JP2004321348A - Stent - Google Patents

Stent Download PDF

Info

Publication number
JP2004321348A
JP2004321348A JP2003117829A JP2003117829A JP2004321348A JP 2004321348 A JP2004321348 A JP 2004321348A JP 2003117829 A JP2003117829 A JP 2003117829A JP 2003117829 A JP2003117829 A JP 2003117829A JP 2004321348 A JP2004321348 A JP 2004321348A
Authority
JP
Japan
Prior art keywords
stent
folded
axial direction
zigzag
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117829A
Other languages
Japanese (ja)
Inventor
Tadashi Ishibashi
忠司 石橋
Hiroshi Nashihara
宏 梨原
Hiroyuki Asano
寛幸 浅野
Hiroyoshi Asawaka
博敬 浅若
Masao Suzuki
正夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUKI IKA KIKAI KK
Tokin Corp
Piolax Medical Devices Inc
Original Assignee
MARUKI IKA KIKAI KK
Piolax Medical Devices Inc
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUKI IKA KIKAI KK, Piolax Medical Devices Inc, NEC Tokin Corp filed Critical MARUKI IKA KIKAI KK
Priority to JP2003117829A priority Critical patent/JP2004321348A/en
Publication of JP2004321348A publication Critical patent/JP2004321348A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stent which has no possibility of narrowing a flow passage within a tubular organ and damaging a tubular organ inner wall and little variation in axial direction length when expanded moreover obtains a full retention in extended conditions, and is excellent in softness when inserted into the tubular organ. <P>SOLUTION: The stent 20 has annular portions 22 in which a wire material 21, which is bent in a wave form and turned back in zigzags, is connected in an annular form along a circumferential direction, a plurality of the annular portions are arranged at a predetermined interval along an axial direction, and each annular portions are connected each other by a linear connection part 25. The wire material, which is turned up in zigzags, has an inclined turning over profile with respect to the axial direction and is formed so that this diagonal direction turns into an opposite direction by turns in the annular portions which is adjacent to the axial direction. Also, the linear portion from the turning over section to the turning over section of the wire material, which is turned up in zigzags, is in an S shape. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば血管、尿管等の人体の管状器官に挿入され、管状器官の内腔を開いた状態に維持させるためのステントに関する。
【0002】
【従来の技術】
例えば心筋梗塞等の治療に際して、血管の狭窄部にステントと呼ばれる拡張具を挿入し、血管の閉塞を防止する治療が行われている。また、尿管結石等の治療に際しても、結石が排出されやすくするため、尿管を拡張した状態に維持するために、ステントを使用することがある。
【0003】
一般にステントは、縮径した形状でバルーンカテーテルの先端部外周に装着され、案内カテーテルを通して閉塞患部に挿入された後、バルーンカテーテルのバルーンを膨らませて強制的に押し広げ、その状態で閉塞患部に留置させることにより、管状器官を拡張する。
【0004】
従来のステントの一例として、例えば図6〜8に示すように、ジグザグに折曲された線材11を周方向に沿って環状に形成し、この環状部分12を軸方向に沿って所定間隔で複数配列し、各環状部分12どうしを連結部13で連結してなるステント10が知られている。なお、このステント10の両端部は、ジグザグの角部14が外径側に開いて、管状器官の内壁に固定されるようになっている。
【0005】
また、特開平6−181993号には、半径方向に独立に膨張可能で、共通の軸線に略整列するように相互に連結された複数の円筒形状の要素を有する長手方向に可撓性を有するステントが開示されている。また、その一例として、波形をなして周方向に伸び、環状に連結された円筒要素を、軸方向に所定間隔で複数配列し、これらの円筒要素の一部を軸方向に伸びる相互連結要素で連結したものが開示されている。
【0006】
また、特許第3215807号公報には、体内の管腔に使用するための拡張可能な管状補強器具であって、該器具は、複数列の拡張可能なジョイント部材を有し、該列の各々は、該補強器具の中心軸に沿って互いに所定距離だけ離隔し、前記各列は、互いに離隔し且つ前記中心軸を中心として第一の直径を有する円形に配置される前記ジョイント部材で形成され、前記器具はさらに、複数列の可撓性長形部材を有し、該列の各々は、前記ジョイント部材の二つの隣接する列の間に配置され、該長形部材は、前記補強器具の中心軸に対して斜方向に延長し、該各長形部材は、ジョイント部材の隣接する列における二つのジョイント部材を連結し、それにより、補強器具の内側から半径方向に力がかかると、長形部材がジョイント部材に対して拡張して、補強器具の直径を、前記第一の直径よりも大きい第二の直径とし、前記器具はさらに、前記ジョイント部材の列に平行して配置される二列の端部分を有し、該二列の端部分の各々は、補強器具の長手方向の各端部に位置するジョイント部材の列に連結され、該各端部分は、前記中心軸に平行に配置され且つジョイント部材に連結される複数のストラットと、複数の連結部とを有し、該各連結部は、隣接する一対のストラットを連結する、拡張可能な管状補強器具が開示されている。
【0007】
【特許文献1】
特開平6−181993号公報
【特許文献2】
特許第3215807号公報
【0008】
【発明が解決しようとする課題】
しかしながら、図6〜8に示すステントでは、図8に示すように、管状器官内でその形状に沿って屈曲させたとき、屈曲部の内側部分Aでは、ジグザグの角部が内側に突き出し、屈曲部の外側部分Bでは、ジグザグの角部が外側に突き出す傾向があった。このため、内側部分Aでは、上記突き出し部分15が血液等の流れの障害となる可能性があり、外側部分Bでは、上記突き出し部分16が血管内壁を損傷する虞れがあった。
【0009】
また、特開平6−181993号のステントでは、拡張させたときにジグザグが開いて軸方向に短くなるため、ステントが管状器官内で位置ずれしやすいという傾向があった。
【0010】
更に、特許第3215807号のステントでは、補強器具の中心軸に対して斜方向に延長された可撓性長形部材がストレートな形状をなしているので、縮径状態で軸方向に屈曲させたとき、可撓性長形部材自体が軸方向に曲がりにくく、それらの連結部分で鋭く曲がる傾向があるため、管状器官の経路に沿って柔軟に屈曲させにくい傾向があった。
【0011】
したがって、本発明の目的は、管状器官内の流路を狭めたり、管状器官内壁を損傷する虞れがなく、拡張させたときの軸方向長さの変化が少なく、しかも拡張状態の保持力も十分に得られ、管状器官内に挿入する際の柔軟性にも優れたステントを提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明の第1は、波形に屈曲してジグザグに折り返す線材が周方向に沿って環状に連結されて環状部分をなし、この環状部分が軸方向に沿って所定間隔で複数配列されると共に、各環状部分どうしが線状の連結部で連結されたステントにおいて、縮径させた状態で、前記ジグザグに折り返す線材が軸方向に対して傾斜した折り返し形状をなし、この傾斜方向が軸方向に隣接する環状部分において交互に反対方向になるように形成されており、更に前記ジグザグに折り返す線材の折り返し部から折り返し部に至る線状部分がS字状をなしていることを特徴とするステントを提供するものである。
【0013】
上記発明によれば、周方向に拡張させたとき、ジグザグに折り返す線材がV字状に開くが、該線材が軸方向に対して傾斜した折り返し形状をなしているため、V字状に開いても軸方向の長さはそれほど変わらず、拡張させたときの軸方向長さの変化が少ないので、拡張時の位置ずれを防止することができる。
【0014】
また、ジグザグに折り返す線材の傾斜方向が軸方向に隣接する環状部分において交互に反対方向になるように形成されているので、縮径及び拡張させたときの応力が平均化し、縮径及び拡張に伴う変形を防止できる。
【0015】
更に、上記傾斜を交互にしたことにより、屈曲時の曲げせん断成分(スラスト成分)がプラスとマイナス交互に発生し、屈曲による抵抗力を逃がして、しなやかな曲げ特性、ねじり特性をもたせることができ、単純曲げのみでなく、ねじり曲げ変形にも対応でき、カテーテル操作を容易にすることができる。
【0016】
更に、環状部分どうしが線状の連結部で連結されているので、縮径時、拡張時ともにしなやかに曲がり、屈曲半径に対するステント径の変化が少なく、屈曲部でもほぼストレートに近い内腔が確保される。また、複数の環状部分が軸方向に並んでいることにより、拡張状態の保持力も十分に得られる。
【0017】
更にまた、波形に屈曲してジグザグに折り返す線材からなるので、折り返し部が滑らかな円弧形状となり、管状器官の内壁を損傷することを防止できる。
【0018】
更にまた、前記ジグザグに折り返す線材の折り返し部から折り返し部に至る線状部分がS字状をなしているので、拡張させたときに、上記S字状部分が伸びるので、軸方向の長さ変化をより効果的に防止できる。また、上記S字状部分によってステントの柔軟性も向上する。
【0019】
本発明の第2は、前記第1の発明において、前記ジグザグに折り返す線材の折り返し部の線幅は、折り返し部から折り返し部に至る部分の線幅よりも太く形成されているステントを提供するものである。
【0020】
上記発明によれば、拡張時に、大きな変形を伴う波形頂点付近の線幅を太くして強度を持たせ、変形の少ない波形中央部付近を細くすることにより、曲げによって発生する頂点部の集中応力を分散させ、しなやかな柔らかさを付与することができる。
【0021】
本発明の第3は、前記第1又は2の発明において、前記線状の連結部は、前記ジグザグに折り返す線材の折り返し部の頂点を避けた位置に連結されているステントを提供するものである。
【0022】
上記発明によれば、線状の連結部を折り返し部の頂点を避けた位置に連結することにより、折り返し部の強度が部分的に増大するのを防ぎ、拡張時にアンバランスな拡張変形をすることを防止できる。
【0023】
【発明の実施の形態】
本発明のステントの材質は、特に限定されないが、例えばステンレス、タンタル、チタン、白金、金、タングステン、形状記憶合金などからなる金属が好ましい。そして、本発明のステントは、例えば、上記のような金属の円筒体を作製し、この円筒体をエッチング、レーザー加工などの手段で所定のパターンにカットすることによって製造することができる。
【0024】
図1〜5には、本発明によるステントの一実施例が示されている。図1は縮径状態の斜視図、図2は縮径状態の展開図、図3は縮径時と拡張時のジグザグ形状の変化を示す説明図、図4は折り返し部の部分拡大図、図5は連結部の部分拡大図である。
【0025】
図1、2に示すように、このステント20は、波形に屈曲してジグザグに折り返す線材21が周方向に沿って環状に連結された環状部分22を有している。この環状部分22のジグザグパターンは、円弧状の折り返し部23と、折り返し部23から次の折り返し部23に至る中間部24とを有している。
【0026】
ステント20が縮径した状態において、中間部24は、緩やかなS字状をなし、かつ、ステント20の軸方向に対して傾斜して配置されている。そして、その傾斜方向は、軸方向に隣接する環状部分22において、交互に反対方向になっている。また、上記軸方向に対する傾斜角θ(図3参照)は、特に限定されないが、10〜15°が好ましい。
【0027】
また、図4に示すように、円弧状の折り返し部23の幅W1は、中間部24の幅W2よりも太く形成されている。具体的には、W1/W2=1.1〜1.5となるように形成されている。なお、W1は150〜200μm、W2は、100〜150μmとすることが好ましい。
【0028】
軸方向に隣接する環状部分22どうしは、1又は複数本の線状の連結部25で連結されている。この場合、図5に示すように、連結部25は、折り返し部23の頂点を避けて、その側方にずれた位置に連結されている。この場合、折り返し部23の頂点から連結部25に至る距離Aは、100〜150μmとすることが好ましい。
【0029】
更に、連結部25は、隣接する環状部分22における周方向にずれた折り返し部23に連結されている。すなわち、図3(a)の縮径状態において、連結部25の一端25aが連結された折り返し部23と、他端25bが連結された折り返し部23とは、折り返し部23の配列間隔で周方向に約2間隔分ずれており、それによって連結部25は、軸方向に対して傾斜して形成されている。このように、連結部25は、隣接する環状部分22の周方向にずれた折り返し部23どうしであって、かつ、各折り返し部23の頂点を避けた位置に連結されることが最も好ましい。
【0030】
ステント20を構成する上記環状部分22、連結部25の線材21の厚さも、適用箇所に応じて適宜設定すればよいが、軸方向における柔軟性と、拡張時の拡張保持力との兼ね合いから50〜400μmが好ましい。
【0031】
なお、ステント20を構成する線材の表面は、血栓が付着するのを防止するために、ポリフッ化エチレン系樹脂、ヘパリン含有樹脂、親水性樹脂等で被覆しておくことが好ましい。
【0032】
次に、このステント20の作用について、血管の狭窄部に適用する例を挙げて説明する。
【0033】
ステント20を管状器官内に挿入する方法の1例を説明すると、まず、血管内に周知のセルディンガー法によって案内カテーテルを経皮的に挿入し、その先端部を狭窄部の近傍に到達させる。そして、ステント20をバルーンカテーテル先端部のバルーンの外周に縮径状態で装着しておき、バルーンカテーテルを上記案内カテーテルを通して血管内に導く。
【0034】
更に、バルーンカテーテル内に挿入したガイドワイヤをガイドにして、バルーンカテーテルを更に押し進め、その先端部に装着したステント20を狭窄部に配置させる。その状態で、バルーンカテーテルを通して生理食塩水などの液体をバルーン内に注入し、バルーンを膨らませてステント20を拡張させる。
【0035】
その後、バルーン内の液体を抜き出してバルーンを萎ませ、バルーンカテーテルをステント20の内周から抜き出してステント20を留置させる。こうして、ステント20により、血管の狭窄部を拡張させて、心筋梗塞や脳梗塞などの予防や、治療を行うことができる。
【0036】
また、上記のような方法の他に、金属の円筒体をエッチング、レーザー加工などの手段で前記のようなパターンにカットした後、その円筒体を例えば形状記憶処理等の方法で拡張した形状に成形し、こうして得られた拡張形状のステント20を縮径させてカテーテルの先端部内周に挿入し、そのカテーテルを血管内に挿入して管部に到達させ、プッシャーによってステント20を血管内に押出し、ステント20の形状復帰力によって拡張させて留置することもできる。
【0037】
本発明による上記ステント20の一つの特徴は、縮径時と拡張時の軸方向における長さの変化が少ないことである。
【0038】
すなわち、図3(a)は、ステント20の縮径時のパターンを示し、(b)は拡張時のパターンを示している。同図(a)に示すように、縮径時においては、環状部分22のジグザグパターンは、円弧状の折り返し部23と、折り返し部23から次の折り返し部23に至る中間部24とを有していて、中間部24は、緩やかなS字状をなすと共に、ステント20の軸方向に対して傾斜して配置されている。
【0039】
そして、同図(b)に示すように、拡張時においては、中間部24がV字状に開いて環状部分22が周方向に広がるのであるが、上記中間部24は、縮径時においても傾斜して配置されていたため、V字状に開いても、その軸方向の長さはそれほど変化しない。しかも、この実施形態では、中間部24が縮径時においてはS字状をなし、拡張時においては直線状に伸びるため、上記軸方向の長さの変化が更に小さくなっている。
【0040】
また、このステント20は、縮径状態において、中間部24の傾斜方向が、軸方向に隣接する環状部分22において、交互に反対方向になっている。このため、上記縮径時及び拡張時の形状変化に対して、中間部24が傾斜していることによって偏った応力が発生したとしても、それらの応力が相殺し合うため、不都合な変形等を起こすことを防止できる。
【0041】
このように、血管等の管状器官内で拡張させたときに、軸方向長さの変化が少なく、しかも変形等を起こすことなく拡張するので、拡張時の位置ずれを防止することができる。なお、前記軸方向に対する傾斜角θ(図3参照)が10°未満では上記のような効果が乏しくなり、15°を超えると縮径時、折り返し部23が円周の外側に突出しやすくなり、カテーテルの挿入が難しくなるという問題が生じる可能性がある。
【0042】
また、このステント20は、連結部25が、隣接する環状部分22の周方向にずれた折り返し部23どうしであって、かつ、各折り返し部23の頂点を避けた位置に連結されているので、ステント20を屈曲させたときに、屈曲部の外側においては連結部25の傾斜が小さくなり、内側においては連結部25の傾斜が大きくなることにより、屈曲応力を吸収する。したがって、屈曲部の内側及び外側で、折り返し部23が突き出すことを防止できる。
【0043】
更に、連結部25が折り返し部23の頂点を避けた位置に連結されていることにより、折り返し部23の強度が部分的に増大するのを防ぎ、拡張時にアンバランスな拡張変形をすることを防止できる。なお、折り返し部23の頂点から連結部25に至る距離A(図5参照)が100μm未満では、上記効果が乏しくなり、150μmを超えると、屈曲部において折り返し部23が内周側及び外周側に突き出しやすくなる。
【0044】
更にまた、このステント20は、円弧状の折り返し部23の幅W1が、中間部24の幅W2よりも太く形成されているので、拡張時に大きな変形を伴う折り返し部23頂点付近の強度が向上し、変形の少ない波形中央部付近を細くすることにより、曲げによって発生する頂点部の集中応力を分散させ、しなやかな柔らかさを付与することができる。なお、W1/W2が1.1未満では上記効果が乏しくなり、1.5を超えると折り返し部23の強度が増し、中間部24の緩やかな変更を拘束するという問題が生じやすくなる。
【0045】
【発明の効果】
以上説明したように、本発明によれば、拡張させたときの軸方向長さの変化が少ないので、拡張時の位置ずれを防止することができ、縮径及び拡張させたときの応力が平均化し、縮径及び拡張に伴う変形を防止でき、しなやかな曲げ特性、ねじり特性をもたせることができ、カテーテル操作を容易にすることができる。また、縮径時、拡張時ともにしなやかに曲がり、屈曲半径に対するステント径の変化が少なく、屈曲部でもほぼストレートに近い内腔が確保される。更に、波形に屈曲してジグザグに折り返す線材からなるので、折り返し部が滑らかな円弧形状となり、管状器官の内壁を損傷することを防止できる。
【図面の簡単な説明】
【図1】本発明によるステントの一実施例を示す縮径状態の斜視図である。
【図2】同ステントの縮径状態の展開図である。
【図3】同ステントの縮径時と拡張時のジグザグ形状の変化を示す説明図である。
【図4】同ステントの折り返し部の部分拡大図である。
【図5】同ステントの連結部の部分拡大図である。
【図6】従来のステントの1例を示す展開図である。
【図7】同ステントの斜視図である。
【図8】同ステントの屈曲状態を示す斜視図である。
【符号の説明】
20 ステント
21 線材
22 環状部分
23 折り返し部
24 中間部
25 連結部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stent that is inserted into a tubular organ of a human body, such as a blood vessel or a ureter, and maintains the lumen of the tubular organ in an open state.
[0002]
[Prior art]
For example, in the treatment of myocardial infarction or the like, a treatment for preventing occlusion of a blood vessel is performed by inserting a dilator called a stent into a stenotic portion of the blood vessel. Also, in the treatment of ureteral stones and the like, a stent may be used to maintain the ureter in an expanded state so that the stones are easily discharged.
[0003]
In general, the stent is mounted around the distal end of the balloon catheter in a reduced diameter shape, inserted into the affected area through the guide catheter, then inflates the balloon of the balloon catheter to forcibly expand it, and indwells in the affected area in that state This causes the tubular organ to expand.
[0004]
As an example of a conventional stent, for example, as shown in FIGS. 6 to 8, a zigzag bent wire 11 is formed in an annular shape along the circumferential direction, and a plurality of annular portions 12 are formed at predetermined intervals along the axial direction. There is known a stent 10 in which the annular portions 12 are arranged and connected by a connecting portion 13. In addition, both ends of the stent 10 are fixed to the inner wall of the tubular organ with the zigzag corners 14 opened to the outer diameter side.
[0005]
Also, Japanese Patent Application Laid-Open No. 6-181993 discloses a longitudinally flexible structure having a plurality of cylindrical elements which are independently expandable in a radial direction and are interconnected so as to be substantially aligned with a common axis. A stent is disclosed. Further, as an example, a plurality of cylindrical elements that extend in the circumferential direction in a waveform and are connected annularly are arranged at predetermined intervals in the axial direction, and some of these cylindrical elements are interconnected elements that extend in the axial direction. A consolidation is disclosed.
[0006]
No. 3,215,807 discloses an expandable tubular reinforcing device for use in a body lumen, the device having a plurality of rows of expandable joint members, each of the rows being , Separated from each other by a predetermined distance along a central axis of the reinforcing device, wherein each of the rows is formed of the joint members spaced apart from each other and arranged in a circle having a first diameter about the central axis; The device further comprises a plurality of rows of flexible elongate members, each of which is disposed between two adjacent rows of the joint member, the elongate members being located at a center of the stiffening device. Extending obliquely with respect to the axis, each elongated member connects two joint members in an adjacent row of joint members, such that when a radial force is applied from the inside of the stiffening device, the elongated members are elongated. The member expands with respect to the joint member. And wherein the diameter of the stiffening device is a second diameter greater than the first diameter, the device further having two rows of end portions disposed parallel to the rows of the joint members; Each of the two rows of end portions is connected to a row of joint members located at each longitudinal end of the stiffener, each end portion being disposed parallel to the central axis and connected to the joint member. An expandable tubular stiffening device is disclosed that has a plurality of struts and a plurality of connections, each connection connecting a pair of adjacent struts.
[0007]
[Patent Document 1]
JP-A-6-181993 [Patent Document 2]
Japanese Patent No. 3215807
[Problems to be solved by the invention]
However, in the stent shown in FIGS. 6 to 8, as shown in FIG. 8, when bent along the shape in the tubular organ, the zigzag corners protrude inward at the inner portion A of the bent portion, and the bent portion is bent. In the outer portion B of the portion, the zigzag corners tended to protrude outward. For this reason, in the inner part A, the protruding part 15 may obstruct the flow of blood or the like, and in the outer part B, the protruding part 16 may damage the inner wall of the blood vessel.
[0009]
Further, in the stent disclosed in JP-A-6-181993, when the stent is expanded, the zigzag opens and becomes shorter in the axial direction. Therefore, the stent tends to be easily displaced in the tubular organ.
[0010]
Further, in the stent of Japanese Patent No. 3215807, since the flexible elongated member extending obliquely to the central axis of the reinforcing device has a straight shape, it is bent in the axial direction in a reduced diameter state. Sometimes, the flexible elongated members themselves are less likely to bend in the axial direction and tend to bend sharply at their joints, thus tending to be less flexible to bend along the path of the tubular organ.
[0011]
Therefore, an object of the present invention is to reduce the change in the axial length when the tube is expanded without reducing the flow path in the tubular organ or damaging the inner wall of the tubular organ, and to have a sufficient holding force in the expanded state. It is another object of the present invention to provide a stent having excellent flexibility when inserted into a tubular organ.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the first aspect of the present invention is that a wire rod that bends in a wave form and turns back in a zigzag shape is annularly connected along the circumferential direction to form an annular portion, and the annular portion is formed at a predetermined interval along the axial direction. In the stent in which each annular portion is connected to each other by a linear connecting portion, in a state where the diameter thereof is reduced, the wire material folded back in a zigzag form a folded shape inclined with respect to the axial direction. The inclining direction is formed so as to be alternately opposite in the annular portion adjacent in the axial direction, and furthermore, the linear portion extending from the folded portion of the wire folded back to the zigzag to the folded portion has an S shape. It is intended to provide a stent characterized by the following.
[0013]
According to the above invention, when expanded in the circumferential direction, the zigzag folded wire opens in a V shape, but since the wire has a folded shape inclined with respect to the axial direction, the wire is opened in a V shape. The length in the axial direction does not change much, and the change in the axial length when expanded is small, so that it is possible to prevent displacement during expansion.
[0014]
Also, since the inclining direction of the zigzag wire is formed so that the inclining direction is alternately opposite in the annular portion adjacent in the axial direction, the stress when the diameter is reduced and expanded is averaged, and the diameter is reduced and expanded. The accompanying deformation can be prevented.
[0015]
Furthermore, by making the above-mentioned inclination alternate, a bending shear component (thrust component) at the time of bending is generated alternately with plus and minus, so that a resistance force due to bending is released, and flexible bending characteristics and torsion characteristics can be provided. It is possible to cope with not only simple bending but also torsional bending deformation, thereby facilitating catheter operation.
[0016]
Furthermore, since the annular portions are connected by a linear connecting portion, they bend flexibly both at the time of diameter reduction and expansion, there is little change in the stent diameter with respect to the bending radius, and a nearly straight lumen is secured even at the bending portion. Is done. Further, since the plurality of annular portions are arranged in the axial direction, a sufficient holding force in the expanded state can be obtained.
[0017]
Furthermore, since the wire is bent in a waveform and folded back in a zigzag manner, the folded portion has a smooth circular arc shape, and damage to the inner wall of the tubular organ can be prevented.
[0018]
Furthermore, since the linear portion extending from the folded portion to the folded portion of the wire folded back in a zigzag form has an S-shape, the S-shaped portion expands when expanded, so that the length in the axial direction changes. Can be more effectively prevented. Further, the flexibility of the stent is improved by the S-shaped portion.
[0019]
A second aspect of the present invention provides the stent according to the first aspect, wherein the line width of the folded portion of the wire folded back in a zigzag is larger than the line width of the portion from the folded portion to the folded portion. It is.
[0020]
According to the invention, at the time of expansion, by increasing the line width near the apex of the waveform accompanied by large deformation to increase the strength, and by narrowing the vicinity of the central portion of the waveform with less deformation, the concentrated stress at the apex caused by bending is reduced. Can be dispersed to impart supple softness.
[0021]
A third aspect of the present invention is to provide a stent according to the first or second aspect, wherein the linear connecting portion is connected to a position avoiding a vertex of a folded portion of the wire material folded in a zigzag manner. .
[0022]
According to the above invention, by connecting the linear connecting portion to a position avoiding the vertex of the folded portion, it is possible to prevent the strength of the folded portion from partially increasing, and to perform unbalanced expansion deformation at the time of expansion. Can be prevented.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Although the material of the stent of the present invention is not particularly limited, for example, a metal made of stainless steel, tantalum, titanium, platinum, gold, tungsten, a shape memory alloy, or the like is preferable. The stent of the present invention can be manufactured, for example, by preparing a metal cylinder as described above and cutting the cylinder into a predetermined pattern by means such as etching or laser processing.
[0024]
1 to 5 show one embodiment of the stent according to the present invention. 1 is a perspective view of a reduced diameter state, FIG. 2 is a developed view of the reduced diameter state, FIG. 3 is an explanatory view showing a change in zigzag shape at the time of diameter reduction and expansion, and FIG. 4 is a partially enlarged view of a folded portion. 5 is a partially enlarged view of a connecting portion.
[0025]
As shown in FIGS. 1 and 2, the stent 20 has an annular portion 22 in which a wire 21 bent in a waveform and folded back in a zigzag is annularly connected along the circumferential direction. The zigzag pattern of the annular portion 22 has an arc-shaped folded portion 23 and an intermediate portion 24 extending from the folded portion 23 to the next folded portion 23.
[0026]
In a state where the diameter of the stent 20 is reduced, the intermediate portion 24 has a gentle S-shape and is arranged to be inclined with respect to the axial direction of the stent 20. And the inclination direction is alternately opposite in the annular portion 22 adjacent in the axial direction. The inclination angle θ with respect to the axial direction (see FIG. 3) is not particularly limited, but is preferably 10 to 15 °.
[0027]
Further, as shown in FIG. 4, the width W1 of the arc-shaped folded portion 23 is formed larger than the width W2 of the intermediate portion 24. Specifically, it is formed such that W1 / W2 = 1.1 to 1.5. Preferably, W1 is 150 to 200 μm, and W2 is 100 to 150 μm.
[0028]
The annular portions 22 adjacent to each other in the axial direction are connected by one or a plurality of linear connecting portions 25. In this case, as shown in FIG. 5, the connecting portion 25 is connected to a position shifted to the side, avoiding the vertex of the folded portion 23. In this case, the distance A from the vertex of the folded portion 23 to the connecting portion 25 is preferably set to 100 to 150 μm.
[0029]
Further, the connecting portion 25 is connected to the folded portion 23 that is shifted in the circumferential direction in the adjacent annular portion 22. That is, in the diameter-reduced state of FIG. 3A, the folded portion 23 to which one end 25 a of the connecting portion 25 is connected and the folded portion 23 to which the other end 25 b is connected are arranged in the circumferential direction at the arrangement interval of the folded portions 23. The connecting portion 25 is formed to be inclined with respect to the axial direction. As described above, it is most preferable that the connecting portions 25 are connected between the folded portions 23 that are shifted in the circumferential direction of the adjacent annular portions 22 and that avoid the vertexes of the folded portions 23.
[0030]
The thickness of the wire portion 21 of the annular portion 22 and the connecting portion 25 constituting the stent 20 may be appropriately set according to the application location. However, the thickness of the wire portion 21 may be 50 in consideration of the flexibility in the axial direction and the expansion holding force at the time of expansion. ~ 400 µm is preferred.
[0031]
The surface of the wire constituting the stent 20 is preferably coated with a polyfluoroethylene resin, a heparin-containing resin, a hydrophilic resin, or the like in order to prevent thrombus from adhering.
[0032]
Next, the operation of the stent 20 will be described with reference to an example applied to a stenotic portion of a blood vessel.
[0033]
An example of a method for inserting the stent 20 into a tubular organ will be described. First, a guide catheter is percutaneously inserted into a blood vessel by the well-known Seldinger method, and the distal end thereof is made to reach the vicinity of a stenosis. The stent 20 is mounted on the outer periphery of the balloon at the distal end of the balloon catheter in a reduced diameter state, and the balloon catheter is guided into the blood vessel through the guide catheter.
[0034]
Further, using the guide wire inserted into the balloon catheter as a guide, the balloon catheter is further pushed forward, and the stent 20 mounted on the distal end thereof is placed in the stenosis. In this state, a liquid such as saline is injected into the balloon through the balloon catheter, and the balloon is inflated to expand the stent 20.
[0035]
Thereafter, the liquid in the balloon is extracted, the balloon is deflated, and the balloon catheter is extracted from the inner periphery of the stent 20, and the stent 20 is placed. In this way, the stent 20 can be used to expand a stenotic portion of a blood vessel to prevent or treat a myocardial infarction or a cerebral infarction.
[0036]
Further, in addition to the above method, after cutting a metal cylindrical body into the above-described pattern by means of etching, laser processing, or the like, the cylindrical body is expanded into a shape expanded by a method such as shape memory processing. The expanded stent 20 thus obtained is reduced in diameter and inserted into the inner periphery of the distal end of the catheter. The catheter is inserted into the blood vessel to reach the pipe, and the stent 20 is pushed into the blood vessel by a pusher. Alternatively, the stent 20 can be expanded and retained by the shape restoring force.
[0037]
One feature of the stent 20 according to the present invention is that there is little change in the length in the axial direction when the diameter is reduced and when the diameter is expanded.
[0038]
That is, FIG. 3A shows a pattern when the diameter of the stent 20 is reduced, and FIG. 3B shows a pattern when the stent 20 is expanded. As shown in FIG. 3A, when the diameter is reduced, the zigzag pattern of the annular portion 22 has an arcuate folded portion 23 and an intermediate portion 24 extending from the folded portion 23 to the next folded portion 23. The intermediate portion 24 has a gentle S-shape and is arranged to be inclined with respect to the axial direction of the stent 20.
[0039]
Then, as shown in FIG. 3 (b), at the time of expansion, the intermediate portion 24 opens in a V-shape and the annular portion 22 expands in the circumferential direction. Since it is arranged in an inclined manner, its axial length does not change so much even when it is opened in a V-shape. Moreover, in this embodiment, the intermediate portion 24 has an S-shape when the diameter is reduced, and extends linearly when the diameter is expanded, so that the change in the axial length is further reduced.
[0040]
In the stent 20, in the diameter reduced state, the inclination direction of the intermediate portion 24 is alternately opposite in the annular portion 22 adjacent in the axial direction. For this reason, even if a biased stress is generated due to the inclination of the intermediate portion 24 with respect to the shape change at the time of the diameter reduction and at the time of the expansion, the stresses cancel each other out, so that an undesired deformation or the like occurs. Can be prevented.
[0041]
As described above, when the tube is expanded in a tubular organ such as a blood vessel, the length of the tube is little changed in the axial direction, and the tube is expanded without deformation. Therefore, it is possible to prevent displacement during expansion. If the inclination angle θ with respect to the axial direction (see FIG. 3) is less than 10 °, the above-described effects are poor. If the inclination angle θ exceeds 15 °, when the diameter is reduced, the folded portion 23 tends to protrude outside the circumference, Problems can arise that make catheter insertion difficult.
[0042]
Further, in this stent 20, since the connecting portions 25 are the folded portions 23 which are shifted in the circumferential direction of the adjacent annular portions 22 and are connected at positions avoiding the apexes of the folded portions 23, When the stent 20 is bent, the inclination of the connecting portion 25 becomes smaller outside the bent portion, and the inclination of the connecting portion 25 becomes larger inside the bent portion, thereby absorbing the bending stress. Therefore, it is possible to prevent the folded portion 23 from protruding inside and outside the bent portion.
[0043]
Furthermore, since the connecting portion 25 is connected at a position avoiding the vertex of the folded portion 23, the strength of the folded portion 23 is prevented from being partially increased, and unbalanced expansion deformation is prevented during expansion. it can. When the distance A (see FIG. 5) from the vertex of the folded portion 23 to the connecting portion 25 is less than 100 μm, the above effect is poor, and when the distance A exceeds 150 μm, the folded portion 23 in the bent portion is located on the inner peripheral side and the outer peripheral side. Easy to stick out.
[0044]
Furthermore, in this stent 20, the width W1 of the arcuate folded portion 23 is formed to be larger than the width W2 of the intermediate portion 24, so that the strength near the vertex of the folded portion 23 accompanied by large deformation at the time of expansion is improved. By narrowing the vicinity of the central portion of the waveform where deformation is small, concentrated stress at the apex portion generated by bending can be dispersed, and supple softness can be imparted. When W1 / W2 is less than 1.1, the above effect is poor. When W1 / W2 is more than 1.5, the strength of the folded portion 23 increases, and the problem of restraining the gradual change of the intermediate portion 24 tends to occur.
[0045]
【The invention's effect】
As described above, according to the present invention, since the change in the axial length when expanded is small, it is possible to prevent displacement during expansion, and to reduce the average diameter and the stress when expanded. It is possible to prevent deformation due to diameter reduction and expansion, provide flexible bending characteristics and torsion characteristics, and facilitate catheter operation. In addition, when the diameter is reduced and when the diameter is expanded, it is flexibly bent, the change in the stent diameter with respect to the bending radius is small, and an almost straight lumen is secured even at the bending portion. Further, since the wire is bent in a waveform and folded back in a zigzag manner, the folded portion has a smooth circular arc shape, thereby preventing the inner wall of the tubular organ from being damaged.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a reduced diameter state of an embodiment of a stent according to the present invention.
FIG. 2 is an expanded view of the stent in a reduced diameter state.
FIG. 3 is an explanatory diagram showing a change in zigzag shape when the diameter of the stent is reduced and when the stent is expanded.
FIG. 4 is a partially enlarged view of a folded portion of the stent.
FIG. 5 is a partially enlarged view of a connecting portion of the stent.
FIG. 6 is a development view showing one example of a conventional stent.
FIG. 7 is a perspective view of the stent.
FIG. 8 is a perspective view showing a bent state of the stent.
[Explanation of symbols]
Reference Signs List 20 stent 21 wire 22 annular portion 23 folded portion 24 intermediate portion 25 connecting portion

Claims (3)

波形に屈曲してジグザグに折り返す線材が周方向に沿って環状に連結されて環状部分をなし、この環状部分が軸方向に沿って所定間隔で複数配列されると共に、各環状部分どうしが線状の連結部で連結されたステントにおいて、縮径させた状態で、前記ジグザグに折り返す線材が軸方向に対して傾斜した折り返し形状をなし、この傾斜方向が軸方向に隣接する環状部分において交互に反対方向になるように形成されており、更に前記ジグザグに折り返す線材の折り返し部から折り返し部に至る線状部分がS字状をなしていることを特徴とするステント。Wires bent in a wave form and turned back in a zigzag form are connected annularly along the circumferential direction to form an annular portion.A plurality of such annular portions are arranged at predetermined intervals along the axial direction, and each annular portion is linear. In the stent connected by the connecting portion of the above, in a state where the diameter is reduced, the wire material folded back in a zigzag form a folded shape inclined with respect to the axial direction, and the inclined direction is alternately opposite in the annular portion adjacent in the axial direction. The stent is characterized in that a linear portion extending from the folded portion to the folded portion of the wire that is folded in a zigzag shape is S-shaped. 前記ジグザグに折り返す線材の折り返し部の線幅は、折り返し部から折り返し部に至る部分の線幅よりも太く形成されている請求項1記載のステント。2. The stent according to claim 1, wherein a line width of the folded portion of the wire folded in a zigzag is formed to be larger than a line width of a portion from the folded portion to the folded portion. 前記線状の連結部は、前記ジグザグに折り返す線材の折り返し部の頂点を避けた位置に連結されている請求項1又は2記載のステント。3. The stent according to claim 1, wherein the linear connection portion is connected to a position avoiding a vertex of a folded portion of the wire that is folded in the zigzag. 4.
JP2003117829A 2003-04-23 2003-04-23 Stent Pending JP2004321348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117829A JP2004321348A (en) 2003-04-23 2003-04-23 Stent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117829A JP2004321348A (en) 2003-04-23 2003-04-23 Stent

Publications (1)

Publication Number Publication Date
JP2004321348A true JP2004321348A (en) 2004-11-18

Family

ID=33497560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117829A Pending JP2004321348A (en) 2003-04-23 2003-04-23 Stent

Country Status (1)

Country Link
JP (1) JP2004321348A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325613A (en) * 2005-05-23 2006-12-07 Nec Tokin Corp Autonomous functional stent
JP2008539817A (en) * 2005-04-27 2008-11-20 スタウト メディカル グループ,エル.ピー. Expandable support and method of use
JP2009125219A (en) * 2007-11-21 2009-06-11 Japan Stent Technology Co Ltd Stent
JP2009524476A (en) * 2006-01-25 2009-07-02 コルノヴァ インク Flexible and expandable stent
WO2009137993A1 (en) * 2008-05-15 2009-11-19 微创医疗器械(上海)有限公司 Net-like and intravascular stent
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US8709042B2 (en) 2004-09-21 2014-04-29 Stout Medical Group, LP Expandable support device and method of use
US9050112B2 (en) 2011-08-23 2015-06-09 Flexmedex, LLC Tissue removal device and method
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US9205178B2 (en) 2005-05-23 2015-12-08 Nec Tokin Corporation Ti-Ni-Nb alloy device
US9770339B2 (en) 2005-07-14 2017-09-26 Stout Medical Group, L.P. Expandable support device and method of use
US10285820B2 (en) 2008-11-12 2019-05-14 Stout Medical Group, L.P. Fixation device and method
US10758289B2 (en) 2006-05-01 2020-09-01 Stout Medical Group, L.P. Expandable support device and method of use
US10940014B2 (en) 2008-11-12 2021-03-09 Stout Medical Group, L.P. Fixation device and method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259329B2 (en) 2004-09-21 2016-02-16 Stout Medical Group, L.P. Expandable support device and method of use
US8709042B2 (en) 2004-09-21 2014-04-29 Stout Medical Group, LP Expandable support device and method of use
US9314349B2 (en) 2004-09-21 2016-04-19 Stout Medical Group, L.P. Expandable support device and method of use
US11051954B2 (en) 2004-09-21 2021-07-06 Stout Medical Group, L.P. Expandable support device and method of use
JP2008539817A (en) * 2005-04-27 2008-11-20 スタウト メディカル グループ,エル.ピー. Expandable support and method of use
US9205178B2 (en) 2005-05-23 2015-12-08 Nec Tokin Corporation Ti-Ni-Nb alloy device
JP2006325613A (en) * 2005-05-23 2006-12-07 Nec Tokin Corp Autonomous functional stent
US8652199B2 (en) 2005-05-23 2014-02-18 Nec Tokin Corporation Stent with autonomic function
US9770339B2 (en) 2005-07-14 2017-09-26 Stout Medical Group, L.P. Expandable support device and method of use
JP2009524476A (en) * 2006-01-25 2009-07-02 コルノヴァ インク Flexible and expandable stent
US11141208B2 (en) 2006-05-01 2021-10-12 Stout Medical Group, L.P. Expandable support device and method of use
US10813677B2 (en) 2006-05-01 2020-10-27 Stout Medical Group, L.P. Expandable support device and method of use
US10758289B2 (en) 2006-05-01 2020-09-01 Stout Medical Group, L.P. Expandable support device and method of use
JP4654361B2 (en) * 2007-11-21 2011-03-16 株式会社日本ステントテクノロジー Stent
JP2009125219A (en) * 2007-11-21 2009-06-11 Japan Stent Technology Co Ltd Stent
WO2009137993A1 (en) * 2008-05-15 2009-11-19 微创医疗器械(上海)有限公司 Net-like and intravascular stent
US10285820B2 (en) 2008-11-12 2019-05-14 Stout Medical Group, L.P. Fixation device and method
US10292828B2 (en) 2008-11-12 2019-05-21 Stout Medical Group, L.P. Fixation device and method
US10285819B2 (en) 2008-11-12 2019-05-14 Stout Medical Group, L.P. Fixation device and method
US10940014B2 (en) 2008-11-12 2021-03-09 Stout Medical Group, L.P. Fixation device and method
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US9050112B2 (en) 2011-08-23 2015-06-09 Flexmedex, LLC Tissue removal device and method

Similar Documents

Publication Publication Date Title
JP4885041B2 (en) Stent assembly
JP4731786B2 (en) Flexible stent
US5911754A (en) Flexible stent with effective strut and connector patterns
US9320627B2 (en) Flexible stent with torque-absorbing connectors
JP4484249B2 (en) Intravascular stent
AU2002304381B2 (en) Longitudinally flexible stent
JP3089124U (en) Support structure capable of radial expansion
KR100861735B1 (en) Narrowing implant
JP3168531B2 (en) Stent for transluminal insertion into hollow organs
US8419786B2 (en) Self-expanding stent
JP4844394B2 (en) Stent
JP2004321348A (en) Stent
JPH10258125A (en) Flexible stent
JP2007502694A (en) Apparatus and method for treating hardened vascular lesions
JP2003024450A (en) Flexible stent
JP3519565B2 (en) Stent
JP3815828B2 (en) Tubular organ treatment tool
JP4188431B2 (en) Stent
JP2004329790A (en) Flexible stent which is excellent in vascular follow-up nature and lumen diameter holding nature
JP4015659B2 (en) Articulated stent
JP2005013302A (en) Flexible stent gentle to blood vessel with excellent blood vessel follow-up property and inflatability
JP3798090B2 (en) Stent
JP2004248978A (en) Uniformly-expandable flexible stent
JP2004305450A (en) Evenly expanding flexible stent with excellent blood vessel trackability
WO2016159161A1 (en) High flexibility stent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602