JP2004323559A - Resin composition for injection molding and resin molded article - Google Patents

Resin composition for injection molding and resin molded article Download PDF

Info

Publication number
JP2004323559A
JP2004323559A JP2003116504A JP2003116504A JP2004323559A JP 2004323559 A JP2004323559 A JP 2004323559A JP 2003116504 A JP2003116504 A JP 2003116504A JP 2003116504 A JP2003116504 A JP 2003116504A JP 2004323559 A JP2004323559 A JP 2004323559A
Authority
JP
Japan
Prior art keywords
injection molding
resin composition
filler
reinforcing material
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003116504A
Other languages
Japanese (ja)
Inventor
Naoki Hattori
直樹 服部
Mitsuo Yamada
光男 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003116504A priority Critical patent/JP2004323559A/en
Publication of JP2004323559A publication Critical patent/JP2004323559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Superstructure Of Vehicle (AREA)
  • Body Structure For Vehicles (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition for injection molding which improves dimensional stability while maintaining the strength and rigidity required for large structural parts, and a resin molded article using the same. <P>SOLUTION: The thermoplastic resin composition for injection molding comprises a crystalline resin, a long fiber reinforcing material, and a scaly filler. The content ratio of the crystalline resin to the sum of the long fiber reinforcing agent and the scaly filler by weight ratio is 70:30 to 50:50, and the aspect ratio of this scaly filler is 5-200. The resin molded article comprises the above thermoplastic resin composition for injection molding and the long fiber reinforcing material having a weight average fiber length of 2-4 mm as the fiber length. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、射出成形用樹脂組成物及び樹脂成形品に係り、更に詳細には、強度、剛性を維持しつつ、寸法安定性を向上させた射出成形用熱可塑性樹脂組成物及びこれを用いた樹脂成形品に関する。
【0002】
【従来の技術】
車体の軽量化の観点から、自動車部品への樹脂材料の採用が拡大している。特に近年はラジエターコアサポート、バックドア及びトランク等の大型構造部品への樹脂材料の適用が増えてきている。樹脂材料は金属材料に比べ、強度や剛性が低いため、上述のような大型構造部品に使用する場合、ガラス繊維などの補強材により強化して使用する場合が多く、特に補強効果を高めるために、長繊維状の補強材を適用する場合が多い。この樹脂材料の種類としては、リサイクル性の観点から、熱可塑性樹脂の採用が増えており、とりわけ耐熱性、耐薬品性、強度及び剛性の観点からポリプロピレンやポリアミドのような結晶性樹脂材料の採用事例が多い。また、長繊維状の補強材で強化された樹脂材料の成形加工方法としては、圧縮成形や射出成形等が挙げられる。特に成形サイクルの短縮化、仕上げ時間の短縮化、部品形状の自由度拡大、及び工程内リサイクル性の観点から射出成形が選択される場合が多い(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2002−220538号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述のように大型構造部品を長繊維状の補強材で強化された結晶性樹脂を用いて射出成形で成形加工した場合、長繊維状の補強材の配向により、ラジエターコアサポート、バックドア及びトランクなどの大型構造部品ではそり変形が発生し、所望の精度を確保するためには、生産開始までに何回も試作と失敗を繰り返す必要があり、多大な工数、費用が必要であるという問題点があった。
【0005】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、大型構造部品に必要とされる強度、剛性を維持しつつ、寸法安定性を向上させた射出成形用熱可塑性樹脂組成物及びこれを用いた樹脂成形品を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、結晶性樹脂と(長繊維状補強材と鱗片状充填材の和)との含有比率を所定の比率とし、所定のアスペクト比の鱗片状充填材を用いることなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明の射出成形用熱可塑性樹脂組成物は、結晶性樹脂と長繊維状補強材と鱗片状充填材を含有して成る。
これら結晶性樹脂と(長繊維状補強材と鱗片状充填材の和)との含有比率は重量比で70:30〜50:50であり、かかる鱗片状充填材のアスペクト比は5〜200である。
また、本発明の樹脂成形品は、上述した射出成形用熱可塑性樹脂組成物を含有して成る樹脂成形品であって、繊維長が重量平均繊維長で2〜4mmの長繊維状補強材を含有する。
【0008】
【発明の実施の形態】
以下、本発明の射出成形用熱可塑性樹脂組成物について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。
【0009】
上述の如く、本発明の射出成形用熱可塑性樹脂組成物は、結晶性樹脂と長繊維状補強材とアスペクト比が5〜200の鱗片状充填材を含有して成る。かかる結晶性樹脂と(長繊維状補強材と鱗片状充填材の和)との含有比率は重量比で70:30〜50:50である。
ここで、「アスペクト比」とは、鱗片状充填材の厚みに対する長径の比(長径/厚み)を表すものとする。
【0010】
結晶性樹脂の含有比率が重量比で70を超えると、強度及び剛性が著しく低下し、大型構造部品に必要とされる上述のような物性を確保することが困難となり、結晶性樹脂の含有比率が重量比で50未満では、流動性が著しく低下し、大型構造部品の射出成形には適用が難しい。
また、結晶性樹脂に含有される長繊維状補強材は射出成形時に流動方向に配向し、結晶性樹脂は結晶化により体積収縮する際に異方性が生じるため、射出成形品にそり変形が発生する。鱗片状充填材は長繊維状補強材とともに結晶性樹脂の間隙に分散、平面方向に配向し、長繊維状補強材の配向を緩和するとともに、平面の剛性を向上することにより、そり変形を抑制する効果を持つことからも、結晶性樹脂と(長繊維状補強材と鱗片状充填材の和)との含有比率は、上述の重量比とすることを要する。
更に、鱗片状充填材のアスペクト比が5未満では、そり量抑制の効果が低く、200を超えると、アスペクト比の安定した鱗片状充填材を得ることが難しい。なお、本発明の樹脂組成物では、上述の鱗片状充填材のアスペクト比は、30〜200であることが好ましい。このようなアスペクト比であると、そり量抑制の効果が向上する。
【0011】
本発明の樹脂組成物では、メルトフローレート(ASTM、D−1238準拠、荷重:21.2N、温度:210℃)(以下「MFR」と省略する。)が1〜20g/10minであるエラストマー系充填材を更に含ませることが望ましい。エラストマー系充填材のMFRが20g/10minを超えると、エラストマー成分の収縮抑制効果が十分でなく、そり量抑制の効果が低くなる可能性があり、1g/10min未満であると大型構造部品としての剛性確保が困難になる。また、本発明の樹脂組成物では、長繊維状補強材と鱗片状充填材の含有比率が重量比で14:1〜5:1であることが好ましい。長繊維状補強材の含有比率が重量比で14を超える場合、5未満の場合では、大型構造部品を射出成形加工したとき、樹脂成形品のそり量が大きくなる。
【0012】
更に、本発明の樹脂組成物では、鱗片状充填材の平均径は20〜700μmであることが好ましい。平均径が20μm未満では、充填材の凝集が起こり、分散不良(数片ずつ塊になったまま分かれない状態であり、分布の偏りはない。)が発生する可能性があり、700μmを超えると、充填材の分配不良(一片ずつには分かれるが、流れにくいため分布の偏りがある。)が起こる可能性がある。
一方、本発明の樹脂組成物では、結晶性樹脂とエラストマー系充填材の含有比率が重量比で1:1〜4:1であることが好ましい。結晶性樹脂の含有比率が重量比で1未満では、樹脂成形品の大型構造部品としての剛性が不足し、結晶性樹脂の含有比率が重量比で4を超えると、樹脂成形品のそり量が大きくなる可能性がある。
【0013】
使用する結晶性樹脂としては、結晶性及び熱可塑性を示せば、特に限定されるものではないが、代表的には、ポリプロピレン、ポリアミド及びポリエステル等の樹脂を挙げることができる。
また、用いる長繊維状補強材としては、代表的には、ガラス長繊維等を挙げることができる。
長繊維状補強材としてガラス長繊維を採用する場合、ガラス長繊維は、直径が10〜16μm、長さが8〜12mmであることが好ましい。
ガラス長繊維の直径が、10μm未満では、樹脂組成物を射出成形した後の樹脂成形品の衝撃強度が低下する可能性があり、16μmを超えると、樹脂成形品の剛性が低下する可能性がある。
ガラス長繊維の長さが、8mm未満では、射出成形後のガラス繊維の長さ(残存ガラス繊維長)が後述する好適な範囲より短くなる可能性があり、12mmを超えると、射出成形機への投入量が不安定になることにより、物性のばらつきが大きくなる可能性がある。
【0014】
更に、鱗片状充填材としては、上述のアスペクト比であれば特に限定されるものではないが、タルク、マイカ又はガラスフレーク及びこれらの任意の組合せに係る充填材を使用できる。
一方、エラストマー系充填材としては、所定のMFRであれば特に限定されるものではないが、結晶性樹脂との均一な分散性が得られるという点において、エチレン系やスチレン系のエラストマーがより好ましい。
なお、上述した結晶性樹脂、長繊維状補強材及び鱗片状充填材の他に、本発明の要旨の範囲内で顔料、光安定剤、酸化防止剤、帯電防止剤及び紫外線吸収材などの各種添加剤を含有させることも可能である。
【0015】
次に、本発明の樹脂成形品について説明する。
上述の如く、本発明の樹脂成形品は、上述した射出成形用熱可塑性樹脂組成物を射出成形加工によって成形した樹脂成形品であって、繊維長が重量平均繊維長で2〜4mmの長繊維状補強材を含有する。
ここで、重量平均繊維長は次式▲1▼
Lw=Σ(Nili)/Σ(Nili)…▲1▼
(式中のLwは重量平均繊維長、Niは長さliの繊維数、liは繊維の長さを示す。)から算出される。
【0016】
結晶性樹脂、長繊維状補強材及び鱗片状充填材などの原料から樹脂組成物を作製し、該樹脂組成物から射出成形加工する際に、長繊維状補強材であるガラス長繊維は混合などの工程を経ることにより、ガラス繊維長が短くなる。
本発明の樹脂成形品においては、残存ガラス繊維長が2mm未満では、衝撃強度が低下し、4mmを超えるとそり量が大きくなる可能性があることから、重量平均繊維長で2〜4mmであることを要する。
なお、上述の樹脂成形品は、車両のフロントエンド、ドア、インストルメントパネル、トランク及びバックドアのような大型構造部品に使用することができる。
【0017】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0018】
(実施例1)
・材料の調整[樹脂組成物の作製]
▲1▼希釈用結晶性樹脂(MFR:30g/10minであるポリプロピレンホモポリマー)、▲2▼エチレン−プロピレン系エラストマー(MFR:10g/10minであるエチレン−プロピレンブロック共重合エラストマー)、▲3▼ガラス長繊維マスターバッチ(繊維径:16μm、繊維束:3000本の長繊維樹脂をポリプロピレンブロックポリマーで含浸させたストランドを12mmに切断して得たガラス長繊維マスターバッチ)、▲4▼充填材マスターバッチ(タルクを▲1▼の希釈用樹脂100重量部に対して30重量部練りこんで得た充填材マスターバッチ)の各材料をドライブレンドして表1所定の配合比率の本例の射出成形用ペレットを得た。
【0019】
・試験片の作成[樹脂成形品の作製]
射出成形加工条件(樹脂温:240℃、型温:40℃、射出圧:58.8MPa、射出時間:2秒、保圧:35.3MPa、保圧時間:20秒、冷却時間:30秒)で型締め圧が110tの射出成形機を用いて、上記得られたペレットを成形して、片端にフィルムゲートを設けた本例のそり測定用平板状試験片(厚さ:4mm、幅:100mm、長さ:300mm)を得た。
【0020】
また、射出成形加工条件(樹脂温:240℃、型温:40℃、射出圧:58.8MPa、射出時間:2.5秒、保圧:35.3MPa、保圧時間:20秒、冷却時間:30秒)で型締め圧が110tの射出成形機を用いて、上記得られたペレットを成形して、片端にフィルムゲートを設けた本例の物性測定用試験片(厚さ:4mm、幅:100mm、長さ:300mm)を得た。
【0021】
(実施例2〜18及び比較例1)
上記材料▲1▼、▲2▼、▲3▼及び▲4▼の成分を変えてドライブレンドして表1所定の配合比率の各例の射出成形用ペレットを得た以外は、実施例1と同様の操作を繰り返し、各例の射出成形用ペレット、そり測定用平板状試験片及び物性測定用試験片を得た。
【0022】
[性能評価]
上記実施例1〜18及び比較例1の試験片を下記の性能評価に供した。各例の得られた結果(そり量(判定)、曲げ弾性率、曲げ強度)を表1に示す。また、各例の樹脂組成物の仕様を併記する。
・そり量測定
水平な平面上にそり測定用平板状試験片の片端を固定し、他端の跳ね上がり量をそり量としてノギスで測定した。そり量は同条件で成形した5サンプルの平均値とし、5mm以下を判定目標値とした。
・弾性率測定
物性測定用試験片から試験片を切削で切り出し、JIS−K7171に基づき曲げ弾性率の測定を行った。曲げ弾性率は6500MPa以上を判定目標値とした。
・強度測定
物性測定用試験片から試験片を切削で切り出し、JIS−K7171に基づき曲げ強度の測定を行った。曲げ強度は110MPa以上を判定目標値とした。
【0023】
【表1】

Figure 2004323559
【0024】
表1より、本発明の範囲に属する実施例1〜18は、本発明外の比較例1に対し強度、剛性を維持しつつ寸法安定性を向上できることがわかる。
現時点では、本発明の目的である寸法安定性の向上という観点から、実施例8、9が良好な結果をもたらすものと思われる。
【0025】
【発明の効果】
以上説明してきたように、本発明によれば、結晶性樹脂と(長繊維状補強材と鱗片状充填材の和)との含有比率を所定の比率とし、所定のアスペクト比の鱗片状充填材を用いることなどとしたため、大型構造部品に必要とされる強度、剛性を維持しつつ、寸法安定性を向上させた射出成形用熱可塑性樹脂組成物及びこれを用いた樹脂成形品を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin composition for injection molding and a resin molded product, and more particularly, to a thermoplastic resin composition for injection molding with improved dimensional stability while maintaining strength and rigidity, and using the same. It relates to a resin molded product.
[0002]
[Prior art]
From the viewpoint of reducing the weight of a vehicle body, the use of resin materials for automobile parts is expanding. In particular, in recent years, the application of resin materials to large structural components such as radiator core supports, back doors and trunks has been increasing. Since resin materials have lower strength and rigidity than metal materials, when used for large structural parts as described above, they are often reinforced with reinforcing materials such as glass fiber, and in particular, to enhance the reinforcing effect In many cases, a long fiber reinforcing material is used. From the viewpoint of recyclability, the use of thermoplastic resins is increasing, and in particular, the use of crystalline resin materials such as polypropylene and polyamide from the viewpoint of heat resistance, chemical resistance, strength and rigidity. There are many cases. In addition, examples of a molding method of a resin material reinforced with a long-fiber reinforcing material include compression molding and injection molding. In particular, injection molding is often selected from the viewpoints of shortening the molding cycle, shortening the finishing time, increasing the degree of freedom of the component shape, and recyclability in the process (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-220538
[Problems to be solved by the invention]
However, when a large-sized structural component is formed by injection molding using a crystalline resin reinforced with a long-fiber reinforcing material as described above, the orientation of the long-fiber reinforcing material causes a radiator core support and a back door. In addition, warpage occurs in large structural parts such as trunks, and in order to ensure the desired accuracy, it is necessary to repeat trial production and failure many times before starting production, which requires a lot of man-hours and cost. There was a problem.
[0005]
The present invention has been made in view of such problems of the related art, and has as its object to improve dimensional stability while maintaining the strength and rigidity required for large structural components. To provide a thermoplastic resin composition for injection molding and a resin molded product using the same.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, determined that the content ratio of the crystalline resin and (the sum of the fibrous reinforcing material and the flaky filler) was a predetermined ratio, and a predetermined aspect ratio was obtained. It has been found that the above object can be achieved by using a flaky filler having a specific ratio, and the present invention has been completed.
[0007]
That is, the thermoplastic resin composition for injection molding of the present invention comprises a crystalline resin, a long fiber reinforcing material, and a flaky filler.
The content ratio of these crystalline resins and (sum of the long-fibrous reinforcing material and the scaly filler) is 70:30 to 50:50 by weight, and the aspect ratio of the scaly filler is 5 to 200. is there.
Further, the resin molded article of the present invention is a resin molded article containing the thermoplastic resin composition for injection molding described above, wherein the fiber length is a weight average fiber length of 2 to 4 mm and a long fibrous reinforcing material. contains.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the thermoplastic resin composition for injection molding of the present invention will be described in detail. In addition, in this specification, "%" represents a mass percentage unless otherwise specified.
[0009]
As described above, the thermoplastic resin composition for injection molding of the present invention comprises a crystalline resin, a long fiber reinforcing material, and a flaky filler having an aspect ratio of 5 to 200. The content ratio of such a crystalline resin and (the sum of the long fiber reinforcing material and the scale-like filler) is 70:30 to 50:50 by weight.
Here, the “aspect ratio” represents the ratio of the major axis to the thickness of the flaky filler (major axis / thickness).
[0010]
When the content ratio of the crystalline resin exceeds 70 by weight, the strength and rigidity are remarkably reduced, and it becomes difficult to secure the above-mentioned physical properties required for large-sized structural parts. If the weight ratio is less than 50, the fluidity is remarkably reduced, and it is difficult to apply it to injection molding of large structural parts.
In addition, the long fiber reinforcing material contained in the crystalline resin is oriented in the flow direction at the time of injection molding, and the crystalline resin undergoes anisotropy when shrinking in volume due to crystallization. appear. The scaly filler is dispersed in the gap of the crystalline resin together with the long-fiber reinforcing material, and is oriented in the plane direction. This reduces the orientation of the long-fibrous reinforcing material and improves the rigidity of the plane, thereby suppressing warpage. Therefore, the content ratio of the crystalline resin and (the sum of the long-fibrous reinforcing material and the scale-like filler) needs to be the above-mentioned weight ratio.
Furthermore, if the aspect ratio of the flaky filler is less than 5, the effect of suppressing the amount of warpage is low, and if it exceeds 200, it is difficult to obtain a flaky filler having a stable aspect ratio. In the resin composition of the present invention, the above-mentioned flaky filler preferably has an aspect ratio of 30 to 200. With such an aspect ratio, the effect of suppressing the amount of warpage is improved.
[0011]
In the resin composition of the present invention, an elastomer system having a melt flow rate (according to ASTM, D-1238, load: 21.2 N, temperature: 210 ° C.) (hereinafter abbreviated as “MFR”) of 1 to 20 g / 10 min. It is desirable to further include a filler. If the MFR of the elastomeric filler exceeds 20 g / 10 min, the effect of suppressing the shrinkage of the elastomer component may be insufficient, and the effect of suppressing the amount of warpage may be reduced. If the MFR is less than 1 g / 10 min, it may be a large structural component. It becomes difficult to secure rigidity. Further, in the resin composition of the present invention, the content ratio of the long fiber reinforcing material and the scale-like filler is preferably 14: 1 to 5: 1 by weight. When the content ratio of the long fibrous reinforcing material exceeds 14 when the weight ratio is less than 5, when a large-sized structural component is injection-molded, the amount of warpage of the resin molded product increases.
[0012]
Furthermore, in the resin composition of the present invention, the average diameter of the flaky filler is preferably 20 to 700 μm. If the average diameter is less than 20 μm, the filler may agglomerate, and poor dispersion (a state in which several pieces are not separated while forming a lump and there is no uneven distribution) may occur. In addition, poor distribution of the filler (split into pieces, but difficult to flow, may cause uneven distribution) may occur.
On the other hand, in the resin composition of the present invention, the content ratio between the crystalline resin and the elastomer filler is preferably from 1: 1 to 4: 1 by weight. If the content ratio of the crystalline resin is less than 1 by weight, the rigidity of the resin molded product as a large structural component is insufficient, and if the content ratio of the crystalline resin exceeds 4 by weight, the warpage of the resin molded product is reduced. Can be large.
[0013]
The crystalline resin to be used is not particularly limited as long as it shows crystallinity and thermoplasticity, but typically, resins such as polypropylene, polyamide and polyester can be mentioned.
As the long fiber reinforcing material to be used, typically, long glass fibers and the like can be mentioned.
When long glass fibers are used as the long fiber reinforcing material, the long glass fibers preferably have a diameter of 10 to 16 μm and a length of 8 to 12 mm.
If the diameter of the long glass fiber is less than 10 μm, the impact strength of the resin molded product after injection molding of the resin composition may decrease, and if it exceeds 16 μm, the rigidity of the resin molded product may decrease. is there.
If the length of the long glass fiber is less than 8 mm, the length of the glass fiber after injection molding (remaining glass fiber length) may be shorter than a preferable range described later. Instability of the input amount of, there is a possibility that the dispersion of the physical properties becomes large.
[0014]
Further, the scaly filler is not particularly limited as long as it has the above-mentioned aspect ratio, but talc, mica or glass flake and a filler according to any combination thereof can be used.
On the other hand, the elastomeric filler is not particularly limited as long as it has a predetermined MFR, but is more preferably an ethylene-based or styrene-based elastomer in that uniform dispersibility with the crystalline resin is obtained. .
In addition, in addition to the crystalline resin, the long-fiber reinforcing material, and the flaky filler described above, various kinds of pigments, light stabilizers, antioxidants, antistatic agents, ultraviolet absorbers, and the like within the scope of the present invention. Additives can also be included.
[0015]
Next, the resin molded product of the present invention will be described.
As described above, the resin molded product of the present invention is a resin molded product obtained by molding the above-mentioned thermoplastic resin composition for injection molding by injection molding, and has a fiber length of 2 to 4 mm in weight average fiber length. Contains a reinforcing material.
Here, the weight average fiber length is given by the following equation (1)
Lw = Σ (Nili 2 ) / Σ (Nili) ... ▲ 1 ▼
(Lw in the formula is the weight average fiber length, Ni is the number of fibers having a length li, and li is the length of the fibers.)
[0016]
When a resin composition is prepared from a raw material such as a crystalline resin, a long-fibrous reinforcing material, and a flaky filler, and the resin composition is subjected to injection molding, the long glass fiber as a long-fibrous reinforcing material is mixed. Through the step, the glass fiber length is shortened.
In the resin molded product of the present invention, when the residual glass fiber length is less than 2 mm, the impact strength is reduced, and when the residual glass fiber length exceeds 4 mm, the warpage may increase, so that the weight average fiber length is 2 to 4 mm. It takes.
The above-mentioned resin molded product can be used for large structural components such as a vehicle front end, a door, an instrument panel, a trunk, and a back door.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0018]
(Example 1)
・ Adjustment of materials [Preparation of resin composition]
(1) crystalline resin for dilution (polypropylene homopolymer with MFR: 30 g / 10 min), (2) ethylene-propylene elastomer (ethylene-propylene block copolymer elastomer with MFR: 10 g / 10 min), (3) glass Long fiber masterbatch (fiber diameter: 16 μm, fiber bundle: glass long fiber masterbatch obtained by cutting a strand obtained by impregnating 3000 longfiber resin with polypropylene block polymer into 12 mm), (4) Filler masterbatch (Filler master batch obtained by kneading 30 parts by weight of talc with respect to 100 parts by weight of diluting resin (1)) is dry-blended with each material. A pellet was obtained.
[0019]
・ Preparation of test piece [Preparation of resin molded product]
Injection molding processing conditions (resin temperature: 240 ° C., mold temperature: 40 ° C., injection pressure: 58.8 MPa, injection time: 2 seconds, dwell pressure: 35.3 MPa, dwell time: 20 seconds, cooling time: 30 seconds) The obtained pellets were molded using an injection molding machine having a mold clamping pressure of 110 t, and a flat test piece for warpage measurement of this example having a film gate at one end (thickness: 4 mm, width: 100 mm) , Length: 300 mm).
[0020]
In addition, injection molding processing conditions (resin temperature: 240 ° C., mold temperature: 40 ° C., injection pressure: 58.8 MPa, injection time: 2.5 seconds, dwell pressure: 35.3 MPa, dwell time: 20 seconds, cooling time : 30 seconds), using an injection molding machine having a mold clamping pressure of 110 t, molding the pellets obtained above, and providing a film gate at one end for a physical property measurement test piece (thickness: 4 mm, width) : 100 mm, length: 300 mm).
[0021]
(Examples 2 to 18 and Comparative Example 1)
Example 1 was the same as Example 1 except that the ingredients (1), (2), (3) and (4) were mixed and dry-blended to obtain injection-molded pellets of each example having a predetermined mixing ratio in Table 1. The same operation was repeated to obtain the pellets for injection molding, the flat test piece for warpage measurement, and the test piece for physical property measurement of each example.
[0022]
[Performance evaluation]
The test pieces of Examples 1 to 18 and Comparative Example 1 were subjected to the following performance evaluations. Table 1 shows the results (warpage amount (judgment), flexural modulus, flexural strength) obtained for each example. The specification of the resin composition of each example is also described.
Measurement of Warpage A flat plate test piece for warpage measurement was fixed on one end on a horizontal plane, and the amount of bounce at the other end was measured with a vernier caliper as the amount of warpage. The warpage amount was an average value of five samples molded under the same conditions, and 5 mm or less was set as a judgment target value.
-Elastic modulus measurement A test piece was cut out from a test piece for physical property measurement, and the bending elastic modulus was measured based on JIS-K7171. The flexural modulus was determined to be 6500 MPa or more as the target judgment value.
-Strength measurement The test piece was cut out from the physical property measurement test piece by cutting, and the bending strength was measured based on JIS-K7171. The bending strength was determined to be 110 MPa or more as the judgment target value.
[0023]
[Table 1]
Figure 2004323559
[0024]
From Table 1, it can be seen that Examples 1 to 18 belonging to the scope of the present invention can improve dimensional stability while maintaining strength and rigidity as compared with Comparative Example 1 outside the present invention.
At present, Examples 8 and 9 seem to provide good results from the viewpoint of improving the dimensional stability, which is the object of the present invention.
[0025]
【The invention's effect】
As described above, according to the present invention, the content ratio of the crystalline resin and (the sum of the long fiber reinforcing material and the flaky filler) is set to a predetermined ratio, and the flaky filler having a predetermined aspect ratio is used. The present invention provides a thermoplastic resin composition for injection molding, which has improved dimensional stability while maintaining the strength and rigidity required for large structural parts, and a resin molded product using the same. Can be.

Claims (10)

結晶性樹脂と長繊維状補強材と鱗片状充填材を含有して成る射出成形用熱可塑性樹脂組成物であって、
結晶性樹脂と(長繊維状補強材と鱗片状充填材の和)との含有比率が重量比で70:30〜50:50であり、
鱗片状充填材のアスペクト比が5〜200であることを特徴とする射出成形用熱可塑性樹脂組成物。
A thermoplastic resin composition for injection molding comprising a crystalline resin, a long fiber reinforcing material, and a flaky filler,
The content ratio of the crystalline resin and (the sum of the long fiber reinforcing material and the flaky filler) is 70:30 to 50:50 by weight,
A thermoplastic resin composition for injection molding, wherein the flaky filler has an aspect ratio of 5 to 200.
メルトフローレートが1〜20g/10minであるエラストマー系充填材を更に含むことを特徴とする請求項1に記載の射出成形用熱可塑性樹脂組成物。The thermoplastic resin composition for injection molding according to claim 1, further comprising an elastomer filler having a melt flow rate of 1 to 20 g / 10 min. 長繊維状補強材と鱗片状充填材との含有比率が重量比で14:1〜5:1であることを特徴とする請求項1又は2に記載の射出成形用熱可塑性樹脂組成物。The thermoplastic resin composition for injection molding according to claim 1 or 2, wherein the content ratio of the long fiber reinforcing material and the scale-like filler is 14: 1 to 5: 1 by weight. 結晶性樹脂とエラストマー系充填材との含有比率が重量比で1:1〜4:1であることを特徴とする請求項2又は3に記載の射出成形用熱可塑性樹脂組成物。The thermoplastic resin composition for injection molding according to claim 2 or 3, wherein the content ratio of the crystalline resin and the elastomer filler is from 1: 1 to 4: 1 by weight. 結晶性樹脂が、ポリプロピレン、ポリアミド及びポリエステルから成る群より選ばれた少なくとも1種の樹脂を含有して成ることを特徴とする請求項1〜4のいずれか1つの項に記載の射出成形用熱可塑性樹脂組成物。The heat for injection molding according to any one of claims 1 to 4, wherein the crystalline resin contains at least one resin selected from the group consisting of polypropylene, polyamide and polyester. Plastic resin composition. 長繊維状補強材は、直径が10〜16μm、長さが8〜12mmのガラス長繊維であることを特徴とする請求項1〜5のいずれか1つの項に記載の射出成形用熱可塑性樹脂組成物。The thermoplastic resin for injection molding according to any one of claims 1 to 5, wherein the long fiber reinforcing material is a glass long fiber having a diameter of 10 to 16 µm and a length of 8 to 12 mm. Composition. 鱗片状充填材が、タルク、マイカ及びガラスフレークから成る群より選ばれた少なくとも1種の充填材から成ることを特徴とする請求項1〜6のいずれか1つの項に記載の射出成形用熱可塑性樹脂組成物。The heat for injection molding according to any one of claims 1 to 6, wherein the scaly filler comprises at least one filler selected from the group consisting of talc, mica, and glass flakes. Plastic resin composition. エラストマー系充填材が、エチレン系エラストマー及び/又はスチレン系エラストマーを含有して成ることを特徴とする請求項2〜7のいずれか1つの項に記載の射出成形用熱可塑性樹脂組成物。The thermoplastic resin composition for injection molding according to any one of claims 2 to 7, wherein the elastomer-based filler contains an ethylene-based elastomer and / or a styrene-based elastomer. 請求項1〜8のいずれか1つの項に記載の射出成形用熱可塑性樹脂組成物を含有して成る樹脂成形品であって、
繊維長が重量平均繊維長で2〜4mmの長繊維状補強材を含有することを特徴とする樹脂成形品。
A resin molded article comprising the thermoplastic resin composition for injection molding according to any one of claims 1 to 8,
A resin molded product characterized by containing a long fibrous reinforcing material having a fiber length of 2 to 4 mm in weight average fiber length.
車両のフロントエンド、ドア、インストルメントパネル、トランク及びバックドアから成る群より選ばれた少なくとも1種の車両用構造部品に用いられることを特徴とする請求項9に記載の樹脂成形品。The resin molded product according to claim 9, wherein the resin molded product is used for at least one type of vehicle structural component selected from the group consisting of a vehicle front end, a door, an instrument panel, a trunk, and a back door.
JP2003116504A 2003-04-22 2003-04-22 Resin composition for injection molding and resin molded article Pending JP2004323559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116504A JP2004323559A (en) 2003-04-22 2003-04-22 Resin composition for injection molding and resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116504A JP2004323559A (en) 2003-04-22 2003-04-22 Resin composition for injection molding and resin molded article

Publications (1)

Publication Number Publication Date
JP2004323559A true JP2004323559A (en) 2004-11-18

Family

ID=33496683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116504A Pending JP2004323559A (en) 2003-04-22 2003-04-22 Resin composition for injection molding and resin molded article

Country Status (1)

Country Link
JP (1) JP2004323559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260229A (en) * 2007-04-12 2008-10-30 Asahi Kasei Chemicals Corp Glass long fiber-reinforced polyamide resin pellet and its molded form

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260229A (en) * 2007-04-12 2008-10-30 Asahi Kasei Chemicals Corp Glass long fiber-reinforced polyamide resin pellet and its molded form

Similar Documents

Publication Publication Date Title
KR970008215B1 (en) Thermoplastic composite material reinforced with hemp fibers
US9499688B2 (en) Long fiber thermoplastic formed with recycled and renewable content
JP5768811B2 (en) Manufacturing method of injection molded body
JPH02173047A (en) Fiber-reinforced thermoplastic resin composition
KR101526742B1 (en) A resin composition of carbon fiber reinforced polypropylene with excellent molding property
CN107793747B (en) Long carbon fiber-reinforced thermoplastic resin composition for foam injection and molded article prepared using the same
CN110746699B (en) Long glass fiber reinforced polypropylene composite material with balanced shrinkage and preparation method thereof
CN112778684B (en) Talcum powder filled polypropylene material with high yield strain and low-temperature impact resistance and preparation method thereof
US20150315371A1 (en) Pellet mixture, carbon fiber-reinforced polypropylene resin composition, molded body, and method for producing pellet mixture
JPH11172121A (en) Thermoplastic composite composition reinforced with mica and woody fibrous filler
DE102005038865B4 (en) A method for producing a propylene-based resin composition, propylene-based resin composition and injection-molded article
JP4160138B2 (en) Thermoplastic resin molded product, material for molded product, and method for producing molded product
CN113912942A (en) Environment-friendly odorless scratch-resistant polypropylene composite material and preparation thereof
CN109971145A (en) Resin combination, resin molded body, the method for manufacturing resin molded body and electronic equipment
KR20190058198A (en) Electrically conductive resin composition and method of preparing the same
DE102017117350A1 (en) Recycled polyprope compositions and vehicle components
DE102016124540A1 (en) Polypropylene compositions with excellent tactile sensation and dimensional stability
JP2004323559A (en) Resin composition for injection molding and resin molded article
JP2002146129A (en) Polypropylene resin composition
JP2960334B2 (en) Fiber reinforced polybutylene terephthalate resin composition
JP3975732B2 (en) Masterbatch composition and method for producing resin molded product
KR20150076619A (en) Polyamide Reinforced Resin Composition
EP3626778B1 (en) Electrically conductive resin composition and preparation method thereof
CN115340729B (en) High-toughness polypropylene material for 3D printing and preparation method thereof
WO2018193893A1 (en) Polyolefin resin composition and molded polyolefin resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080814