JP2004322182A - Spot welding method - Google Patents

Spot welding method Download PDF

Info

Publication number
JP2004322182A
JP2004322182A JP2003123072A JP2003123072A JP2004322182A JP 2004322182 A JP2004322182 A JP 2004322182A JP 2003123072 A JP2003123072 A JP 2003123072A JP 2003123072 A JP2003123072 A JP 2003123072A JP 2004322182 A JP2004322182 A JP 2004322182A
Authority
JP
Japan
Prior art keywords
electrode
welded
spot welding
welding
nugget
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123072A
Other languages
Japanese (ja)
Inventor
Ryohei Adachi
良平 足立
Hideyo Takeuchi
英世 竹内
Tsuyoshi Amano
剛志 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2003123072A priority Critical patent/JP2004322182A/en
Publication of JP2004322182A publication Critical patent/JP2004322182A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spot welding method by which joining strength at a welding joined part having thick plate thickness can easily be improved in good condition only by using general-purpose spot welding equipment without using a special apparatus such as complicate control unit. <P>SOLUTION: In the spot welding method in which welding current is supplied while holding steel plates 21 with one pair of electrodes, the steel plates 21 is pressed with one of the electrode 17B and formed bent so that the steel plates 21 is projected with respect to the other side of electrode 17A and pressing force is applied to the steel plates 21. In such a state, the welding current is supplied. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被溶接体を対向する一対の電極で挟みながら溶接電流を流し、溶接するスポット溶接方法に関する。
【0002】
【従来の技術】
たとえば自動車のボディなどに多用される鋼板材の接合方法として、スポット溶接が広く用いられている。スポット溶接の一つとして、鋼板同士を重ね合わせ、上下方向に対向する一対の電極の間に鋼板を挟みながら加圧し、板厚方向に溶接電流を流した際に発生する抵抗発熱によって鋼板同士の接触部を溶融させ、その後溶融部を凝固させてナゲットを形成させる溶接方法がある。
【0003】
自動車製造において、被溶接体であるワークの使用部位あるいは使用目的などに応じ、被溶接体の溶接部に求められる接合強度は異なる。一方、スポット溶接によって生成されるナゲットの大きさは、溶接部の接合強度を左右する重要な因子であるが、加圧力、溶接電流、通電時間の少なくとも一つ以上を制御して、ナゲット径を適正にできることは、一般的に知られている。
【0004】
溶接部の接合強度を十分に確保したい場合は、ナゲット径を拡大させることでその目的は達成される。ナゲット径を拡大させる方法として、加圧力及び溶接電流値を増加させる方法がある。この方法により、電流密度を低下させずに維持したまま、電極と被溶接体の接触部の面積を大きく確保できるため、通常よりも広い領域の被溶接体が溶融し、その結果大きなナゲット径を得ることできる。
【0005】
しかし、上述のような方法を採用する溶接装置は、加圧力の増加に伴いシリンダや溶接ガンを大型にする必要があり、シリンダ駆動力や溶接通電による消費電力も増大するため、設備投資額がかさみ、製造コストの高騰も招き不利である。更に、溶接ガンの大型化を図ると、溶接ガンがワークと干渉することもある。このような場合はワークの形状変更も必要となり、更なる経済的損失が生じる。
【0006】
一方、スポット溶接においては、通常ロボットティーチングが行われる。このティーチング調整は種々の制御機構を有している。例えばスポット溶接装置のティーチング方法としてワークと電極の位置関係を素早く検出し、プログラミングを行う制御方法が公知となっている(例えば、特許文献1参照。)。
【0007】
【特許文献1】
特開平9−29453号公報
【0008】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示されているスポット溶接方法では、ティーチング調整作業を正確かつ迅速に行えるため、歩留まりを向上させながら作業効率の改善も図れる一方で、溶接部の接合強度を向上させたい場合は、設備投資や溶接装置駆動に伴う消費電力の増大による製造コストの高騰を抑えるには至らず、従来と同様の問題があった。
【0009】
本発明は、このような事情のもとで考え出されたものであって、既存のスポット溶接装置を用いながら製造コストの高騰を抑制するとともに、溶接部の接合強度を向上させるスポット溶接方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明の第1の側面によると、スポット溶接方法が提供される。このスポット溶接方法は、一対の電極で被溶接体を挟みながら溶接電流を流すスポット溶接方法であって、一方の電極で被溶接体を押圧させることにより、当該被溶接体を他方の電極側に突状となるように屈曲させた状態にて、溶接電流を流す第1の工程と、被溶接体を挟んだまま、上記他方の電極で被溶接体を押圧させることにより当該被溶接体を上記一方の電極側に突状となるように屈曲させた状態にて、溶接電流を流す第2の工程を有することを特徴とする。
【0011】
このようなスポット溶接方法を用いると、通常の溶接作業工程において行うティーチングなどの調整方法を改善するだけで、溶接部の接合強度を十分に確保することができる。具体的には、支持装置により挟持固定された被溶接体を、一方の電極で押圧させ他方の電極側に突状となるように屈曲させた状態において、被溶接体は加圧手段により一対の電極で挟まれている。このとき、一対の電極と接触する被溶接体の接触部の接触面積は、それぞれ異なる。被溶接体の突出側、すなわち他方の電極と接触する被溶接体の接触部の接触面積は減少し、もう一方の電極と接触する被溶接体の接触部の接触面積は増加する。このように一対の電極と接触する接触部の接触面積が異なる状態で溶接電流を流すと、接触部の接触面積が小さい方の電流密度は上昇し、ナゲットの成長は促進される。
【0012】
これによると、上記第1の工程においては他方の電極側の電流密度が上昇し、ナゲットの生成箇所が板厚方向の中心より他方の電極側にシフトする。また、上記第2の工程においては一方の電極側の電流密度が上昇し、ナゲットの生成箇所が板厚方向の中心より一方の電極側にシフトする。その結果、板厚方向の両側にシフトした二つのナゲットが一部重なり合うように一体生成され、板厚方向の溶込み深さの大きい複合ナゲットが生成されることになる。
【0013】
本発明によると、既存のスポット溶接装置を用いて、ティーチングなどの調整方法を改善するだけで容易かつ良好に、スポット溶接による溶接部の接合強度を向上させることができる。
【0014】
本発明の第2の側面によると、スポット溶接方法が提供される。このスポット溶接方法は、板厚の異なる被溶接体に対して一対の電極を挟みながら溶接電流を流すスポット溶接方法において、被溶接体の厚板側に配設されている電極で被溶接体を押圧させることにより、当該被溶接体を薄板側に突状となるように屈曲させた状態にて、溶接電流を流すことを特徴とする。
【0015】
このようなスポット溶接方法を用いると、通常の溶接作業工程において行うティーチングなどの調整方法を改善するだけで、溶接部の接合強度を十分に確保することができる。具体的には、支持装置により挟持固定された被溶接体を、被溶接体の厚板側に配設されている電極で押圧させ、薄板側に突状となるように屈曲させた状態において、被溶接体は加圧手段により一対の電極で挟まれている。このとき、被溶接体の突出側、すなわち薄板側に配設されている電極と接触する被溶接体の接触部の接触面積は減少し、被溶接体の厚板側に配設されている電極と接触する被溶接体の接触部の接触面積は増加する。この状態で溶接電流を流すと、前述したように接触部の接触面積が小さい方の電流密度が上昇するため、この場合は薄板側の電流密度が上昇する。そして、ナゲットの生成箇所が板厚方向の中心より薄板側にシフトし、ナゲットの中心が被溶接体の板間に近づく。その結果、板厚の異なる被溶接体に対する溶接であっても、良好な接合状態を得ることができ、ひいては溶接部の接合強度を向上させることができる。
【0016】
本発明によると、既存のスポット溶接装置を用いて、ティーチングなどの調整方法を改善するだけで、板厚の異なる被溶接体に対しても容易かつ良好に、溶接部の接合強度を向上させることができる。
【0017】
本発明においては、好ましくは、被溶接体を屈曲させる電極の変位量が3〜5mmの範囲に設定されていることを特徴とする。ここに「変位量」とは、被溶接体を屈曲させない電極の中立位置からの変位量をいう。
【0018】
このようなスポット溶接方法を用いると、ナゲット生成箇所の偏倚量を適正範囲内に納めることができる。換言すると変位量が上記範囲より外れた場合は、不具合を生じることがある。具体的には、変位量が3mm未満の場合はナゲットの偏倚量が不足し、溶接部の接合強度を向上させることができないおそれがある。また、変位量が5mmを超える場合はナゲットの偏倚量が過大となり、溶接部に割れ等を生じ易く、ひいては接合強度の低下を招くおそれがある。
【0019】
本発明によると、既存のスポット溶接装置を用いて、ティーチングなどの調整方法を改善するだけで、容易かつ良好にナゲットの偏倚量を適正範囲内に維持できる。その結果、溶接部の接合強度を向上させることができる。
【0020】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について、図面を参照しつつ具体的に説明する。
【0021】
図1は、本発明の第1の実施形態にかかるスポット溶接方法に用いられるスポット溶接機を溶接ロボットに適用した例を示し、図1において、1はスポット溶接機、2はスポット溶接される被溶接体、3はスポット溶接機1を支持する溶接ロボットである。
【0022】
上記スポット溶接機1は、溶接トランス10と、溶接ガン11と、加圧手段12と、一対の電極17A,17Bとを備えている。溶接ガン11は溶接トランス10の一方の側壁に対し、支持ブラケットを介して連結固定され、上部アーム111と下部アーム112とを含んでいる。加圧手段12は、例えばサーボモータなどからなる駆動装置13と加圧シリンダ14とを含み、上部アーム111に連結固定されている。加圧シリンダ14は駆動装置13の駆動力により垂直方向へ進退するピストンロッド15を備えている。ピストンロッド15の先端側及び下部アーム112の先端部には、各々、シャンクが互いに同軸状に配設されており、これらの一対のシャンク16A,16Bの各先端部には、一対の電極17A,17Bが連結固定されている。上記電極17Aは、加圧手段12により上部アーム111に対する相対位置が変化する可動側電極を構成し、上記電極17Bは、下部アーム112に対して固定された固定側電極を構成している。上記電極17A,17Bは円柱形状であり、それぞれ先端部には、被溶接体と当接する部位が半球形状をなす電極チップ18A,18Bが形成されている。(図2参照)
【0023】
上記被溶接体2は、一対の鋼板21が重ね合わされた状態で支持装置(図示せず)に支持されており、上記鋼板21の所定個所に予め設定された被溶接部においてスポット溶接されるようになっている。
【0024】
上記溶接ロボット3は、床面に対し作動軸Tの回りに旋回可能に配設された基体部31と、この基体部31に対し水平軸Uの回りに回転作動可能に配設された第1アーム32と、この第1アーム32の先端部に対し水平軸Vの回りに回転作動可能に配設された第2アーム33と、この第2アーム33の先端部に対し水平軸Wの回りに回転作動可能に配設された第3アーム34とを備え、第3アーム34の先端部にはスポット溶接機1が連設固定されている。そして、コントローラ(図示せず)の作動制御により、上記基体部31が旋回作動するとともに、上記第1アーム32,第2アーム33並びに第3アーム34がそれぞれ回転軸U,V並びにWの回りに回転作動されることにより、上記スポット溶接機1を三次元方向に移動可能に構成されている。
【0025】
以下に、上記スポット溶接機1を用いた溶接方法について、図2〜図6に基づいて具体的に説明する。被溶接体は、板厚が略均等である二枚の重なり合う鋼板21より構成され、水平面上に複数の支持点を持つ支持装置によって挟持固定されている。図2は、ティーチング調整により鋼板21が支持される支持平面上に一対の電極チップ18A,18Bを配置し、鋼板21を一対の電極で挟んだ状態を表す。図3は、溶接ロボットの回転作動制御により、溶接ガン全体を垂直方向上方へ移動させ、固定側電極17Bで鋼板23を上方へ押圧し、当該鋼板21を可動側電極17A側に突状となるように屈曲させた状態を表す。固定側電極17Bで押圧させる変位量は、支持平面に対して3〜5mmの範囲に設定されている。この状態において駆動装置の作動制御により、ピストンロッド15が進出して所定の加圧力を鋼板21の上方より付与する。
【0026】
このとき、可動側電極17Aと接触する鋼板の接触部mの接触面積は減少し、固定側電極17Bと接触する被溶接体の接触部nの接触面積は増加する。次に一対の電極17A,17Bで挟まれた鋼板21に所定値の溶接電流を所定時間通電する。可動側電極17Aと固定側電極17Bのそれぞれを通過する溶接電流値は一定であるため、可動側電極17Aと接触する接触部の電流密度は上昇する。そのため溶接電流の通電による熱影響範囲は、板厚方向の中心位置より電流密度が上昇した可動側電極17A側へ変位する。熱影響範囲が可動側電極17A側へ変位しているので、鋼板の溶融部も可動側電極17A側へ変位し、鋼板21の溶融部より形成されるナゲット27の生成箇所は図4に表すように可動側電極17A側へシフトすることになる。
【0027】
引き続き、加圧シリンダ14による加圧力を維持し、鋼板21を一対の電極17A,17Bで挟んだまま、溶接ロボットの回転作動制御により、溶接ガン全体を垂直方向下方へ移動させる。図5は、可動側電極17Aで鋼板21を下方へ押圧し、当該鋼板21を固定側電極17B側に突状となるように屈曲させた状態を表す。可動側電極17Aで押圧させる変位量は、支持平面に対して3〜5mmの範囲に設定されている。
【0028】
このとき、固定側電極17Bと接触する鋼板の接触部の接触面積は減少し、可動側電極17Aと接触する被溶接体の接触部の接触面積は増加する。可動側電極17Aと固定側電極17Bのそれぞれを通過する溶接電流値は一定であるため、固定側電極17Bと接触する接触部の電流密度は上昇する。溶接電流の通電による熱影響範囲は、板厚方向の中心位置より電流密度が上昇した固定側電極17B側へ変位する。熱影響範囲が固定側電極17B側へ変位しているので、鋼板の溶融部も固定側電極17B側へ変位し、鋼板21の溶融部より形成されるナゲット28の生成箇所は図6に表すように固定側電極17B側へシフトすることになる。
【0029】
その結果、可動側電極17A側へシフトしたナゲット27と固定側電極17B側へシフトしたナゲット28の二つのナゲットが一部重なり合うように一体生成され、板厚方向の溶込み深さtの大きい複合ナゲット29が生成されることになる。
【0030】
図7は、本発明の第2の実施形態にかかるスポット溶接方法に用いられる被溶接体2’を表す。被溶接体2’は板厚の異なる二枚の重なり合う薄鋼板21a’と厚鋼板21b’より構成され、水平面上に複数の支持点を持つ支持装置(図示せず)によって挟持固定されている。本実施形態においては薄鋼板21a’が上方、厚鋼板21b’が下方に配置されている。ティーチング調整の後、溶接ロボットの回転作動制御により、溶接ガン全体を垂直方向上方へ移動させ、固定側電極17Bで厚鋼板21b’を上方へ押圧し、両鋼板21a’,21b’を可動側電極17A側に突状となるように屈曲させる。固定側電極17Bで押圧させる変位量は、支持平面に対して好ましくは3〜5mmの範囲に設定されているが、板厚比が大きい場合は5mmを超える値を選択することもある。そして、駆動装置の作動制御により、所定の加圧力を薄鋼板21a’の上方より付与する。
【0031】
次に一対の電極17A,17Bで挟まれた鋼板21a’,21b’に所定値の溶接電流を所定時間通電する。この結果、第1の実施形態に記した理由により、ナゲット27の生成箇所は図8に表すように可動側電極17A側へシフトし、ナゲットの中心が薄鋼板21a’と厚鋼板21b’の境界に近づくことになる。このように、板厚の異なる鋼板に対する溶接であっても、板厚比に応じてナゲット生成箇所を薄板側へシフトさせることにより、良好な接合状態を得ることができ、ひいては溶接部の接合強度を向上させることができる。その他の構成については、第1の実施形態のものと同様であるために、同一部材には同一符号を付して、その説明は省略する。
【0032】
図9は、本発明の第3の実施形態にかかるスポット溶接方法に用いられる被溶接体2”を表す。被溶接体2”は板厚の異なる三枚の重なり合う薄鋼板21a”,21c”及び厚鋼板21b”より構成され、水平面上に複数の支持点を持つ支持装置(図示せず)によって挟持固定されている。本実施形態においては薄鋼板21a”,21c”が上方および下方に、厚鋼板21b”が中央に配置されている。ティーチング調整の後、溶接ロボットの回転作動制御により、溶接ガン全体を垂直方向上方へ移動させ、固定側電極17Bで薄鋼板21c”を上方へ押圧し、鋼板21a”,21b”,21c”を可動側電極17A側に突状となるように屈曲させる。固定側電極17Bで押圧させる変位量は、支持平面に対して好ましくは3〜5mmの範囲に設定されているが、板厚比が大きい場合は5mmを超える値を選択することもある。そして、駆動装置の作動制御により、所定の加圧力を薄鋼板21a”の上方より付与する。次に一対の電極で挟まれた鋼板21a”,21b”,21c”に所定値の溶接電流を所定時間通電する。この結果、第1の実施形態に記した理由により、ナゲット27の生成箇所は図10に表すように可動側電極17A側へシフトし、ナゲットの中心が薄鋼板21a”と厚鋼板21b”の境界に近づくことになる。
【0033】
引き続き、加圧シリンダ14による加圧力を維持し、鋼板21a”,21b”,21c”を一対の電極17A,17Bで挟んだまま、溶接ロボットの回転作動制御により、溶接ガン全体を垂直方向下方へ移動させる。図11は、可動側電極17Aで薄鋼板21a”を下方へ押圧し、鋼板21a”,21b”,21c”を固定側電極17B側に突状となるように屈曲させた状態を表す。可動側電極17Aで押圧させる変位量は、支持平面に対して好ましくは3〜5mmの範囲に設定されているが、板厚比が大きい場合は5mmを超える値を選択することもある。
【0034】
この状態で溶接電流を流すと、第1の実施形態に記した理由により、ナゲット28の生成箇所は図12に表すように固定側電極17B側へシフトし、ナゲットの中心が薄鋼板21c”と厚鋼板21b”の境界に近づくことになる。
【0035】
その結果、可動側電極17A側へシフトしたナゲット27と固定側電極17B側へシフトしたナゲット28の二つのナゲットが一部重なり合うように一体生成され、板厚方向の溶込み深さtの大きい複合ナゲット29が生成されることになる。この複合ナゲットは薄鋼板21a”と厚鋼板21b”の境界および薄鋼板21c”と厚鋼板21b”の境界の双方に跨る状態に形成される。このように、板厚の異なる鋼板に対する溶接であっても、板厚比に応じてナゲット生成箇所を薄板側へシフトさせることにより、良好な接合状態を得ることができ、ひいては溶接部の接合強度を向上させることができる。その他の構成については、第1の実施形態のものと同様であるために、同一部材には同一符号を付して、その説明は省略する。
【0036】
以上、本発明の具体的な実施形態を説明したが、本発明はこれに限定されるものではなく、発明の思想から逸脱しない範囲内で種々な変更が可能である。例えば、第1の実施形態においてティーチング調整の最初の段階で鋼板を屈曲させてもよい。また、製品の美感の観点より、溶接後に鋼板の屈曲部位を支持平面上に戻す平坦化作業を加えてもよい。
【0037】
【発明の効果】
本発明によると、スポット溶接機を用いたスポット溶接方法において、ナゲットの生成箇所を被溶接体の中心位置より任意の方向へシフトさせることができる。これにより、あらかじめ板厚に応じてナゲット生成箇所を制御して、溶接部の接合強度を向上させることができる。更に本発明は、既存のスポット溶接機をそのまま流用できるので、コスト的にも有利である。
【図面の簡単な説明】
【図1】本発明に係るスポット溶接方法に用いられるスポット溶接機を溶接ロボットに適用した例を示す全体構成図である。
【図2】本発明の第1の実施形態に係るティーチング調整後の被溶接体の要部正面図である。
【図3】本発明の第1の実施形態に係る被溶接体の要部正面図である。
【図4】本発明の第1の実施形態に係る被溶接体の要部正面図である。
【図5】本発明の第1の実施形態に係る被溶接体の要部正面図である。
【図6】本発明の第1の実施形態に係る被溶接体の要部正面図である。
【図7】本発明の第2の実施形態に係るティーチング調整後の被溶接体の要部正面図である。
【図8】本発明の第2の実施形態に係る被溶接体の要部正面図である。
【図9】本発明の第3の実施形態に係るティーチング調整後の被溶接体の要部正面図である。
【図10】本発明の第3の実施形態に係る被溶接体の要部正面図である。
【図11】本発明の第3の実施形態に係る被溶接体の要部正面図である。
【図12】本発明の第3の実施形態に係る被溶接体の要部正面図である。
【符号の説明】
1 スポット溶接機
2 被溶接体
2’ 被溶接体
3 溶接ロボット
17A 電極(可動側電極)
17B 電極(固定側電極)
21 鋼板
21a’鋼板(薄鋼板)
21b’鋼板(厚鋼板)
27 ナゲット
28 ナゲット
29 複合ナゲット
t 溶込み深さ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a spot welding method in which a welding current is applied while a workpiece is sandwiched between a pair of electrodes facing each other to perform welding.
[0002]
[Prior art]
For example, spot welding is widely used as a joining method of steel sheets commonly used in automobile bodies and the like. As one of the spot welding, the steel plates are overlapped, pressurized while sandwiching the steel plates between a pair of electrodes facing each other in the vertical direction, and the steel plates are bonded by the resistance heat generated when a welding current flows in the thickness direction. There is a welding method in which a contact portion is melted and then the melted portion is solidified to form a nugget.
[0003]
In automobile manufacturing, the joining strength required for the welded portion of the workpiece differs depending on the use site or purpose of the workpiece as the workpiece. On the other hand, the size of the nugget generated by spot welding is an important factor that affects the joining strength of the welded portion, but by controlling at least one of the pressing force, welding current, and energizing time, the nugget diameter is adjusted. What can be done properly is generally known.
[0004]
If it is desired to ensure a sufficient joint strength at the weld, the purpose is achieved by increasing the nugget diameter. As a method of increasing the nugget diameter, there is a method of increasing the pressing force and the welding current value. According to this method, a large area of the contact portion between the electrode and the workpiece can be secured while maintaining the current density without lowering, so that the workpiece to be welded in a wider area than usual is melted, and as a result, a large nugget diameter is obtained. You can get.
[0005]
However, a welding apparatus employing the above-described method requires a large cylinder and welding gun with an increase in the pressing force, and increases the cylinder driving force and the power consumption due to welding current. This is disadvantageous because bulking and soaring manufacturing costs are also caused. Further, when the size of the welding gun is increased, the welding gun may interfere with the workpiece. In such a case, it is necessary to change the shape of the work, resulting in further economic loss.
[0006]
On the other hand, in spot welding, robot teaching is usually performed. This teaching adjustment has various control mechanisms. For example, as a teaching method of a spot welding apparatus, a control method of quickly detecting a positional relationship between a workpiece and an electrode and performing programming has been known (for example, see Patent Document 1).
[0007]
[Patent Document 1]
JP-A-9-29453 [0008]
[Problems to be solved by the invention]
However, in the spot welding method disclosed in Patent Literature 1, the teaching adjustment operation can be performed accurately and quickly, so that the work efficiency can be improved while the yield is improved, while the joining strength of the welded portion is desired to be improved. However, it has not been possible to suppress a rise in manufacturing costs due to an increase in power consumption due to capital investment and driving of the welding apparatus, and there has been a problem similar to the conventional one.
[0009]
The present invention was conceived under such circumstances, and a spot welding method that suppresses a rise in manufacturing cost while using an existing spot welding apparatus and that improves the joining strength of a welded portion. The task is to provide.
[0010]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a spot welding method. This spot welding method is a spot welding method in which a welding current is applied while sandwiching a body to be welded between a pair of electrodes, and the body to be welded is pressed toward the other electrode by pressing the body to be welded with one electrode. A first step of flowing a welding current in a state of being bent so as to have a protruding shape, and pressing the object to be welded with the other electrode while holding the object to be welded, thereby causing the object to be welded to The method is characterized by having a second step of flowing a welding current in a state where the electrode is bent so as to project toward one of the electrodes.
[0011]
When such a spot welding method is used, it is possible to sufficiently secure the joining strength of the welded portion only by improving the adjustment method such as teaching performed in a normal welding operation process. Specifically, in a state in which the object to be welded held and fixed by the support device is pressed by one electrode and bent so as to protrude toward the other electrode, the object to be welded is pressed into a pair by the pressing means. Sandwiched between electrodes. At this time, the contact areas of the contact portions of the workpiece to be contacted with the pair of electrodes are different from each other. The contact area of the projecting side of the workpiece, that is, the contact area of the contact portion of the workpiece that contacts the other electrode decreases, and the contact area of the contact portion of the workpiece that contacts the other electrode increases. When a welding current is applied in a state where the contact areas of the contact portions that come into contact with the pair of electrodes are different from each other, the current density of the smaller contact area of the contact portion increases, and the growth of the nugget is promoted.
[0012]
According to this, in the first step, the current density on the other electrode side increases, and the location of the nugget generation shifts from the center in the plate thickness direction to the other electrode side. In the second step, the current density on one electrode side increases, and the location of the nugget shifts from the center in the thickness direction to the one electrode side. As a result, the two nuggets shifted to both sides in the thickness direction are integrally formed so as to partially overlap, and a composite nugget having a large penetration depth in the thickness direction is generated.
[0013]
ADVANTAGE OF THE INVENTION According to this invention, the joining strength of the welding part by spot welding can be improved easily and favorably only by improving the adjustment method, such as teaching, using the existing spot welding apparatus.
[0014]
According to a second aspect of the present invention, there is provided a spot welding method. This spot welding method is a spot welding method in which a welding current flows through a pair of electrodes to a workpiece having different plate thicknesses. The welding current is applied in a state where the object to be welded is bent so as to project toward the thin plate side by being pressed.
[0015]
When such a spot welding method is used, it is possible to sufficiently secure the joining strength of the welded portion only by improving the adjustment method such as teaching performed in a normal welding operation process. Specifically, in a state in which the object to be welded held and fixed by the support device is pressed by an electrode disposed on the thick plate side of the object to be welded, and is bent so as to project toward the thin plate side, The object to be welded is sandwiched between a pair of electrodes by a pressing means. At this time, the contact area of the contact portion of the workpiece to be in contact with the electrode disposed on the projecting side of the workpiece, that is, the thin plate side is reduced, and the electrode disposed on the thick plate side of the workpiece is reduced. The contact area of the contact portion of the object to be welded in contact with increases. When a welding current is supplied in this state, the current density of the smaller contact area of the contact portion increases as described above, and in this case, the current density of the thin plate side increases. Then, the location of the nugget is shifted from the center in the plate thickness direction to the thin plate side, and the center of the nugget approaches between the plates of the workpiece. As a result, even when welding is performed on objects to be welded having different plate thicknesses, a good joining state can be obtained, and the joining strength of the welded portion can be improved.
[0016]
According to the present invention, by using an existing spot welding apparatus, only by improving the adjustment method such as teaching, it is possible to easily and satisfactorily improve the joining strength of a welded portion even for a workpiece having a different plate thickness. Can be.
[0017]
In the present invention, preferably, the amount of displacement of the electrode for bending the object to be welded is set in a range of 3 to 5 mm. Here, the “displacement amount” refers to a displacement amount from a neutral position of the electrode that does not bend the workpiece.
[0018]
When such a spot welding method is used, the amount of deviation of the nugget generation location can be kept within an appropriate range. In other words, when the displacement amount is out of the above range, a problem may occur. Specifically, when the displacement is less than 3 mm, the amount of deviation of the nugget is insufficient, and there is a possibility that the joining strength of the welded portion cannot be improved. If the displacement exceeds 5 mm, the amount of displacement of the nugget becomes excessive, and cracks and the like are likely to occur in the welded portion, which may lead to a decrease in bonding strength.
[0019]
According to the present invention, the deviation amount of the nugget can be easily and satisfactorily maintained within an appropriate range only by improving the adjustment method such as teaching using the existing spot welding apparatus. As a result, the joining strength of the weld can be improved.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
[0021]
FIG. 1 shows an example in which a spot welding machine used in a spot welding method according to a first embodiment of the present invention is applied to a welding robot. In FIG. 1, reference numeral 1 denotes a spot welding machine; The welded body 3 is a welding robot that supports the spot welding machine 1.
[0022]
The spot welding machine 1 includes a welding transformer 10, a welding gun 11, a pressurizing unit 12, and a pair of electrodes 17A and 17B. The welding gun 11 is connected and fixed to one side wall of the welding transformer 10 via a support bracket, and includes an upper arm 111 and a lower arm 112. The pressurizing means 12 includes a drive device 13 composed of, for example, a servomotor and a pressurizing cylinder 14, and is connected and fixed to the upper arm 111. The pressurizing cylinder 14 includes a piston rod 15 that moves forward and backward in the vertical direction by the driving force of the driving device 13. A shank is disposed coaxially with each other on the distal end side of the piston rod 15 and on the distal end of the lower arm 112. A pair of electrodes 17A, 17A, 17B is connected and fixed. The electrode 17A constitutes a movable electrode whose relative position with respect to the upper arm 111 is changed by the pressing means 12, and the electrode 17B constitutes a fixed electrode fixed to the lower arm 112. The electrodes 17A and 17B have a cylindrical shape, and electrode tips 18A and 18B each having a hemispherical shape at a portion that comes into contact with the object to be welded are formed at the distal ends. (See Fig. 2)
[0023]
The to-be-welded body 2 is supported by a supporting device (not shown) in a state where a pair of steel plates 21 are superimposed, and is spot-welded at a predetermined portion of the steel plate 21 to be welded. It has become.
[0024]
The welding robot 3 is provided with a base 31 that is rotatable about an operation axis T with respect to the floor surface, and a first base that is rotatably provided with respect to the base 31 about a horizontal axis U. An arm 32, a second arm 33 disposed rotatably around a horizontal axis V with respect to the tip of the first arm 32, and a horizontal axis W with respect to the tip of the second arm 33. And a third arm 34 rotatably arranged. The spot welding machine 1 is fixedly connected to the distal end of the third arm 34. Then, under the control of an operation of a controller (not shown), the base 31 rotates and the first arm 32, the second arm 33 and the third arm 34 rotate around the rotation axes U, V and W, respectively. The spot welding machine 1 is configured to be movable in a three-dimensional direction by being rotated.
[0025]
Hereinafter, a welding method using the spot welding machine 1 will be specifically described with reference to FIGS. The object to be welded is composed of two overlapping steel plates 21 having substantially equal thicknesses, and is clamped and fixed by a support device having a plurality of support points on a horizontal plane. FIG. 2 shows a state in which a pair of electrode tips 18A and 18B are arranged on a support plane on which the steel plate 21 is supported by teaching adjustment, and the steel plate 21 is sandwiched between a pair of electrodes. FIG. 3 shows that the entirety of the welding gun is moved upward in the vertical direction by the rotation operation control of the welding robot, the steel plate 23 is pressed upward by the fixed-side electrode 17B, and the steel plate 21 projects toward the movable-side electrode 17A. As shown in FIG. The displacement amount to be pressed by the fixed electrode 17B is set in a range of 3 to 5 mm with respect to the support plane. In this state, the operation control of the drive device causes the piston rod 15 to advance and apply a predetermined pressing force from above the steel plate 21.
[0026]
At this time, the contact area of the contact portion m of the steel plate contacting the movable electrode 17A decreases, and the contact area of the contact portion n of the workpiece to contact the fixed electrode 17B increases. Next, a predetermined value of welding current is applied to the steel plate 21 sandwiched between the pair of electrodes 17A and 17B for a predetermined time. Since the welding current value passing through each of the movable-side electrode 17A and the fixed-side electrode 17B is constant, the current density of the contact portion that comes into contact with the movable-side electrode 17A increases. Therefore, the range of heat affected by the welding current is displaced from the center position in the plate thickness direction to the movable electrode 17A side where the current density has increased. Since the heat affected range is displaced toward the movable electrode 17A, the molten portion of the steel plate is also displaced toward the movable electrode 17A, and the location where the nugget 27 formed from the molten portion of the steel plate 21 is generated is shown in FIG. Is shifted to the movable side electrode 17A side.
[0027]
Subsequently, while the pressing force of the pressurizing cylinder 14 is maintained and the steel plate 21 is sandwiched between the pair of electrodes 17A and 17B, the entire welding gun is moved vertically downward by the rotation operation control of the welding robot. FIG. 5 shows a state in which the steel plate 21 is pressed downward by the movable-side electrode 17A, and the steel plate 21 is bent so as to project toward the fixed-side electrode 17B. The displacement amount pressed by the movable electrode 17A is set in a range of 3 to 5 mm with respect to the support plane.
[0028]
At this time, the contact area of the contact portion of the steel plate that contacts the fixed-side electrode 17B decreases, and the contact area of the contact portion of the welded body that contacts the movable-side electrode 17A increases. Since the value of the welding current passing through each of the movable-side electrode 17A and the fixed-side electrode 17B is constant, the current density of the contact portion that contacts the fixed-side electrode 17B increases. The range of heat affected by the welding current is displaced from the center position in the thickness direction to the fixed-side electrode 17B where the current density has increased. Since the heat affected range is displaced to the fixed electrode 17B side, the molten portion of the steel plate is also displaced to the fixed electrode 17B side, and the generation location of the nugget 28 formed from the molten portion of the steel plate 21 is as shown in FIG. Is shifted to the fixed side electrode 17B side.
[0029]
As a result, the two nuggets, the nugget 27 shifted to the movable electrode 17A and the nugget 28 shifted to the fixed electrode 17B, are integrally formed so as to partially overlap each other, and a composite having a large penetration depth t in the plate thickness direction. A nugget 29 will be generated.
[0030]
FIG. 7 shows a workpiece 2 ′ used in the spot welding method according to the second embodiment of the present invention. The welded body 2 'is composed of two overlapping thin steel plates 21a' and two thick steel plates 21b 'having different plate thicknesses, and is clamped and fixed by a support device (not shown) having a plurality of support points on a horizontal plane. In this embodiment, the thin steel plate 21a 'is arranged above and the thick steel plate 21b' is arranged below. After the teaching adjustment, the entire welding gun is moved vertically upward by the rotation operation control of the welding robot, and the thick steel plate 21b 'is pressed upward by the fixed side electrode 17B, and both the steel plates 21a' and 21b 'are moved to the movable side electrode. It is bent so as to project toward the 17A side. The displacement amount to be pressed by the fixed electrode 17B is preferably set in a range of 3 to 5 mm with respect to the support plane, but when the plate thickness ratio is large, a value exceeding 5 mm may be selected. Then, a predetermined pressing force is applied from above the thin steel plate 21a 'by operation control of the driving device.
[0031]
Next, a predetermined value of welding current is applied to the steel plates 21a ', 21b' sandwiched between the pair of electrodes 17A, 17B for a predetermined time. As a result, for the reason described in the first embodiment, the location of the nugget 27 is shifted toward the movable electrode 17A as shown in FIG. 8, and the center of the nugget is located at the boundary between the thin steel plate 21a 'and the thick steel plate 21b'. Will approach. As described above, even when welding to steel plates having different plate thicknesses, a good bonding state can be obtained by shifting the nugget generation portion to the thin plate side according to the plate thickness ratio, and thus the bonding strength of the welded portion can be obtained. Can be improved. Other configurations are the same as those of the first embodiment, and therefore, the same members are denoted by the same reference numerals and description thereof will be omitted.
[0032]
Fig. 9 shows a welded body 2 "used in the spot welding method according to the third embodiment of the present invention. The welded body 2" is composed of three overlapping thin steel plates 21a ", 21c" having different thicknesses. It is composed of a thick steel plate 21b "and is clamped and fixed by a support device (not shown) having a plurality of support points on a horizontal plane. In the present embodiment, the thin steel plates 21a" and 21c "are thickened upward and downward. The steel plate 21b "is arranged at the center. After the teaching adjustment, the entirety of the welding gun is moved vertically upward by the rotation operation control of the welding robot, and the thin steel plate 21c "is pressed upward by the fixed-side electrode 17B to move the steel plates 21a", 21b ", and 21c". It is bent so as to project toward the side electrode 17A. The displacement amount to be pressed by the fixed electrode 17B is preferably set in a range of 3 to 5 mm with respect to the support plane, but when the plate thickness ratio is large, a value exceeding 5 mm may be selected. Then, a predetermined pressing force is applied from above the thin steel plate 21a "by operation control of the driving device. Next, a predetermined value of welding current is applied to the steel plates 21a", 21b ", 21c" sandwiched between the pair of electrodes. Energize for hours. As a result, for the reason described in the first embodiment, the location of the nugget 27 is shifted to the movable electrode 17A side as shown in FIG. 10, and the center of the nugget is at the boundary between the thin steel plate 21a ″ and the thick steel plate 21b ″. Will approach.
[0033]
Subsequently, while the pressing force of the pressurizing cylinder 14 is maintained and the steel plates 21a ", 21b", 21c "are sandwiched between the pair of electrodes 17A, 17B, the entire welding gun is vertically moved downward by the rotation operation control of the welding robot. Fig. 11 shows a state in which the thin steel plate 21a "is pressed downward by the movable-side electrode 17A, and the steel plates 21a", 21b ", 21c" are bent so as to project toward the fixed-side electrode 17B. The displacement amount to be pressed by the movable electrode 17A is preferably set in a range of 3 to 5 mm with respect to the support plane, but when the plate thickness ratio is large, a value exceeding 5 mm may be selected.
[0034]
When a welding current is applied in this state, for the reason described in the first embodiment, the location of the nugget 28 is shifted to the fixed electrode 17B side as shown in FIG. 12, and the center of the nugget is shifted to the thin steel plate 21c ″. It will approach the boundary of the thick steel plate 21b ″.
[0035]
As a result, the two nuggets, the nugget 27 shifted to the movable electrode 17A and the nugget 28 shifted to the fixed electrode 17B, are integrally formed so as to partially overlap each other, and a composite having a large penetration depth t in the plate thickness direction. A nugget 29 will be generated. This composite nugget is formed so as to straddle both the boundary between the thin steel plate 21a ″ and the heavy steel plate 21b ″ and the boundary between the thin steel plate 21c ″ and the heavy steel plate 21b ″. As described above, even when welding to steel plates having different plate thicknesses, a good bonding state can be obtained by shifting the nugget generation portion to the thin plate side according to the plate thickness ratio, and thus the bonding strength of the welded portion can be obtained. Can be improved. Other configurations are the same as those of the first embodiment, and therefore, the same members are denoted by the same reference numerals and description thereof will be omitted.
[0036]
As described above, the specific embodiments of the present invention have been described, but the present invention is not limited thereto, and various modifications can be made without departing from the spirit of the invention. For example, in the first embodiment, the steel plate may be bent at the first stage of the teaching adjustment. Further, from the viewpoint of the beauty of the product, a flattening operation for returning the bent portion of the steel plate to the support plane after welding may be added.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in the spot welding method using a spot welder, the location of the nugget can be shifted in any direction from the center position of the workpiece. This makes it possible to control the location of the nugget generation in advance according to the plate thickness, thereby improving the joining strength of the welded portion. Further, the present invention is advantageous in terms of cost because an existing spot welding machine can be used as it is.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an example in which a spot welding machine used in a spot welding method according to the present invention is applied to a welding robot.
FIG. 2 is a main part front view of the welded body after teaching adjustment according to the first embodiment of the present invention.
FIG. 3 is a front view of a main part of the welded body according to the first embodiment of the present invention.
FIG. 4 is a front view of a main part of the welded body according to the first embodiment of the present invention.
FIG. 5 is a front view of a main part of the welded body according to the first embodiment of the present invention.
FIG. 6 is a front view of a main part of the body to be welded according to the first embodiment of the present invention.
FIG. 7 is a front view of a main part of a welded body after teaching adjustment according to a second embodiment of the present invention.
FIG. 8 is a front view of a main part of a body to be welded according to a second embodiment of the present invention.
FIG. 9 is a front view of a main part of a welded body after teaching adjustment according to a third embodiment of the present invention.
FIG. 10 is a front view of a main part of a body to be welded according to a third embodiment of the present invention.
FIG. 11 is a front view of a main part of a body to be welded according to a third embodiment of the present invention.
FIG. 12 is a front view of a main part of a body to be welded according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Spot welding machine 2 Workpiece 2 'Workpiece 3 Welding robot 17A Electrode (movable electrode)
17B electrode (fixed side electrode)
21 steel plate 21a 'steel plate (thin steel plate)
21b 'steel plate (thick steel plate)
27 Nugget 28 Nugget 29 Composite nugget t Penetration depth

Claims (3)

一対の電極で被溶接体を挟みながら溶接電流を流すスポット溶接方法であって、一方の電極で被溶接体を押圧させることにより、当該被溶接体を他方の電極側に突状となるように屈曲させた状態にて、溶接電流を流す第1の工程と、被溶接体を挟んだまま、上記他方の電極で被溶接体を押圧させることにより、当該被溶接体を上記一方の電極側に突状となるように屈曲させた状態にて、溶接電流を流す第2の工程を有することを特徴とする、スポット溶接方法。A spot welding method in which a welding current is applied while sandwiching a body to be welded between a pair of electrodes, and the body to be welded is protruded toward the other electrode by pressing the body to be welded with one electrode. In the bent state, the first step of flowing a welding current and pressing the object to be welded with the other electrode while sandwiching the object to be welded, thereby moving the object to be welded to the one electrode side. A spot welding method comprising a second step of flowing a welding current in a state where the spot welding is performed so as to form a projection. 板厚の異なる被溶接体を一対の電極で挟みながら溶接電流を流すスポット溶接方法であって、被溶接体の厚板側に配設されている電極で被溶接体を押圧させることにより、当該被溶接体を薄板側に突状となるように屈曲させた状態にて、溶接電流を流すことを特徴とする、スポット溶接方法。This is a spot welding method in which a welding current is applied while sandwiching a work piece having a different plate thickness between a pair of electrodes, and the work piece is pressed by an electrode provided on the thick plate side of the work piece, A spot welding method characterized by flowing a welding current in a state where an object to be welded is bent so as to project toward a thin plate side. 上記被溶接体を屈曲させる上記電極の変位量が3〜5mmの範囲に設定されている、請求項1または2に記載のスポット溶接方法。The spot welding method according to claim 1, wherein a displacement amount of the electrode that bends the workpiece is set in a range of 3 to 5 mm.
JP2003123072A 2003-04-28 2003-04-28 Spot welding method Pending JP2004322182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123072A JP2004322182A (en) 2003-04-28 2003-04-28 Spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123072A JP2004322182A (en) 2003-04-28 2003-04-28 Spot welding method

Publications (1)

Publication Number Publication Date
JP2004322182A true JP2004322182A (en) 2004-11-18

Family

ID=33501057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123072A Pending JP2004322182A (en) 2003-04-28 2003-04-28 Spot welding method

Country Status (1)

Country Link
JP (1) JP2004322182A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290099A (en) * 2007-05-23 2008-12-04 Jfe Steel Kk Resistance spot welding method
JP2021154363A (en) * 2020-03-27 2021-10-07 日本製鉄株式会社 Method of manufacturing spot-welding joint, spot-welding device and program
JP7508412B2 (en) 2021-06-11 2024-07-01 豊田鉄工株式会社 Method for welding and fixing fasteners, device for welding and fixing fasteners, and structure for welding and fixing fasteners

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290099A (en) * 2007-05-23 2008-12-04 Jfe Steel Kk Resistance spot welding method
JP2021154363A (en) * 2020-03-27 2021-10-07 日本製鉄株式会社 Method of manufacturing spot-welding joint, spot-welding device and program
JP7410396B2 (en) 2020-03-27 2024-01-10 日本製鉄株式会社 Spot welding joint manufacturing method, spot welding equipment and program
JP7508412B2 (en) 2021-06-11 2024-07-01 豊田鉄工株式会社 Method for welding and fixing fasteners, device for welding and fixing fasteners, and structure for welding and fixing fasteners

Similar Documents

Publication Publication Date Title
JP5301369B2 (en) Seam welding apparatus and seam welding method
JP2011194464A (en) Method and device for spot welding
JP2013071128A (en) Spot welding apparatus
JP2007167896A (en) Seam welding machine, seam welding apparatus, seam welding robot system, seam welding method, and method of creating rotary driving control program for roller electrode
US8283591B2 (en) Welding apparatus and welding method
US9868175B2 (en) Seam welding method and seam welding device
JP4327508B2 (en) Spot welding method and spot welding apparatus
KR101107611B1 (en) Swing gun apparatus
JP2004330253A (en) Method and apparatus for spot-welding
JP2011156564A (en) Method for correcting positional shift of electrode for welding and device used for the same
JP7278300B2 (en) FRICTION STIR WELDING APPARATUS, OPERATION METHOD THEREOF, AND JOINT STRUCTURE
JP2004322182A (en) Spot welding method
JP5783763B2 (en) Spot welding method and spot welding apparatus
JP5865132B2 (en) Seam welding method and seam welding apparatus
CN108778599A (en) Seam weld method and seam weld device
JPH10305373A (en) Method and device for seam welding
JP2007229769A (en) Automatic spot welding machine
JP2005088069A (en) Spot welding equipment
JP7223651B2 (en) Welding system and its operation method
EP1514629A1 (en) Seam welding apparatus
JP5864363B2 (en) Resistance welding apparatus and resistance welding method
JP2002224842A (en) Seam welding method, and welding truck guide device
CN111421213B (en) Electrode posture confirmation device and electrode posture confirmation method
JP4833532B2 (en) Robot seam welding method and apparatus
JP2009082959A (en) Spot welding machine