JP2004324211A - Joint structure of precast concrete floor slab - Google Patents

Joint structure of precast concrete floor slab Download PDF

Info

Publication number
JP2004324211A
JP2004324211A JP2003119872A JP2003119872A JP2004324211A JP 2004324211 A JP2004324211 A JP 2004324211A JP 2003119872 A JP2003119872 A JP 2003119872A JP 2003119872 A JP2003119872 A JP 2003119872A JP 2004324211 A JP2004324211 A JP 2004324211A
Authority
JP
Japan
Prior art keywords
joint structure
precast concrete
floor slab
reinforcements
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119872A
Other languages
Japanese (ja)
Other versions
JP3833627B2 (en
Inventor
Eiichi Suzuki
榮一 鈴木
Shiroshi Asanuma
素 浅沼
Seiichi Yanagida
聖一 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKIWA KOSAN PC KK
Original Assignee
TOKIWA KOSAN PC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKIWA KOSAN PC KK filed Critical TOKIWA KOSAN PC KK
Priority to JP2003119872A priority Critical patent/JP3833627B2/en
Publication of JP2004324211A publication Critical patent/JP2004324211A/en
Application granted granted Critical
Publication of JP3833627B2 publication Critical patent/JP3833627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the joint structure of precast concrete floor slabs for shortening the distance between the end faces of a joint part and converting tensile force to reinforcements applied to the cross section of the joint part, into compressive force to concrete. <P>SOLUTION: In the joint structure of the floor slabs, the precast concrete floor slabs 1 are adjacently and continuously arranged, and filling concrete 5 is filled to integrate between the facing end faces 11 from which the reinforcements 3 are projected in an almost horizontally facing direction and linked. In this case, the reinforcements are arranged in the penetrating state alternately or at suitable spaces, and compression plates 4 with vertical faces are erectly mounted to the tip parts 31a, 32b of the reinforcements. A rib plate 41 connecting the compression plate to the axial back face of the reinforcement is mounted to the compression plate, and these projected reinforcements are linked with one another and the compression plates are linked one another respectively in the end face width directions by through-reinforcements 33. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本願発明は、橋梁路床等の構築に用いるプレキャストコンクリート製床版の継手構造に関し、特に、継手部の耐力を高めたプレキャストコンクリート製床版の継手構造に関する。
【0002】
【従来の技術】
橋梁の路床を構成する床版は、走行する自動車等の荷重を直接支持するものであり、かかる路床の構築においては、強度の均質化、設計精度の確保、そして工期の短縮化などの要請から、工場製造によりブロック化されたプレキャストコンクリート製の床版(以下、「PC床版」と略称する。)が広く使用されてきている。これらを橋梁の施工延長に合わせて複数枚を隣接配置し、その継手部となる隣接端面間は端面からそれぞれ突出させた鉄筋を連繋させた後、間詰めコンクリートを充填して一体化させる工法が採られている。
【0003】
これら継手部の構造は、図8に示すように、端面から所定長さ延出した後に湾曲又は屈曲して元の端面に戻るいわゆるループ状に連続した鉄筋a1(以下、「ループ筋」と略称する。)を、互いに接近させたPC床版Aの端面から突出させて交互に対向進入させ、かつ側面視で重畳するように配置したループ筋a1どうしを締結した後に、その継手部となる端面間に間詰めコンクリートa2を打設して一体化させる構造を採っている。このような鉄筋の配置は、荷重により継手部の断面には中立軸Cを境に引張応力と圧縮応力が作用するコンクリート構造の引張耐力の脆弱さを補うためのものである。
【0004】
また、図9に示すように、PC床版Bのループ筋b1を矩形状に形成すると共に、ループ筋b1のそれぞれの内側位置の長手方向に鋼板b3を対向させて配置した後に、間詰めコンクリートb4を打設し、ループ筋b1に作用する引張力を間詰めコンクリートへの圧縮力に変えて力の伝達を向上させて継手の強度を向上させるものもあった(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平8−326197号公報(第3−5頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、図8に示すPC床版Aの継手構造は、鉄筋自体とコンクリートの付着力が元来低いため、十分な継手強度を確保するにはループ筋a1の突出長を長くせざるを得なかった。これに伴って継手部の端面間距離が増大して多量の間詰めコンクリートa2が必要となり、経済的及び養生時間に不利であるほか、フランジd1の幅が小さい主桁Dで構成された橋梁には適用できないという課題があった。
【0007】
また、図9に示すPC床版Bの継手構造では、ループ筋b1の突出長のバラツキが大きいため、鋼板b3が継手部の長手方向に長い場合にはループ筋b1と鋼板b3の間に隙間が発生することから鉄筋と鋼板の密着性に問題があり、ループ筋b1から鋼板b3へ力の伝達が悪かった。また、密着性を確保するため鋼板b3に突起やジベルを設置するなどの措置をしているが、かかる仕様の鋼板b3では力の伝達が不十分であるばかりかコストが嵩む課題があった。
【0008】
さらに、荷重により曲げモーメントがループ筋b1に作用した場合に、引張力が作用する鉄筋b2(以下、「引張筋」と称する。)が鋼板b3に対して偏心しているため、引張筋b2から鋼板b3への力の伝達効率が悪いという課題もあった。
【0009】
【目的】
そこで、本願発明は上記各課題に鑑みて為されたものであり、プレキャストコンクリート製床版の継手構造において、継手部の端面間距離を短くすると共に、鉄筋と介在させる鋼板に新規構成を採ることにより、コンクリートの継手部断面に作用する鉄筋への引張力をコンクリートへの圧縮力に変換する力の伝達を可能とするプレキャストコンクリート製床版の継手構造を提供する。
【0010】
【課題を解決するための手段】
上記問題を解決するために、本願発明にかかるプレキャストコンクリート製床版の継手構造は以下のように構成している。
【0011】
すなわち、プレキャストコンクリート製床版(1)を隣接させて連続配置し、対向した端面(11)からそれぞれ略水平対向方向に鉄筋(3)を突出させて連繋させた端面間(11)に、間詰めコンクリート(5)を充填して一体化させる床版の継手構造において、突出させた各水平対向鉄筋(3)を、交互に又は適宜の間隔で進入させた状態で配置すると共に、該鉄筋(3)と垂直な面をもった圧縮板(4)を各鉄筋(3)の先端部(31a、32a)に取り付けたことを特徴としている。
【0012】
また、圧縮板(4)の取り付けにおいて、端面(11)の上下部からそれぞれ突出させた鉄筋(3)の先端部(31a、32a)に圧縮板(4)を立設状に取り付けると共に、該圧縮板(4)と該鉄筋(3)の軸方向背面とを連結するリブ板(41)を取り付けたことを特徴としている。
【0013】
さらに、突出させた鉄筋(3)どうしと圧縮板(4)どうし、のいずれか又は両方を、端面(11)幅方向に連繋させたことを特徴としている。
【0014】
なお、上記の特許請求の範囲及び課題を解決するための手段の欄で記載した括弧付き符号は、発明の構成の理解を容易にするため参考として図面符号を付記したもので、この図面上の形態に限定するものでないことはもちろんである。
【0015】
【発明の実施の形態】
以下に、本願発明に係るPC床版の継手構造(以下、「継手構造」と略称する。)の具体的な実施形態例について、図面に基づき詳細に説明する。
【0016】
図1は本実施形態例の継手構造で構築する床版全体とPC床版を示す外観斜視図であり、図2は本実施形態例のPC床版の連結状態を示す一部拡大斜視図であり、図3は本実施形態例の継手構造を示す図1のAA線断面図あり、図4は本実施形態例の継手構造を示す図1のBB線断面図あり、図5は本実施形態例のPC床版の鉄筋と圧縮板の配設状態を示す一部拡大斜視図である。
【0017】
本実施形態例の対象となるPC床版1は、次のようにして連結されて一連一体の路床を構築し、自動車等の荷重Gを支持している。
【0018】
すなわち、図1に示すように、並列状に架設した主桁Dのフランジd1上にPC床版1の複数個を互いの端面11を近接対向させて配置し、図2に示すように、各端面11の上下の2箇所から突出状に取り付けられた上筋31及び下筋32から成る水平対向鉄筋3(以下、「鉄筋」と略称する。)及びこの鉄筋3に固着した圧縮板4どうしを、交互に対向進入させかつ側面視で重畳するように近接配置して継手部2を構成する。
【0019】
次に、継手部2で重畳した各PC床版1において、橋梁の幅員方向側(図1のAA線断面)では、図3に示すように、下側配置の各下筋32の先端部32aに垂直な面を持って、かつ継手部2の幅員方向に広がった矩形状の圧縮板4を立設配置している。また、圧縮板4には側面視が略直角三角形のリブ板41を下筋32の上周面長さ方向に沿って一体的に固着して設け、リブ板41の側面には継手部2の長手方向に配置する鉄筋又はPC鋼線から成る通し筋33用の貫通孔42を形成している。
【0020】
最後に、継手部2に間詰めコンクリート5を打設充填して隣接するPC床版1どうしを連結一体化して路床を形成している。なお、継手部2の橋梁の橋長方向側(図1のBB線断面)では、図4に示すように、圧縮板4とリブ板41の配置が幅員方向側(図1のAA線断面)とは逆になり、圧縮板4は上筋31の先端部31aから下向きに固着して配置されている。
【0021】
上記したPC床版1の継手構造として機能する継手部2は、PC床版1から突出した鉄筋3、該鉄筋3の先端に取り付けた圧縮板4、及び打設充填された間詰めコンクリート5から主に構成されている。
【0022】
先ず、PC床版1は、予め工場で製造されるものであって、図5に示すように、主桁Dのフランジd1に載置する両側の断面積を若干厚くして台形状の形状を成し、PC床版1の主桁Dと直交する両側(橋梁の幅員方向側)の下端縁部からは棚板状に突出させたハンチ12を一体形成している。このハンチ12は、PC床版1の敷設時に隣接するPC床版1どうしの対向端面間で目地材21を介して突き当てて、継手部2の下面側を覆う底型枠として機能する。これにより継手部2に打設した間詰めコンクリート5の保持を確実なものとしている。
【0023】
また、PC床版1の各端面11には、複数個の上筋31と下筋32から成る鉄筋3を等間隔で上下方向の2箇所から突出状(又は植設状)に配列形成し、圧縮板4及びリブ板41を鉄筋3の先端部31a、32aに配設している。そして、リブ板41には継手部2の長手方向に横断させた通し筋33を配置させるため、貫通孔42を形成している。
【0024】
圧縮板4は所定の肉厚をもった矩形板状の鋼材からなり、リブ板41は略直角三角形板状の鋼材である。そして、図2、図3に示すように、幅員方向側(図1のAA線断面)においては、圧縮板4はその継手部2の中立軸C程度の高さ寸法を有して下筋32の先端部32aに立設状に固着し、かつ下筋32の上周面の長さ方向にそって取り付けたリブ板41によって補強している。橋長方向側(図1のBB線断面)においては、幅員方向側(図1のAA線断面)側とは逆であって、その継手部2の中立軸C程度の高さ寸法を有した圧縮板4とリブ板41を上筋31の先端部31a及び上筋31の下周面に固着している。そして、これらの取り付けは、溶接(又はガス圧接)等により各上筋31又は下筋32と一体化させている。
【0025】
上述した圧縮板4の鉄筋3に対する配置位置は、別言すると、荷重Gによって生じる断面力のうち引張応力が作用する部分側となっている。すなわち、図3に示すように、下に凸曲となる曲げモーメントが作用する橋梁の幅員方向側(図1のAA線断面)の場合には中立軸Cより下側になり、図4に示すように、上に凸曲となる曲げモーメントが作用する橋梁の橋長方向側(図1のBB線断面)の場合には中立軸Cより上側となっている。
【0026】
また、リブ板41の側面には、上記通し筋33を貫通させる貫通孔42を形成しているが、この貫通孔42の位置は、対向するPC床版において、互いの鉄筋3同士が重畳する中心線位置、すなわち、継手部2の短手方向の中心線上に位置するようにしている。
【0027】
なお、各圧縮板4の幅は、その両側端辺から少なくとも45度に広がった範囲内に隣接して対向配置される他のPC床版1の圧縮板4が入るように各圧縮板4の板幅を設定している。
【0028】
この様に構成したPC床版1は、鉄筋3を幅員方向と橋長方向のそれぞれの側において等間隔(1ピッチ「P」)に配列形成している。そして、PC床版1を隣接配置した時には、対向進入した鉄筋3の間隔を1/2Pとなるようにしているため、PC床版1は端面11における鉄筋3の配列を幅員及び橋長のそれぞれの方向へ1/2Pずらして形成した2種類のタイプがある。
【0029】
【本実施形態の作用】
本実施形態例の継手構造は、路床に対する荷重Gの負荷により、次のように作用する。
【0030】
すなわち、幅員方向側(図1のAA線断面)の継手部2においては、中立軸の下側へ下方凸曲となる曲げモーメントMの作用により下筋32に引張力Tが作用し、従来構造はこの作用力を、鉄筋3の間詰めコンクリート5への付着力のみによって負担していた。
【0031】
しかし、本願発明の主眼である圧縮板4の配置により、下筋32に作用する引張力Tが、対向する圧縮板4どうしの間隔を狭めることによる間詰めコンクリート5への圧縮力に変換される。これにより圧縮板4の間の間詰めコンクリート5には、図6(A)に示すように継手部2の断面視において、三角分布状の圧縮応力σが作用することとなる。また、この箇所の上面視においては、対向してかつ千鳥状に配置されることになる圧縮板4の配置関係により、図6(B)に示すように、圧縮板4の両側に略45度の拡がり角αをもつ圧力分布となり、この範囲においては十分なコンクリートの圧縮状態を有して継手部2がより一体化してその連結強度が向上することとなる。
【0032】
橋長方向側(図1のBB線断面)の継手部2においては、上へ凸曲となる曲げモーメントMが作用し、この場合は、上記の場合と上下逆となり、上筋31に引張力Tが作用することになる。
【0033】
しかし、幅員方向側(図1のAA線断面)とは逆に上筋31に配置した圧縮板4により、上筋31に作用する引張力Tが、圧縮板4を介して対向する圧縮板4を狭める方向に作用し、これにより圧縮板4の間の間詰めコンクリート5には、図7(A)に示すように継手部2の断面視において、三角分布状の圧縮応力σが作用することとなる。また、この箇所の上面視においては、図7(B)に示すように、AA線断面側と同様に略45度の拡がり各αをもつ圧力分布となり、この範囲においては十分なコンクリートの圧縮状態を有して継手部2がより一体化してその連結強度が向上することとなる。
【0034】
【効果】
本願発明は上記のように構成しているため、以下のような効果を有する。
すなわち、鉄筋の対向側に当接状態で圧縮板を対向配置しているため、継手部に打設した間詰めコンクリートの凸曲外側に分布する引張応力を直接的にかつ効率的に間詰めコンクリートへの圧縮応力に変える鉄筋間の力の伝達が可能となり、強度がより向上した継手構造が提供できることになる。
【0035】
また、連結強度が向上することにより、従来に比べて継手部を短くすることが可能となるため、打設する間詰めコンクリート容積の減量による工期の短縮とコスト削減が図れると共に、フランジ幅が狭い橋梁にも適用可能となり、床版製作施工の柔軟性を向上させることが可能となる。
【図面の簡単な説明】
【図1】本実施形態例の継手構造で構築する床版全体とPC床版を示す外観斜視図である。
【図2】本実施形態例のPC床版の連結状態を示す一部拡大斜視図である。
【図3】本実施形態例の継手構造を示す図1のAA線断面図ある。
【図4】本実施形態例の継手構造を示す図1のBB線断面図ある。
【図5】本実施形態例のPC床版の鉄筋と圧縮板の配設状態を示す一部拡大斜視図である。
【図6】本実施形態例の継手構造における荷重による応力分布状態を示す説明図である。
【図7】本実施形態例の継手構造における荷重による応力分布状態を示す説明図である。
【図8】従来の床版PCの継手構造を示す断面図である。
【図9】従来の床版PCの継手構造を示す断面図である。
【符号の説明】
1 PC床版
11 端面
12 ハンチ
2 継手部
21 目地材
3 鉄筋
31 上筋
31a 先端部
32 下筋
32a 先端部
33 通し筋
4 圧縮版
41 リブ板
42 貫通孔
5 間詰めコンクリート
A PC床版(従来例1)
a1 ループ筋
a2 間詰めコンクリート
B PC床版(従来例2)
b1 ループ筋
b2 引張筋
b3 鋼板
b4 間詰めコンクリート
C 中立軸(継手部断面の)
D 主桁
d1 フランジ
σ 圧縮応力
G 荷重
M 曲げモーメント
P ピッチ(鉄筋間隔)
T 引張力
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a joint structure of a precast concrete slab used for construction of a bridge subgrade and the like, and more particularly, to a joint structure of a precast concrete slab having an increased strength of a joint portion.
[0002]
[Prior art]
The floor slabs that constitute the bridge floor are those that directly support the load of running vehicles, etc.In building such road floors, uniformity of strength, securing of design accuracy, shortening of construction period, etc. From a request, floor slabs made of precast concrete (hereinafter abbreviated as “PC slabs”) that have been blocked by factory manufacturing have been widely used. A method of arranging a plurality of these adjacent to each other in accordance with the construction extension of the bridge, connecting the reinforcing bars protruding from the end faces between the adjacent end faces that become the joints, and then filling and filling the filling concrete and integrating them Has been adopted.
[0003]
As shown in FIG. 8, the structure of these joint portions is a so-called loop-shaped continuous reinforcing bar a1 (hereinafter, abbreviated as “loop bar”) that extends a predetermined length from the end surface and then returns to the original end surface by bending or bending. Are projected from the end faces of the PC floor slab A approached to each other, alternately enter and face each other, and after fastening the loop streaks a1 arranged so as to overlap in a side view, an end face serving as a joint portion thereof. A structure is adopted in which interposed concrete a2 is cast in between and integrated. Such an arrangement of the reinforcing bars is for compensating for the weakness of the tensile strength of the concrete structure in which the tensile stress and the compressive stress act on the cross section of the joint portion by the load with the neutral axis C as a boundary.
[0004]
Further, as shown in FIG. 9, the loop streaks b1 of the PC floor slab B are formed in a rectangular shape, and after the steel plates b3 are arranged so as to face each other in the longitudinal direction of the respective inner positions of the loop streaks b1, the filling concrete In some cases, b4 is cast and the tensile force acting on the loop streaks b1 is changed to a compressive force on the thinned concrete to improve the transmission of the force and improve the strength of the joint (for example, see Patent Document 1). ).
[0005]
[Patent Document 1]
JP-A-8-326197 (page 3-5, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, in the joint structure of the PC floor slab A shown in FIG. 8, since the adhesion between the reinforcing bar itself and the concrete is originally low, the protrusion length of the loop streak a1 has to be increased in order to secure sufficient joint strength. Was. Along with this, the distance between the end faces of the joints increases, so that a large amount of thinned concrete a2 is required, which is disadvantageous for economical and curing time, and in addition to a bridge composed of a main girder D having a small flange d1 width. Was not applicable.
[0007]
Further, in the joint structure of the PC floor slab B shown in FIG. 9, since the protrusion length of the loop bar b1 has a large variation, when the steel plate b3 is long in the longitudinal direction of the joint portion, the gap between the loop bar b1 and the steel plate b3 is large. This caused a problem in the adhesion between the reinforcing steel and the steel plate, and the transmission of force from the loop bar b1 to the steel plate b3 was poor. In addition, measures such as installing protrusions and dowels on the steel plate b3 are taken to ensure the adhesion, but with the steel plate b3 of such specifications, not only the transmission of force is insufficient, but also the problem that the cost increases.
[0008]
Further, when the bending moment acts on the loop bar b1 due to the load, the reinforcing bar b2 (hereinafter referred to as “tensile bar”) on which the tensile force acts is eccentric with respect to the steel plate b3. There was also a problem that the efficiency of transmitting force to b3 was poor.
[0009]
【Purpose】
In view of the above, the present invention has been made in view of the above-described problems, and in a joint structure of a precast concrete floor slab, while reducing the distance between end faces of the joint portion, adopting a new configuration in a steel plate interposed with a reinforcing bar. Accordingly, the present invention provides a joint structure of a precast concrete floor slab which enables transmission of a force for converting a tensile force acting on a reinforcing member cross section to a compressive force to concrete.
[0010]
[Means for Solving the Problems]
In order to solve the above problem, the joint structure of the precast concrete floor slab according to the present invention is configured as follows.
[0011]
That is, the precast concrete floor slabs (1) are continuously arranged adjacent to each other, and the reinforcing bars (3) are projected from the opposed end surfaces (11) in a substantially horizontal opposing direction to each other and connected between the end surfaces (11). In the joint structure of the floor slab in which the stuffed concrete (5) is filled and integrated, the protruding horizontal opposing rebars (3) are arranged alternately or at appropriate intervals, and the rebars ( A feature is that a compression plate (4) having a surface perpendicular to (3) is attached to the tip (31a, 32a) of each reinforcing bar (3).
[0012]
Further, in mounting the compression plate (4), the compression plate (4) is mounted in an upright manner on the tip portions (31a, 32a) of the reinforcing bars (3) protruding from the upper and lower portions of the end surface (11). A rib plate (41) for connecting the compression plate (4) to the axial rear surface of the reinforcing bar (3) is attached.
[0013]
Further, one or both of the protruding rebars (3) and the compression plates (4) are connected in the width direction of the end face (11).
[0014]
Note that the reference numerals in parentheses described in the section of the claims and means for solving the problems are provided with reference numerals for reference in order to facilitate understanding of the structure of the invention. Of course, it is not limited to the form.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the joint structure (hereinafter, abbreviated as “joint structure”) of a PC floor slab according to the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is an external perspective view showing the entire floor slab and the PC slab constructed by the joint structure of the embodiment, and FIG. 2 is a partially enlarged perspective view showing a connected state of the PC slab of the embodiment. FIG. 3 is a sectional view taken along the line AA of FIG. 1 showing the joint structure of the embodiment, FIG. 4 is a sectional view taken along the line BB of FIG. 1 showing the joint structure of the embodiment, and FIG. It is a partially expanded perspective view which shows the arrangement | positioning state of the rebar and the compression board of the PC floor slab of an example.
[0017]
The PC floor slab 1 to which the present embodiment is applied is connected as follows to form a one-piece roadbed, and supports a load G of an automobile or the like.
[0018]
That is, as shown in FIG. 1, a plurality of PC floor slabs 1 are arranged on flanges d1 of a main girder D laid in parallel with their end faces 11 being close to each other, and as shown in FIG. A horizontally opposed rebar 3 (hereinafter, abbreviated as “rebar”) composed of an upper rebar 31 and a lower rebar 32 attached protrudingly from two places above and below the end face 11, and compression plates 4 fixed to the rebar 3. The joint portion 2 is arranged so as to alternately face each other and to be closely arranged so as to overlap in a side view.
[0019]
Next, in each of the PC slabs 1 superimposed on the joint portion 2, on the width direction side of the bridge (cross section taken along the line AA in FIG. 1), as shown in FIG. A rectangular compression plate 4 having a surface perpendicular to the horizontal direction and extending in the width direction of the joint portion 2 is provided upright. The compression plate 4 is provided with a rib plate 41 having a substantially right-angled triangular shape as viewed from the side, which is integrally fixed along the length direction of the upper circumferential surface of the lower streak 32. A through-hole 42 for a through bar 33 made of a steel bar or a PC steel wire arranged in the longitudinal direction is formed.
[0020]
Finally, the concrete 2 is cast and filled in the joint portion 2, and the adjacent PC floor slabs 1 are connected and integrated to form a roadbed. On the bridge length direction side of the joint 2 (cross section taken along the line BB in FIG. 1), as shown in FIG. 4, the arrangement of the compression plate 4 and the rib plate 41 is on the width direction side (cross section taken along the line AA in FIG. 1). The compression plate 4 is arranged so as to be fixed downward from the distal end portion 31 a of the upper streak 31.
[0021]
The joint portion 2 functioning as the joint structure of the PC slab 1 includes a reinforcing bar 3 protruding from the PC slab 1, a compression plate 4 attached to a tip of the reinforcing bar 3, and a filled concrete 5 filled and poured. It is mainly composed.
[0022]
First, the PC floor slab 1 is manufactured in advance at a factory, and as shown in FIG. 5, the cross-sectional area of both sides mounted on the flange d1 of the main girder D is slightly thickened to form a trapezoidal shape. A haunch 12 protruding in the form of a shelf plate is integrally formed from the lower end edges of both sides (the width direction side of the bridge) orthogonal to the main girder D of the PC floor slab 1. When the PC slab 1 is laid, the haunch 12 abuts between the opposing end surfaces of the adjacent PC slabs 1 via the joint material 21, and functions as a bottom formwork that covers the lower surface side of the joint 2. This ensures that the concrete filling 5 cast into the joint 2 is held.
[0023]
Further, on each end face 11 of the PC floor slab 1, a plurality of rebars 3 composed of a plurality of upper streaks 31 and lower streaks 32 are arranged at equal intervals in a protruding (or planted) shape from two places in the vertical direction, The compression plate 4 and the rib plate 41 are disposed at the tip portions 31a and 32a of the reinforcing bar 3. A through hole 42 is formed in the rib plate 41 in order to dispose a through bar 33 crossing in the longitudinal direction of the joint 2.
[0024]
The compression plate 4 is formed of a rectangular plate-shaped steel material having a predetermined thickness, and the rib plate 41 is a substantially right-angled triangular plate-shaped steel material. As shown in FIGS. 2 and 3, on the width direction side (cross section taken along the line AA in FIG. 1), the compression plate 4 has a height approximately equal to the neutral axis C of the joint portion 2, and And is reinforced by a rib plate 41 attached along the length direction of the upper peripheral surface of the lower streak 32 to the front end portion 32a of the lower stud. On the bridge length direction side (cross section taken along the line BB in FIG. 1), the width direction (cross section along line AA in FIG. 1) was opposite to the side, and had a height about the neutral axis C of the joint portion 2 thereof. The compression plate 4 and the rib plate 41 are fixed to the distal end portion 31 a of the upper streak 31 and the lower peripheral surface of the upper streak 31. These attachments are integrated with each upper streak 31 or lower streak 32 by welding (or gas pressure welding) or the like.
[0025]
In other words, the above-described arrangement position of the compression plate 4 with respect to the reinforcing bar 3 is a portion of the sectional force generated by the load G on which the tensile stress acts. That is, as shown in FIG. 3, in the width direction side (cross-section taken along the line AA in FIG. 1) of the bridge on which a bending moment that becomes downwardly convex is applied, the bridge is below the neutral axis C, and is shown in FIG. 4. As described above, on the bridge length direction side (cross section taken along the line BB in FIG. 1) of the bridge on which the bending moment that is upwardly convex acts, it is above the neutral axis C.
[0026]
A through hole 42 is formed on the side surface of the rib plate 41 to penetrate the through bar 33. The position of the through hole 42 is such that the reinforcing bars 3 overlap each other on the facing PC floor slab. The center line position, that is, on the center line in the short direction of the joint portion 2 is set.
[0027]
The width of each compression plate 4 is set such that the compression plates 4 of other PC floor slabs 1 that are adjacently disposed facing each other within a range extending at least 45 degrees from both side edges thereof are inserted. The board width is set.
[0028]
In the PC floor slab 1 configured as described above, the reinforcing bars 3 are arranged and formed at equal intervals (one pitch “P”) on each side in the width direction and the bridge length direction. When the PC slabs 1 are arranged adjacent to each other, the interval between the rebars 3 that have entered oppositely is set to 1 / 2P, so that the PC slabs 1 are arranged in the end face 11 by the width and the bridge length, respectively. There are two types formed by shifting by 1 / 2P in the direction of.
[0029]
[Operation of this embodiment]
The joint structure of the present embodiment acts as follows by the load of the load G on the roadbed.
[0030]
That is, in the joint 2 on the width direction side (cross section taken along the line AA in FIG. 1), the tensile force T acts on the lower streaks 32 due to the action of the bending moment M which forms a downwardly convex curve below the neutral shaft, and the conventional structure. Has borne this acting force only by the adhesive force to the concrete 5 filled with the reinforcing bars 3.
[0031]
However, due to the arrangement of the compression plate 4 which is the main feature of the present invention, the tensile force T acting on the lower streaks 32 is converted into the compression force on the filling concrete 5 by narrowing the interval between the opposing compression plates 4. . As a result, as shown in FIG. 6 (A), a triangular distribution of compressive stress σ acts on the interlining concrete 5 between the compression plates 4 as shown in FIG. In addition, in a top view of this portion, due to the arrangement relationship of the compression plates 4 which are opposed to each other and arranged in a staggered manner, as shown in FIG. Pressure distribution having a divergence angle α in this range. In this range, the joint portion 2 has a more compact state of concrete, and the joint portion 2 is further integrated to improve the connection strength.
[0032]
In the joint 2 on the bridge length direction side (cross section taken along the line BB in FIG. 1), a bending moment M which is upwardly convex acts, and in this case, the upper and lower sides are upside down. T will work.
[0033]
However, contrary to the width direction side (cross section taken along the line AA in FIG. 1), the compression plate 4 disposed on the upper streak 31 causes the tensile force T acting on the upper streak 31 to be opposed to the compression plate 4 via the compression plate 4. 7A, whereby the triangular distribution of compressive stress σ acts on the concrete 5 between the compression plates 4 in the sectional view of the joint 2 as shown in FIG. It becomes. In addition, in a top view of this portion, as shown in FIG. 7 (B), a pressure distribution having a spread of approximately 45 degrees and each α similarly to the cross-section side along the line AA is obtained. And the joint portion 2 is further integrated to improve the connection strength.
[0034]
【effect】
Since the present invention is configured as described above, it has the following effects.
That is, since the compression plate is disposed opposite to the opposite side of the reinforcing bar in a contact state, the tensile stress distributed outside the convex curve of the concrete filled in the joint portion is directly and efficiently filled. Thus, it is possible to transmit the force between the reinforcing bars to change the compressive stress to the joint, and to provide a joint structure with further improved strength.
[0035]
Also, by improving the connection strength, it is possible to shorten the joint portion as compared with the conventional one, so that the construction period can be shortened and the cost can be reduced by reducing the volume of the concrete filling to be cast, and the flange width is narrow. The present invention can be applied to bridges, and the flexibility of floor slab production can be improved.
[Brief description of the drawings]
FIG. 1 is an external perspective view showing an entire floor slab and a PC slab constructed with the joint structure of the embodiment.
FIG. 2 is a partially enlarged perspective view showing a connected state of the PC slab of the embodiment.
FIG. 3 is a sectional view taken along the line AA of FIG. 1 showing the joint structure of the embodiment.
FIG. 4 is a sectional view taken along the line BB of FIG. 1 showing the joint structure of the embodiment.
FIG. 5 is a partially enlarged perspective view showing an arrangement state of a reinforcing bar and a compression plate of the PC floor slab of the embodiment.
FIG. 6 is an explanatory diagram showing a stress distribution state due to a load in the joint structure of the embodiment.
FIG. 7 is an explanatory diagram showing a stress distribution state due to a load in the joint structure of the embodiment.
FIG. 8 is a sectional view showing a joint structure of a conventional floor slab PC.
FIG. 9 is a sectional view showing a joint structure of a conventional floor slab PC.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 PC floor slab 11 End surface 12 Haunch 2 Joint part 21 Joint material 3 Reinforcing bar 31 Upper bar 31a Tip 32 Lower bar 32a Tip 33 Through bar 4 Compression plate 41 Rib plate 42 Through hole 5 Filling concrete A PC slab (conventional Example 1)
a1 Loop streaks a2 Filling concrete B PC slab (Conventional example 2)
b1 Loop bar b2 Tensile bar b3 Steel plate b4 Filling concrete C Neutral shaft (joint section)
D Main girder d1 Flange σ Compressive stress G Load M Bending moment P Pitch (rebar spacing)
T tensile force

Claims (3)

プレキャストコンクリート製床版(1)を隣接させて連続配置し、対向した端面(11)からそれぞれ略水平対向方向に鉄筋(3)を突出させて連繋させた端面(11)間に、間詰めコンクリート(5)を充填して一体化させる床版の継手構造において、
突出させた各水平対向鉄筋(3)を、交互に又は適宜の間隔で進入させた状態で配置すると共に、該鉄筋(3)と垂直な面をもった圧縮板(4)を各鉄筋(3)の先端部(31a、32a)に取り付けたことを特徴とするプレキャストコンクリート製床版の継手構造。
The precast concrete floor slabs (1) are continuously arranged adjacent to each other, and the reinforcing concrete (3) is protruded from the opposed end faces (11) in a substantially horizontal opposing direction to each other. In the joint structure of the floor slab in which (5) is filled and integrated,
The protruding horizontal opposing reinforcing bars (3) are arranged alternately or in a state of being inserted at appropriate intervals, and a compression plate (4) having a surface perpendicular to the reinforcing bar (3) is attached to each reinforcing bar (3). ), The joint structure of a precast concrete floor slab attached to the end portions (31a, 32a).
圧縮板(4)の取り付けにおいて、
端面(11)の上下部からそれぞれ突出させた鉄筋(3)の先端部(31a、32a)に圧縮板(4)を立設状に取り付けると共に、該圧縮板(4)と該鉄筋(3)の軸方向背面とを連結するリブ板(41)を取り付けたことを特徴とする請求項1記載のプレキャストコンクリート製床版の継手構造。
In mounting the compression plate (4),
A compression plate (4) is attached in an upright state to the tips (31a, 32a) of the reinforcing bars (3) protruding from the upper and lower portions of the end face (11), respectively, and the compression plate (4) and the reinforcing bars (3) are attached. The joint structure for a precast concrete floor slab according to claim 1, wherein a rib plate (41) connecting the rear surface in the axial direction is attached.
突出させた鉄筋(3)どうしと圧縮板(4)どうし、のいずれか又は両方を、端面(11)幅方向に連繋させたことを特徴とする請求項1、又は2記載のプレキャストコンクリート製床版の継手構造。The precast concrete floor according to claim 1 or 2, wherein one or both of the protruding rebars (3) and the compression plates (4) are connected in the width direction of the end face (11). Plate joint structure.
JP2003119872A 2003-04-24 2003-04-24 Joint structure of precast concrete slab Expired - Fee Related JP3833627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119872A JP3833627B2 (en) 2003-04-24 2003-04-24 Joint structure of precast concrete slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119872A JP3833627B2 (en) 2003-04-24 2003-04-24 Joint structure of precast concrete slab

Publications (2)

Publication Number Publication Date
JP2004324211A true JP2004324211A (en) 2004-11-18
JP3833627B2 JP3833627B2 (en) 2006-10-18

Family

ID=33498973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119872A Expired - Fee Related JP3833627B2 (en) 2003-04-24 2003-04-24 Joint structure of precast concrete slab

Country Status (1)

Country Link
JP (1) JP3833627B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270600A (en) * 2006-03-08 2007-10-18 Ps Mitsubishi Construction Co Ltd Prestress introducing method to filling part between precast concrete members
JP2012225144A (en) * 2011-04-08 2012-11-15 Yokogawa Koji Kk Precast floor slab, joint structure and construction method for the same
JP5700608B1 (en) * 2014-06-24 2015-04-15 株式会社Ihiインフラ建設 Reinforced joint structure of precast concrete slab
JP2018172893A (en) * 2017-03-31 2018-11-08 新日鉄住金エンジニアリング株式会社 Precast floor slab system and bridge structure
JP2018204204A (en) * 2017-05-31 2018-12-27 株式会社Ihiインフラシステム Precast floor slab joint structure
JP2018204203A (en) * 2017-05-31 2018-12-27 株式会社Ihiインフラシステム Precast floor slab joint structure
JP2019002164A (en) * 2017-06-13 2019-01-10 株式会社Ihiインフラシステム Precast floor slab joint structure
JP2019023381A (en) * 2017-07-21 2019-02-14 大成建設株式会社 Precast concrete member, manufacturing method for the same, and road bridge
CN109594667A (en) * 2017-04-05 2019-04-09 孙立民 A kind of building body insulation construction
CN110804940A (en) * 2019-11-18 2020-02-18 江苏韧强建筑科技有限公司 Continuous structure of ultrahigh molecular weight polyethylene fiber reinforced ultrahigh ductility concrete bridge floor
KR102180221B1 (en) * 2019-05-21 2020-11-18 에스오씨기술지주 주식회사 Connection Structure and Method of Concrete Members

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270600A (en) * 2006-03-08 2007-10-18 Ps Mitsubishi Construction Co Ltd Prestress introducing method to filling part between precast concrete members
JP2012225144A (en) * 2011-04-08 2012-11-15 Yokogawa Koji Kk Precast floor slab, joint structure and construction method for the same
JP5700608B1 (en) * 2014-06-24 2015-04-15 株式会社Ihiインフラ建設 Reinforced joint structure of precast concrete slab
JP2016008410A (en) * 2014-06-24 2016-01-18 株式会社Ihiインフラ建設 Reinforcement joint structure for precast concrete floor slab
JP2018172893A (en) * 2017-03-31 2018-11-08 新日鉄住金エンジニアリング株式会社 Precast floor slab system and bridge structure
CN109594667A (en) * 2017-04-05 2019-04-09 孙立民 A kind of building body insulation construction
JP2018204204A (en) * 2017-05-31 2018-12-27 株式会社Ihiインフラシステム Precast floor slab joint structure
JP2018204203A (en) * 2017-05-31 2018-12-27 株式会社Ihiインフラシステム Precast floor slab joint structure
JP2019002164A (en) * 2017-06-13 2019-01-10 株式会社Ihiインフラシステム Precast floor slab joint structure
JP2019023381A (en) * 2017-07-21 2019-02-14 大成建設株式会社 Precast concrete member, manufacturing method for the same, and road bridge
KR102180221B1 (en) * 2019-05-21 2020-11-18 에스오씨기술지주 주식회사 Connection Structure and Method of Concrete Members
CN110804940A (en) * 2019-11-18 2020-02-18 江苏韧强建筑科技有限公司 Continuous structure of ultrahigh molecular weight polyethylene fiber reinforced ultrahigh ductility concrete bridge floor

Also Published As

Publication number Publication date
JP3833627B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP6375079B1 (en) Joint structure of precast composite floor slab perpendicular to the bridge axis and its construction method
JP2001081720A (en) Connection structure of concrete floor slab to steel web in composite box-girder
KR100760393B1 (en) Precast concrete panel and method for constructing a slab using the panel
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
JP2004324211A (en) Joint structure of precast concrete floor slab
KR100812132B1 (en) Concret slab assembly
JPH0424306A (en) Method of laying floor plate for prefabricated house
JP4006481B2 (en) Joint structure of precast concrete slab
KR102014418B1 (en) Beam bridge having beam support block and its construction method
KR101639592B1 (en) Prefabricated lightweight girder and the bridge construction method using the same
JPH11222814A (en) Steel composite bridge using precast prestress concrete floor slab
JP7169152B2 (en) Joint structure of precast concrete members
KR100989313B1 (en) Bridge structure by composition slab with reinforced tensile strength
JP2008088634A (en) Composite steel-concrete floor slab
JP2001026909A (en) Connection structure of floor slab using three- dimensional truss with concrete form in bridge girder
JP2004116060A (en) Erection method for corrugated steel plate web bridge
KR100748939B1 (en) Difference direction corrugated composition plate
KR100480471B1 (en) Connecting Structure and Connecting Method of Honeycomb Type Composite Beam Stiffened with Prestressed Concrete Panel
KR101788079B1 (en) Blockout connecting apparatus for precast structure and construction method therefor
KR20000061241A (en) Precast concrete beam and connecting method with the other building elements
JP2001049616A (en) Precast pc web for use in concrete bridge and prestressed concrete bridge having the pc web
JP7444714B2 (en) Joint structure of precast steel concrete composite deck slab and slab replacement method
KR100638673B1 (en) Connection detail and its construction method between abutment and steel girder in integral abutment bridge
JP7334952B2 (en) wall structure
JPH1121815A (en) Bridge structure by composite steel floor board

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050818

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050824

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060309

A521 Written amendment

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060623

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060719

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees