JP2004321986A - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP2004321986A
JP2004321986A JP2003121983A JP2003121983A JP2004321986A JP 2004321986 A JP2004321986 A JP 2004321986A JP 2003121983 A JP2003121983 A JP 2003121983A JP 2003121983 A JP2003121983 A JP 2003121983A JP 2004321986 A JP2004321986 A JP 2004321986A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
perovskite
type composite
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003121983A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawamura
哲雄 河村
Masaru Ishii
勝 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003121983A priority Critical patent/JP2004321986A/en
Publication of JP2004321986A publication Critical patent/JP2004321986A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purification catalyst having high NO<SB>x</SB>treatment ability not only at a high temperature but also at a low temperature and high resistance to sulfur poisoning. <P>SOLUTION: The exhaust gas purification catalyst comprises a perovskite type composite metal oxide defined as A<SB>1-x</SB>Rb<SB>x</SB>M<SB>1-y-z</SB>Ti<SB>y</SB>R<SB>z</SB>O<SB>3</SB>wherein A is at least one metal selected from La, Nd and Sm; M is at least one metal selected from Mn, Fe, Co and Ni; R is at least one metal selected from Pt, Pd, and Rh; x is a numeral satisfying 0.1<x<1; y is a numeral satisfying 0<y<1; z is a numeral satisfying 0<z<1; y>z; and 0<y+z<0.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用エンジン等の内燃機関から排出される排気ガスを浄化するための排気ガス浄化触媒に関し、詳細には、排ガス中に含まれるNOの浄化性能が著しく改良された排気ガス浄化触媒に関する。
【0002】
【従来の技術】
一般に、自動車用エンジン等の内燃機関から排出される排気ガス中には、炭化水素系化合物(以下「HC」という。)、一酸化炭素(CO)、窒素酸化物(NO)等の物質(エミッション)が含まれている。これらの物質の排出量を減らすために、エンジンの空燃比等の、燃焼条件の最適化の他、排気ガス中に含まれる物質を排気ガス浄化触媒によって除去する方法が一般的に用いられている。
【0003】
この排気ガス浄化触媒としては、アルミナ等の多孔質金属酸化物担体に、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等の貴金属を担持した、いわゆる三元触媒が一般的である。この三元触媒は、CO及びHCを酸化するとともに、NOをNに還元する能力を有することが知られている。
【0004】
近年、自動車エンジン等の内燃機関においては、Oセンサーを使用して空燃比データをフィードバックすることによって、空燃比は理論空燃比に高精度で制御されているため、通常の運転条件下では、排気ガスの浄化は三元触媒によって十分に行うことができる。
【0005】
しかし、自動車の加速域等、運転条件が大きく変化する条件下では、上記の空燃比制御が完全でなく、一時的な空気過剰(リーン)及び燃料過剰(リッチ)になる。三元触媒は、理論空燃比近傍で内燃機関を運転した場合に排出される排気ガス中のHC、CO、及びNOを効率よく浄化することができる。しかし、内燃機関に供給される混合気中の燃料と空気の割合が理論空燃比から外れた場合には、三元触媒は、充分な排気ガス浄化能力を発揮できない。
【0006】
そこで、排気ガス中の酸素濃度が高い時には酸素を吸蔵し、酸素濃度が低い時には酸素を放出する能力(OSC能)を有する金属酸化物、例えばCeO又はCeO−ZrO複合酸化物などを排気ガス浄化触媒の助触媒として用い、排気ガス中の酸素濃度を調節し、三元触媒の排気ガス浄化能力を充分発揮できる方法が使用されている。しかし、CeO及びCeO−ZrO複合酸化物等の単体は、OSC能を高温でしか発現できず、排気ガス浄化触媒として用いるためには、CeO等にPt等の貴金属を担持してOSC能を発現できる温度を低くする必要があった。また、OSC能を有する、貴金属を担持したCeO等を用いても、酸素濃度の調節は完全ではなく、排気ガス中に含まれるNOを完全に除去することはできない。
【0007】
排気ガス中に含まれるNOについては、三元触媒のNO浄化能力を補うための吸蔵還元型NO浄化触媒が知られている(例えば、特許文献1参照)。これは、内燃機関において、酸素過剰の燃焼条件下で排気ガス中のNO濃度が高い場合には一時的にNOを吸蔵し、一方、燃料過剰の燃焼条件下、排気ガス中のNO濃度が低く、かつHC及びCO等が多い還元性雰囲気になるとNOを放出し(NO吸蔵放出能)、Pt等の排気ガス浄化触媒の作用によりNOを還元浄化する触媒である。この吸蔵還元型NO浄化用触媒のNO吸蔵材としては、アルカリ金属又はアルカリ土類金属が使用され、Pt等の触媒成分とアルカリ金属又はアルカリ土類金属の炭酸塩や酢酸塩をγ−アルミナ等の担体に担持して排気ガス浄化触媒が構成されている。
【0008】
一方、特定のペロブスカイト型複合酸化物はNOをNとOに分解する作用を有することが知られており、特定のペロブスカイト型複合酸化物を担体に担持したNOx接触還元触媒が知られている(例えば、特許文献2参照)。
【0009】
しかしながら、炭酸塩や酢酸塩を用いてアルカリ金属又はアルカリ土類金属を坦持した吸蔵還元型NO浄化用触媒では、約500℃を上回る触媒温度におけるNO浄化性能を高める必要があった。また、従来のペロブスカイト型複合酸化物を含む触媒は、自動車用エンジン等の内燃機関から排出される排気ガスの浄化に使用するためには、NO浄化率を高める必要があった。
【0010】
そこで、約500℃を上回る触媒温度でも優れたNO浄化性能を発揮することができる、改良された排気ガス浄化触媒が提案された。この触媒は、少なくとも2種の金属元素を含むペロブスカイト型複合酸化物に、Pt、Pd、Rh、Au、Ag、及びIrの少なくとも1種の触媒成分が担持されたことを特徴とするものであり、好ましいペロブスカイト型複合酸化物として、La1−xBO(Bは、Mn、Co、Fe、及びNiの少なくとも1種)の構造式又はA1−x1−yTi(Aは、La、Ce、Pr、Nd、Sm、Eu、Gd、及びYの少なくとも1種、Bは、Mn、Co、Fe、及びNiの少なくとも1種)の構造式を有するKを含む特定のペロブスカイト型複合酸化物が例示されている(例えば、特許文献3参照)。
【0011】
【特許文献1】
特開平9−248458号公報
【特許文献2】
特開平5−261289号公報
【特許文献3】
特開2001−269578号公報
【0012】
【発明が解決しようとする課題】
しかしながら、上記ペロブスカイト型複合酸化物に貴金属を担持させた排気ガス浄化触媒では、高温NO浄化性能は向上したが、低温におけるリーン雰囲気のNOを十分に浄化することができないという問題がある。さらに、吸蔵還元型NO浄化触媒中のアルカリ金属は、燃料中に含まれる硫黄により安定な硫酸塩を形成する、いわゆる硫黄被毒によって性能が低下するという問題もある。
【0013】
従って、本発明は、高温のみならず低温においても高いNO浄化性能を示し、かつ耐硫黄被毒性の高い吸蔵還元型NOx浄化触媒を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために本発明によれば、下式
1−xRb1−y−zTi
(式中、AはLa、Nd及びSmからなる群より選ばれる1種以上の金属を表し、MはMn、Fe、Co及びNiからなる群から選ばれる1種以上の金属を表し、RはPt、Pd及びRhからなる群から選ばれる1種以上の金属を表し、xは0.1<x<1を満たす数字を表し、yは0<y<1を満たす数字を表し、zは0<z<1を満たす数字を表し、但しy>zであり、0<y+z<0.5である)
で表されるペロブスカイト型複合金属酸化物からなる排気ガス浄化触媒が提供される。このペロブスカイト型複合金属酸化物は担体上に担持されていてもよい。
【0015】
【発明の実施の形態】
従来のペロブスカイト型複合金属酸化物を含む排気ガス浄化触媒は、ペロブスカイト型複合金属酸化物にPt等の貴金属を担持させることにより構成されている。これに対して、本発明の排気ガス浄化触媒は、ペロブスカイト型複合金属酸化物を構成する金属の一部を貴金属で置換し、この複合酸化物の結晶格子中に貴金属を配置したことを特徴とする。
【0016】
すなわち、本発明の排気ガス浄化触媒は下式
1−xRb1−y−zTi
の構造を有するペロブスカイト型複合金属酸化物から構成される。上式中、AはLa、Nd及びSmからなる群より選ばれる1種以上の金属を表し、Ndであることが好ましく、MはMn、Fe、Co及びNiからなる群から選ばれる1種以上の金属を表し、Mnであることが好ましく、RはPt、Pd及びRhからなる群から選ばれる1種以上の金属を表し、Ptであることが好ましい。式中、xは0.1<x<1を満たす数字を表し、0.3であることが好ましく、yは0<y<1を満たす数字を表し、0.25であることが好ましく、zは0<z<1を満たす数字を表し、0.05であることが好ましく、但しy>zであり、0<y+z<0.5である。特に好ましいペロブスカイト型複合金属酸化物は、Nd0.7Rb0.3Nn0.7Ti0.25Pt0.05である。
【0017】
本発明の排気ガス浄化触媒は、ペロブスカイト型複合金属酸化物の結晶格子中に貴金属を有するため、従来のようにペロブスカイト型複合金属酸化物に貴金属を担持させた場合と比較して、貴金属の分散性が向上しており、その結果、従来の触媒では十分に浄化することができなかった高温域(500℃以上)でのNO浄化性能と、低温域(400℃以下)でのNO浄化性能を大幅に向上することができる。さらに、貴金属の分散性が高いため、硫黄被毒によって形成したアルカリ金属の硫酸塩と貴金属との接触性が従来の触媒と比較して向上し、その結果、硫酸塩の分解が促進され、硫黄流通後もNO浄化性能を維持することができ、耐硫黄被毒性が向上する。
【0018】
この貴金属を有するペロブスカイト型複合金属酸化物は、その金属酸化物を構成する金属の比を有するように、金属の硝酸塩、酢酸塩、及び塩化物、並びに金属酸化物ゾル等から選ばれる金属化合物を混合した後、又はこれらの金属化合物を水溶液又は懸濁液にして混合・乾燥した後、空気中で400〜1000℃に加熱することによって製造することができる。
【0019】
本発明において、このペロブスカイト型複合金属酸化物を担体に担持させてもよい。担体としては、従来より排気ガス浄化触媒用担体として用いられてきた担体を用いることができ、ハニカム構造を有する多孔質モノリス担体が好ましく、特にコージェライト製ハニカムを用いることが好ましい。
【0020】
担体上へのこの金属酸化物の担持は、公知の方法、例えばこの金属酸化物及び金属酸化物ゾルを含むスラリーを担体上にコートして焼成するなどの方法によって行うことができる。担体上への金属酸化物の担持量は、任意に決定できるが、アルミナ:ペロブスカイト型複合金属酸化物=10:1であることが好ましい。
【0021】
本発明の排ガス浄化用触媒は、適当なユニット中に配置する等の公知の方法によって、自動車用エンジン等の内燃機関から排出される排気ガス流路中に配置し、排気ガス中のNO等の成分を浄化するための触媒として用いることができる。
【0022】
以下、本発明の排気ガス浄化触媒を、実施例に基づき、さらに具体的に説明するが、本発明はこれらに限定されるものではない。
【0023】
【実施例】
実施例1
52.28gの硝酸ネオジム、7.54gの硝酸ルビジウム、34.23gの硝酸マンガン、11.34gのチタニアゾル(石原産業製STS−01、固形分30wt%)、37.77gのジニトロジアミンPt硝酸水溶液(キャタラー製8P、Pt4.4wt%)を500mLのイオン交換水に加え、室温で1時間攪拌した。次いで120℃で攪拌を続け、粘性があらわれてきたらルツボに移し、120℃で2時間脱水させた。次にルツボごと炉に入れ、200℃で5時間、480℃で2時間仮焼し、さらに900℃で10時間焼成して、Nd0.7Rb0.3Mn0.7Ti0.25Pt0.05の組成を有するペロブスカイト型複合酸化物粉末を得た。得られた粉末を乳鉢で十分に粉砕し、1tonの静水圧を加えて固めたものをフルイの上で粉砕し、直径0.5〜1mmの大きさのペレット粒子を得た。
【0024】
比較例1
53.97gの硝酸ネオジム、7.78gの硝酸ルビジウム、35.34gの硝酸マンガン、14.05gのチタニアゾル(石原産業製STS−01、固形分30wt%)を500mLのイオン交換水に加え、室温で1時間攪拌した。次いで120℃で攪拌を続け、粘性があらわれてきたらルツボに移し、120℃で2時間脱水させた。次にルツボごと炉に入れ、200℃で5時間、480℃で2時間仮焼し、さらに900℃で10時間焼成して、Nd0.7Rb0.3Mn0.7Ti0.3の組成を有するペロブスカイト型複合酸化物粉末を得た。得られた粉末40gを乳鉢で十分に粉砕し、イオン交換水中に入れ、38.99gのジニトロジアミンPt硝酸水溶液(キャタラー製8P、Pt4.4wt%)を加え、1時間攪拌後、120℃で2時間脱水させ、500℃で2時間焼成し、Pt=11.58g/Nd0.7Rb0.3Mn0.7Ti0.3=270gを得た。得られた粉末を実施例1と同様にしてペレット化した。
【0025】
比較例2
25gのアルミナ、4.21gのジニトロジアミンPt硝酸水溶液(キャタラー製8P、Pt4.4wt%)を200mLのイオン交換水に加え、室温で1時間攪拌した。次いで120℃で2時間脱水させ、500℃で2時間焼成した。得られた粉末25gと4.78gの硝酸ルビジウムを200mLのイオン交換水に加え、1時間攪拌後、120℃で2時間脱水させ、500℃で2時間焼成し、Rb=0.35mol/Pt=11.58g/Al=270gの粉末を得た。得られた粉末を実施例1と同様にしてペレット化した。
【0026】
NO浄化性能の評価
上記のペレット2gを固定床流通式反応器(ガス流量:6.6L/min)に充填し、下記条件で試験を行った。
初期性能
リーン組成:NO=500ppm、C=667ppm、CO=0.1%、O=6.5%、CO=10%、HO=2%、N=バランス。
リッチ組成:NO=500ppm、C=667ppm、CO=0.6%、O=0.4%、CO=10%、HO=2%、N=バランス。
600℃リッチ処理10分後、600、500、400、300、700℃でリーン/リッチ=2/2分繰り返した。リーン2分後の出NO濃度(ppm)を測定し、NO浄化率とした。NO浄化率(%)=(入りNO濃度(500ppm)−出NO濃度(ppm))×100/(入りNO濃度(500ppm)である。
【0027】
耐久後性能
400℃硫黄耐久試験(リーン、リッチ組成にそれぞれSOを100ppm混入したものを4/1分切り替え、4時間耐久した)後のサンプルを初期性能と同じ方法で評価した。
【0028】
以上の結果を図1及び図2に示す。この結果より、本発明の排気ガス浄化触媒は600℃以上の高温域においてNOx浄化能が大幅に改善され、低温域においても性能が低下しない(図1)。さらに、硫黄被毒劣化も低減されている(図2)。
【0029】
【発明の効果】
本発明の排気ガス浄化触媒は、高温のみならず低温においても高いNO浄化性能を示し、かつ耐硫黄被毒性の高い、自動車エンジンの内燃機関から放出される排気ガス中のエミッションを低減することができ、特にNOを浄化する能力に優れている。
【図面の簡単な説明】
【図1】触媒の初期NO浄化性能を示すグラフである。
【図2】触媒の耐硫黄被毒性を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine such as automobile engine, in particular, the exhaust gas purification purification performance of the NO x contained in the exhaust gas is significantly improved Regarding the catalyst.
[0002]
[Prior art]
Generally, substances such as hydrocarbon compounds (hereinafter, referred to as “HC”), carbon monoxide (CO), and nitrogen oxides (NO x ) are contained in exhaust gas discharged from an internal combustion engine such as an automobile engine. Emissions) are included. In order to reduce the emission of these substances, in addition to optimizing combustion conditions such as the air-fuel ratio of an engine, a method of removing substances contained in exhaust gas by an exhaust gas purification catalyst is generally used. .
[0003]
As this exhaust gas purifying catalyst, a so-called three-way catalyst in which a noble metal such as platinum (Pt), rhodium (Rh), and palladium (Pd) is supported on a porous metal oxide carrier such as alumina is generally used. This three-way catalyst is known to have the ability to oxidize CO and HC and reduce NO x to N 2 .
[0004]
In recent years, in an internal combustion engine such as an automobile engine, the air-fuel ratio is controlled to the stoichiometric air-fuel ratio with high accuracy by feeding back the air-fuel ratio data using an O 2 sensor. Purification of exhaust gas can be sufficiently performed by a three-way catalyst.
[0005]
However, under conditions where driving conditions change significantly, such as in the acceleration region of an automobile, the above-described air-fuel ratio control is not perfect, resulting in a temporary excess of air (lean) and an excess of fuel (rich). Three-way catalyst can purify the stoichiometric air-fuel ratio HC in exhaust gas discharged when the internal combustion engine is operated in the vicinity, CO, and NO x efficiently. However, when the ratio of fuel and air in the air-fuel mixture supplied to the internal combustion engine deviates from the stoichiometric air-fuel ratio, the three-way catalyst cannot exhibit sufficient exhaust gas purification ability.
[0006]
Therefore, a metal oxide having the ability to occlude oxygen when the oxygen concentration in the exhaust gas is high and release oxygen when the oxygen concentration is low (OSC capability), such as CeO 2 or CeO 2 —ZrO 2 composite oxide, is used. A method has been used which is used as a promoter of an exhaust gas purifying catalyst, adjusts the oxygen concentration in the exhaust gas, and can sufficiently exhibit the exhaust gas purifying ability of a three-way catalyst. However, simple substances such as CeO 2 and CeO 2 —ZrO 2 composite oxides can only exhibit OSC capability at high temperatures, and in order to be used as an exhaust gas purifying catalyst, a noble metal such as Pt is supported on CeO 2 or the like. It was necessary to lower the temperature at which the OSC capability could be exhibited. In addition, even if CeO 2 or the like having a noble metal and having OSC capability is used, the adjustment of the oxygen concentration is not perfect, and it is not possible to completely remove NO x contained in the exhaust gas.
[0007]
The NO x contained in the exhaust gas, storage reduction the NO x purification catalyst to compensate for the NO x purification ability of the three-way catalyst has been known (e.g., see Patent Document 1). This is an internal combustion engine, an oxygen excess of when the concentration of NO x in the exhaust gas at a high combustion conditions occluded temporarily NO x, whereas, excess fuel combustion conditions, NO x in the exhaust gas concentration is low, and the HC and CO etc. becomes large a reducing atmosphere to release NO x (NO x storage-and-release ability) is a catalyst that reduces and purifies NO x by the action of the exhaust gas purifying catalyst such as Pt. An alkali metal or an alkaline earth metal is used as a NO x storage material of the storage reduction type NO x purification catalyst, and a catalyst component such as Pt and an alkali metal or alkaline earth metal carbonate or acetate are converted to γ- An exhaust gas purifying catalyst is supported on a carrier such as alumina.
[0008]
On the other hand, certain of the perovskite-type composite oxide is known to have an action of decomposing the NO x to N 2 and O 2, is a specific perovskite type composite oxide was supported on a carrier NOx catalytic reduction catalyst is known (For example, see Patent Document 2).
[0009]
However, the storage reduction the NO x purification catalyst that carrying the alkali metal or alkaline earth metal with a carbonate or acetate salt, it is necessary to increase the NO x purification performance in the catalyst temperature above about 500 ° C.. Further, catalysts containing conventional perovskite-type composite oxide, for use in the purification of exhaust gas discharged from an internal combustion engine such as automobile engine, it is necessary to increase the NO x purification rate.
[0010]
Therefore, it is possible to exert the NO x purification performance excellent in catalyst temperature above about 500 ° C., improved exhaust gas purifying catalyst has been proposed. This catalyst is characterized in that at least one catalyst component of Pt, Pd, Rh, Au, Ag, and Ir is supported on a perovskite-type composite oxide containing at least two metal elements. , preferred perovskite-type composite oxide, La 1-x K x BO 3 (B is, Mn, Co, at least one of Fe, and Ni) structural formula or a 1-x of K x B 1-y Ti y K having the structural formula of O 3 (A is at least one of La, Ce, Pr, Nd, Sm, Eu, Gd, and Y, and B is at least one of Mn, Co, Fe, and Ni) A specific perovskite-type composite oxide is disclosed (for example, see Patent Document 3).
[0011]
[Patent Document 1]
JP-A-9-248458 [Patent Document 2]
JP-A-5-261289 [Patent Document 3]
JP 2001-269578 A
[Problems to be solved by the invention]
However, in the above perovskite-type composite oxide exhaust gas purifying catalyst obtained by loading a noble metal on the product, it was the improvement hot the NO x purification performance, it is impossible to sufficiently purify the NO x in a lean atmosphere at a low temperature. Further, an alkali metal storage reduction the NO x purification catalyst forms stable sulfate by sulfur contained in the fuel, performance by the so-called sulfur poisoning is also lowered.
[0013]
Accordingly, the present invention exhibits high the NO x purification performance even at a low temperature not high temperature only, and an object thereof to provide a highly storage-reduction type NOx purifying catalyst of the sulfur-poisoning resistance.
[0014]
[Means for Solving the Problems]
According to the present invention in order to achieve the above object, the following formula A 1-x Rb x M 1 -y-z Ti y R z O 3
(Where A represents one or more metals selected from the group consisting of La, Nd and Sm, M represents one or more metals selected from the group consisting of Mn, Fe, Co and Ni, and R represents Represents one or more metals selected from the group consisting of Pt, Pd and Rh, x represents a number satisfying 0.1 <x <1, y represents a number satisfying 0 <y <1, and z represents 0 Represents a number satisfying <z <1, where y> z and 0 <y + z <0.5)
An exhaust gas purifying catalyst comprising a perovskite-type composite metal oxide represented by the formula: This perovskite-type composite metal oxide may be supported on a carrier.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
A conventional exhaust gas purification catalyst containing a perovskite-type composite metal oxide is constituted by supporting a noble metal such as Pt on a perovskite-type composite metal oxide. On the other hand, the exhaust gas purifying catalyst of the present invention is characterized in that a part of the metal constituting the perovskite-type composite metal oxide is replaced with a noble metal, and the noble metal is arranged in the crystal lattice of the composite oxide. I do.
[0016]
That is, the exhaust gas purifying catalyst the formula A 1-x Rb of the present invention x M 1-y-z Ti y R z O 3
Of a perovskite-type composite metal oxide having the following structure: In the above formula, A represents one or more metals selected from the group consisting of La, Nd and Sm, and is preferably Nd, and M is one or more metals selected from the group consisting of Mn, Fe, Co and Ni. And preferably represents Mn, and R represents at least one metal selected from the group consisting of Pt, Pd and Rh, and is preferably Pt. In the formula, x represents a number satisfying 0.1 <x <1, and is preferably 0.3; y represents a number satisfying 0 <y <1, preferably 0.25; Represents a number satisfying 0 <z <1, and is preferably 0.05, provided that y> z, and 0 <y + z <0.5. A particularly preferred perovskite-type composite metal oxide is Nd 0.7 Rb 0.3 Nn 0.7 Ti 0.25 Pt 0.05 O 3 .
[0017]
Since the exhaust gas purification catalyst of the present invention has a noble metal in the crystal lattice of the perovskite-type composite metal oxide, the dispersion of the noble metal is smaller than in the case where the noble metal is supported on the perovskite-type composite metal oxide as in the related art. sex has been improved, as a result, the conventional catalyst and the NO x purification performance in a high temperature range which could not be sufficiently purified (500 ° C. or higher), the NO x purification at low temperature range (400 ° C. or less) Performance can be greatly improved. Furthermore, due to the high dispersibility of the noble metal, the contact between the alkali metal sulfate formed by sulfur poisoning and the noble metal is improved as compared with the conventional catalyst, and as a result, the decomposition of the sulfate is accelerated, after circulation also it can maintain the NO x purification performance is improved sulfur-poisoning resistance.
[0018]
This perovskite-type composite metal oxide having a noble metal has a metal compound selected from a metal nitrate, an acetate, and a chloride, and a metal oxide sol or the like so as to have a ratio of the metal constituting the metal oxide. After mixing, or after mixing and drying these metal compounds in an aqueous solution or suspension, they can be produced by heating to 400 to 1000 ° C. in air.
[0019]
In the present invention, the perovskite-type composite metal oxide may be supported on a carrier. As the carrier, a carrier that has been conventionally used as a carrier for an exhaust gas purifying catalyst can be used, and a porous monolith carrier having a honeycomb structure is preferable, and a cordierite honeycomb is particularly preferable.
[0020]
The loading of the metal oxide on the carrier can be performed by a known method, for example, a method of coating a slurry containing the metal oxide and the metal oxide sol on the carrier and firing the slurry. The amount of the metal oxide carried on the carrier can be arbitrarily determined, but it is preferable that alumina: perovskite-type composite metal oxide = 10: 1.
[0021]
The exhaust gas purifying catalyst of the present invention, by a known method such as placed in a suitable unit, disposed in an exhaust gas flow path to be discharged from the internal combustion engine such as an automobile engine, NO x, etc. in the exhaust gas Can be used as a catalyst for purifying the components.
[0022]
Hereinafter, the exhaust gas purifying catalyst of the present invention will be described more specifically based on examples, but the present invention is not limited thereto.
[0023]
【Example】
Example 1
52.28 g of neodymium nitrate, 7.54 g of rubidium nitrate, 34.23 g of manganese nitrate, 11.34 g of titania sol (STS-01 manufactured by Ishihara Sangyo, solid content 30 wt%), 37.77 g of dinitrodiamine Pt nitric acid aqueous solution ( Cataler 8P, Pt 4.4 wt%) was added to 500 mL of ion-exchanged water, followed by stirring at room temperature for 1 hour. Next, stirring was continued at 120 ° C., and when the viscosity appeared, the mixture was transferred to a crucible and dehydrated at 120 ° C. for 2 hours. Next, the crucible was put into a furnace, calcined at 200 ° C. for 5 hours, 480 ° C. for 2 hours, and further calcined at 900 ° C. for 10 hours to obtain Nd 0.7 Rb 0.3 Mn 0.7 Ti 0.25 Pt. A perovskite-type composite oxide powder having a composition of 0.05 O 3 was obtained. The obtained powder was sufficiently pulverized in a mortar, and solidified by applying 1 ton of hydrostatic pressure, and pulverized on a sieve to obtain pellet particles having a diameter of 0.5 to 1 mm.
[0024]
Comparative Example 1
53.97 g of neodymium nitrate, 7.78 g of rubidium nitrate, 35.34 g of manganese nitrate, 14.05 g of titania sol (STS-01 manufactured by Ishihara Sangyo, solid content 30 wt%) were added to 500 mL of ion-exchanged water, and the mixture was added at room temperature. Stir for 1 hour. Next, stirring was continued at 120 ° C., and when the viscosity appeared, the mixture was transferred to a crucible and dehydrated at 120 ° C. for 2 hours. Next, the crucible was put into a furnace, calcined at 200 ° C. for 5 hours, 480 ° C. for 2 hours, and further calcined at 900 ° C. for 10 hours to obtain Nd 0.7 Rb 0.3 Mn 0.7 Ti 0.3 O Thus , a perovskite-type composite oxide powder having a composition of 3 was obtained. 40 g of the obtained powder is sufficiently pulverized in a mortar, put into ion-exchanged water, added with 38.99 g of an aqueous solution of dinitrodiamine Pt nitric acid (8 P manufactured by Cataler, Pt 4.4 wt%), stirred for 1 hour, and then stirred at 120 ° C. It was dehydrated for 500 hours and calcined at 500 ° C. for 2 hours to obtain Pt = 11.58 g / Nd 0.7 Rb 0.3 Mn 0.7 Ti 0.3 O 3 = 270 g. The obtained powder was pelletized in the same manner as in Example 1.
[0025]
Comparative Example 2
25 g of alumina, 4.21 g of dinitrodiamine Pt nitric acid aqueous solution (8P manufactured by Cataler, Pt 4.4 wt%) were added to 200 mL of ion-exchanged water, and stirred at room temperature for 1 hour. Then, it was dehydrated at 120 ° C. for 2 hours and calcined at 500 ° C. for 2 hours. 25 g of the obtained powder and 4.78 g of rubidium nitrate were added to 200 mL of ion-exchanged water, stirred for 1 hour, dehydrated at 120 ° C. for 2 hours, calcined at 500 ° C. for 2 hours, and Rb = 0.35 mol / Pt = 11.58 g / Al 2 O 3 = 270 g of powder was obtained. The obtained powder was pelletized in the same manner as in Example 1.
[0026]
Evaluation of NO x purification performance 2 g of the above pellets were charged into a fixed bed flow type reactor (gas flow rate: 6.6 L / min), and a test was conducted under the following conditions.
Initial performance lean composition: NO = 500 ppm, C 3 H 6 = 667 ppm, CO = 0.1%, O 2 = 6.5%, CO 2 = 10%, H 2 O = 2%, N 2 = balance.
Rich composition: NO = 500 ppm, C 3 H 6 = 667 ppm, CO = 0.6%, O 2 = 0.4%, CO 2 = 10%, H 2 O = 2%, N 2 = balance.
After 10 minutes of the 600 ° C. rich treatment, lean / rich = 2/2 minutes was repeated at 600, 500, 400, 300, and 700 ° C. The output NO concentration (ppm) after 2 minutes of lean was measured and determined as the NO purification rate. NO purification rate (%) = (incoming NO concentration (500 ppm) −outgoing NO concentration (ppm)) × 100 / (incoming NO concentration (500 ppm)).
[0027]
Post-Durability Performance Samples after a 400 ° C. sulfur endurance test (lean and rich compositions with 100 ppm of SO 2 each mixed for 4/1 minutes and lasted for 4 hours) were evaluated in the same manner as initial performance.
[0028]
The above results are shown in FIGS. From these results, the exhaust gas purifying catalyst of the present invention has a significantly improved NOx purifying ability in a high temperature range of 600 ° C. or higher, and does not deteriorate even in a low temperature range (FIG. 1). Furthermore, sulfur poisoning degradation is also reduced (FIG. 2).
[0029]
【The invention's effect】
Exhaust gas purifying catalyst of the present invention show high the NO x purification performance even at a low temperature not high temperature only, and high sulfur-poisoning resistance, reducing the emissions in the exhaust gases emitted from an internal combustion engine of a motor vehicle engine can be, it is especially excellent in the ability to purify NO x.
[Brief description of the drawings]
FIG. 1 is a graph showing an initial NO x purification performance of a catalyst.
FIG. 2 is a graph showing the sulfur poisoning resistance of a catalyst.

Claims (2)

下式
1−xRb1−y−zTi
(式中、AはLa、Nd及びSmからなる群より選ばれる1種以上の金属を表し、MはMn、Fe、Co及びNiからなる群から選ばれる1種以上の金属を表し、RはPt、Pd及びRhからなる群から選ばれる1種以上の金属を表し、xは0.1<x<1を満たす数字を表し、yは0<y<1を満たす数字を表し、zは0<z<1を満たす数字を表し、但しy>zであり、0<y+z<0.5である)
で表されるペロブスカイト型複合金属酸化物からなる排気ガス浄化触媒。
The formula A 1-x Rb x M 1 -y-z Ti y R z O 3
(Where A represents one or more metals selected from the group consisting of La, Nd and Sm, M represents one or more metals selected from the group consisting of Mn, Fe, Co and Ni, and R represents Represents one or more metals selected from the group consisting of Pt, Pd and Rh, x represents a number satisfying 0.1 <x <1, y represents a number satisfying 0 <y <1, and z represents 0 Represents a number satisfying <z <1, where y> z and 0 <y + z <0.5)
An exhaust gas purification catalyst comprising a perovskite-type composite metal oxide represented by the formula:
前記ペロブスカイト型複合金属酸化物が担体上に担持されてなる、請求項1記載の排気ガス浄化触媒。The exhaust gas purifying catalyst according to claim 1, wherein the perovskite-type composite metal oxide is supported on a carrier.
JP2003121983A 2003-04-25 2003-04-25 Exhaust gas purification catalyst Pending JP2004321986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121983A JP2004321986A (en) 2003-04-25 2003-04-25 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121983A JP2004321986A (en) 2003-04-25 2003-04-25 Exhaust gas purification catalyst

Publications (1)

Publication Number Publication Date
JP2004321986A true JP2004321986A (en) 2004-11-18

Family

ID=33500372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121983A Pending JP2004321986A (en) 2003-04-25 2003-04-25 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP2004321986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115380A1 (en) * 2006-04-12 2007-10-18 Very Small Particle Company Pty Ltd Sulfur resistant emissions catalyst
WO2007145216A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115380A1 (en) * 2006-04-12 2007-10-18 Very Small Particle Company Pty Ltd Sulfur resistant emissions catalyst
EP2010317A1 (en) * 2006-04-12 2009-01-07 The Very Small Particle Company Pty Ltd Sulfur resistant emissions catalyst
JP2009533206A (en) * 2006-04-12 2009-09-17 ベリー スモール パーティクル コンパニー リミテッド Sulfur-resistant emission catalyst
AU2007236562B2 (en) * 2006-04-12 2011-04-14 Very Small Particle Company Pty Ltd Sulfur resistant emissions catalyst
EP2010317A4 (en) * 2006-04-12 2012-08-29 Very Small Particle Company Ltd Sulfur resistant emissions catalyst
CN101443119B (en) * 2006-04-12 2013-03-13 微小分子股份有限公司 Sulfur resistant emissions catalyst
US8609575B2 (en) 2006-04-12 2013-12-17 Very Small Particle Company Limited Sulfur resistant emissions catalyst
WO2007145216A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
US8007691B2 (en) 2006-06-13 2011-08-30 Hitachi Maxell Energy, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell

Similar Documents

Publication Publication Date Title
US8187996B2 (en) Exhaust gas-purifying catalyst
JP3741303B2 (en) Exhaust gas purification catalyst
JP4959129B2 (en) Exhaust gas purification catalyst
JP3429967B2 (en) Oxygen storage cerium-based composite oxide
JPH10235192A (en) Catalyst for cleaning exhaust gas
JP2005066559A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2001269578A (en) Exhaust gas cleaning catalyst
US8133839B2 (en) Exhaust gas-purifying catalyst
US20100298132A1 (en) Exhaust gas-purifying catalyst
JPH10286462A (en) Catalyst of purifying exhaust gas
JPH11169670A (en) Nox occlusion-reduction type ternary catalyst and apparatus for cleaning exhaust gas using same
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH10218620A (en) Oxygen-storable cerium compound oxide
JPH08281116A (en) Catalyst for purifying exhaust gas
JP2004321986A (en) Exhaust gas purification catalyst
JP4775954B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP2005288382A (en) Catalyst for purifying exhaust gas
JPH09299795A (en) Catalyst for purification of exhaust gas
JP5051009B2 (en) NOx storage reduction catalyst
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP2002052342A (en) Exhaust gas purification catalyst
JP2000157865A (en) Gas purifying catalyst carrier
JPH09253491A (en) Catalyst for clarification of exhaust gas and its preparation
JP2000051698A (en) Exhaust emission purifying catalyst and its use
JP2000342967A (en) Catalyst for purifying exhaust gas, its production, and method for purifying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007