JP2004322916A - Driving support system - Google Patents

Driving support system Download PDF

Info

Publication number
JP2004322916A
JP2004322916A JP2003122283A JP2003122283A JP2004322916A JP 2004322916 A JP2004322916 A JP 2004322916A JP 2003122283 A JP2003122283 A JP 2003122283A JP 2003122283 A JP2003122283 A JP 2003122283A JP 2004322916 A JP2004322916 A JP 2004322916A
Authority
JP
Japan
Prior art keywords
vehicle
traveling
preceding vehicle
parallel
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003122283A
Other languages
Japanese (ja)
Other versions
JP3966219B2 (en
Inventor
Takashi Ota
貴志 太田
Yuji Suzuki
裕二 鈴木
Kazuchika Tajima
一親 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003122283A priority Critical patent/JP3966219B2/en
Publication of JP2004322916A publication Critical patent/JP2004322916A/en
Application granted granted Critical
Publication of JP3966219B2 publication Critical patent/JP3966219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive support system capable of reducing a burden on a driver during the automatic drive following a preceding vehicle. <P>SOLUTION: The relative position of a preceding vehicle 101 traveling on the same lane as that of a subject vehicle 100, and the relative position of a parallel-traveling vehicle 102 traveling on a lane not same as that of the subject vehicle are detected. Each traveling locus of the preceding vehicle 101 and the parallel-traveling vehicle 102 is calculated from each detected relative position to determine whether or not the calculated traveling loci are parallel to each other. If it is determined that the traveling loci are parallel to each other, the subject vehicle 100 is controlled to follow the traveling locus of the preceding vehicle 101. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、先行車両へ追従するように自車両の運転支援を行う運転支援装置に関する。
【0002】
【従来の技術】
近年、車両走行の安全性の向上やドライバの負荷軽減や車両トラフィックの移動効率の向上を目的として、ドライバの操作によらず自動的に車両の走行を制御,支援する、様々な運転支援システム、或いは、自動運転システムの開発が世界各国で進められている。
【0003】
このような車両の運転支援システムにおいて提案されている技術として、路面のレーンマーカや白線を検出するレーンマーカセンサ,画像式センサ(カメラ装置)を備えた車両が、これらの各種センサによって自車両の走行レーンを認識し、その走行レーンに沿って走行するように自動運転の制御を行って運転支援する技術(走行レーン認識型の運転支援システム)が提案されている。この技術によれば、正確に自車両の走行レーンを把握しながら自動運転制御を行うことができる。しかし、このような技術は、予め路面にレーンマーカが設置されている特定の道路や、走行レーンの白線表示のある道路を走行することを前提とした自動運転の制御であるため、レーンマーカや白線といった路面インフラの整備されていない一般道路を走行する場合には適用することができない。
【0004】
上述の課題を解消する、別の運転支援システムとして、ダイムラー・クライスラー社らによるショーファープロジェクトのトウバーシステム(先行車追従型の運転支援システム)がある(例えば、非特許文献1参照)。このシステムでは、先行車を赤外線レーダによって電子的に捉えた上で、ステアリング,トランスミッション,エンジン及びブレーキ装置の自動制御を行うことで、先行車に的確に追従する技術が公開されている。このような技術においては、インフラの整備されていない一般道路に適用可能な運転支援システムが提示されている。
【0005】
また、先行車及び先行車の前方を走行する先先行車について、電波レーダを用いて自車との車間距離を認識し、その車間距離や、演算された自車に対する加速度や減速度に応じて自車を加速,減速制御する技術も開示されている(例えば、特許文献1参照)。このような技術によれば、先先行車を考慮した高度で安全な車間距離制御が可能となり、先行車の急加速や急ブレーキにも、滑らかな加速,減速制御によって適切に追従することができ、また、車線変更をはじめとする先行車の急激な挙動変化に対しても、滑らかに車間距離制御を行うことができる。
【0006】
つまり、先行車追従型の運転支援システムは、前述の走行レーン認識型の運転支援システムのような路面インフラを必要としないため、一般道路においても適切に走行支援を行うことができ、現状の道路交通網を走行する一般車両への適用がたやすく、実用化が期待されている。
【0007】
【特許文献1】
特開2002−104015号公報
【非特許文献1】
磯貝 徹二、外2名、“CHAUFFEUR調査報告”、[online]、平成10年12月、[平成15年3月11日検索]、インターネット<URL : http://www.netpark.or.jp/ahs/jpn/c04j/comm_coop/report4.htm>
【0008】
【発明が解決しようとする課題】
しかし、先行車追従型の運転支援システムにおいて提案されている技術では、自車両が先行車に正確に追従するように自動運転の制御が行われるため、先行車が車線変更を行った場合には、自車両は常にその先行車に追従して車線変更を行ってしまい、自車両が車線変更を行う必要がない場合であっても、この車線変更を自動的に回避することはできない。つまり、この技術では、先行車の挙動がレーン走行に適った追従すべき挙動であるか、車線変更等の追従すべきではない挙動であるかの判断を行うことができない。したがって、このような運転支援システムでは、先行車を追従する自動運転を行うか行わないかといった判断は、ドライバ自身に委ねられており、自動運転時であってもドライバの負担が軽減されないという課題があった。
【0009】
本発明はこのような課題に鑑み創案されたもので、先行車に追従する自動運転時のドライバの負担を軽減することができるようにした運転支援装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
このため、請求項1記載の本発明の運転支援装置は、自車両と同一レーンを先行して走行する先行車両の相対位置、及び、該自車両と同一ではないレーンを走行する並走車両の相対位置を検出する相対位置検出手段と、該各々の相対位置から、該先行車両及び該並走車両の各々の走行軌跡を算出する走行軌跡算出手段と、該各々の走行軌跡が並行であるか否かを判定する軌跡並行判定手段と、該軌跡並行判定手段が該各々の走行軌跡が並行であると判定した場合には、該先行車両の走行軌跡を追従するように自車両を制御する追従制御手段とを備えたことを特徴としている。
【0011】
好ましくは、該自車両の移動量を算出する自車移動算出手段を備え、該走行軌跡算出手段が、該自車両の移動量と該各々の相対位置とから該先行車両及び該並走車両の走行軌跡を算出する。
【0012】
また、請求項2記載の本発明の運転支援装置は、該追従制御手段は、該軌跡並行判定手段が該各々の走行軌跡が並行でなくなったと判定した場合には、該先行車両の走行軌跡を追従する自車両の制御を終了することを特徴としている。
【0013】
また、請求項3記載の本発明の運転支援装置は、該軌跡並行判定手段は、該各々の走行軌跡間の距離を算出し、該追従制御手段は、該各々の走行軌跡間の距離が所定値範囲にある場合に、該先行車両の走行軌跡を追従するように自車両を制御することを特徴としている。
【0014】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施形態にかかる運転支援装置を説明する。
図1は本運転支援装置を備えた車両の構成を示すシステム構成図であり、図2は本装置における制御フロー図であり、図3は本装置を備えた車両の、自動運転時の制御を示す走行路の模式的平面図である。
【0015】
本実施形態にかかる車両(以下、自車両ともいう)100は、図1に示すように、ECU(電子制御ユニット)2,スキャン式レーザーレーダー(相対位置検出手段)3及び追従制御装置(追従制御手段)4からなる運転支援装置1を備えて構成されている。また、車両100には、車速を検出する車速センサ21及び車両の操舵輪の舵角を検出する舵角センサ22とが備えられている。
【0016】
なお、追従制御装置4は、先行車101に対してその速度に応じた所定間隔をあけて、先行車101の軌跡上を走行するように、図示しない操舵系及び車速系を制御するようになっている。
スキャン式レーザーレーダー3は、車両100の前方及び側方といった周囲を走行する、先行車101及び並走車102の自車両100に対する相対位置を検出できるようになっている。また、先行車101及び並走車102の相対位置は、自車両100からの距離と方向とによって特定されるようになっている。なお、ここでは、本スキャン式レーザーレーダー3が検出した自車両100の周囲の車両のうち、その自車両100に対する位置関係から、自車両100の前方を走行するものを先行車101、自車両100の側方(最も一般的な隣接レーン上)を走行するものを並走車102と表記している。また、後述するように本実施形態においては、ECU2において、自車両100の周囲の車両の、自車両100に対する方位角によって、先行車101と並走車102とを区別して制御を行うようになっている。
【0017】
ECU2には、車速センサ21で検出された車速Vaと舵角センサ22で検出された操舵輪の舵角θaとが入力されるとともに、スキャン式レーザーレーダー3で検出された先行車101及び並走車102の自車両100に対する相対位置情報を入力されるようになっている。先行車101の相対位置情報としては、自車両100に対する方位角と自車両100からの距離とが入力され、また、並走車102の相対位置情報としても同様に、自車両100に対する方位角と自車両100に対する距離とが入力されるようになっている。なお、これらの各種情報は、所定周期(例えば、0.1秒/回)で入力されるようになっており、入力された情報を基にして、ECU2は車両100を先行車101に自動追従するように追従制御装置4を制御するようになっている。
【0018】
ECU2には、自車両100の移動量を算出する自車移動算出部(自車移動算出手段)11,走行軌跡算出部(走行軌跡算出手段)12及び軌跡並行判定部(軌跡並行判定手段)13が設けられている。自車移動算出部11では、車速と舵角との変化量を累積して、自車両100の移動量を算出するようになっている。この場合の移動量とは、基準位置(例えば、自車両の始動位置)に対する現在位置(方向も含む)を示すものであり、例えば基準位置に対する座標として示すこともできる。また、走行軌跡算出部12は、先行車101及び並走車102の自車両100に対する相対位置情報と、自車両100の移動量情報とから、基準座標系での先行車101及び並走車102の位置を算出するとともに、その位置の変化から先行車101及び並走車102の移動軌跡を算出するようになっている。また、軌跡並行判定部13は、走行軌跡算出部12で算出された先行車101の移動軌跡と並走車102の移動軌跡とが並行であるか否かを判定するようになっている。
【0019】
次に、図2に示す制御フロー図を用いて、ECU2で行われる演算処理について具体的に説明する。
図2の制御フローは、ECU2が追従制御装置4を制御するか否かを判定する過程を示すフローであり、常にECU2で処理されているものである。
まずステップS10では、車速センサ21で検出された車速と舵角センサ22で検出された舵角とスキャン式レーザーレーダー3で検出される先行車101及び並走車102の自車両100に対する相対位置情報が各々入力される。先行車101及び並走車102の相対位置は、自車両100までの距離と自車両100の進行方向を基準軸とした方位角とを検出するようになっている。
【0020】
ステップS20では、ステップS10で入力された情報から、自車両100の前回検出時からの移動量が算出される。すなわち、自車両100の移動量は、ECU2へ各種情報が入力される所定周期毎に、ECU2の自車移動算出部11において演算される。例えば、自車両100の現在の位置を原点、進行方向を基準方向として、前回検出時の移動量をはじめとする過去の移動量の履歴から、自車両100の走行軌跡を累計的に求めていくことができる。あるいは、任意の基準位置(例えば、自車両の始動位置)を原点として、自車両100の走行軌跡を累計的に求めていくこともできる。
【0021】
ステップS30では、ステップS10で入力された検出情報から、自車両100の現在の位置を原点、進行方向を基準方向とした、先行車101及び並走車102の自車両100に対する相対位置が算出される。
ステップS40以下のステップは、先行車101を追従する自動操舵制御を行うか行わないかを判定するステップとなっている。まずステップS40では、先行車101がいるかいないか、つまり、追従すべき範囲に先行車101が位置しているか否かが判定される。ここでは、ステップS10で入力された先行車101の相対位置情報から、先行車が所定の範囲角内で、且つ、自車両との距離が所定の範囲内である時には、その先行車101が追従すべき範囲に位置していると判定されるようになっている。追従すべき範囲に先行車101が位置していると判定された場合には、ステップS50へ進み、追従すべき範囲に先行車101が位置していると判定されなかった場合には、ステップS90へ進んで、先行車101を追従する操舵制御を行わないと判断してこのフローを終了する。
【0022】
ステップS50では、並走車102がいるかいないか、つまり、先行車101の走行軌跡を判定しうる範囲に並走車102が位置しているか否かが判定される。ここでは、ステップS30で算出された先行車101の相対位置と並走車102の相対位置とから、隣接する走行レーンに並走車102が位置しているかが判定される。先行車101の相対位置と並走車102の相対位置との距離が所定の範囲内(走行レーンの幅に対応するように設定された範囲であり、例えば、3〜4m)に収まっている時には、並走車102は先行車101の隣接レーンを走行していると判断され、並走車102が、先行車101の走行軌跡を判定しうる範囲に位置すると判定されるようになっている。並走車102が隣接レーンを走行していると判定された場合には、ステップS60へ進むようになっている。また並走車102が、先行車101の走行軌跡を判定しうる範囲に位置していないと判定された時には、ステップS90へ進んで先行車101を追従する操舵制御を行わないと判断してこのフローを終了する。
【0023】
ステップS60では、ステップS20で算出された自車両100の移動量とステップS30で算出された先行車101及び並走車102の相対位置とから、先行車101及び並走車102の走行軌跡が演算される。例えば、ステップS30で算出された先行車101及び並走車102の相対位置の座標軸を基準として、前回検出された先行車101及び並走車102の相対位置を、前回から今回までの自車両100の移動量を考慮して座標変換し、今回の自車両100の位置を基準とした座標軸上での前回の先行車101及び並走車102の位置を特定する。さらに、前々回についても同様の処理を行い、今回の自車両100の位置を基準とした座標軸上での先行車101及び並走車102の走行軌跡を演算することができる。
【0024】
ステップS70では、先行車101の走行軌跡と並走車102の走行軌跡とが並行か否かが判定される。ここでは、ステップS60で算出された先行車101の走行軌跡と並走車102の走行軌跡とが比較されるようになっており、例えば、先行車101の走行軌跡と並走車両の走行軌跡との距離(離隔長さ)の変化を継続的に算出して、所定時間内におけるその距離(離隔長さ)の変化が一定の範囲に収まっていることが確認された時に、先行車101の走行軌跡と並走車102の走行軌跡とが並行であると判断することができる。なお、このステップは主に、ECU2の軌跡並行判定部13において演算される。
【0025】
こうして、先行車101の走行軌跡と並走車101の走行軌跡とが並行であると判定されると、ステップS80へ進み、先行車101を追従する操舵制御を行うと判断して、このフローを終了する。また、先行車101の走行軌跡と並走車102の走行軌跡とが並行ではないと判定されると、ステップS90へ進んで先行車101を追従する操舵制御を行わないと判断してこのフローを終了する。
【0026】
本発明の一実施形態にかかる本運転支援装置は以上のように構成さているため、例えば以下のような制御(図3参照)が行われる。
自車両100が先行車101に追従する自動運転を行っている場合、随時、スキャン式レーザーレーダー3により先行車101及び並走車102が検知され、先行車101及び並走車102の走行軌跡が演算される。
【0027】
図3(a)に示すように、先行車101が走行路のカーブに合わせて走行している時には、並走車102の走行軌跡も走行路のカーブに合わせて変化する。そのため、算出された先行車101及び並走車102の走行軌跡は平行となり、ECU2は、先行車101へ追従する操舵制御を行うと判定する。したがって、自車両100は、先行車101へ追従する操舵制御を続行することができる。
【0028】
また、図3(b)に示すように、先行車101が走行レーンの車線変更を行った時には、先行車101の走行軌跡と並走車102の走行軌跡とが並行にならないため、ECU2は、先行車101へ追従する操舵制御を行わないと判定する。したがって、車両100は、先行車101へ追従する操舵制御を停止され、先行車の車線変更に追従することを回避することができる。なお、この場合には、当然ながら、自動運転を停止する旨をドライバへ告知することが好ましい。
【0029】
このように、先行車101へ追従する自動運転を行うか否かの判定をドライバが行う必要がなくなり、自動運転中のドライバの負担が軽減される。また、先行車101及び並走車102の走行軌跡を比較しているため、先行車101及び102の走行速度によらずに、正確に各々の走行レーンを把握して比較することができる。
【0030】
以上、本発明の一実施形態について説明したが、本発明はかかる実施形態に限定されたものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、上述の実施形態においては、スキャン式レーザーレーダー3が先行車101及び並走車102を検出するように構成されているが、自車両の全周囲の他の車両を検知し、検知した全ての車両に対して本実施形態にかかる制御を行うように構成してもよい。このように構成した場合、隣接レーンを走行する並走車だけでなく、周囲の他の車両の走行軌跡から、先行車を追従する自動運転を行うか否かの判定を行うことができる。
【0031】
【発明の効果】
以上詳述したように、請求項1記載の本発明の運転支援装置によれば、先行車の走行軌跡が追従すべき軌跡か否かの判定を自動的に行って、先行車の走行軌跡と並走車の走行軌跡とが並行である時には、先行車へ追従する操舵制御を行うことができる。また、先行車へ追従するか否かの判定をドライバが行う必要がなく、ドライバの負担が軽減される。また、走行軌跡同士を比較するため、自車両,先行車両及び並走車両の速度差によらず、先行車を追従する操舵制御を行うか否かの正確な判定を行うことができる。
【0032】
また、請求項2記載の本発明の運転支援装置によれば、先行車の走行軌跡とと並走車の走行軌跡とが並行でなくなった時には、先行車へ追従する操舵制御を終了することができ、先行車の車線変更等の追従すべきではない挙動に追従することを回避することができる。
【0033】
また、請求項3記載の本発明の運転支援装置によれば、先行車及び並走車の走行軌跡間の距離が所定値範囲にある場合に自車両の制御が行われるため、並走車が隣接レーンを走行しているか否かを正確に判定することができ、先行車を追従する操舵制御を行うか否かのより正確な判定を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態としての運転支援装置の構成を示す構成図である。
【図2】本発明の一実施形態としての運転支援装置における制御を示す制御フロー図である。
【図3】本発明の一実施形態としての運転支援装置を備えた車両における制御例を説明する走行路の模式的平面図であり、(a)はカーブ路における先行車及び並走車の走行軌跡を示す平面図、(b)は直線路において先行車が車線変更を行った場合の先行車及び並走車の走行軌跡を示す平面図である。
【符号の説明】
1 運転支援装置
2 ECU(電子制御ユニット)
3 スキャン式レーザーレーダー(相対位置検出手段)
4 追従制御装置(追従制御手段)
11 自車移動算出部(自車移動算出手段)
12 走行軌跡算出部(走行軌跡算出手段)
13 軌跡並行判定部(軌跡並行判定手段)
21 車速センサ
22 舵角センサ
100 車両(自車両)
101 先行車(先行車両)
102 並走車(並走車両)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a driving support device that supports driving of a host vehicle so as to follow a preceding vehicle.
[0002]
[Prior art]
In recent years, various driving support systems that automatically control and support the traveling of a vehicle without operating the driver for the purpose of improving the safety of the traveling of the vehicle, reducing the load on the driver, and improving the movement efficiency of the vehicle traffic, Alternatively, the development of an automatic driving system is being promoted in various countries around the world.
[0003]
As a technique proposed in such a driving support system for a vehicle, a vehicle provided with a lane marker sensor for detecting a lane marker on a road surface or a white line, and an image sensor (camera device) is used. There has been proposed a technology (driving lane recognition type driving assistance system) that recognizes a lane and performs driving assistance by controlling automatic driving so as to travel along the traveling lane. According to this technology, automatic driving control can be performed while accurately grasping the traveling lane of the vehicle. However, such a technique is a control of automatic driving on the premise that the vehicle travels on a specific road on which a lane marker is previously installed on a road surface or on a road with a white lane display of a driving lane. This is not applicable when driving on general roads without road infrastructure.
[0004]
As another driving support system that solves the above-described problem, there is a towbar system (a driving support system that follows a preceding vehicle) of the Shofar project by DaimlerChrysler (see, for example, Non-Patent Document 1). In this system, a technology has been disclosed in which a preceding vehicle is captured electronically by an infrared radar, and then the steering, transmission, engine, and brake device are automatically controlled to accurately follow the preceding vehicle. In such a technology, a driving support system that can be applied to a general road without infrastructure has been proposed.
[0005]
In addition, for the preceding vehicle and the preceding vehicle running ahead of the preceding vehicle, the inter-vehicle distance to the own vehicle is recognized using radio wave radar, and the distance between the own vehicle and the calculated inter-vehicle distance is calculated according to the calculated acceleration and deceleration for the own vehicle. A technique for controlling the acceleration and deceleration of the own vehicle is also disclosed (for example, see Patent Document 1). According to such a technology, it is possible to perform advanced and safe inter-vehicle distance control in consideration of the preceding vehicle, and it is possible to appropriately follow sudden acceleration and sudden braking of the preceding vehicle by smooth acceleration and deceleration control. In addition, even for a sudden change in behavior of the preceding vehicle such as a lane change, the following distance control can be smoothly performed.
[0006]
In other words, since the driving support system that follows the preceding vehicle does not require the road surface infrastructure as the driving support system that recognizes the driving lane described above, the driving support system can appropriately provide driving support even on ordinary roads. It is easily applied to general vehicles traveling on a transportation network, and is expected to be put to practical use.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-104015 [Non-Patent Document 1]
Tetsuji Isogai and two others, "CHAUFFUR Survey Report", [online], December 1998, [searched on March 11, 2003], Internet <URL: http: // www. netpark. or. jp / ahs / jpn / c04j / comm_coop / report4. htm>
[0008]
[Problems to be solved by the invention]
However, in the technology proposed in the driving support system of the preceding vehicle following type, the automatic driving is controlled so that the own vehicle follows the preceding vehicle accurately, so when the preceding vehicle changes lanes, However, the own vehicle always changes lanes following the preceding vehicle, and even if the own vehicle does not need to change lanes, the lane change cannot be automatically avoided. That is, in this technique, it is impossible to determine whether the behavior of the preceding vehicle is a behavior that should be followed or suitable for lane traveling, or a behavior that should not be followed such as a lane change. Therefore, in such a driving support system, the determination as to whether or not to perform automatic driving that follows the preceding vehicle is left to the driver himself, and the burden on the driver is not reduced even during automatic driving. was there.
[0009]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a driving assistance device capable of reducing a driver's burden during automatic driving following a preceding vehicle.
[0010]
[Means for Solving the Problems]
For this reason, the driving support device according to the first aspect of the present invention provides a relative position of a preceding vehicle traveling ahead of the own vehicle in the same lane, and a parallel traveling vehicle traveling in a lane that is not the same as the own vehicle. Relative position detecting means for detecting a relative position, traveling trajectory calculating means for calculating respective traveling trajectories of the preceding vehicle and the parallel running vehicle from the respective relative positions, and whether the traveling trajectories are parallel to each other. A trajectory parallel determination means for determining whether or not the trajectory parallel determination means determines that the respective traveling trajectories are parallel; And control means.
[0011]
Preferably, the vehicle includes a vehicle movement calculating means for calculating a moving amount of the host vehicle, and the traveling trajectory calculating means calculates the moving amount of the host vehicle and the relative position of the host vehicle based on the moving amount of the host vehicle and the respective relative positions. Calculate the running locus.
[0012]
In addition, in the driving support apparatus according to the present invention, when the trajectory parallel determination means determines that the respective trajectories are no longer parallel, the following control means determines the trajectory of the preceding vehicle. It is characterized in that the control of the following vehicle is ended.
[0013]
According to a third aspect of the present invention, the trajectory parallel determination means calculates a distance between the respective traveling trajectories, and the tracking control means determines that the distance between the respective traveling trajectories is predetermined. When the vehicle is within the value range, the own vehicle is controlled to follow the traveling locus of the preceding vehicle.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a driving assistance device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram showing a configuration of a vehicle provided with the present driving support device, FIG. 2 is a control flow diagram in the present device, and FIG. FIG. 2 is a schematic plan view of the traveling path shown.
[0015]
As shown in FIG. 1, a vehicle (hereinafter also referred to as a host vehicle) 100 according to the present embodiment includes an ECU (electronic control unit) 2, a scanning laser radar (relative position detecting means) 3, and a tracking control device (tracking control). Means 4). Further, the vehicle 100 is provided with a vehicle speed sensor 21 for detecting a vehicle speed and a steering angle sensor 22 for detecting a steering angle of a steered wheel of the vehicle.
[0016]
The follow-up control device 4 controls a steering system and a vehicle speed system (not shown) so that the vehicle travels on the trajectory of the preceding vehicle 101 at a predetermined interval according to the speed of the preceding vehicle 101. ing.
The scanning laser radar 3 can detect the relative positions of the preceding vehicle 101 and the parallel running vehicle 102 with respect to the host vehicle 100 that travel around the vehicle 100 such as in front and side. Further, the relative positions of the preceding vehicle 101 and the parallel running vehicle 102 are specified by the distance and the direction from the own vehicle 100. Here, among the vehicles around the host vehicle 100 detected by the main scanning laser radar 3, those traveling in front of the host vehicle 100 are referred to as the leading vehicle 101 and the host vehicle 100 based on the positional relationship with respect to the host vehicle 100. A vehicle running on the side of (a most common adjacent lane) is described as a parallel running vehicle 102. Further, as will be described later, in the present embodiment, the ECU 2 controls the preceding vehicle 101 and the parallel running vehicle 102 based on the azimuth of the vehicles around the own vehicle 100 with respect to the own vehicle 100. ing.
[0017]
The vehicle speed Va detected by the vehicle speed sensor 21 and the steering angle θa of the steered wheels detected by the steering angle sensor 22 are input to the ECU 2, and the preceding vehicle 101 detected by the scanning laser radar 3 and the parallel running The relative position information of the vehicle 102 with respect to the own vehicle 100 is input. As the relative position information of the preceding vehicle 101, an azimuth angle with respect to the own vehicle 100 and a distance from the own vehicle 100 are input. Similarly, as the relative position information of the parallel running vehicle 102, the azimuth angle with respect to the own vehicle 100 The distance to the host vehicle 100 is input. These various information are input at a predetermined cycle (for example, 0.1 second / time), and the ECU 2 automatically follows the preceding vehicle 101 based on the input information. The following control device 4 is controlled so as to perform the following.
[0018]
The ECU 2 includes a host vehicle movement calculating unit (host vehicle movement calculating unit) 11, a running locus calculating unit (running locus calculating unit) 12, and a locus parallel determining unit (locus parallel determining unit) 13 for calculating the moving amount of the own vehicle 100. Is provided. The own vehicle movement calculation unit 11 accumulates the amount of change between the vehicle speed and the steering angle to calculate the amount of movement of the own vehicle 100. The movement amount in this case indicates a current position (including a direction) with respect to a reference position (for example, the starting position of the host vehicle), and may be indicated as, for example, coordinates with respect to the reference position. Further, the traveling locus calculation unit 12 calculates, based on the relative position information of the preceding vehicle 101 and the parallel running vehicle 102 with respect to the own vehicle 100 and the movement amount information of the own vehicle 100, the preceding vehicle 101 and the parallel running vehicle 102 in the reference coordinate system. Is calculated, and the movement trajectories of the preceding vehicle 101 and the parallel running vehicle 102 are calculated from the change in the position. The trajectory parallel determination unit 13 determines whether or not the trajectory of the preceding vehicle 101 and the trajectory of the parallel running vehicle 102 calculated by the trajectory calculation unit 12 are parallel.
