JP2004324455A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2004324455A
JP2004324455A JP2003117030A JP2003117030A JP2004324455A JP 2004324455 A JP2004324455 A JP 2004324455A JP 2003117030 A JP2003117030 A JP 2003117030A JP 2003117030 A JP2003117030 A JP 2003117030A JP 2004324455 A JP2004324455 A JP 2004324455A
Authority
JP
Japan
Prior art keywords
exhaust
filter
dpf
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003117030A
Other languages
Japanese (ja)
Other versions
JP4203730B2 (en
Inventor
Megumi Shigahara
恵 信ヶ原
Michihiro Hatake
道博 畠
Kazuo Kurata
和郎 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003117030A priority Critical patent/JP4203730B2/en
Priority to DE102004019660A priority patent/DE102004019660B4/en
Publication of JP2004324455A publication Critical patent/JP2004324455A/en
Application granted granted Critical
Publication of JP4203730B2 publication Critical patent/JP4203730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine, in which total forced regeneration time for DPF, etc, can be shortened. <P>SOLUTION: The device is provided with an exhaust passage 20 communicating with a cylinder of the internal combustion engine, an NOx occluded catalyst 22 prepared in the exhaust passage, occluding NOx in the exhaust emission at the time of lean operation, discharging and reducing the occluded NOx by rich operation, a filter 23 for collecting particulate matter in the exhaust emission, a filter temperature rise detecting means 40 for detecting the temperature of the filter, and an exhaust emission control means 46 for changing an exhaust emission air-fuel ratio of the internal combustion engine for a rich side and a lean side with a short period when the filter reaches a predetermined temperature by the filter temperature rise detecting means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に係り、詳しくは、ディーゼル・パティキュレート・フィルタ(DPF)の再生に適用される内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
一般に、DPFは、排気中のパティキュレート・マター(PM)を捕集して処理する排ガス後処理装置である。具体的には、ディーゼルエンジン等の排気中には、HC、CO、NOx等の他に、PMが多く含まれていることから、このPMをフィルタに捕集した後に約600℃程度の高温の排ガスを利用し、焼却除去させてDPFの再生を図る。
【0003】
ここで、DPFでは、運転条件によってはその自己再生が実現できるものの、あらゆる運転条件を想定した場合には、DPFの温度を強制的に昇温させる強制再生システムが不可欠である。しかし、この強制再生においては、例えば、DPFの温度が低すぎると再生速度が遅く、高すぎると急激な再生によってDPFの破損を招く等、その温度制御が困難である。そこで、DPFでは、内燃機関の空燃比制御により、DPFでの再生速度を制御する内燃機関の排気浄化装置の技術が提案されている(例えば、特許文献1参照)。
【0004】
当該装置では、排気系にDPFを備えており、DPFの強制再生時には、DPFが所定温度に達するまではリッチ空燃比に設定し、DPFが所定温度に昇温してからリーン空燃比に切換えてPMを燃焼除去している。これにより、DPFの強制再生を図る。
また、当該装置では、前記DPFの他、排気系にNOx吸蔵触媒をも備えており、S成分の放出(Sパージ)時には、上記DPFが所定温度に達してから、さらにSOxの脱離温度から所定時間に達するまでリッチ空燃比を継続してS被毒を解除している。
【0005】
このNOx吸蔵触媒は、リーン空燃比のときに排気中のNOxを吸蔵し、リッチ空燃比のときに吸蔵したNOxを放出還元する排ガス後処理装置である。
具体的には、酸素過剰状態(酸化雰囲気)において排気中のNOxを硝酸塩として吸蔵し、この吸蔵したNOxを一酸化炭素過剰状態(還元雰囲気)で窒素に還元させる特性を有している。そして、内燃機関は、NOx吸蔵量が飽和する前に排気空燃比を理論空燃比又はその近傍値に制御する如くの空気過剰率が低い(低λ)状態のリッチ運転へ定期的に切換えるリッチスパイクを行い、NOx吸蔵触媒の再生を図る。また、NOx吸蔵触媒には、燃料中のS成分の酸化によるSOxも硫酸塩として堆積されるため、当該堆積した前記S成分の放出(Sパージ)を行うべく、上記と同様にリッチ運転を定期的に実施してNOx吸蔵触媒の再生を図る。
【0006】
ここで、このSパージには、約650℃程度の高温であってリッチ乃至ストイキオの排ガスが必要になる。
そこで、上述した当該装置では、DPFの強制再生時には、DPFが所定温度に達するまではリッチ空燃比にしてPMの燃焼を抑え、Sパージ時には、さらにSOxの脱離温度から所定時間に達するまでリッチ空燃比にしている。これによってS被毒を解除する。
【0007】
【特許文献1】
特開2002−213229号公報(段落番号0015〜0020、図1等)
【0008】
【発明が解決しようとする課題】
ところで、DPFの強制再生とNOx吸蔵触媒のSパージとは、上述の如く、ともに約650℃程度に達した高温の排ガスを用いれば可能である点で共通するものである。
よって、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に実施させることが考えられるが、前者はsoot酸化のためにリーン雰囲気の排気が要求されるの対し、後者はストイキオ乃至リッチ雰囲気の排気が要求されることから、基本的にはこれらを同時に実施させることは一般には困難とも考えられる。
【0009】
しかし、DPFの強制再生とNOx吸蔵触媒のSパージとを同時に近付けるように実施させることが可能であれば、その再生に要する総再生時間が短縮化され、燃費の悪化をより一層の防止を図ることが可能になる。
また、DPFの強制再生に要する再生時間が短縮化されるだけでも、燃費の悪化をさらに防止を図ることが可能になる。
【0010】
ここで、前記従来の技術に記載の内燃機関の排気浄化装置では、Sパージを行う場合には、DPFが所定温度を超えてから、さらに所定時間が経過するまではリッチ空燃比を維持し、その後リーン空燃比に切換えてこのリーン空燃比を維持している。つまり、まずDPFの強制再生を行わずにSパージを実施し、次にSパージを行わずにDPFの強制再生を実施していることから、DPFの強制再生とNOx吸蔵触媒のSパージとを明らかに別個に実施しており、しかも、DPFの強制再生に要する時間は、Sパージが実施される分だけ長期化される。
【0011】
換言すれば、この場合の総再生時間は、DPFが所定温度を超えた時点から始まり、Sパージの許可によってS被毒が解除され、その後、リーン雰囲気の排気に切換えられてDPFの強制再生が実施されて終了するまでに要する時間となって長期化し、その間に消費される燃料量が二重に必要なるという問題がある。すなわち、前記従来の技術では、燃費の悪化の防止を図る点については依然として課題が残されている。
【0012】
本発明は、このような課題に鑑みてなされたもので、DPF等に対する総強制再生時間の短縮化を図ることができる内燃機関の排気浄化装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記の目的を達成するべく、請求項1記載の内燃機関の排気浄化装置は、内燃機関の気筒に連通する排気通路と、排気通路に設けられ、リーン運転時に排気中のNOxを吸蔵するとともにリッチ運転を行うことで吸蔵したNOxを放出還元するNOx吸蔵触媒と、排気通路に設けられ、排気中のパティキュレート・マターを捕集するフィルタと、フィルタの温度を検出するフィルタ昇温検出手段と、フィルタ昇温検出手段によってフィルタが所定温度に達したと検出されたとき、内燃機関の排気空燃比をリッチ側とリーン側とに短い周期で変化させる排気浄化制御手段とを備えたことを特徴としている。
【0014】
したがって、請求項1記載の内燃機関の排気浄化装置によれば、約600℃以上の如くのDPFの再生に必要な所定温度が実現されたときには、排気浄化制御手段が、排気空燃比をリッチ側とリーン側と短期間で切換えるので、DPFの強制再生とNOx吸蔵触媒のSパージとが可能な限り同時に近付けて実施されることになり、総再生時間の短縮化を図って消費される燃料量が削減され、燃費の悪化がより一層防止される。
【0015】
しかも、リッチ側とリーン側との複数回の切換えが周期的に行われることから、DPFの再生速度が過大にならずに適切に制御可能になる。
なお、リッチ側の排気空燃比は、ストイキオを含み、該ストイキオよりも若干リッチ側であることが好ましい。
また、請求項2記載の発明では、内燃機関の気筒に連通する排気通路と、排気通路に設けられ、排気中のパティキュレート・マターを捕集するフィルタと、フィルタの温度を検出するフィルタ昇温検出手段と、フィルタ昇温検出手段によってフィルタが所定温度に達したと検出されたとき、内燃機関の排気空燃比をリッチ側とリーン側とに短い周期で変化させる排気浄化制御手段とを備えたことを特徴としている。
【0016】
このように、排気浄化制御手段が、排気空燃比をリッチ側とリーン側と短期間で切換えることから、DPFの再生速度が過大にならず、DPFの強制再生を適切に制御可能になるとともに、従来技術に比してDPFの強制再生に要する時間の短縮化が図られ、燃費の悪化のさらなる防止が図られる。
さらに、請求項3記載の発明では、排気浄化制御手段は、NOx吸蔵触媒の触媒温度及び触媒特性に基づいて排気空燃比のリッチ側の期間を設定するとともに、設定されたリッチ側の期間、NOx吸蔵触媒とフィルタとの再生制御時におけるPMの堆積量に基づいて、排気空燃比のリーン側の期間を設定していることを特徴としている。
【0017】
このように、排気浄化制御手段が、触媒温度、触媒特性及びPMの堆積量に応じて、排気空燃比のリッチ側の期間とリーン側の期間とを設定しているので、これらの期間の割合を最適に設定することが可能になり、排ガス性能が良好になる。
なお、リッチ側の期間は、NOx吸蔵触媒がS成分をSOとして適切に放出できるように、触媒温度及び触媒特性に基づいて決定することが好ましい。また、フィルタの昇温状態に応じて、排気空燃比のリッチ側の期間及びリーン側の期間を補正することが好ましく、DPFの再生速度がより一層適切に制御可能になる。
【0018】
【発明の実施の形態】
以下、図面により本発明の実施形態について説明する。
図1は、本発明の第一実施形態に係る内燃機関の排気浄化装置が適用される多気筒のディーゼル機関(以下、単にエンジンという)1を備えたエンジンシステム構成図を示しており、以下図1に基づき本発明に係る内燃機関の排気浄化装置の構成を説明する。
【0019】
エンジン1の各気筒2には、コモンレール型等の燃料噴射装置を有した燃料供給系と、吸気弁6の開弁により燃焼室4に吸入空気を導入させる吸気通路8と、排気弁18の開弁により燃焼室4からの排気を導出させる排気通路20とが接続されている。
この吸気通路8の最上流部にはエアクリーナ16が接続され、その下流側には過給機14が介装されている。また、過給機14の下流側には、スロットル弁10及びサージタンク12の順に配設されている。なお、このスロットル弁10は、いわゆるドライブバイワイヤ式のスロットル弁(ETV)であり、エンジン運転状態に応じてその開度が変更される。
【0020】
一方、排気通路20の下流側にはNOx吸蔵触媒22が接続されている。NOx吸蔵触媒22は、排気空燃比がリーンのときに排気中のNOxを吸蔵し、排気空燃比がリッチ等で排気中に還元剤(HCやCO)が存在するときに、吸蔵したNOxの放出還元を行うものであり、このNOx吸蔵触媒は公知の構成ものである。なお、本実施形態では、ポスト噴射にてNOxの放出還元を行う。
【0021】
また、NOx吸蔵触媒22の下流側にはDPF(フィルタ)23が接続されている。DPF23は、排気中のPMを捕集するとともに、高温の排気でPMを焼却除去し、その再生を行うものであり、このDPFも公知の構成ものである。
排気通路20からは排気循環通路(EGR通路)24が分岐して延びており、排気の一部(EGRガス)を吸気通路8内に再循環させてNOxの排出を抑制させる。このEGR通路24の先端は、吸気通路8に接続されている。このEGR通路24には、EGRガスの冷却を図るEGRクーラ26と、電子コントロールユニット(ECU)44に電気的に接続されたEGRバルブ28とが設けられ、EGRバルブ28の開閉によってEGR通路24の流路面積が調節される。
【0022】
ETV10もまたECU44に電気的に接続されており、吸気通路8の流路面積が調節されることにより、通常の制御時にはEGRガス量を調整する。そして、エアクリーナ16からの新気は、過給機14を介して吸気通路8に入ってETV10で調整された後、EGRガスと合流して各気筒2の燃焼室4内に導かれる。そして、燃料の燃焼が終了すると、排ガスは排気通路20に排出され、NOx吸蔵触媒22及びDPF23に送られる。
【0023】
ここで、吸気通路8において、エアクリーナ16の下流側の適宜位置には、エアフローセンサ34が配設される。また、排気通路20において、NOx吸蔵触媒22の上流側の適宜位置には、温度センサ36とA/Fセンサ38とが配設され、エンジン1からの排気温度(NOx吸蔵触媒22の触媒温度)T1とその排気空燃比λとをそれぞれ検出している。また、排気通路20において、DPF23の下流側の適宜位置には、温度センサ(フィルタ昇温検出手段)40が配設され、NOx吸蔵触媒22を通過した排気の温度T2を検出している。
【0024】
ECU44の入力側には、上述の温度センサ36、A/Fセンサ38及び温度センサ40の他、エアフローセンサ34等のエンジン1の運転状態を検出する各種センサが電気的に接続されている。これに対してECU44の出力側には、上述のETV10及びEGRバルブ28の各種アクチュエータが電気的に接続されている。
【0025】
そして、ECU44は、排気浄化制御部46(排気浄化制御手段)を備えている。当該排気浄化制御部46では、エンジン1の通常制御時には、酸化雰囲気にて排ガス中のNOxをNOx吸蔵触媒22に吸蔵する一方、NOx吸蔵触媒22のSパージとDPF23の強制再生との再生制御時には、圧縮上死点後に追加燃料を噴射し、エンジン1からの高温かつストイキオ乃至リッチ雰囲気の排気をNOx吸蔵触媒22に導入させるリッチスパイクを行い、まずNOx吸蔵触媒22及びDPF23を昇温させ、そして、このDPF23の再生に必要な所定温度(約600℃以上)が実現されたとき、排気空燃比をリッチ側とリーン側とに複数回に亘って短い周期で切換えるよう構成される。
【0026】
排気空燃比がリッチの場合にはNOx吸蔵触媒22のSパージが実施され、吸蔵したNOxを還元雰囲気で放出還元させ及び付着したS成分を還元雰囲気で放出させてNOx吸蔵触媒22の再生を図るとともに、排気空燃比がリーンの場合にはDPF23の強制再生を図る。
次に、上記排気浄化装置の作用について説明する。
【0027】
図2は、排気浄化制御部46における再生制御のタイミングチャートである。
まず、排気浄化制御部46では、1回の昇温でNOx吸蔵触媒22のSパージとDPF23の強制再生とを完了させることを目標としている。図示のように、温度センサ36によるNOx吸蔵触媒22の触媒温度T1が300℃から昇温して600℃以上になり、その後300℃に戻るまでの間に、NOx吸蔵触媒22のSパージとDPF23の強制再生との略同時に近付けた再生が実施される。
【0028】
そして、NOx吸蔵触媒22の上流側の排気空燃比が弱リッチに設定されると、A/Fセンサ38の検出値は、通常の制御における排気空燃比(λ=約2.0)から低λ側に移行され、昇温中のNOxは、NOx吸蔵触媒22の還元機能によってほぼ零に抑制される。排気浄化制御部46では、温度センサ36によるNOx吸蔵触媒22の触媒温度T1を読み込んで現在のNOx吸蔵触媒22の温度を認知し、この触媒温度T1と触媒特性とに基づき、NOx吸蔵触媒22からHSを放出されずに、S成分を適切にSOとして放出できるようにリッチ保持期間の設定がなされる。
【0029】
また、排気浄化制御部46では、A/Fセンサ38によるNOx吸蔵触媒22の排気上流側の排気空燃比λを読み込んで現在のエンジン1の排気空燃比を認知している。これにより、エンジン1の排気空燃比をストイキオ乃至リッチ雰囲気に設定することができ、リッチ側の空燃比として、ストイキオよりも若干リッチ側の弱リッチ雰囲気に設定すれば、前記SOの放出がより可能になる。また、ストイキオ雰囲気に設定することは、排ガス性能において有利となる。なぜならば、NOx吸蔵触媒22が備える三元機能を利用してNOxを確実に浄化することができるし、DPF23においても、昇温中のPM燃焼を抑制できるため、温度不足によってDPF23内部が局所的で不均一になされるsoot再生をも防止できるからである。
【0030】
次いで、温度センサ40によるDPF23の下流側の温度T2が600℃以上になったとき、排気空燃比をリーン(λ=1より若干リーン)に切換えて所定のリーン保持時間だけ保持される。このときには、DPF23の強制再生が実施される。
このリーンを保持する時間もまた、排気浄化制御部46で設定されている。つまり、まず、再生制御の開始時におけるNOx吸蔵触媒22に付着されたS成分の堆積量とDPF23に捕集されたPMの堆積量とのそれぞれを触媒温度T1、排気温度T2及び排気空燃比λの読み込みによって推定し、Sパージに必要な総リッチ期間とPM燃焼に必要な総リーン期間とを導出する。
【0031】
そして、この総リッチ期間と総リーン期間とのデューティ比に対して上記設定されたリッチ保持期間を用い、リーン保持期間を設定している。このように、これらの堆積量に応じて排気空燃比のリッチ保持期間とリーン保持期間とを設定しており、これらの期間の割合を最適に設定し、排ガス性能の良好化を図っている。
【0032】
なお、排気浄化制御部46で設定されたリッチ保持期間及びとリーン保持期間は、温度センサ40によるDPF23の排気下流側の排気温度T2によってPMの燃焼速度が過大と判定された場合には、例えば、上記リッチ保持期間を長く、或いは上記リーン保持期間を短く補正する。このように、リッチ保持期間とリーン保持期間とが設定されると、DPF23の再生速度が適切に制御され、PMの燃焼による発熱量が急激に大きくなってDPF23が破損してしまうこと等を確実に防止できる。
【0033】
さらに、排気浄化制御部46では、総リッチ期間と総リーン期間とのデューティ比に対して上述のリッチ側の空燃比を用いることにより、又は上記デューティ比に対して時間平均の目標空燃比及びエンジン1の空気量情報に基づく排ガス流量を用いることにより、リーン空燃比も設定している。これは、PMの燃焼速度が上記目標空燃比(DPF23の上流側の酸素濃度)、又はDPF23への酸素供給量に依存すると考えられるからである。
【0034】
そして、所定のリーン保持時間の経過後には、排気空燃比を弱リッチ(λ=1より若干リッチ)に切換えて保持する。このときには、NOx吸蔵触媒22のSパージが実施される。
また、所定のリッチ保持時間の経過後には、上述したリーン側の排気空燃比に再度切換えられて所定時間保持され、その後上述したリッチ側の排気空燃比にさらに切換えられて所定時間保持される如く、複数回のリッチ側と複数回のリーン側との排気空燃比の切換えが短期間に周期的に実施される。これにより、DPF23の再生速度を適切に制御し、再生速度が過大となることによるDPF23の破損・溶損を防止する。
【0035】
なお、DPF23の強制再生やNOx吸蔵触媒22のSパージが要求された時間分行われた後は、通常のディーゼルエンジン制御に戻される。
以上のように、本発明では、DPF23が所定温度に達したとき、排気空燃比をリッチ側とリーン側とに周期的に切換え、かつ、切換えを複数回行う排気浄化制御手段46を備えているので、昇温中のリッチ乃至ストイキオ状態、及びDPF23再生中の周期的なリッチ状態を利用して、DPF23の強制再生とNOx吸蔵触媒22のSパージとを可能な限り同時に近付けて実施することができる。
【0036】
また、DPF23の強制再生は、充分な温度条件を与えつつ、排気空燃比の周期的な変化でPMの燃焼速度を制御しているため、DPF23の異常昇温による破損等を回避できる。
しかも、NOx吸蔵触媒22とDPF23とを同時に昇温させていることから、昇温に要する時間及び燃料量が削減され、燃費の悪化をより一層低減できる。
【0037】
なお、ストイキオでの昇温を行えば、DPF23の急激な再生を抑制させつつ、NOx吸蔵触媒22とDPF23との全体に亘って充分に昇温させることができる。
図3は、本発明の第二実施形態を示すものである。当該第二の実施形態では、触媒の構成等の点を除き、前記第一実施形態と同一の構成からなるものであることから、この触媒の構成等について詳細に説明する。
【0038】
本実施形態における排気通路20の下流側にはDPF(フィルタ)23Aのみが接続されている。そして、ECU44は、排気浄化制御部46A(排気浄化制御手段)を備えている。
当該排気浄化制御部46Aでは、エンジン1の通常制御時には、DPF23AにPMを捕集させる一方、DPF23Aの強制再生との再生制御時には、まず、エンジン1からの高温かつストイキオ乃至リッチ雰囲気の排気をDPF23Aに導入させて昇温させる。そして、このDPF23Aの再生に必要な所定温度(約600℃以上)が実現されたとき、排気空燃比がリッチ側とリーン側とを短期間に切換えてDPF23Aの強制再生を図っている。
【0039】
そして、図4の再生制御のタイミングチャートに示すように、本実施形態ではNOx吸蔵触媒が備えられていないことから、そのSパージを考慮する必要がなく、A/Fセンサ38による排気空燃比λの値が上記第一実施形態の場合に比してややストイキオ近傍に設定されている。
このように、本実施形態の排気浄化制御手段46Aによれば、短期間にてリッチ側とリーン側とに切換えられるので、リーン側の場合にはDPF23Aの再生速度が過大にならずにDPF23Aの強制再生を実施でき、従来に比してDPF23Aの強制再生に要する時間の短縮化が図られ、燃費の悪化のさらなる防止が図られる。
【0040】
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記第一実施形態では、NOx吸蔵触媒22がDPF23の排気上流側に配置されている。これは、DPF23の強制再生によって、このDPF23の排気下流側の温度がより上昇することを考慮したものである。しかし、本発明は、必ずしもこの実施形態に限定されるものではなく、NOx吸蔵触媒22がDPF23の排気下流側に配置される、又は両者を一体化させても良い。
【0041】
また、エンジンとしてはディーゼル機関が好ましいが、これに限定されるものではなく、本発明の内燃機関の排気浄化装置は、排気通路にNOx吸蔵触媒を備え、リッチ運転可能な全てのエンジンシステムに適用させることができる。
【0042】
【発明の効果】
以上の説明から理解できるように、請求項1記載の本発明の内燃機関の排気浄化装置によれば、約600℃以上の如くのDPFの再生に必要な所定温度が実現されたときには、排気浄化制御手段が、排気空燃比をリッチ側とリーン側と短期間で切換えるので、DPFの強制再生とNOx吸蔵触媒のSパージとが可能な限り同時に近付けて実施されることになり、総再生時間の短縮化を図って消費される燃料量が削減され、燃費の悪化をより一層防止することができる。
【0043】
しかも、リッチ側とリーン側との複数回の切換えが周期的に行われることから、DPFの再生速度が過大にならずに適切に制御することができる。
また、請求項2記載の発明によれば、排気浄化制御手段が、排気空燃比をリッチ側とリーン側と短期間で切換えることから、DPFの再生速度が過大にならず、DPFの強制再生を適切に制御することができるとともに、従来技術に比してDPFの強制再生に要する時間の短縮化が図られ、燃費の悪化のさらなる防止を図ることができる。
【0044】
さらに、請求項3記載の発明によれば、排気浄化制御手段が、触媒温度、触媒特性及びPMの堆積量に応じて、排気空燃比のリッチ側の期間とリーン側の期間とを設定しているので、これらの期間の割合を最適に設定することが可能になり、排ガス性能を良好にすることができる。
【図面の簡単な説明】
【図1】本発明の第一実施形態に係る内燃機関の排気浄化装置が適用されるエンジンの構成図である。
【図2】図1の排気浄化装置における再生制御のタイミングチャートである。
【図3】本発明の第二実施形態に係る内燃機関の排気浄化装置が適用されるエンジンの構成図である。
【図4】図3の排気浄化装置における再生制御のタイミングチャートである。
【符号の説明】
1 内燃機関
2 気筒
20 排気通路
22 NOx吸蔵触媒
23 DPF(フィルタ)
23A DPF(フィルタ)
40 温度センサ(フィルタ昇温検出手段)
44 ECU(電子コントロールユニット)
46 排気浄化制御部(排気浄化制御手段)
46A 排気浄化制御部(排気浄化制御手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly, to an exhaust gas purification device for an internal combustion engine applied to regeneration of a diesel particulate filter (DPF).
[0002]
[Prior art]
Generally, a DPF is an exhaust gas after-treatment device that collects and processes particulate matter (PM) in exhaust gas. Specifically, since exhaust gas from a diesel engine or the like contains a large amount of PM in addition to HC, CO, NOx, etc., after collecting the PM in a filter, the exhaust gas of about 600 ° C. Recycle DPF by incineration and removal using exhaust gas.
[0003]
Here, in the DPF, the self-regeneration can be realized depending on the operating conditions, but a forced regeneration system for forcibly increasing the temperature of the DPF is indispensable when all the operating conditions are assumed. However, in this forced regeneration, for example, if the temperature of the DPF is too low, the regeneration speed is slow, and if it is too high, the DPF is damaged due to rapid regeneration, which makes it difficult to control the temperature. Therefore, in the DPF, there has been proposed a technology of an exhaust gas purification device for an internal combustion engine that controls the regeneration speed of the DPF by controlling the air-fuel ratio of the internal combustion engine (for example, see Patent Document 1).
[0004]
In this device, a DPF is provided in the exhaust system. During forced regeneration of the DPF, the DPF is set to a rich air-fuel ratio until the DPF reaches a predetermined temperature, and the DPF is heated to a predetermined temperature and then switched to a lean air-fuel ratio. Burns and removes PM. Thereby, forced regeneration of the DPF is achieved.
In addition, the apparatus further includes a NOx storage catalyst in the exhaust system in addition to the DPF, and when releasing the S component (S purge), after the DPF reaches a predetermined temperature, the temperature is further reduced from the SOx desorption temperature. Until the predetermined time is reached, the S-poisoning is released by maintaining the rich air-fuel ratio.
[0005]
This NOx storage catalyst is an exhaust gas aftertreatment device that stores NOx in exhaust gas at a lean air-fuel ratio and releases and reduces the stored NOx at a rich air-fuel ratio.
Specifically, it has a characteristic of storing NOx in exhaust gas as a nitrate in an excess oxygen state (oxidizing atmosphere) and reducing the stored NOx to nitrogen in a excess carbon monoxide state (reducing atmosphere). The internal combustion engine periodically switches to a rich operation in which the excess air ratio is low (low λ) such that the exhaust air-fuel ratio is controlled to a stoichiometric air-fuel ratio or a value close to the stoichiometric air-fuel ratio before the NOx storage amount is saturated. To regenerate the NOx storage catalyst. In addition, SOx resulting from the oxidation of the S component in the fuel is also deposited as sulfate on the NOx storage catalyst. Therefore, in order to release the deposited S component (S purge), the rich operation is periodically performed in the same manner as described above. To regenerate the NOx storage catalyst.
[0006]
Here, the S purge requires a high temperature of about 650 ° C. and a rich or stoichiometric exhaust gas.
Therefore, in the above-described apparatus, during forced regeneration of the DPF, the combustion of PM is suppressed by setting the rich air-fuel ratio until the DPF reaches a predetermined temperature, and during the S purge, the rich air-fuel ratio is further maintained until the predetermined time from the desorption temperature of SOx is reached. The air-fuel ratio is set. This releases the S poisoning.
[0007]
[Patent Document 1]
JP-A-2002-213229 (paragraph numbers 0015 to 0020, FIG. 1 and the like)
[0008]
[Problems to be solved by the invention]
By the way, the forced regeneration of the DPF and the S-purge of the NOx storage catalyst are common in that, as described above, both can be performed using high-temperature exhaust gas that has reached about 650 ° C.
Therefore, it is conceivable that the forced regeneration of the DPF and the S-purge of the NOx storage catalyst are simultaneously performed. The former requires exhaustion in a lean atmosphere for soot oxidation, whereas the latter requires exhaustion in a stoichiometric or rich atmosphere. Therefore, it is generally considered that it is generally difficult to carry out these steps simultaneously.
[0009]
However, if the forced regeneration of the DPF and the S purge of the NOx storage catalyst can be performed at the same time, the total regeneration time required for the regeneration can be shortened, and the deterioration of fuel efficiency can be further prevented. It becomes possible.
Further, even if the regeneration time required for the forced regeneration of the DPF is shortened only, it is possible to further prevent deterioration of fuel efficiency.
[0010]
Here, in the exhaust gas purifying apparatus for an internal combustion engine according to the related art, when performing the S purge, after the DPF exceeds a predetermined temperature, the rich air-fuel ratio is maintained until a predetermined time elapses, Thereafter, the air-fuel ratio is switched to the lean air-fuel ratio to maintain the lean air-fuel ratio. That is, first, the S purge is performed without performing the forced regeneration of the DPF, and then the forced regeneration of the DPF is performed without performing the S purge. Therefore, the forced regeneration of the DPF and the S purge of the NOx storage catalyst are performed. Obviously, they are separately performed, and the time required for forced regeneration of the DPF is prolonged by the amount of the S purge.
[0011]
In other words, the total regeneration time in this case starts from the point in time when the DPF exceeds a predetermined temperature, the S poisoning is released by permitting the S purge, and then the exhaust gas is switched to a lean atmosphere to perform the forced regeneration of the DPF. There is a problem that the time required for the operation to be completed is prolonged, and the amount of fuel consumed during that time is required twice. That is, in the above-described conventional technology, there is still a problem in preventing deterioration of fuel efficiency.
[0012]
The present invention has been made in view of such a problem, and an object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can reduce the total forced regeneration time for a DPF or the like.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, an exhaust gas purifying apparatus for an internal combustion engine according to claim 1 is provided in an exhaust passage communicating with a cylinder of the internal combustion engine and an exhaust passage. A NOx storage catalyst that releases and reduces the NOx stored by performing the operation, a filter that is provided in the exhaust passage and collects particulate matter in the exhaust gas, and a filter temperature rise detection unit that detects the temperature of the filter; Exhaust purification control means for changing the exhaust air-fuel ratio of the internal combustion engine between a rich side and a lean side in a short cycle when the filter temperature detecting means detects that the filter has reached a predetermined temperature. I have.
[0014]
Therefore, according to the first aspect of the present invention, when the predetermined temperature required for the regeneration of the DPF, such as about 600 ° C. or higher, is achieved, the exhaust purification control means increases the exhaust air-fuel ratio to the rich side. And the lean side are switched in a short period of time, so that the forced regeneration of the DPF and the S purge of the NOx storage catalyst are performed as close as possible to each other, and the amount of fuel consumed by shortening the total regeneration time , And deterioration of fuel efficiency is further prevented.
[0015]
In addition, since the switching between the rich side and the lean side is performed a plurality of times, the DPF regeneration speed can be appropriately controlled without becoming excessively high.
Note that the rich side exhaust air-fuel ratio includes stoichiometry and is preferably slightly richer than the stoichiometry.
According to the second aspect of the present invention, an exhaust passage communicating with a cylinder of the internal combustion engine, a filter provided in the exhaust passage for collecting particulate matter in the exhaust gas, and a filter temperature rise detecting a temperature of the filter are provided. Detection means, and exhaust purification control means for changing the exhaust air-fuel ratio of the internal combustion engine between the rich side and the lean side in a short cycle when the filter temperature detection section detects that the filter has reached a predetermined temperature. It is characterized by:
[0016]
As described above, since the exhaust gas purification control means switches the exhaust air-fuel ratio between the rich side and the lean side in a short period of time, the regeneration speed of the DPF does not become excessive, and the forced regeneration of the DPF can be appropriately controlled. The time required for the forced regeneration of the DPF is shortened as compared with the related art, and the deterioration of fuel efficiency is further prevented.
Further, according to the third aspect of the present invention, the exhaust gas purification control means sets the rich side period of the exhaust air-fuel ratio based on the catalyst temperature and the catalyst characteristics of the NOx storage catalyst, and sets the set rich side period, NOx It is characterized in that the period on the lean side of the exhaust air-fuel ratio is set based on the amount of PM accumulated during the regeneration control of the storage catalyst and the filter.
[0017]
As described above, since the exhaust gas purification control means sets the period on the rich side and the period on the lean side of the exhaust air-fuel ratio in accordance with the catalyst temperature, the catalyst characteristics, and the amount of accumulated PM, the ratio of these periods Can be set optimally, and the exhaust gas performance can be improved.
The rich side period is preferably determined based on the catalyst temperature and the catalyst characteristics so that the NOx storage catalyst can appropriately release the S component as SO 2 . In addition, it is preferable to correct the rich side and the lean side of the exhaust air-fuel ratio in accordance with the temperature rise state of the filter, so that the DPF regeneration speed can be controlled more appropriately.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an engine system configuration diagram including a multi-cylinder diesel engine (hereinafter, simply referred to as an engine) 1 to which an exhaust gas purification device for an internal combustion engine according to a first embodiment of the present invention is applied. The configuration of an exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described based on FIG.
[0019]
Each cylinder 2 of the engine 1 has a fuel supply system having a common rail type fuel injection device, an intake passage 8 through which intake air is introduced into the combustion chamber 4 by opening an intake valve 6, and an opening of an exhaust valve 18. The valve is connected to an exhaust passage 20 through which exhaust gas from the combustion chamber 4 is led out.
An air cleaner 16 is connected to the most upstream portion of the intake passage 8, and a supercharger 14 is interposed downstream thereof. A throttle valve 10 and a surge tank 12 are arranged downstream of the supercharger 14 in this order. The throttle valve 10 is a so-called drive-by-wire type throttle valve (ETV), and its opening is changed according to the engine operating state.
[0020]
On the other hand, a NOx storage catalyst 22 is connected downstream of the exhaust passage 20. The NOx storage catalyst 22 stores NOx in exhaust when the exhaust air-fuel ratio is lean, and releases the stored NOx when the exhaust air-fuel ratio is rich and a reducing agent (HC or CO) exists in the exhaust. This NOx storage catalyst has a known structure. In this embodiment, NOx is released and reduced by post injection.
[0021]
A DPF (filter) 23 is connected downstream of the NOx storage catalyst 22. The DPF 23 captures PM in the exhaust gas, incinerates and removes the PM with high-temperature exhaust gas, and regenerates the PM. This DPF also has a known configuration.
An exhaust circulation passage (EGR passage) 24 branches and extends from the exhaust passage 20, and a part of the exhaust gas (EGR gas) is recirculated into the intake passage 8 to suppress the emission of NOx. The tip of the EGR passage 24 is connected to the intake passage 8. An EGR cooler 26 for cooling EGR gas and an EGR valve 28 electrically connected to an electronic control unit (ECU) 44 are provided in the EGR passage 24. The channel area is adjusted.
[0022]
The ETV 10 is also electrically connected to the ECU 44, and adjusts the EGR gas amount during normal control by adjusting the flow passage area of the intake passage 8. Then, fresh air from the air cleaner 16 enters the intake passage 8 via the supercharger 14, is adjusted by the ETV 10, merges with the EGR gas, and is guided into the combustion chamber 4 of each cylinder 2. When the combustion of the fuel is completed, the exhaust gas is discharged to the exhaust passage 20 and sent to the NOx storage catalyst 22 and the DPF 23.
[0023]
Here, an airflow sensor 34 is provided at an appropriate position downstream of the air cleaner 16 in the intake passage 8. In the exhaust passage 20, a temperature sensor 36 and an A / F sensor 38 are disposed at appropriate positions on the upstream side of the NOx storage catalyst 22, and an exhaust temperature from the engine 1 (catalyst temperature of the NOx storage catalyst 22). T1 and its exhaust air-fuel ratio λ are detected. In the exhaust passage 20, a temperature sensor (filter temperature rise detecting means) 40 is disposed at an appropriate position on the downstream side of the DPF 23, and detects the temperature T2 of the exhaust gas passing through the NOx storage catalyst 22.
[0024]
On the input side of the ECU 44, in addition to the temperature sensor 36, the A / F sensor 38, and the temperature sensor 40, various sensors for detecting the operating state of the engine 1, such as the air flow sensor 34, are electrically connected. On the other hand, on the output side of the ECU 44, various actuators of the ETV 10 and the EGR valve 28 described above are electrically connected.
[0025]
The ECU 44 includes an exhaust gas purification control unit 46 (exhaust gas purification control means). In the exhaust gas purification control unit 46, during normal control of the engine 1, NOx in exhaust gas is stored in the NOx storage catalyst 22 in an oxidizing atmosphere, while during regeneration control of S purge of the NOx storage catalyst 22 and forced regeneration of the DPF 23. After the compression top dead center, additional fuel is injected, and a rich spike is performed to introduce high temperature and stoichiometric or rich exhaust gas from the engine 1 to the NOx storage catalyst 22, and first, the NOx storage catalyst 22 and the DPF 23 are heated, and When a predetermined temperature (about 600 ° C. or higher) required for regeneration of the DPF 23 is realized, the exhaust air-fuel ratio is switched between the rich side and the lean side several times in a short cycle.
[0026]
When the exhaust air-fuel ratio is rich, the S purge of the NOx storage catalyst 22 is performed, and the stored NOx is released and reduced in a reducing atmosphere, and the attached S component is released in a reducing atmosphere to regenerate the NOx storage catalyst 22. At the same time, when the exhaust air-fuel ratio is lean, the DPF 23 is forcibly regenerated.
Next, the operation of the exhaust gas purification device will be described.
[0027]
FIG. 2 is a timing chart of the regeneration control in the exhaust gas purification control unit 46.
First, the exhaust gas purification control unit 46 aims to complete the S purge of the NOx storage catalyst 22 and the forced regeneration of the DPF 23 by one temperature increase. As shown, the catalyst temperature T1 of the NOx storage catalyst 22 measured by the temperature sensor 36 rises from 300 ° C. to 600 ° C. or more, and thereafter returns to 300 ° C. before the S purge of the NOx storage catalyst 22 and the DPF 23 And near-simultaneous regeneration with the forced regeneration is performed.
[0028]
When the exhaust air-fuel ratio on the upstream side of the NOx storage catalyst 22 is set to be slightly rich, the detection value of the A / F sensor 38 becomes lower than the exhaust air-fuel ratio (λ = about 2.0) in the normal control. The NOx during temperature rise is suppressed to almost zero by the reducing function of the NOx storage catalyst 22. The exhaust gas purification control unit 46 reads the catalyst temperature T1 of the NOx storage catalyst 22 by the temperature sensor 36 to recognize the current temperature of the NOx storage catalyst 22. Based on the catalyst temperature T1 and the catalyst characteristics, the NOx storage catalyst 22 The rich retention period is set so that the S component can be appropriately released as SO 2 without releasing H 2 S.
[0029]
Further, the exhaust gas purification control unit 46 reads the exhaust air-fuel ratio λ on the exhaust gas upstream side of the NOx storage catalyst 22 by the A / F sensor 38 and recognizes the current exhaust air-fuel ratio of the engine 1. Thus, the exhaust air-fuel ratio of the engine 1 can be set to a stoichiometric or rich atmosphere. If the rich-side air-fuel ratio is set to a slightly rich side slightly richer than the stoichiometric, the release of the SO 2 can be further improved. Will be possible. Further, setting the stoichiometric atmosphere is advantageous in exhaust gas performance. This is because the three-way function of the NOx storage catalyst 22 can be used to reliably purify NOx, and the DPF 23 can also suppress PM combustion during temperature rise. This is because it is possible to prevent the soot reproduction which is not performed uniformly.
[0030]
Next, when the temperature T2 on the downstream side of the DPF 23 by the temperature sensor 40 becomes equal to or higher than 600 ° C., the exhaust air-fuel ratio is switched to lean (slightly lean from λ = 1) and is maintained for a predetermined lean holding time. At this time, forced regeneration of the DPF 23 is performed.
The time during which this lean is maintained is also set by the exhaust gas purification control unit 46. That is, first, the amount of the S component deposited on the NOx storage catalyst 22 and the amount of the PM trapped by the DPF 23 at the start of the regeneration control are respectively represented by the catalyst temperature T1, the exhaust temperature T2, and the exhaust air-fuel ratio λ. , The total rich period required for S purge and the total lean period required for PM combustion are derived.
[0031]
Then, the lean holding period is set using the set rich holding period for the duty ratio between the total rich period and the total lean period. As described above, the rich air-fuel ratio and the lean air-fuel ratio are set in accordance with the accumulation amount, and the ratio of these periods is optimally set to improve the exhaust gas performance.
[0032]
In the rich holding period and the lean holding period set by the exhaust gas purification control unit 46, when the PM combustion speed is determined to be excessive based on the exhaust gas temperature T2 on the exhaust gas downstream side of the DPF 23 by the temperature sensor 40, for example, , The rich holding period is lengthened, or the lean holding period is shortened. As described above, when the rich holding period and the lean holding period are set, the regeneration speed of the DPF 23 is appropriately controlled, and it is ensured that the amount of heat generated by the combustion of the PM sharply increases and the DPF 23 is damaged. Can be prevented.
[0033]
Further, the exhaust gas purification control unit 46 uses the above-described rich-side air-fuel ratio for the duty ratio between the total rich period and the total lean period, or the time-average target air-fuel ratio and the engine for the duty ratio. The lean air-fuel ratio is also set by using the exhaust gas flow rate based on the air amount information of No. 1. This is because the PM combustion speed is considered to depend on the target air-fuel ratio (oxygen concentration on the upstream side of the DPF 23) or the amount of oxygen supplied to the DPF 23.
[0034]
Then, after the elapse of a predetermined lean holding time, the exhaust air-fuel ratio is switched to a weak rich (slightly rich from λ = 1) and held. At this time, the S purge of the NOx storage catalyst 22 is performed.
Further, after a predetermined rich holding time has elapsed, the exhaust air-fuel ratio is switched again to the above-described lean side exhaust air-fuel ratio and held for a predetermined time, and then further switched to the above-described rich side exhaust air-fuel ratio and held for a predetermined time. The switching of the exhaust air-fuel ratio between the rich side and the lean side a plurality of times is periodically performed in a short period. Thereby, the regeneration speed of the DPF 23 is appropriately controlled, and damage or melting damage of the DPF 23 due to an excessive regeneration speed is prevented.
[0035]
After the forced regeneration of the DPF 23 and the S purge of the NOx storage catalyst 22 have been performed for the requested time, the control is returned to the normal diesel engine control.
As described above, in the present invention, when the DPF 23 reaches a predetermined temperature, the exhaust gas purification control means 46 is provided which periodically switches the exhaust air-fuel ratio between the rich side and the lean side and performs the switching a plurality of times. Therefore, by utilizing the rich or stoichiometric state during the temperature rise and the periodic rich state during the regeneration of the DPF 23, it is possible to perform the forced regeneration of the DPF 23 and the S purge of the NOx storage catalyst 22 as simultaneously as possible. it can.
[0036]
In the forced regeneration of the DPF 23, the PM combustion speed is controlled by a periodic change in the exhaust air-fuel ratio while giving sufficient temperature conditions, so that damage or the like due to abnormal temperature rise of the DPF 23 can be avoided.
In addition, since the temperature of the NOx storage catalyst 22 and the temperature of the DPF 23 are raised at the same time, the time required for raising the temperature and the amount of fuel are reduced, and the deterioration of fuel efficiency can be further reduced.
[0037]
If the temperature is raised in stoichiometry, the temperature of the entire NOx storage catalyst 22 and the DPF 23 can be sufficiently increased while suppressing the rapid regeneration of the DPF 23.
FIG. 3 shows a second embodiment of the present invention. The second embodiment has the same configuration as that of the first embodiment except for the configuration of the catalyst and the like. Therefore, the configuration and the like of the catalyst will be described in detail.
[0038]
Only the DPF (filter) 23A is connected downstream of the exhaust passage 20 in the present embodiment. The ECU 44 includes an exhaust gas purification control unit 46A (exhaust gas purification control means).
In the exhaust gas purification control unit 46A, during normal control of the engine 1, PM is collected by the DPF 23A, and during regeneration control with forced regeneration of the DPF 23A, first, high-temperature and stoichiometric or rich exhaust gas from the engine 1 is discharged to the DPF 23A. And the temperature is raised. When a predetermined temperature (about 600 ° C. or higher) required for the regeneration of the DPF 23A is realized, the exhaust air-fuel ratio is switched between the rich side and the lean side in a short period of time to perform the forced regeneration of the DPF 23A.
[0039]
Further, as shown in the timing chart of the regeneration control in FIG. 4, since the present embodiment is not provided with the NOx storage catalyst, it is not necessary to consider the S purge, and the exhaust air-fuel ratio λ by the A / F sensor 38 is used. Is set slightly closer to stoichio than in the first embodiment.
As described above, according to the exhaust gas purification control means 46A of the present embodiment, the switching between the rich side and the lean side is performed in a short period of time, so that in the case of the lean side, the regeneration speed of the DPF 23A does not become excessive and the DPF 23A Forced regeneration can be performed, and the time required for forced regeneration of the DPF 23A can be reduced as compared with the related art, thereby further preventing deterioration of fuel efficiency.
[0040]
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention.
For example, in the first embodiment, the NOx storage catalyst 22 is disposed on the exhaust gas upstream side of the DPF 23. This takes into account that the temperature of the DPF 23 on the exhaust gas downstream side is further increased by the forced regeneration of the DPF 23. However, the present invention is not necessarily limited to this embodiment, and the NOx storage catalyst 22 may be disposed downstream of the DPF 23 on the exhaust side, or both may be integrated.
[0041]
The engine is preferably a diesel engine, but is not limited to this. The exhaust gas purifying apparatus for an internal combustion engine of the present invention is applicable to all engine systems that have a NOx storage catalyst in an exhaust passage and can perform a rich operation. Can be done.
[0042]
【The invention's effect】
As can be understood from the above description, according to the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect of the present invention, when the predetermined temperature required for the regeneration of the DPF, such as about 600 ° C. or more, is realized, the exhaust gas purifying method is performed. Since the control means switches the exhaust air-fuel ratio between the rich side and the lean side in a short period of time, the forced regeneration of the DPF and the S purge of the NOx storage catalyst are performed as close as possible to each other, and the total regeneration time is reduced. The amount of fuel consumed by shortening is reduced, and deterioration of fuel efficiency can be further prevented.
[0043]
In addition, since the switching between the rich side and the lean side is performed a plurality of times, the regeneration speed of the DPF can be appropriately controlled without becoming excessive.
According to the second aspect of the present invention, since the exhaust gas purification control means switches the exhaust air-fuel ratio between the rich side and the lean side in a short period of time, the regeneration speed of the DPF does not become excessive, and the forced regeneration of the DPF is performed. The control can be appropriately performed, and the time required for forcibly regenerating the DPF can be reduced as compared with the related art, so that it is possible to further prevent deterioration of fuel efficiency.
[0044]
Further, according to the third aspect of the present invention, the exhaust gas purification control means sets a rich period and a lean period of the exhaust air-fuel ratio in accordance with the catalyst temperature, the catalyst characteristics, and the amount of accumulated PM. Therefore, the ratio of these periods can be set optimally, and the exhaust gas performance can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an engine to which an exhaust gas purification device for an internal combustion engine according to a first embodiment of the present invention is applied.
FIG. 2 is a timing chart of regeneration control in the exhaust gas purification device of FIG.
FIG. 3 is a configuration diagram of an engine to which an exhaust gas purification device for an internal combustion engine according to a second embodiment of the present invention is applied.
FIG. 4 is a timing chart of regeneration control in the exhaust gas purification device of FIG. 3;
[Explanation of symbols]
Reference Signs List 1 internal combustion engine 2 cylinder 20 exhaust passage 22 NOx storage catalyst 23 DPF (filter)
23A DPF (filter)
40 temperature sensor (filter temperature rise detection means)
44 ECU (Electronic Control Unit)
46 Exhaust gas purification control unit (Exhaust gas purification control means)
46A Exhaust gas purification control unit (Exhaust gas purification control means)

Claims (3)

内燃機関の気筒に連通する排気通路と、
該排気通路に設けられ、リーン運転時に排気中のNOxを吸蔵するとともにリッチ運転を行うことで該吸蔵したNOxを放出還元するNOx吸蔵触媒と、
前記排気通路に設けられ、排気中のパティキュレート・マターを捕集するフィルタと、
該フィルタの温度を検出するフィルタ昇温検出手段と、
該フィルタ昇温検出手段によって前記フィルタが所定温度に達したと検出されたとき、前記内燃機関の排気空燃比をリッチ側とリーン側とに短い周期で変化させる排気浄化制御手段と、を備えたことを特徴とする内燃機関の排気浄化装置。
An exhaust passage communicating with a cylinder of the internal combustion engine;
A NOx storage catalyst that is provided in the exhaust passage and stores NOx in exhaust gas during a lean operation and performs a rich operation to release and reduce the stored NOx;
A filter provided in the exhaust passage, for collecting particulate matter in the exhaust;
Filter temperature rise detection means for detecting the temperature of the filter,
Exhaust purification control means for changing the exhaust air-fuel ratio of the internal combustion engine between a rich side and a lean side in a short cycle when the filter temperature rise detection means detects that the filter has reached a predetermined temperature. An exhaust gas purifying apparatus for an internal combustion engine, comprising:
内燃機関の気筒に連通する排気通路と、
該排気通路に設けられ、排気中のパティキュレート・マターを捕集するフィルタと、
該フィルタの温度を検出するフィルタ昇温検出手段と、
該フィルタ昇温検出手段によって前記フィルタが所定温度に達したと検出されたとき、前記内燃機関の排気空燃比をリッチ側とリーン側とに短い周期で変化させる排気浄化制御手段と、を備えたことを特徴とする内燃機関の排気浄化装置。
An exhaust passage communicating with a cylinder of the internal combustion engine;
A filter provided in the exhaust passage, for collecting particulate matter in the exhaust;
Filter temperature rise detection means for detecting the temperature of the filter,
Exhaust purification control means for changing the exhaust air-fuel ratio of the internal combustion engine between a rich side and a lean side in a short cycle when the filter temperature rise detection means detects that the filter has reached a predetermined temperature. An exhaust gas purifying apparatus for an internal combustion engine, comprising:
前記排気浄化制御手段は、前記NOx吸蔵触媒の触媒温度及び触媒特性に基づいて前記排気空燃比のリッチ側の期間を設定するとともに、該設定されたリッチ側の期間、前記NOx吸蔵触媒と前記フィルタとの再生制御時におけるPMの堆積量に基づいて、前記排気空燃比のリーン側の期間を設定していることを特徴とする請求項1記載の内燃機関の排気浄化装置。The exhaust purification control means sets a rich-side period of the exhaust air-fuel ratio based on a catalyst temperature and a catalyst characteristic of the NOx storage catalyst, and sets the NOx storage catalyst and the filter in the set rich-side period. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein a period on the lean side of the exhaust air-fuel ratio is set based on the amount of accumulated PM during the regeneration control.
JP2003117030A 2003-04-22 2003-04-22 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP4203730B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003117030A JP4203730B2 (en) 2003-04-22 2003-04-22 Exhaust gas purification device for internal combustion engine
DE102004019660A DE102004019660B4 (en) 2003-04-22 2004-04-22 Emission control method for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117030A JP4203730B2 (en) 2003-04-22 2003-04-22 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004324455A true JP2004324455A (en) 2004-11-18
JP4203730B2 JP4203730B2 (en) 2009-01-07

Family

ID=33497060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117030A Expired - Lifetime JP4203730B2 (en) 2003-04-22 2003-04-22 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4203730B2 (en)
DE (1) DE102004019660B4 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307801A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2007198145A (en) * 2006-01-24 2007-08-09 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2008064067A (en) * 2006-09-11 2008-03-21 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2010203320A (en) * 2009-03-03 2010-09-16 Honda Motor Co Ltd Exhaust emission control device
JP2010223076A (en) * 2009-03-23 2010-10-07 Honda Motor Co Ltd Exhaust emission control device
JP2010540217A (en) * 2007-09-28 2010-12-24 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Removal of particles from exhaust gas of internal combustion engines operated mainly with stoichiometric mixtures
JP2013096320A (en) * 2011-11-01 2013-05-20 Toyota Industries Corp Exhaust emission control device for internal combustion engine
JP2014055565A (en) * 2012-09-13 2014-03-27 Honda Motor Co Ltd Exhaust emission control system for internal-combustion engine
JP2015132189A (en) * 2014-01-10 2015-07-23 トヨタ自動車株式会社 Control device for internal combustion engine
KR101567209B1 (en) 2014-04-24 2015-11-06 현대자동차주식회사 Exhaust processing device control method for vehicle
JP2016109063A (en) * 2014-12-08 2016-06-20 三菱自動車工業株式会社 Exhaust emission control device of engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046830A1 (en) * 2005-09-29 2007-06-06 Fev Motorentechnik Gmbh Method for operating an internal combustion engine with a particle filter
FR2921685B1 (en) * 2007-09-27 2011-04-01 Peugeot Citroen Automobiles Sa METHOD AND DEVICE FOR TREATING EXHAUST GAS OF AN INTERNAL COMBUSTION ENGINE.
FR2927362B1 (en) * 2008-02-07 2013-10-18 Renault Sas METHOD AND DEVICE FOR REGENERATING AN EXHAUST GAS POST-TREATMENT DEVICE
FR2930968B1 (en) * 2008-05-07 2014-10-24 Renault Sas METHOD FOR REGENERATING A POST PROCESSING SYSTEM BY FRACTIONING WEALTH
DE102008036127A1 (en) * 2008-08-01 2010-02-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating an exhaust system with lambda control
FR2938876A1 (en) * 2008-11-27 2010-05-28 Peugeot Citroen Automobiles Sa STRATEGY FOR REGENERATING A PARTICLE FILTER
FR3079556B1 (en) * 2018-03-28 2020-09-11 Renault Sas METHOD AND SYSTEM FOR CONTROLLING THE REGENERATION OF A PARTICULATE FILTER

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040554B4 (en) * 2000-08-15 2013-05-02 Daimler Ag Method for operating an exhaust gas purification system with particle filter and nitrogen oxide storage
DE10126455B4 (en) * 2001-05-31 2006-03-23 Daimlerchrysler Ag Process for desulfating a nitrogen oxide storage catalyst
JP4241032B2 (en) * 2002-12-26 2009-03-18 日産自動車株式会社 Sulfur poisoning release control device for diesel engine catalyst

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307801A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP4609178B2 (en) * 2005-05-02 2011-01-12 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2007198145A (en) * 2006-01-24 2007-08-09 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP4597876B2 (en) * 2006-01-24 2010-12-15 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP4660446B2 (en) * 2006-09-11 2011-03-30 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2008064067A (en) * 2006-09-11 2008-03-21 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2010540217A (en) * 2007-09-28 2010-12-24 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Removal of particles from exhaust gas of internal combustion engines operated mainly with stoichiometric mixtures
JP2010203320A (en) * 2009-03-03 2010-09-16 Honda Motor Co Ltd Exhaust emission control device
JP2010223076A (en) * 2009-03-23 2010-10-07 Honda Motor Co Ltd Exhaust emission control device
JP2013096320A (en) * 2011-11-01 2013-05-20 Toyota Industries Corp Exhaust emission control device for internal combustion engine
JP2014055565A (en) * 2012-09-13 2014-03-27 Honda Motor Co Ltd Exhaust emission control system for internal-combustion engine
US9032714B2 (en) 2012-09-13 2015-05-19 Honda Motor Co. Ltd. Exhaust purification system for internal combustion engine
JP2015132189A (en) * 2014-01-10 2015-07-23 トヨタ自動車株式会社 Control device for internal combustion engine
CN105899788A (en) * 2014-01-10 2016-08-24 丰田自动车株式会社 Control system of internal combustion engine
US10167760B2 (en) 2014-01-10 2019-01-01 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
CN105899788B (en) * 2014-01-10 2019-04-05 丰田自动车株式会社 The control system of internal combustion engine
KR101567209B1 (en) 2014-04-24 2015-11-06 현대자동차주식회사 Exhaust processing device control method for vehicle
US9523321B2 (en) 2014-04-24 2016-12-20 Hyundai Motor Company Method and system of controlling exhaust after-treatment apparatus for vehicle
JP2016109063A (en) * 2014-12-08 2016-06-20 三菱自動車工業株式会社 Exhaust emission control device of engine

Also Published As

Publication number Publication date
JP4203730B2 (en) 2009-01-07
DE102004019660B4 (en) 2009-12-03
DE102004019660A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP3599012B2 (en) Exhaust gas purification device for internal combustion engine
US6962045B2 (en) Exhaust gas apparatus and method for purifying exhaust gas in internal combustion engine
JP4203730B2 (en) Exhaust gas purification device for internal combustion engine
JP3855818B2 (en) Diesel engine exhaust purification system
JP2004176663A (en) Exhaust emission control device for internal combustion engine
JP2010127179A (en) Exhaust emission control device for internal combustion engine
JP2004324454A (en) Exhaust emission control device of internal combustion engine
JP4114077B2 (en) Exhaust gas purification device for internal combustion engine
JP4435300B2 (en) Control device for internal combustion engine
US10933374B2 (en) Exhaust emission control device, method and computer program product for an engine
JP4709733B2 (en) Exhaust gas purification device for internal combustion engine
JP2006226190A (en) Controller of lean burn engine
JP2007040222A (en) Exhaust emission control device
JP2019138159A (en) Control device for engine
JP2004092584A (en) Exhaust emission control device for internal combustion engine
JP4075822B2 (en) Diesel engine exhaust purification system
JP2007154769A (en) Exhaust emission control device
JP2010229916A (en) Exhaust emission control device of internal combustion engine
JP2006274985A (en) Exhaust gas aftertreatment device
JP4727472B2 (en) Exhaust purification device
JP2006266220A (en) Rising temperature controller of aftertreatment device
JP4000929B2 (en) Exhaust gas purification device for internal combustion engine
EP2927446B1 (en) Exhaust purifying apparatus for internal combustion engine
JP2004346844A (en) Exhaust emission control system
JP2020051346A (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4203730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term