer (CGL) is formed is immersed in such an immersion liquid 3, pulled up under the above-described conditions, and dried to form a charge transport layer (CTL).
[0040]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
Example 1 A charge transport layer (CTL) was formed on a cylindrical conductive substrate as described below, and the thickness of the charge transport layer (CTL) in the circumferential direction was measured. Of the film was determined. Here, the undercoat layer (UCL) and the charge generation layer (CGL) are not formed on the base, but since both are thinner than the charge transport layer (CTL), the thickness of the base may vary. It is not expected to have a significant effect.
[0041]
(Example 1)
8 parts by weight of tetrahydrofuran, 1 part by weight of a hydrazone compound (4-diethylaminobenzaldehyde-N, N-diphenylhydrazone), 1 part by weight of a polycarbonate resin (Z-400: manufactured by Mitsubishi Gas Chemical Company), and a silicone leveling agent (SH-200) (Manufactured by Toray Silicone Co., Ltd.) was prepared by mixing and stirring and dissolving 0.01 part by weight to prepare an immersion liquid for a charge transport layer. The viscosity of the immersion liquid is 267 mPa · s. Next, the flow rate of the pump 9 was adjusted using the overflow type dip coating apparatus shown in FIG. 1 so that the overflow flow rate was 1.8 cm / sec, and the aluminum cylindrical conductive substrate having an inner diameter of 80 mm was immersed. It was immersed in a 95 mm cylindrical bath, and after drying, a charge transport layer (CTL) was formed to a thickness of 28 μm to produce a pseudo-photosensitive drum. Using the MCPD-1100 (manufactured by Otsuka Electronics Co., Ltd.), the pseudo photoreceptor drum was measured at 12 points in the circumferential direction of the upper, middle and lower portions of the base, and the thickness variation was determined based on the standard deviation of the thickness. did. The results are shown in Table 1. Here, the case where the variation in the film thickness is 0.4 μm or less is represented by ○, and the case where the variation is greater than 0.4 μm is represented by ×.
[0042]
(Example 2)
The same liquid as in Example 1 was prepared, and the flow rate of the pump 9 was adjusted so that the overflow flow rate was 1.2 cm / sec.
In the production methods of Example 1 and Example 2, as shown in Table 1, the film thickness variation was 0.4 μm or less, and the coating film having a high viscosity was used. CTL).
[0043]
(Comparative Example 1)
The same liquid as in Example 1 was prepared, and the flow rate of the pump 9 was adjusted so that the overflow flow rate became 0.8 cm / sec.
[0044]
(Comparative Example 2)
A pseudo-photosensitive drum was prepared in the same manner as in Example 1, except that the same liquid as in Example 1 was prepared, the flow rate of the pump 9 was adjusted so that the overflow flow rate became 3.0 cm / sec.
In the production methods of Comparative Example 1 and Comparative Example 2, as shown in Table 1, the variation in the film thickness was 0.4 μm or more, and the variation in the film thickness was large, so that a uniform charge transport layer (CTL) could not be formed. Was.
[0045]
(Example 3)
To 7.5 parts by weight of tetrahydrofuran, 1.25 parts by weight of a hydrazone-based compound (4-diethylaminobenzaldehyde-N, N-diphenylhydrazone), 1.25 parts by weight of a polycarbonate resin (Z-400: manufactured by Mitsubishi Gas Chemical Company), and a silicone-based compound An immersion liquid for a charge transport layer was prepared by mixing and stirring and dissolving 0.01 parts by weight of a leveling agent (SH-200: manufactured by Toray Silicone Co., Ltd.). The viscosity of the immersion liquid is 853 mPa · s. Except for this, the pseudo photosensitive drum was manufactured in the same manner as in Example 1.
In the manufacturing method of Example 3, as shown in Table 1, a uniform thickness of the charge transport layer (CTL) is formed using a coating liquid having a thickness variation of 0.4 μm or less and a high viscosity, using a coating liquid having a high viscosity. did it.
[0046]
(Comparative Example 3)
To 7.4 parts by weight of tetrahydrofuran, 1.3 parts by weight of a hydrazone compound (4-diethylaminobenzaldehyde-N, N-diphenylhydrazone), 1.3 parts by weight of a polycarbonate resin (Z-400: manufactured by Mitsubishi Gas Chemical Company), and a silicone compound An immersion liquid for a charge transport layer was prepared by mixing and stirring and dissolving 0.01 parts by weight of a leveling agent (SH-200: manufactured by Toray Silicone Co., Ltd.). The viscosity of the immersion liquid is 953 mPa · s. Except for this, the pseudo photosensitive drum was manufactured in the same manner as in Example 1. In the manufacturing method of Comparative Example 3, as shown in Table 1, a uniform thickness of the charge transport layer (CTL) was small and the charge transport layer (CTL) was formed to have a thickness of 28 μm after drying. When the pseudo photoconductor drum is manufactured in such a manner, the pulling speed is slower than 1.0 (mm / sec), and when the photoconductor is manufactured, the production efficiency is deteriorated and the cost is increased.
[0047]
(Comparative Example 4)
To 8.4 parts by weight of tetrahydrofuran, 0.8 part by weight of a hydrazone-based compound (4-diethylaminobenzaldehyde-N, N-diphenylhydrazone), 0.8 parts by weight of a polycarbonate resin (Z-400: manufactured by Mitsubishi Gas Chemical Company), and a silicone-based compound An immersion liquid for a charge transport layer was prepared by mixing and stirring and dissolving 0.01 parts by weight of a leveling agent (SH-200: manufactured by Toray Silicone Co., Ltd.). The viscosity of the immersion liquid is 157 mPa · s. Except for this, the pseudo photosensitive drum was manufactured in the same manner as in Example 1. In the manufacturing method of Comparative Example 4, sagging was increased due to low viscosity, so that it was difficult to form a thick film for extending the life of the photoconductor, and the film thickness was only 23 μm. Further, as shown in Table 1, the variation in the film thickness was 0.4 μm or more, and the variation in the film thickness was large, so that a uniform charge transport layer (CTL) could not be applied.
[0048]
(Example 4)
A pseudo-photosensitive drum was manufactured in the same manner as in Example 1 except that a coating tank having an inner diameter of 134 mm was used for an aluminum cylindrical conductive substrate having an inner diameter of 80 mm.
[0049]
In the manufacturing method of Example 4, as shown in Table 1, the dispersion of the film thickness was 0.4 μm or less, the dispersion of the film thickness was small, and a uniform charge transport layer (CTL) could be applied.
[0050]
(Comparative Example 5)
A pseudo-photosensitive drum was produced in the same manner as in Example 1, except that a coating tank having an inner diameter of 70 mm was used for an aluminum cylindrical conductive substrate having an inner diameter of 65 mm.
In the manufacturing method of Comparative Example 5, as shown in Table 1, the variation in the film thickness was 0.4 μm or more, and the variation in the film thickness was large, so that a uniform charge transport layer (CTL) could not be formed. On the other hand, when a tank having an inner diameter of 70 mm is used for a cylindrical conductive substrate made of aluminum having an inner diameter of 30 mm, that is, when r / R = 0.42, the tank diameter becomes larger than the diameter of the photoreceptor. Since the amount of the immersion liquid is too large, the use efficiency of the immersion liquid is deteriorated.
[0051]
[Table 1]
Figure 2004325570
[0052]
【The invention's effect】
As described above, according to the method of manufacturing an electrophotographic photosensitive member according to the present invention, by setting the overflow flow rate to 1.0 to 2.0 cm / sec, the viscosity of the immersion liquid can be varied from 200 to 900 mPa · s. An excellent photosensitive layer without unevenness can be reliably formed on the conductive substrate. Further, under the conditions of the overflow-type dip coating, a high-quality organic electrophotographic photoreceptor that does not cause density unevenness in a halftone image or the like can be manufactured. By using such a manufacturing method, an excellent electrophotographic photosensitive member and an image forming apparatus using the same can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view of an overflow type dip coating apparatus used in a method of manufacturing an electrophotographic photosensitive member according to the present invention.
[Explanation of symbols]
1 conductive substrate
2 tanks
3 Immersion liquid
5 saucer
6 outlet
7 Supply port
8 tanks
9 pump
10 Filter
20 dip coating equipment

Claims (8)

被浸漬体である導電性基体を浸漬液に浸漬し、該基体を引き上げる際に、該浸漬液を上部でオーバーフローさせてその浸漬液面をほぼ所定の高さに維持させながら引き上げて、該基体外面を被覆する浸漬液を感光層として形成させてなる電子写真感光体の製造方法において、
上記浸漬液の粘度が200〜900mPa・sの範囲にあり、少なくとも導電性基体を引き上げる際の浸漬液のオーバーフローの流速が1.0〜2.0cm/secであることを特徴とする電子写真感光体の製造方法。
When the conductive substrate, which is an object to be immersed, is immersed in an immersion liquid and the substrate is pulled up, the immersion liquid overflows at the top and is pulled up while maintaining the immersion liquid surface at a substantially predetermined height. In a method for producing an electrophotographic photoreceptor formed by forming a immersion liquid covering the outer surface as a photosensitive layer,
An electrophotographic photosensitive apparatus, wherein the viscosity of the immersion liquid is in the range of 200 to 900 mPa · s, and the flow velocity of the immersion liquid at least when the conductive substrate is pulled up is 1.0 to 2.0 cm / sec. How to make the body.
上記浸漬液を槽に収容し、所定の高さに形成された該槽の上縁から浸漬液をオーバーフローさせながら上記浸漬液面の高さを維持してなることを特徴とする請求項1記載の製造方法。The immersion liquid is contained in a tank, and the height of the immersion liquid is maintained while overflowing the immersion liquid from an upper edge of the tank formed at a predetermined height. Manufacturing method. 上記槽の内径を2R(mm)とし、円筒状に形成された上記導電性基体の外径を2r(mm)とすると、0.5<r/R<0.85、かつR−r≦30、で表される関係式を満たすようにして上記基体に感光層を形成することを特徴とする請求項2記載の製造方法。When the inner diameter of the tank is 2R (mm) and the outer diameter of the cylindrical conductive substrate is 2r (mm), 0.5 <r / R <0.85 and Rr ≦ 30 3. The method according to claim 2, wherein the photosensitive layer is formed on the substrate so as to satisfy the relational expression represented by the following formula. 上記基体の引上げ速度をv(mm/sec)とし、vが1.0<v<5.0の関係を満たすように上記基体に感光層を形成することを特徴とする請求項1乃至3項のいずれかに記載の製造方法。4. The photosensitive layer is formed on the substrate so that the pulling speed of the substrate is v (mm / sec) and v satisfies the relationship of 1.0 <v <5.0. The production method according to any one of the above. 上記感光層の膜厚をd(μm)とし、dがd≧25の関係を満たすようにして上記基体に感光層を形成することを特徴とする請求項1乃至4のいずれかに記載の製造方法。The method according to claim 1, wherein the photosensitive layer is formed on the substrate such that the thickness of the photosensitive layer is d (μm), and d satisfies a relationship of d ≧ 25. Method. 上記基体面に少なくとも電荷発生層(CGL)、及び電荷輸送層を順次積層して上記感光層を形成する場合に、上記浸漬液を少なくとも電荷輸送層の層成形液とすることを特徴とする請求項1乃至5項のいずれかに記載の製造方法。When the photosensitive layer is formed by sequentially laminating at least a charge generation layer (CGL) and a charge transport layer on the substrate surface, the immersion liquid is at least a layer forming liquid for the charge transport layer. Item 6. The method according to any one of Items 1 to 5. 上記請求項1乃至6項のいずれかに記載の製造方法によって形成されていることを特徴とする感光体。A photoreceptor formed by the manufacturing method according to claim 1. 装置に上記請求項7に記載された電子写真感光体が用いられてなることを特徴とする画像形成装置。An image forming apparatus, wherein the electrophotographic photosensitive member according to claim 7 is used in the apparatus.
JP2003117153A 2003-04-22 2003-04-22 Method for manufacturing electrophotographic photoreceptor and photoreceptor Pending JP2004325570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117153A JP2004325570A (en) 2003-04-22 2003-04-22 Method for manufacturing electrophotographic photoreceptor and photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117153A JP2004325570A (en) 2003-04-22 2003-04-22 Method for manufacturing electrophotographic photoreceptor and photoreceptor

Publications (1)

Publication Number Publication Date
JP2004325570A true JP2004325570A (en) 2004-11-18

Family

ID=33497135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117153A Pending JP2004325570A (en) 2003-04-22 2003-04-22 Method for manufacturing electrophotographic photoreceptor and photoreceptor

Country Status (1)

Country Link
JP (1) JP2004325570A (en)

Similar Documents

Publication Publication Date Title
EP2349590B1 (en) Dip-coating process
JP4210291B2 (en) Layer forming apparatus for electrophotographic photosensitive member
JP2002049162A (en) Coating applicator for electrophotographic photoreceptor and method for manufacturing the same
JP3885934B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2004325570A (en) Method for manufacturing electrophotographic photoreceptor and photoreceptor
JP6394066B2 (en) Rotating body manufacturing method, photoreceptor manufacturing method
JP4414366B2 (en) Electrophotographic photoreceptor manufacturing apparatus and manufacturing method
JP2005092052A (en) Method for manufacturing electrophotographic photoreceptor and the photoreceptor
JP2986004B2 (en) Electrophotographic photoreceptor manufacturing apparatus and manufacturing method
JP2005077620A (en) Method for manufacturing electrophotographic photoreceptor and photoreceptor
JP4568674B2 (en) Electrophotographic photoreceptor manufacturing apparatus and manufacturing method
JP2014178365A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP5274628B2 (en) Coating apparatus, method for producing electrophotographic photosensitive member, and method for mass production of electrophotographic photosensitive member
JP5446333B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2002189305A (en) Apparatus for producing electrophotographic photoreceptor and method therefor
JP5341450B2 (en) Coating apparatus and method for producing electrophotographic photosensitive member
JP4856892B2 (en) Coating method and method for producing electrophotographic photosensitive member
JP2013134490A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor manufactured by manufacturing method
JP2006337759A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor employing the same
JP3556353B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2003076042A (en) Method for manufacturing electrophotographic photoreceptor
JPH1172931A (en) Apparatus for production of photoreceptor
JP2002072518A (en) Manufacturing method and manufacturing aperture for electrophotographic photoreceptor
JP2002244311A (en) Electrophotographic sensitive body, and image forming device and process cartridge using the same
JP2005266071A (en) Method for manufacturing electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Effective date: 20070404

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A02 Decision of refusal

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A02