[0019]
Next, the arithmetic processing performed by the ECU 2 will be specifically described with reference to a control flowchart shown in FIG.
The control flow of FIG. 2 is a flow showing a process of determining whether or not the ECU 2 controls the follow-up control device 4, and is always processed by the ECU 2.
First, in step S10, the vehicle speed detected by the vehicle speed sensor 21, the steering angle detected by the steering angle sensor 22, and the relative position information of the preceding vehicle 101 and the parallel running vehicle 102 detected by the scanning laser radar 3 with respect to the own vehicle 100. Are respectively input. The relative positions of the preceding vehicle 101 and the parallel running vehicle 102 detect a distance to the host vehicle 100 and an azimuth angle with the traveling direction of the host vehicle 100 as a reference axis.
[0020]
In step S20, the movement amount of the host vehicle 100 from the previous detection is calculated from the information input in step S10. That is, the movement amount of the host vehicle 100 is calculated in the host vehicle movement calculation unit 11 of the ECU 2 at each predetermined cycle in which various information is input to the ECU 2. For example, with the current position of the own vehicle 100 as the origin and the traveling direction as the reference direction, the running locus of the own vehicle 100 is cumulatively obtained from the history of the past movement amounts including the movement amount at the previous detection. be able to. Alternatively, the travel locus of the host vehicle 100 may be determined cumulatively with an arbitrary reference position (for example, the starting position of the host vehicle) as the origin.
[0021]
In step S30, based on the detection information input in step S10, the relative positions of the preceding vehicle 101 and the parallel running vehicle 102 with respect to the own vehicle 100 are calculated with the current position of the own vehicle 100 as the origin and the traveling direction as the reference direction. You.
The steps following step S40 are steps for determining whether or not to perform automatic steering control for following the preceding vehicle 101. First, in step S40, it is determined whether or not the preceding vehicle 101 is present, that is, whether or not the preceding vehicle 101 is located in a range to be followed. Here, based on the relative position information of the preceding vehicle 101 input in step S10, when the preceding vehicle is within a predetermined range angle and the distance to the own vehicle is within a predetermined range, the preceding vehicle 101 follows It is determined that it is located in the range where it should be. If it is determined that the preceding vehicle 101 is located in the range to be followed, the process proceeds to step S50. If it is not determined that the preceding vehicle 101 is located in the range to be followed, the process proceeds to step S90. Then, it is determined that the steering control for following the preceding vehicle 101 is not performed, and the flow is terminated.
[0022]
In step S50, it is determined whether or not the parallel running vehicle 102 is present, that is, whether or not the parallel running vehicle 102 is located in a range where the traveling locus of the preceding vehicle 101 can be determined. Here, from the relative position of the preceding vehicle 101 and the relative position of the parallel running vehicle 102 calculated in step S30, it is determined whether or not the parallel running vehicle 102 is located in an adjacent traveling lane. When the distance between the relative position of the preceding vehicle 101 and the relative position of the parallel running vehicle 102 is within a predetermined range (a range set to correspond to the width of the traveling lane, for example, 3 to 4 m). The parallel running vehicle 102 is determined to be traveling on the lane adjacent to the preceding vehicle 101, and the parallel running vehicle 102 is determined to be located in a range where the traveling locus of the preceding vehicle 101 can be determined. When it is determined that the parallel running vehicle 102 is traveling on the adjacent lane, the process proceeds to step S60. When it is determined that the parallel running vehicle 102 is not located within the range in which the traveling locus of the preceding vehicle 101 can be determined, the process proceeds to step S90, and it is determined that the steering control for following the preceding vehicle 101 is not performed, and this determination is made. End the flow.
[0023]
In step S60, the traveling locus of the preceding vehicle 101 and the parallel running vehicle 102 is calculated from the movement amount of the own vehicle 100 calculated in step S20 and the relative positions of the preceding vehicle 101 and the parallel running vehicle 102 calculated in step S30. Is done. For example, based on the coordinate axes of the relative positions of the preceding vehicle 101 and the parallel running vehicle 102 calculated in step S30, the relative positions of the preceding vehicle 101 and the parallel running vehicle 102 detected last time are compared with the host vehicle 100 from the previous time to the present time. Is converted in consideration of the movement amount of the vehicle 100, and the previous positions of the preceding vehicle 101 and the parallel running vehicle 102 on the coordinate axes based on the current position of the own vehicle 100 are specified. Further, the same processing is performed for the last two times, and the traveling locus of the preceding vehicle 101 and the parallel running vehicle 102 on the coordinate axes based on the current position of the own vehicle 100 can be calculated.
[0024]
In step S70, it is determined whether or not the traveling locus of the preceding vehicle 101 and the traveling locus of the parallel running vehicle 102 are parallel. Here, the traveling locus of the preceding vehicle 101 calculated in step S60 and the traveling locus of the parallel running vehicle 102 are compared. For example, the running locus of the preceding vehicle 101 and the running locus of the parallel running vehicle are compared. Is continuously calculated, and when it is confirmed that the change in the distance (separation length) within a predetermined time is within a certain range, the traveling of the preceding vehicle 101 It can be determined that the track and the running track of the parallel running vehicle 102 are parallel. This step is mainly calculated by the trajectory parallel determination unit 13 of the ECU 2.
[0025]
In this manner, when it is determined that the traveling locus of the preceding vehicle 101 and the traveling locus of the parallel running vehicle 101 are parallel, the process proceeds to step S80, and it is determined that the steering control for following the preceding vehicle 101 is performed. finish. On the other hand, if it is determined that the traveling locus of the preceding vehicle 101 and the traveling locus of the parallel running vehicle 102 are not parallel, the process proceeds to step S90, and it is determined that the steering control for following the preceding vehicle 101 is not performed. finish.
[0026]
Since the present driving assistance device according to an embodiment of the present invention is configured as described above, for example, the following control (see FIG. 3) is performed.
When the host vehicle 100 is performing automatic driving following the preceding vehicle 101, the scanning laser radar 3 detects the preceding vehicle 101 and the parallel running vehicle 102 at any time, and the traveling locus of the preceding vehicle 101 and the parallel running vehicle 102 is determined. It is calculated.
[0027]
As shown in FIG. 3A, when the preceding vehicle 101 is traveling along the curve of the traveling path, the traveling locus of the parallel running vehicle 102 also changes according to the curve of the traveling path. Therefore, the calculated traveling trajectories of the preceding vehicle 101 and the parallel running vehicle 102 become parallel, and the ECU 2 determines that the steering control to follow the preceding vehicle 101 is performed. Therefore, the own vehicle 100 can continue the steering control that follows the preceding vehicle 101.
[0028]
Further, as shown in FIG. 3B, when the preceding vehicle 101 changes lanes of the traveling lane, the traveling locus of the preceding vehicle 101 and the traveling locus of the parallel running vehicle 102 do not become parallel, so the ECU 2 It is determined that the steering control for following the preceding vehicle 101 is not performed. Therefore, the vehicle 100 stops the steering control for following the preceding vehicle 101 and can avoid following the lane change of the preceding vehicle. In this case, it is preferable to notify the driver of stopping the automatic driving.
[0029]
In this manner, the driver does not need to determine whether or not to perform automatic driving following the preceding vehicle 101, and the burden on the driver during automatic driving is reduced. In addition, since the traveling trajectories of the preceding vehicle 101 and the parallel running vehicle 102 are compared, each traveling lane can be accurately grasped and compared regardless of the traveling speed of the preceding vehicles 101 and 102.
[0030]
As described above, one embodiment of the present invention has been described, but the present invention is not limited to such an embodiment, and can be variously modified and implemented without departing from the gist of the present invention.
For example, in the above embodiment, the scanning laser radar 3 is configured to detect the preceding vehicle 101 and the parallel running vehicle 102. However, the scanning laser radar 3 detects other vehicles all around the own vehicle, and detects all the detected vehicles. The vehicle according to the present embodiment may be configured to perform the control according to the present embodiment. With this configuration, it is possible to determine whether or not to perform the automatic driving that follows the preceding vehicle based on the traveling trajectories of the surrounding vehicles as well as the parallel vehicles traveling on the adjacent lane.
[0031]
【The invention's effect】
As described in detail above, according to the driving support apparatus of the present invention, it is automatically determined whether or not the traveling trajectory of the preceding vehicle is a trajectory to follow, and the traveling trajectory of the preceding vehicle is determined. When the traveling locus of the parallel running vehicle is parallel, the steering control that follows the preceding vehicle can be performed. Further, the driver does not need to determine whether or not to follow the preceding vehicle, and the burden on the driver is reduced. Further, since the traveling trajectories are compared with each other, it is possible to accurately determine whether or not to perform the steering control for following the preceding vehicle regardless of the speed difference between the own vehicle, the preceding vehicle, and the parallel running vehicle.
[0032]
According to the driving support device of the present invention, when the traveling locus of the preceding vehicle and the traveling locus of the parallel running vehicle are not parallel, the steering control for following the preceding vehicle can be ended. It is possible to avoid following a behavior that should not be followed, such as a lane change of the preceding vehicle.
[0033]
Further, according to the driving support device of the present invention, when the distance between the traveling trajectories of the preceding vehicle and the parallel running vehicle is within a predetermined value range, the control of the own vehicle is performed. It is possible to accurately determine whether or not the vehicle is traveling in the adjacent lane, and it is possible to more accurately determine whether or not to perform the steering control for following the preceding vehicle.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a configuration of a driving support device as one embodiment of the present invention.
FIG. 2 is a control flow chart showing control in a driving support device as one embodiment of the present invention.
FIG. 3 is a schematic plan view of a traveling path for explaining a control example in a vehicle provided with a driving assistance device as one embodiment of the present invention, and FIG. 3A illustrates traveling of a preceding vehicle and a parallel traveling vehicle on a curved road; FIG. 4B is a plan view showing a trajectory, and FIG. 4B is a plan view showing a traveling trajectory of the preceding vehicle and the parallel running vehicle when the preceding vehicle changes lanes on a straight road.
[Explanation of symbols]
1 driving support device 2 ECU (electronic control unit)
3 scanning laser radar (relative position detection means)
4 Tracking control device (tracking control means)
11 Own vehicle movement calculation unit (own vehicle movement calculation means)
12 Travel locus calculation unit (travel locus calculation means)
13. Trajectory parallel determination unit (trajectory parallel determination means)
21 vehicle speed sensor 22 steering angle sensor 100 vehicle (own vehicle)
101 preceding vehicle (preceding vehicle)
102 Parallel vehicles (parallel vehicles)

Claims (3)

自車両と同一レーンを先行して走行する先行車両の相対位置、及び、該自車両と同一ではないレーンを走行する並走車両の相対位置を検出する相対位置検出手段と、
該各々の相対位置から該先行車両及び該並走車両の各々の走行軌跡を算出する走行軌跡算出手段と、
該各々の走行軌跡が並行であるか否かを判定する軌跡並行判定手段と、
該軌跡並行判定手段が該各々の走行軌跡が並行であると判定した場合には、該先行車両の走行軌跡を追従するように自車両を制御する追従制御手段とを備えたことを特徴とする、運転支援装置。
A relative position of a preceding vehicle traveling ahead of the own vehicle and the same lane, and a relative position detecting means for detecting a relative position of a parallel running vehicle traveling on a lane that is not the same as the own vehicle;
Traveling trajectory calculating means for calculating a traveling trajectory of each of the preceding vehicle and the parallel running vehicle from the respective relative positions;
Trajectory parallel determination means for determining whether or not the respective traveling trajectories are parallel;
When the trajectory parallel determination means determines that the respective traveling trajectories are parallel, a tracking control means for controlling the own vehicle so as to follow the traveling trajectory of the preceding vehicle is provided. , Driving assistance equipment.
該追従制御手段は、該軌跡並行判定手段が該各々の走行軌跡が並行でなくなったと判定した場合には、該先行車両の走行軌跡を追従する自車両の制御を終了することを特徴とする、請求項1記載の運転支援装置。When the trajectory parallel determination means determines that the respective traveling trajectories are no longer parallel, the following control means ends control of the own vehicle that follows the traveling trajectory of the preceding vehicle. The driving support device according to claim 1. 該軌跡並行判定手段は、該各々の走行軌跡間の距離を算出し、
該追従制御手段は、該各々の走行軌跡間の距離が所定値範囲にある場合に、該先行車両の走行軌跡を追従するように自車両を制御することを特徴とする、請求項1又は2記載の運転支援装置。
The trajectory parallel determination means calculates a distance between the respective traveling trajectories,
3. The vehicle according to claim 1, wherein the following control means controls the own vehicle so as to follow the traveling locus of the preceding vehicle when the distance between the traveling locus is within a predetermined value range. The driving assistance device according to the above.
JP2003122283A 2003-04-25 2003-04-25 Driving assistance device Expired - Fee Related JP3966219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122283A JP3966219B2 (en) 2003-04-25 2003-04-25 Driving assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122283A JP3966219B2 (en) 2003-04-25 2003-04-25 Driving assistance device

Publications (2)

Publication Number Publication Date
JP2004322916A true JP2004322916A (en) 2004-11-18
JP3966219B2 JP3966219B2 (en) 2007-08-29

Family

ID=33500565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122283A Expired - Fee Related JP3966219B2 (en) 2003-04-25 2003-04-25 Driving assistance device

Country Status (1)

Country Link
JP (1) JP3966219B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211212A (en) * 2008-03-01 2009-09-17 Nissan Motor Co Ltd Preceding vehicle detection device and vehicle speed control device using this
JP2013173383A (en) * 2012-02-23 2013-09-05 Nippon Soken Inc Tracking control apparatus for vehicle
WO2013186925A1 (en) * 2012-06-15 2013-12-19 トヨタ自動車株式会社 Tracking control apparatus
WO2014006919A1 (en) * 2012-07-06 2014-01-09 株式会社デンソー Adjacent vehicle detection device
DE102016115405A1 (en) 2015-08-27 2017-03-02 Fuji Jukogyo Kabushiki Kaisha CONTROL DEVICE FOR DRIVING A VEHICLE
DE102016122822A1 (en) 2015-12-07 2017-06-08 Fuji Jukogyo Kabushiki Kaisha Vehicle travel control apparatus
DE102016122819A1 (en) 2015-12-07 2017-06-08 Fuji Jukogyo Kabushiki Kaisha Vehicle travel control apparatus
DE102016124771A1 (en) 2016-01-08 2017-07-13 Fuji Jukogyo Kabushiki Kaisha Vehicle travel control device
JP2018039285A (en) * 2016-09-05 2018-03-15 株式会社Subaru Traveling control device of vehicle
JP2018510404A (en) * 2015-01-29 2018-04-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method and apparatus for operating a vehicle
DE102017130838A1 (en) 2016-12-27 2018-06-28 Toyota Jidosha Kabushiki Kaisha DRIVING SUPPORT DEVICE
EP3446941A1 (en) 2017-08-23 2019-02-27 Toyota Jidosha Kabushiki Kaisha Vehicle driving support apparatus
JP2019059451A (en) * 2017-09-28 2019-04-18 トヨタ自動車株式会社 Drive assist apparatus
JP2019059430A (en) * 2017-09-28 2019-04-18 トヨタ自動車株式会社 Driving support apparatus
US10279809B2 (en) 2015-02-10 2019-05-07 Denso Corporation Travelled-route selecting apparatus and method
KR20190055192A (en) 2016-09-26 2019-05-22 닛산 지도우샤 가부시키가이샤 Mainly the setting method and mainly the setting device
US10864913B2 (en) 2017-09-28 2020-12-15 Toyota Jidosha Kabushiki Kaisha Vehicle driving support apparatus
DE112018008111T5 (en) 2018-10-30 2021-07-29 Mitsubishi Electric Corporation Target lane generation device, vehicle control device, target lane generation method, and vehicle control method
US11120277B2 (en) 2018-10-10 2021-09-14 Denso Corporation Apparatus and method for recognizing road shapes
JP2022013848A (en) * 2020-06-29 2022-01-18 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト Method and system for predicting trajectory of target vehicle in environment of vehicle
US12030507B2 (en) 2020-06-29 2024-07-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and system for predicting a trajectory of a target vehicle in an environment of a vehicle

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211212A (en) * 2008-03-01 2009-09-17 Nissan Motor Co Ltd Preceding vehicle detection device and vehicle speed control device using this
JP2013173383A (en) * 2012-02-23 2013-09-05 Nippon Soken Inc Tracking control apparatus for vehicle
US10134282B2 (en) 2012-02-23 2018-11-20 Denso Corporation On-vehicle tracking control apparatus
JPWO2013186925A1 (en) * 2012-06-15 2016-02-01 トヨタ自動車株式会社 Tracking control device
WO2013186925A1 (en) * 2012-06-15 2013-12-19 トヨタ自動車株式会社 Tracking control apparatus
CN104364832A (en) * 2012-06-15 2015-02-18 丰田自动车株式会社 Tracking control apparatus
US9599710B2 (en) 2012-07-06 2017-03-21 Nippon Soken, Inc. Adjacent vehicle detection device
US10656269B2 (en) 2012-07-06 2020-05-19 Soken, Inc. Adjacent vehicle detection device
JP2014029324A (en) * 2012-07-06 2014-02-13 Nippon Soken Inc Apparatus for detecting vehicle traveling alongside
WO2014006919A1 (en) * 2012-07-06 2014-01-09 株式会社デンソー Adjacent vehicle detection device
US10481613B2 (en) 2015-01-29 2019-11-19 Robert Bosch Gmbh Method and device for operating a vehicle
JP2018510404A (en) * 2015-01-29 2018-04-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method and apparatus for operating a vehicle
US10279809B2 (en) 2015-02-10 2019-05-07 Denso Corporation Travelled-route selecting apparatus and method
DE102016115405A1 (en) 2015-08-27 2017-03-02 Fuji Jukogyo Kabushiki Kaisha CONTROL DEVICE FOR DRIVING A VEHICLE
DE102016115405B4 (en) 2015-08-27 2018-10-31 Subaru Corporation CONTROL DEVICE FOR DRIVING A VEHICLE
US9783198B2 (en) 2015-08-27 2017-10-10 Subaru Corporation Vehicle travel control device
DE102016122819A1 (en) 2015-12-07 2017-06-08 Fuji Jukogyo Kabushiki Kaisha Vehicle travel control apparatus
US10005493B2 (en) 2015-12-07 2018-06-26 Subaru Corporation Vehicle traveling control apparatus
DE102016122819B9 (en) 2015-12-07 2020-07-09 Subaru Corporation Vehicle travel control device
DE102016122822A1 (en) 2015-12-07 2017-06-08 Fuji Jukogyo Kabushiki Kaisha Vehicle travel control apparatus
US10286952B2 (en) 2015-12-07 2019-05-14 Subaru Corporation Vehicle traveling control apparatus
DE102016122819B4 (en) 2015-12-07 2020-04-23 Subaru Corporation Vehicle travel control device
US10369997B2 (en) 2016-01-08 2019-08-06 Subaru Corporation Vehicle traveling control apparatus
DE102016124771A1 (en) 2016-01-08 2017-07-13 Fuji Jukogyo Kabushiki Kaisha Vehicle travel control device
JP2018039285A (en) * 2016-09-05 2018-03-15 株式会社Subaru Traveling control device of vehicle
US10845813B2 (en) 2016-09-26 2020-11-24 Nissan Motor Co., Ltd. Route setting method and route setting device
KR20190055192A (en) 2016-09-26 2019-05-22 닛산 지도우샤 가부시키가이샤 Mainly the setting method and mainly the setting device
DE102017130838A1 (en) 2016-12-27 2018-06-28 Toyota Jidosha Kabushiki Kaisha DRIVING SUPPORT DEVICE
US10515278B2 (en) 2016-12-27 2019-12-24 Toyota Jidosha Kabushiki Kaisha Driving assistance device
US10654481B2 (en) 2017-08-23 2020-05-19 Toyota Jidosha Kabushiki Kaisha Vehicle driving support apparatus
EP3446941A1 (en) 2017-08-23 2019-02-27 Toyota Jidosha Kabushiki Kaisha Vehicle driving support apparatus
JP2019059430A (en) * 2017-09-28 2019-04-18 トヨタ自動車株式会社 Driving support apparatus
JP2019059451A (en) * 2017-09-28 2019-04-18 トヨタ自動車株式会社 Drive assist apparatus
US10864913B2 (en) 2017-09-28 2020-12-15 Toyota Jidosha Kabushiki Kaisha Vehicle driving support apparatus
JP7006093B2 (en) 2017-09-28 2022-02-10 トヨタ自動車株式会社 Driving support device
US11120277B2 (en) 2018-10-10 2021-09-14 Denso Corporation Apparatus and method for recognizing road shapes
DE112018008111T5 (en) 2018-10-30 2021-07-29 Mitsubishi Electric Corporation Target lane generation device, vehicle control device, target lane generation method, and vehicle control method
US11912272B2 (en) 2018-10-30 2024-02-27 Mitsubishi Electric Corporation Target track generation apparatus, vehicle control apparatus, target track generation method, and vehicle control method
JP2022013848A (en) * 2020-06-29 2022-01-18 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト Method and system for predicting trajectory of target vehicle in environment of vehicle
JP7328281B2 (en) 2020-06-29 2023-08-16 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト Method and system for predicting the trajectory of a target vehicle in a vehicle's environment
US12030507B2 (en) 2020-06-29 2024-07-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and system for predicting a trajectory of a target vehicle in an environment of a vehicle

Also Published As

Publication number Publication date
JP3966219B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP3966219B2 (en) Driving assistance device
JP6521486B2 (en) Vehicle control device
US11119479B2 (en) Vehicle control apparatus
JP5899664B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
US9235767B2 (en) Detection region modification for driving assistance apparatus and driving assistance method
JP5300357B2 (en) Collision prevention support device
JP6432679B2 (en) Stop position setting apparatus and method
JP6568559B2 (en) Vehicle travel control device
WO2014083821A1 (en) Driving assistance device
JP6600995B2 (en) Vehicle control apparatus and program
JP6521487B2 (en) Vehicle control device
WO2018173403A1 (en) Vehicle control apparatus and vehicle control method
JP6377942B2 (en) Driving assistance device
WO2018179252A1 (en) Vehicle control apparatus and vehicle control method
JP5929597B2 (en) Vehicle travel control apparatus and method
JPH10105232A (en) Lane changing device for automatic drive road system
JP4843880B2 (en) Road environment detection device
JP2012131460A (en) Target path calculation device
JP2009252032A (en) Vehicular collision avoidance support apparatus
WO2014083825A1 (en) Driving assistance device and driving assistance method
JP6011522B2 (en) Driving assistance device
JP5942817B2 (en) Vehicle acceleration suppression device
JP2006151123A (en) Vehicular traveling support device
JP2006293530A (en) Traveling controller for vehicle
JP5900649B2 (en) Driving assistance device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R151 Written notification of patent or utility model registration

Ref document number: 3966219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees