JP2004324936A - Refrigerating cycle device and restrictor - Google Patents

Refrigerating cycle device and restrictor Download PDF

Info

Publication number
JP2004324936A
JP2004324936A JP2003117372A JP2003117372A JP2004324936A JP 2004324936 A JP2004324936 A JP 2004324936A JP 2003117372 A JP2003117372 A JP 2003117372A JP 2003117372 A JP2003117372 A JP 2003117372A JP 2004324936 A JP2004324936 A JP 2004324936A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
throttle valve
flow path
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003117372A
Other languages
Japanese (ja)
Other versions
JP4096796B2 (en
Inventor
Kinbai Sai
琴培 崔
Masayuki Takeuchi
雅之 竹内
Yoshitaka Tomatsu
義貴 戸松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003117372A priority Critical patent/JP4096796B2/en
Publication of JP2004324936A publication Critical patent/JP2004324936A/en
Application granted granted Critical
Publication of JP4096796B2 publication Critical patent/JP4096796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/32Expansion valves having flow rate limiting means other than the valve member, e.g. having bypass orifices in the valve body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device using a restrictor 5 having simple construction for varying the restriction of an evaporator 6 on the upstream side to prevent the degradation of the performance and using the restrictor 5 having simple construction for suppressing an increase in cost, and the restrictor 5. <P>SOLUTION: Differential pressure between the front and rear of the evaporator 6 is used for varying the degree of the restriction with the restrictor 5. In this method, attention is focused on the fact that greater pressure damage is given to the evaporator 6 when the evaporator 6 has a high load and a high flow rate of refrigerant or the evaporator 6 has great super heat. By using the differential pressure between the front and rear of the evaporator 6 for varying the degree of the restriction, the optimum restriction is established depending on the load, thus preventing the degradation of performance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒の膨張動力を利用して冷媒の昇圧を行うエジェクタを用いた冷凍サイクル(エジェクタサイクル)装置、およびエジェクタを用いた冷凍サイクル装置用の絞り弁に関するものである。
【0002】
【従来の技術】
従来、図10に示すように、冷媒圧縮機1・冷媒放熱器2・エジェクタ3および気液分離器4を冷媒配管により環状に連結すると共に、気液分離器4で分離された液相冷媒を固定絞り50等の減圧装置と冷媒蒸発器6とを設置したバイパス配管を経てエジェクタ3の吸引部32に吸引させるようにした冷凍サイクル(エジェクタサイクル)装置が提案されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平11−37577号公報(第2−4頁、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術において、冷媒蒸発器の上流に設けられる絞りは、負荷により最適な絞り度合いが異なる。例えば、図11は、実験による高負荷時と低負荷時での冷媒蒸発器(エバポレータ)前絞り径に対するCOP(成績係数)の関係を示すグラフである。図11のグラフが示すように、高負荷時は絞り径3mm程度が最適値であるのに対し、低負荷時は最適値が0.6mm程度となり、負荷により最適なエバ前絞り径が異なっていることが分かる。そしてこれが、最適値から外れるほど性能低下の割合が大きくなるという問題になる。
【0005】
これに対し、冷媒蒸発器上流の絞りを可変させる方法として、冷媒蒸発器出口冷媒のスーパーヒート(過熱度=冷媒蒸発器出口冷媒温度−冷媒蒸発器入口冷媒温度)を感知して絞り径を可変させるスーパーヒート制御弁があるが、機械式としても感温部のガス封入が必要となる等で構造が複雑なり、コストも高くなってしまうという問題がある。
【0006】
本発明は、上記従来の問題に鑑みて成されたものであり、その目的は、簡素な構造の絞り弁で、冷媒蒸発器上流の絞りを可変させて性能の低下を防ぐと共に、簡素な構造の絞り弁でコストを抑えることのできる冷凍サイクル装置および絞り弁5を提供することにある。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、請求項1ないし請求項6に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、絞り弁(5)での絞り度合いを、冷媒蒸発器(6)前後の差圧を用いて可変させることを特徴とする。図3は、冷媒蒸発器(6)を通過する冷媒流量と冷媒蒸発器(6)での圧損(前後差圧)との関係を示すグラフである。本発明は、冷媒蒸発器(6)の負荷が高くて冷媒流量が多い時には冷媒蒸発器(6)での圧損が大きくなるという特性に着目してこれを利用したものである。
【0008】
更に、冷媒蒸発器(6)側の冷媒流量が空気側の必要能力に対して不足し、冷媒蒸発器(6)出口のスーパーヒートが大きくなった場合も、冷媒蒸発器(6)内のガス冷媒割合が高くなるため、冷媒流量が同じでも、スーパーヒートが無い(すなわち冷媒流量が足りている)状態に比べて圧損が大きくなる(一般に、気体の方が液体よりも圧力損失が大きい)。そのため、冷媒蒸発器(6)側冷媒流量不足時にも圧損大により絞りが開いて冷媒流量を増やすことができる。
【0009】
このように、冷媒蒸発器(6)前後の差圧を用いて絞り度合いを可変することにより、負荷に応じた最適な絞りに可変することができ、性能の低下を防ぐことができる。
【0010】
請求項2記載の発明では、絞り弁(5)は、冷媒蒸発器(6)前後の差圧が小さい時に冷媒流路(R)の流量を少なくし、冷媒蒸発器(6)前後の差圧が大きい時に冷媒流路(R)の流量を多くすることを特徴とする。このように、低負荷時、つまり冷媒蒸発器(6)の流量が小さく差圧が小さい時には絞り弁(5)の通過量を少なくし、逆に高負荷時、つまり冷媒蒸発器(6)の流量が多く差圧が大きい時には絞り弁(5)の通過量を多くすることにより、性能低下を防ぐことができる。
【0011】
請求項3記載の発明では、絞り弁(5)は、冷媒流路(R)の一部を成し、気液分離器(4)から冷媒蒸発器(6)へと通じる蒸発器前流路部(53)と、冷媒蒸発器(6)からエジェクタ(3)へと通じる蒸発器後流路部(56)と、両流路部(53、56)を隔てると共に両流路部(53、56)の圧力差に応じて変位する変位部材(58)と、その変位部材(58)と連動して蒸発器前流路部(53)の可変絞り部(53a)を開閉する弁体(59)とを備えることを特徴とする。
【0012】
このように、両流路部(53、56)をダイヤフラム等の変位部材(58)で隔てることにより、両流路部(53、56)の差圧で変位部材(58)が容易に変位するため、その変位部材(58)で弁体(59)を動かして蒸発器前流路部(53)の可変絞り部(53a)を開閉するという簡素な構造にて絞り弁(5)での可変絞りを可能としている。これにより、コストを抑えることができる。
【0013】
請求項4記載の発明では、絞り弁(5)は、蒸発器前流路部(53)として弁体(59)で開閉される可変絞り部(53a)をバイパスして気液分離器(4)から冷媒蒸発器(6)へと通じる固定絞り部(53b)を備えることを特徴とする。これにより、可変絞り部(53a)が全閉しても、最低限の冷媒流量が固定絞り部(53b)で確保されることとなる。
【0014】
請求項5記載の発明では、絞り弁(5)は、弁体(59)の開弁圧力を調整する開弁圧力調整手段(61、62)を有することを特徴とする。これは、具体的にはキャップ(61)と変位部材(58)との間にばね(62)を設け、キャップ(61)の締め込み量によりバネ力を変えて開弁圧力を調節できる構造としたものであり、締め込み量を増すことにより、変位部材(58)上部に掛かるばね力が増して開弁圧力が高くなる。
【0015】
これにより、変位部材(58)を変えることなく開弁圧力を変えることができることから、例えば車両空調の冷凍サイクルに用いる場合、車型の異なるシステム(例えば大型車両と小型車両)でも同一絞り弁(5)で対応することができる。また、製造時の部品公差が大きくても、キャップ(61)の締め込み量により開弁圧力を微調整できることから、製造公差を緩く設定することができ、部品および製造コストを抑えることができる。
【0016】
請求項6記載の発明では、絞り弁(5)は、弁体(59)の位置を調整する弁***置調整手段(61)を有することを特徴とする。これは、具体的には変位部材(58)と弁体(59)をキャップ(61)側に取り付けている。これにより、キャップ(61)の締め込み量により弁体(59)の上下位置が調整できる構造としたものである。これにより、製造時の部品公差が大きくても、弁体(59)の位置を微調整できることから、製造公差を緩く設定することができ、部品および製造コストを抑えることができる。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0017】
【発明の実施の形態】
(第1実施形態)
次に、本発明の実施の形態を、図面に基づき説明する。図1は、本発明の一実施形態における冷凍サイクル装置の構成図である。1は冷媒を低圧から高圧に圧縮するコンプレッサ(冷媒圧縮機)、2は高温高圧冷媒から放熱するためのガスクーラ(冷媒放熱器)、3は冷媒が膨張するエネルギを利用して低圧冷媒の循環・昇圧を行うエジェクタ、4はエジェクタ3から出た気液二相冷媒を気相と液相に分離し、気相をコンプレッサ1へ、液相をエバポレータ(冷媒蒸発器)6側に送るアキュームレータ(気液分離器)である。
【0018】
また、5は後述する本発明の絞り弁、6は低温低圧冷媒で熱交換流体を冷却するためのエバポレータである。ガスクーラ2からの冷媒はエジェクタ3のノズル31に流入し、絞り弁5とエバポレータ6とを通過する冷媒流路Rの冷媒は、エジェクタ3の吸引部32に吸引される。ガスクーラ2及びエバポレータ6にはそれぞれに送風する図示しないファンが設けられている。また、本実施例では、冷媒に二酸化炭素(CO)を用いている。
【0019】
次に、図2は本発明の第1実施形態における絞り弁5の断面構造図である。絞り弁5の本体51には、アキュームレータ4から第1冷媒入口52へ入り、第1冷媒出口54からエバポレータ6へと流れる第1冷媒流路53と、エバポレータ6から第2冷媒入口55へ入り、第2冷媒出口57からエジェクタ3へと流れる第2冷媒流路56とが設けられており、この2つの冷媒流路53・56は、ダイヤフラム(変位部材)58により隔てられている。
【0020】
第1冷媒流路53の途中には、可変ポート(可変絞り部)53aとブリードポート(固定絞り部)53bとが設けられており、ブリードポート53bの径は低負荷時に最適となるよう設計されている。ダイヤフラム58には弁体59が取り付けられており、ダイヤフラム58の上下変位により弁体59が上下方向へと可動して可変ポート53aを開閉するようになっている。尚、61は、本体51にダイヤフラム58&弁体59を組み込んだ開口を密閉するキャップである。
【0021】
そして、図2にてダイヤフラム58の下側(弁体59側)には、圧力導入ポート60を通じてエバポレータ6の入口側冷媒圧力Pe_inが掛かり、ダイヤフラム58上側にはエバポレータ6の出口側冷媒圧力Pe_outがそれぞれ掛かっており、ダイヤフラム58の受圧面積をS、ダイヤフラム58のばね力をFsとすると、Pe_out・S+Fs=Pe_in・Sとなるように、弁体59の位置が釣り合う。
【0022】
図4は、本発明の絞り弁5における作動特性の一例を示すグラフである。図に示すように、エバポレータ6の前後圧力の差圧とダイヤフラム58のばね力により、ある一定差圧(設定開弁差圧)以下では閉弁し、設定開弁差圧を超えると開弁するような設計となっている。そして、閉弁時には低負荷で最適となる開口面積、全開時には高負荷で最適な開口面積となるように設計している。
【0023】
図5の(a)はエバポレータ前後の差圧が小さい時の絞り弁5の断面図であり、可変ポート53aは閉じてブリードポート53bだけで流通している。また、図5の(b)はエバポレータ前後の差圧が大きい時の絞り弁5の断面図であり、ダイヤフラム58が変位して可変ポート53aが開き、ブリードポート53bとの両方で流通している。
【0024】
次に、本実施形態での特徴について述べる。まず、絞り弁5での絞り度合いを、エバポレータ6前後の差圧を用いて可変させている。これは、エバポレータ6の負荷が高くて冷媒流量が多い時にはエバポレータ6での圧損が大きくなるという特性に着目してこれを利用したものである。
【0025】
更に、エバポレータ6側の冷媒流量が空気側の必要能力に対して不足し、エバポレータ6出口のスーパーヒートが大きくなった場合も、エバポレータ6内のガス冷媒割合が高くなるため、冷媒流量が同じでも、スーパーヒートが無い(すなわち冷媒流量が足りている)状態に比べて圧損が大きくなる(一般に、気体の方が液体よりも圧力損失が大きい)。そのため、エバポレータ6側冷媒流量不足時にも圧損大により絞りが開いて冷媒流量を増やすことができる。このように、エバポレータ6前後の差圧を用いて絞り度合いを可変することにより、負荷に応じた最適な絞りに可変することができ、性能の低下を防ぐことができる。
【0026】
また、絞り弁5は、エバポレータ6前後の差圧が小さい時に冷媒流路Rの流量を少なくし、エバポレータ6前後の差圧が大きい時に冷媒流路Rの流量を多くしている。このように、低負荷時、つまりエバポレータ6の流量が小さく差圧が小さい時には絞り弁5の通過量を少なくし、逆に高負荷時、つまりエバポレータ6の流量が多く差圧が大きい時には絞り弁5の通過量を多くすることにより、性能低下を防ぐことができる。
【0027】
また、絞り弁5は、冷媒流路Rの一部を成し、アキュームレータ4からエバポレータ6へと通じるエバポレータ前流路部53と、エバポレータ6からエジェクタ3へと通じるエバポレータ後流路部56と、両流路部53・56を隔てると共に両流路部53・56の圧力差に応じて変位するダイヤフラム58と、そのダイヤフラム58と連動してエバポレータ前流路部53の可変ホート53aを開閉する弁体59とを備えている。
【0028】
このように、両流路部53・56をダイヤフラム58で隔てることにより、両流路部53・56の差圧でダイヤフラム58が容易に変位するため、そのダイヤフラム58で弁体59を動かしてエバポレータ前流路部53の可変ポート53aを開閉するという簡素な構造にて絞り弁5での可変絞りを可能としている。これにより、コストを抑えることができる。
【0029】
また、絞り弁5は、エバポレータ前流路部53として弁体59で開閉される可変ポート53aをバイパスしてアキュームレータ4からエバポレータ6へと通じるブリードポート53bを備えている。これにより、可変ポート53aが前閉しても、最低限の冷媒流量がブリードポート53bで確保されることとなる。
【0030】
(第2実施形態)
図6は、本発明の第2実施形態における絞り弁5の断面構造図である。本実施形態の絞り弁5は、弁体59の開弁圧力を調整する開弁圧力調整手段としてのキャップ61とばね62とを有している。具体的にはキャップ61とダイヤフラム58との間にばね62を設け、キャップ61の締め込み量によりバネ力を変えて開弁圧力を調節できる構造としたものであり、締め込み量を増すことにより、ダイヤフラム58上部に掛かるばね力が増して開弁圧力が高くなる。
【0031】
これにより、ダイヤフラム58を変えることなく開弁圧力を変えることができることから、例えば車両空調の冷凍サイクルに用いる場合、車型の異なるシステム(例えば大型車両と小型車両)でも同一絞り弁5で対応することができる。また、製造時の部品公差が大きくても、キャップ61の締め込み量により開弁圧力を微調整できることから、製造公差を緩く設定することができ、部品および製造コストを抑えることができる。
【0032】
(第3実施形態)
図7は、本発明の第3実施形態における絞り弁5の断面構造図である。本実施形態の絞り弁5は、弁体59の位置を調整する弁***置調整手段としてのキャップ61を有している。具体的にはダイヤフラム58と弁体59をキャップ61側に取り付けている。こうしてキャップ61の締め込み量により弁体59の上下位置が調整できる構造としたものである。これにより、製造時の部品公差が大きくても、弁体59の位置を微調整できることから、製造公差を緩く設定することができ、部品および製造コストを抑えることができる。
【0033】
(第4実施形態)
図8は、本発明の第4実施形態における絞り弁5の断面構造図である。上述の実施形態では変位部材としてダイヤフラム58を用いてきたが、本実施形態はベローズ63を用いたものであり、本実施例は図2で示した第1実施形態の構成のダイヤフラム58をベローズ63としたものである。
【0034】
(第5実施形態)
図9は、本発明の第5実施形態における絞り弁5の断面構造図である。上述の第4実施形態と同様に変位部材にベローズ63を用いたものであり、本実施例は図7で示した第3実施形態の構成のダイヤフラム58をベローズ63としたものである。
【0035】
(その他の実施形態)
上述の実施形態では冷媒に二酸化炭素を用いた冷凍サイクル装置について説明したが、本発明はこれに限るものではなく、フロン等冷媒を用いた冷凍サイクル装置に本発明の絞り弁5を適用しても良い。
【図面の簡単な説明】
【図1】本発明の一実施形態における冷凍サイクル装置の構成図である。
【図2】本発明の第1実施形態における絞り弁の断面構造図である。
【図3】エバポレータを通過する冷媒流量とエバポレータでの圧損(前後差圧)との関係を示すグラフである。
【図4】本発明の絞り弁における作動特性の一例を示すグラフである。
【図5】(a)はエバポレータ前後の差圧が小さい時の絞り弁の断面図、(b)はエバポレータ前後の差圧が大きい時の絞り弁の断面図である。
【図6】本発明の第2実施形態における絞り弁の断面構造図である。
【図7】本発明の第3実施形態における絞り弁の断面構造図である。
【図8】本発明の第4実施形態における絞り弁の断面構造図である。
【図9】本発明の第5実施形態における絞り弁の断面構造図である。
【図10】従来の冷凍サイクル装置の構成図である。
【図11】実験による高負荷時と低負荷時でのエバポレータ前絞り径に対するCOP(成績係数)の関係を示すグラフである。
【符号の説明】
1 コンプレッサ(冷媒圧縮機)
2 ガスクーラ(冷媒放熱器)
3 エジェクタ
4 アキュームレータ(気液分離器)
5 絞り弁
6 エバポレータ(冷媒蒸発器)
32 吸引部
53 蒸発器前流路部
53a 可変絞り部
53b 固定絞り部
56 蒸発器後流路部
58 ダイヤフラム(変位部材)
59 弁体
61 キャップ(開弁圧力調整手段、開弁位置調整手段)
62 ばね(開弁圧力調整手段)
63 ベローズ(変位部材)
R 冷媒流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration cycle (ejector cycle) device using an ejector for increasing the pressure of a refrigerant using expansion power of the refrigerant, and a throttle valve for the refrigeration cycle device using the ejector.
[0002]
[Prior art]
Conventionally, as shown in FIG. 10, a refrigerant compressor 1, a refrigerant radiator 2, an ejector 3, and a gas-liquid separator 4 are annularly connected by a refrigerant pipe, and a liquid-phase refrigerant separated by the gas-liquid separator 4 is A refrigeration cycle (ejector cycle) device has been proposed in which a suction unit 32 of an ejector 3 sucks the air through a bypass pipe in which a pressure reducing device such as a fixed throttle 50 and a refrigerant evaporator 6 are installed (for example, Patent Document 1). reference).
[0003]
[Patent Document 1]
JP-A-11-37577 (pages 2-4, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional technology, the optimal degree of restriction of the restrictor provided upstream of the refrigerant evaporator differs depending on the load. For example, FIG. 11 is a graph showing the relationship between the COP (coefficient of performance) and the throttle diameter in front of the refrigerant evaporator (evaporator) at high load and low load in an experiment. As shown in the graph of FIG. 11, the optimal value is about 3 mm in the aperture diameter at the time of high load, whereas the optimal value is about 0.6 mm at the time of low load, and the optimal aperture diameter before evaporation differs depending on the load. I understand that there is. This raises the problem that the rate of performance degradation increases as the value deviates from the optimum value.
[0005]
On the other hand, as a method of changing the throttle upstream of the refrigerant evaporator, the diameter of the throttle is changed by sensing the superheat of the refrigerant at the refrigerant evaporator outlet (superheat = refrigerant temperature at refrigerant evaporator outlet-temperature of refrigerant at refrigerant evaporator). Although there is a superheat control valve to make it possible, there is a problem that the structure is complicated and the cost is high because a gas-filling of a temperature sensing part is required even in a mechanical type.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object to prevent a decrease in performance by changing the throttle upstream of the refrigerant evaporator with a throttle valve having a simple structure, and to achieve a simple structure. Another object of the present invention is to provide a refrigeration cycle device and a throttle valve 5 that can reduce costs with the throttle valve.
[0007]
[Means for Solving the Problems]
The present invention employs the technical means described in claims 1 to 6 to achieve the above object. That is, the invention according to claim 1 is characterized in that the degree of throttling in the throttling valve (5) is varied using the differential pressure across the refrigerant evaporator (6). FIG. 3 is a graph showing the relationship between the flow rate of the refrigerant passing through the refrigerant evaporator (6) and the pressure loss (pressure difference between the front and rear) in the refrigerant evaporator (6). The present invention utilizes the characteristic by paying attention to the characteristic that when the load of the refrigerant evaporator (6) is high and the refrigerant flow rate is large, the pressure loss in the refrigerant evaporator (6) increases.
[0008]
Further, even when the refrigerant flow rate on the refrigerant evaporator (6) side is insufficient for the required capacity on the air side and the superheat at the outlet of the refrigerant evaporator (6) becomes large, the gas in the refrigerant evaporator (6) is also increased. Since the refrigerant ratio is high, even if the refrigerant flow rate is the same, the pressure loss is larger than in a state where there is no superheat (that is, the refrigerant flow rate is sufficient) (generally, gas has a larger pressure loss than liquid). Therefore, even when the refrigerant flow rate on the refrigerant evaporator (6) side is insufficient, the throttle is opened due to the large pressure loss, and the refrigerant flow rate can be increased.
[0009]
As described above, by varying the degree of throttling using the differential pressure across the refrigerant evaporator (6), the degree of throttling can be changed to an optimal throttling according to the load, and performance degradation can be prevented.
[0010]
According to the second aspect of the present invention, the throttle valve (5) reduces the flow rate of the refrigerant flow path (R) when the differential pressure across the refrigerant evaporator (6) is small, thereby reducing the differential pressure across the refrigerant evaporator (6). When the pressure is large, the flow rate of the refrigerant flow path (R) is increased. As described above, when the load is low, that is, when the flow rate of the refrigerant evaporator (6) is small and the differential pressure is small, the amount of passage through the throttle valve (5) is reduced. When the flow rate is large and the differential pressure is large, a decrease in performance can be prevented by increasing the amount of passage through the throttle valve (5).
[0011]
According to the third aspect of the present invention, the throttle valve (5) forms a part of the refrigerant flow path (R), and communicates with the refrigerant evaporator (6) from the gas-liquid separator (4). (53), an evaporator rear flow path (56) leading from the refrigerant evaporator (6) to the ejector (3), and separating the two flow paths (53, 56). A displacement member (58) that is displaced in accordance with the pressure difference of (56), and a valve body (59) that opens and closes a variable throttle (53a) of the evaporator front flow path (53) in conjunction with the displacement member (58). ).
[0012]
In this way, by separating the two flow path portions (53, 56) by the displacement member (58) such as a diaphragm, the displacement member (58) is easily displaced by the pressure difference between the two flow path portions (53, 56). Therefore, the variable member (59) is moved by the displacement member (58) to open and close the variable throttle portion (53a) of the flow path portion (53) in front of the evaporator. Aperture is possible. Thereby, cost can be suppressed.
[0013]
According to the fourth aspect of the present invention, the throttle valve (5) bypasses the variable throttle section (53a) opened and closed by the valve body (59) as the evaporator front flow path section (53), and the gas-liquid separator (4). ) To the refrigerant evaporator (6). Thereby, even if the variable throttle section (53a) is fully closed, the minimum refrigerant flow rate is secured in the fixed throttle section (53b).
[0014]
According to a fifth aspect of the present invention, the throttle valve (5) has valve opening pressure adjusting means (61, 62) for adjusting the valve opening pressure of the valve body (59). Specifically, this has a structure in which a spring (62) is provided between the cap (61) and the displacement member (58), and the valve opening pressure can be adjusted by changing the spring force according to the tightening amount of the cap (61). By increasing the tightening amount, the spring force applied to the upper portion of the displacement member (58) increases, and the valve opening pressure increases.
[0015]
As a result, since the valve opening pressure can be changed without changing the displacement member (58), for example, when used in a refrigeration cycle of vehicle air conditioning, the same throttle valve (5) is used even in systems of different vehicle types (for example, a large vehicle and a small vehicle). ). Further, even if the component tolerance during manufacturing is large, the valve opening pressure can be finely adjusted by the tightening amount of the cap (61), so that the manufacturing tolerance can be set loosely and the parts and manufacturing costs can be reduced.
[0016]
According to a sixth aspect of the present invention, the throttle valve (5) has a valve body position adjusting means (61) for adjusting the position of the valve body (59). Specifically, the displacement member (58) and the valve body (59) are attached to the cap (61) side. Thus, the vertical position of the valve element (59) can be adjusted by the amount of tightening of the cap (61). Thereby, even if the component tolerance at the time of manufacturing is large, the position of the valve element (59) can be finely adjusted, so that the manufacturing tolerance can be set loosely and the parts and manufacturing cost can be suppressed. Incidentally, the reference numerals in the parentheses of the above-described units are examples showing the correspondence with specific units described in the embodiments described later.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a refrigeration cycle device according to one embodiment of the present invention. 1 is a compressor (refrigerant compressor) for compressing the refrigerant from low pressure to high pressure, 2 is a gas cooler (refrigerant radiator) for radiating heat from the high-temperature and high-pressure refrigerant, and 3 is a low-pressure refrigerant circulating using the energy that expands the refrigerant. An ejector 4 for increasing the pressure separates the gas-liquid two-phase refrigerant from the ejector 3 into a gas phase and a liquid phase, and sends the gas phase to the compressor 1 and the liquid phase to an evaporator (refrigerant evaporator) 6 side. Liquid separator).
[0018]
Reference numeral 5 denotes a throttle valve of the present invention described later, and reference numeral 6 denotes an evaporator for cooling the heat exchange fluid with a low-temperature low-pressure refrigerant. The refrigerant from the gas cooler 2 flows into the nozzle 31 of the ejector 3, and the refrigerant in the refrigerant passage R passing through the throttle valve 5 and the evaporator 6 is sucked into the suction part 32 of the ejector 3. Each of the gas cooler 2 and the evaporator 6 is provided with a fan (not shown) for blowing air. In this embodiment, carbon dioxide (CO 2 ) is used as the refrigerant.
[0019]
Next, FIG. 2 is a sectional structural view of the throttle valve 5 according to the first embodiment of the present invention. The main body 51 of the throttle valve 5 enters the first refrigerant inlet 52 from the accumulator 4 and the first refrigerant passage 53 flowing from the first refrigerant outlet 54 to the evaporator 6, and enters the second refrigerant inlet 55 from the evaporator 6; A second refrigerant flow path 56 that flows from the second refrigerant outlet 57 to the ejector 3 is provided, and the two refrigerant flow paths 53 and 56 are separated by a diaphragm (displacement member) 58.
[0020]
A variable port (variable throttle section) 53a and a bleed port (fixed throttle section) 53b are provided in the middle of the first refrigerant flow passage 53, and the diameter of the bleed port 53b is designed to be optimal at a low load. ing. A valve body 59 is attached to the diaphragm 58, and the valve body 59 moves up and down by the vertical displacement of the diaphragm 58 to open and close the variable port 53a. Reference numeral 61 denotes a cap that seals an opening in which the diaphragm 58 and the valve body 59 are incorporated in the main body 51.
[0021]
2, the inlet side refrigerant pressure Pe_in of the evaporator 6 is applied to the lower side of the diaphragm 58 (the valve body 59 side) through the pressure introduction port 60, and the outlet side refrigerant pressure Pe_out of the evaporator 6 is applied to the upper side of the diaphragm 58. Assuming that the pressure receiving area of the diaphragm 58 is S and the spring force of the diaphragm 58 is Fs, the position of the valve element 59 is balanced so that Pe_out · S + Fs = Pe_in · S.
[0022]
FIG. 4 is a graph showing an example of the operation characteristics of the throttle valve 5 of the present invention. As shown in the figure, due to the differential pressure between the front and rear pressures of the evaporator 6 and the spring force of the diaphragm 58, the valve closes below a certain differential pressure (set valve differential pressure) and opens when the set valve differential pressure is exceeded. It has such a design. When the valve is closed, the opening area is optimized at a low load, and when the valve is fully opened, the opening area is optimized at a high load.
[0023]
FIG. 5A is a cross-sectional view of the throttle valve 5 when the differential pressure before and after the evaporator is small, and the variable port 53a is closed and the flow only flows through the bleed port 53b. FIG. 5B is a cross-sectional view of the throttle valve 5 when the differential pressure before and after the evaporator is large. The diaphragm 58 is displaced, the variable port 53a is opened, and the air flows through both the bleed port 53b. .
[0024]
Next, features of the present embodiment will be described. First, the degree of throttle at the throttle valve 5 is varied using the differential pressure across the evaporator 6. This is based on the characteristic that when the load on the evaporator 6 is high and the flow rate of the refrigerant is large, the pressure loss in the evaporator 6 increases, and this is used.
[0025]
Furthermore, even when the refrigerant flow rate on the evaporator 6 side is insufficient for the required capacity on the air side and the superheat at the outlet of the evaporator 6 increases, the gas refrigerant ratio in the evaporator 6 increases, so that the refrigerant flow rate is the same. In addition, the pressure loss is larger than in the state where there is no superheat (that is, the refrigerant flow rate is sufficient) (generally, gas has a larger pressure loss than liquid). Therefore, even when the flow rate of the refrigerant on the evaporator 6 side is insufficient, the throttle is opened due to the large pressure loss, and the flow rate of the refrigerant can be increased. As described above, by changing the degree of throttling by using the differential pressure across the evaporator 6, it is possible to change the degree of throttling to an optimum throttling according to the load, and to prevent a decrease in performance.
[0026]
The throttle valve 5 reduces the flow rate of the refrigerant flow path R when the differential pressure across the evaporator 6 is small, and increases the flow rate of the refrigerant flow path R when the differential pressure across the evaporator 6 is large. As described above, when the load is low, that is, when the flow rate of the evaporator 6 is small and the differential pressure is small, the amount of passage through the throttle valve 5 is reduced. When the load is high, that is, when the flow rate of the evaporator 6 is large and the differential pressure is large, the throttle valve is small. By increasing the passing amount of No. 5, performance degradation can be prevented.
[0027]
Further, the throttle valve 5 forms a part of the refrigerant flow path R, and includes a pre-evaporator flow path 53 communicating from the accumulator 4 to the evaporator 6, a post-evaporator flow path 56 communicating from the evaporator 6 to the ejector 3, A diaphragm 58 that separates the two flow passages 53 and 56 and that is displaced in accordance with the pressure difference between the two flow passages 53 and 56, and a valve that opens and closes the variable hoat 53a of the evaporator front flow passage 53 in conjunction with the diaphragm 58 And a body 59.
[0028]
Thus, by separating the both flow paths 53, 56 in the diaphragm 58, since the diaphragm 58 in the differential pressure of both flow paths 53, 56 is easily displaced to move the valve body 59 at its diaphragm 58 evaporator The variable throttle of the throttle valve 5 is enabled by a simple structure that opens and closes the variable port 53a of the front flow path 53. Thereby, cost can be suppressed.
[0029]
In addition, the throttle valve 5 includes a bleed port 53b that communicates from the accumulator 4 to the evaporator 6 by bypassing the variable port 53a opened and closed by the valve body 59 as the evaporator pre-flow passage 53. Thereby, even if the variable port 53a is closed beforehand, a minimum refrigerant flow rate is secured at the bleed port 53b.
[0030]
(2nd Embodiment)
FIG. 6 is a sectional structural view of the throttle valve 5 according to the second embodiment of the present invention. The throttle valve 5 of the present embodiment has a cap 61 and a spring 62 as valve opening pressure adjusting means for adjusting the valve opening pressure of the valve body 59. Specifically, a spring 62 is provided between the cap 61 and the diaphragm 58 so that the valve opening pressure can be adjusted by changing the spring force according to the tightening amount of the cap 61. By increasing the tightening amount, The spring force applied to the upper portion of the diaphragm 58 increases, and the valve opening pressure increases.
[0031]
As a result, since the valve opening pressure can be changed without changing the diaphragm 58, for example, when used in a refrigeration cycle of vehicle air conditioning, the same throttle valve 5 can be used in systems of different vehicle types (for example, large vehicles and small vehicles). Can be. Further, even if the component tolerance during manufacturing is large, the valve opening pressure can be finely adjusted by the tightening amount of the cap 61, so that the manufacturing tolerance can be set loosely and the parts and manufacturing cost can be reduced.
[0032]
(Third embodiment)
FIG. 7 is a sectional structural view of the throttle valve 5 according to the third embodiment of the present invention. The throttle valve 5 of the present embodiment has a cap 61 as a valve body position adjusting means for adjusting the position of the valve body 59. Specifically, the diaphragm 58 and the valve element 59 are attached to the cap 61 side. Thus, the vertical position of the valve body 59 can be adjusted by the tightening amount of the cap 61. Thereby, even if the component tolerance at the time of manufacturing is large, the position of the valve body 59 can be finely adjusted, so that the manufacturing tolerance can be set loosely and the parts and manufacturing cost can be reduced.
[0033]
(Fourth embodiment)
FIG. 8 is a sectional structural view of the throttle valve 5 according to the fourth embodiment of the present invention. Although the diaphragm 58 has been used as the displacement member in the above-described embodiment, the present embodiment uses the bellows 63, and in this embodiment, the diaphragm 58 having the configuration of the first embodiment shown in FIG. It is what it was.
[0034]
(Fifth embodiment)
FIG. 9 is a sectional structural view of the throttle valve 5 according to the fifth embodiment of the present invention. As in the above-described fourth embodiment, a bellows 63 is used as a displacement member. In this embodiment, the diaphragm 58 of the third embodiment shown in FIG.
[0035]
(Other embodiments)
Although the refrigeration cycle apparatus using carbon dioxide as the refrigerant has been described in the above embodiment, the present invention is not limited to this. Is also good.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a refrigeration cycle device according to an embodiment of the present invention.
FIG. 2 is a sectional structural view of a throttle valve according to the first embodiment of the present invention.
FIG. 3 is a graph showing a relationship between a flow rate of a refrigerant passing through an evaporator and a pressure loss (a pressure difference between front and rear) in the evaporator.
FIG. 4 is a graph showing an example of an operation characteristic of the throttle valve of the present invention.
5A is a cross-sectional view of the throttle valve when the differential pressure across the evaporator is small, and FIG. 5B is a cross-sectional view of the throttle valve when the differential pressure across the evaporator is large.
FIG. 6 is a sectional structural view of a throttle valve according to a second embodiment of the present invention.
FIG. 7 is a sectional structural view of a throttle valve according to a third embodiment of the present invention.
FIG. 8 is a sectional structural view of a throttle valve according to a fourth embodiment of the present invention.
FIG. 9 is a sectional structural view of a throttle valve according to a fifth embodiment of the present invention.
FIG. 10 is a configuration diagram of a conventional refrigeration cycle device.
FIG. 11 is a graph showing a relationship between a COP (coefficient of performance) and a throttle diameter before an evaporator under a high load and a low load by an experiment.
[Explanation of symbols]
1 compressor (refrigerant compressor)
2 Gas cooler (refrigerant radiator)
3 ejector 4 accumulator (gas-liquid separator)
5 Throttle valve 6 Evaporator (refrigerant evaporator)
32 Suction unit 53 Flow path unit 53a before evaporator 53a Variable throttle unit 53b Fixed throttle unit 56 Flow path unit after evaporator 58 Diaphragm (displacement member)
59 valve body 61 cap (valve opening pressure adjusting means, valve opening position adjusting means)
62 spring (valve opening pressure adjusting means)
63 Bellows (displacement member)
R refrigerant flow path

Claims (6)

冷媒圧縮機(1)、冷媒放熱器(2)、エジェクタ(3)及び気液分離器(4)を冷媒流路で環状に連結すると共に、前記気液分離器(4)の液相冷媒側と前記エジェクタ(3)の吸引部(32)とを冷媒流路(R)で連結し、その冷媒流路の途中に絞り弁(5)、およびその後流に冷媒蒸発器(6)を備えた冷凍サイクル装置において、
前記絞り弁(5)での絞り度合いを、前記冷媒蒸発器(6)前後の差圧を用いて可変させることを特徴とする冷凍サイクル装置。
The refrigerant compressor (1), the refrigerant radiator (2), the ejector (3), and the gas-liquid separator (4) are annularly connected by a refrigerant passage, and the liquid-phase refrigerant side of the gas-liquid separator (4). And a suction part (32) of the ejector (3) are connected by a refrigerant flow path (R), and a throttle valve (5) is provided in the middle of the refrigerant flow path, and a refrigerant evaporator (6) is provided in the downstream flow. In refrigeration cycle equipment,
A refrigeration cycle apparatus characterized in that the degree of throttling in the throttling valve (5) is varied by using a differential pressure across the refrigerant evaporator (6).
前記絞り弁(5)は、前記冷媒蒸発器(6)前後の差圧が小さい時に前記冷媒流路(R)の流量を少なくし、前記冷媒蒸発器(6)前後の差圧が大きい時に前記冷媒流路(R)の流量を多くすることを特徴とする請求項1に記載の冷凍サイクル装置。The throttle valve (5) reduces the flow rate of the refrigerant flow path (R) when the differential pressure across the refrigerant evaporator (6) is small, and reduces the flow rate when the differential pressure across the refrigerant evaporator (6) is large. The refrigeration cycle apparatus according to claim 1, wherein the flow rate of the refrigerant flow path (R) is increased. 前記絞り弁(5)は、前記冷媒流路(R)の一部を成し、前記気液分離器(4)から前記冷媒蒸発器(6)へと通じる蒸発器前流路部(53)と、前記冷媒蒸発器(6)から前記エジェクタ(3)へと通じる蒸発器後流路部(56)と、前記両流路部(53、56)を隔てると共に前記両流路部(53、56)の圧力差に応じて変位する変位部材(58)と、その変位部材(58)と連動して前記蒸発器前流路部(53)の可変絞り部(53a)を開閉する弁体(59)とを備えることを特徴とする請求項1に記載の絞り弁。The throttle valve (5) forms a part of the refrigerant flow path (R), and the evaporator front flow path section (53) communicating from the gas-liquid separator (4) to the refrigerant evaporator (6). And an evaporator rear flow path (56) leading from the refrigerant evaporator (6) to the ejector (3), and separating the two flow paths (53, 56) and the two flow paths (53, 56). A displacement member (58) that is displaced in accordance with the pressure difference of (56), and a valve body (53) that opens and closes a variable throttle (53a) of the evaporator front flow path (53) in conjunction with the displacement member (58). 59. The throttle valve according to claim 1, further comprising: 前記絞り弁(5)は、前記蒸発器前流路部(53)として前記弁体(59)で開閉される前記可変絞り部(53a)をバイパスして前記気液分離器(4)から前記冷媒蒸発器(6)へと通じる固定絞り部(53b)を備えることを特徴とする請求項3に記載の絞り弁。The throttle valve (5) bypasses the variable throttle portion (53a) opened and closed by the valve body (59) as the evaporator front flow path portion (53), from the gas-liquid separator (4). 4. The throttle valve according to claim 3, further comprising a fixed throttle (53b) leading to the refrigerant evaporator (6). 前記絞り弁(5)は、前記弁体(59)の開弁圧力を調整する開弁圧力調整手段(61、62)を有することを特徴とする請求項3に記載の絞り弁。The throttle valve according to claim 3, wherein the throttle valve (5) has valve opening pressure adjusting means (61, 62) for adjusting a valve opening pressure of the valve body (59). 前記絞り弁(5)は、前記弁体(59)の位置を調整する弁***置調整手段(61)を有することを特徴とする請求項3に記載の絞り弁。The throttle valve according to claim 3, wherein the throttle valve (5) has a valve body position adjusting means (61) for adjusting a position of the valve body (59).
JP2003117372A 2003-04-22 2003-04-22 Refrigeration cycle equipment Expired - Fee Related JP4096796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117372A JP4096796B2 (en) 2003-04-22 2003-04-22 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117372A JP4096796B2 (en) 2003-04-22 2003-04-22 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2004324936A true JP2004324936A (en) 2004-11-18
JP4096796B2 JP4096796B2 (en) 2008-06-04

Family

ID=33497280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117372A Expired - Fee Related JP4096796B2 (en) 2003-04-22 2003-04-22 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4096796B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133624A (en) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp Refrigerating/air-conditioning device
WO2011128527A1 (en) * 2010-04-16 2011-10-20 Valeo Systemes Thermiques Thermostatic expansion device and air conditioning loop comprising such a thermostatic expansion device
EP3139114A1 (en) * 2015-08-28 2017-03-08 Hyundai Motor Company Expansion valve of vehicle air-conditioning system and vehicle air-conditioning system including the same
CN115751782A (en) * 2022-12-15 2023-03-07 徐州市三禾自动控制设备有限公司 Fungus is refrigerating plant for freezer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133624A (en) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp Refrigerating/air-conditioning device
WO2011128527A1 (en) * 2010-04-16 2011-10-20 Valeo Systemes Thermiques Thermostatic expansion device and air conditioning loop comprising such a thermostatic expansion device
FR2959004A1 (en) * 2010-04-16 2011-10-21 Valeo Systemes Thermiques THERMOPLASTIC RELIEF DEVICE AND AIR CONDITIONING LOOP COMPRISING SUCH A THERMOPLASTIC RELIEVE DEVICE
CN103080670A (en) * 2010-04-16 2013-05-01 法雷奥热***公司 Thermostatic expansion device and air conditioning loop comprising such a thermostatic expansion device
CN103080670B (en) * 2010-04-16 2016-06-22 法雷奥热***公司 Thermostatic expansion device and the air conditioning loop including such thermostatic expansion device
US9459030B2 (en) 2010-04-16 2016-10-04 Valeo Systemes Thermiques Thermostatic expansion device and air conditioning loop comprising such a thermostatic expansion device
EP3139114A1 (en) * 2015-08-28 2017-03-08 Hyundai Motor Company Expansion valve of vehicle air-conditioning system and vehicle air-conditioning system including the same
CN106482403A (en) * 2015-08-28 2017-03-08 现代自动车株式会社 The expansion valve of vehicle air conditioner and the vehicle air conditioner including this expansion valve
CN106482403B (en) * 2015-08-28 2020-05-05 现代自动车株式会社 Expansion valve of vehicle air conditioning system and vehicle air conditioning system comprising same
CN115751782A (en) * 2022-12-15 2023-03-07 徐州市三禾自动控制设备有限公司 Fungus is refrigerating plant for freezer
CN115751782B (en) * 2022-12-15 2023-09-12 徐州市三禾自动控制设备有限公司 Refrigerating plant for fungus class freezer

Also Published As

Publication number Publication date
JP4096796B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP3951840B2 (en) Refrigeration cycle equipment
US7520142B2 (en) Ejector type refrigerating cycle
US6651451B2 (en) Variable capacity refrigeration system with a single-frequency compressor
JP4639541B2 (en) Cycle using ejector
EP1467158B1 (en) Refrigeration cycle apparatus
JP2004085156A (en) Refrigerating cycle
US7370493B2 (en) Vapor compression refrigerating systems
JP4285060B2 (en) Vapor compression refrigerator
JP2000346472A (en) Supercritical steam compression cycle
JP2003176958A (en) Ejector cycle
JP2000035250A (en) Supercritical freezing cycle
JP4818154B2 (en) Expansion valve mechanism and flow path switching device
JP2001235239A (en) Supercritical vapor compressing cycle system
JP2005016747A (en) Refrigeration cycle device
JP4952830B2 (en) Ejector refrigeration cycle
JP2003074992A (en) Refrigeration cycle apparatus
JP2002228282A (en) Refrigerating device
US5609036A (en) Evaporator for cooling apparatus
JP4096796B2 (en) Refrigeration cycle equipment
CN114061162A (en) Refrigeration system and control method thereof
JP2007101043A (en) Heat cycle
JP2007163080A (en) Air conditioner
JP2001116399A (en) Refrigeration cycle
EP1260776B1 (en) A heat exchanger for an air conditioning system
JP2001074321A (en) Supercritical vapor compressing cycle device and pressure control valve with release valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Ref document number: 4096796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees