JP2004320934A - Linear induction motor - Google Patents

Linear induction motor Download PDF

Info

Publication number
JP2004320934A
JP2004320934A JP2003113864A JP2003113864A JP2004320934A JP 2004320934 A JP2004320934 A JP 2004320934A JP 2003113864 A JP2003113864 A JP 2003113864A JP 2003113864 A JP2003113864 A JP 2003113864A JP 2004320934 A JP2004320934 A JP 2004320934A
Authority
JP
Japan
Prior art keywords
phase
induction motor
winding
linear induction
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113864A
Other languages
Japanese (ja)
Inventor
Kinjiro Okinaga
欽二郎 沖永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003113864A priority Critical patent/JP2004320934A/en
Publication of JP2004320934A publication Critical patent/JP2004320934A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor which can respectively control recti-linear motion drive and rotation drive, and which has a simple structure and is high in reliability. <P>SOLUTION: By the magnitude and frequency of the current made flow to a secondary side conductor 2 which has a cylindrical hollow part, a columnar armature iron core 1 which is arranged at the hollow part of the secondary side conductor 2 while holding a gap, and a winding group 3 which is formed by spirally winding a plurality of coil groups around the armature iron core 1, the magnetomotive force F1 is adjusted and the thrust F1a (the linear motion drive) and the rotation force F1r (the rotation drive) are controlled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一つのモータで回転駆動と直進駆動を制御できるリニア誘導モータに関する。
【0002】
【従来の技術】
従来、部品実装機の先端部において、回転駆動と直進駆動が必要な場合には、回転型モータと直進型モータの二つを組み合わせて用いていた。
【0003】
また、一つのモータで回転駆動と直進駆動を行うモータも有るが、大変複雑な構造であった(例えば、特許文献1参照)。
【0004】
【特許文献1】
実開平5−18270号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の回転型モータと直進型モータを個別に組み合わせたもので、全体的に大きくかつ重くなり、課題があった。
【0006】
また、実装機の先端を動かすのに大きなトルクが必要となるため、電力消費量が大きくなり、課題があった。
【0007】
さらに、複雑な構成を伴うモータではコストと信頼性の面に課題があった。
【0008】
本発明はこのような従来の課題を解決するものであり、直進駆動と回転駆動をそれぞれ制御でき、シンプルな構造で信頼性の高いモータを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明のリニア誘導モータは、円筒の中空部を有する二次側導体と、前記二次側導体の中空部にギャップを保持して配置された円柱状の電機子鉄心と、前記電機子鉄心に複数のコイル群を螺旋状に巻回した2組の巻線群とを備え、前記2組の巻線群を互いに交差するように巻回配置し、この巻線群に流す電流の大きさと周波数により起磁力を調整し、回転駆動と直進駆動を制御する。
【0010】
【発明の実施の形態】
上記の課題を解決するために請求項1に記載のリニア誘導モータは、2組の巻線群を互いに交差するように巻回配置し、それぞれに巻回されたコイルに対して直交方向の進行磁界を発生させ、電流の大きさと周波数を調整し、回転駆動と直進駆動をそれぞれ制御することができる。
【0011】
また、請求項2に記載のリニア誘導モータは、二次側導体には巻線と直交方向の起磁力が誘起されるため、巻線群の交差角度によって回転力と直進力の分配比をあらかじめ設定できる。
【0012】
また、請求項3に記載のリニア誘導モータは、電機子鉄心に設けた溝部または突起部によって、コイルの巻回作業を容易化できる。
【0013】
また、請求項4に記載のリニア誘導モータは、コイル群の片端側で接続し、U相、−W相、V相、−U相、W相、−V相の順に配列することで、電機子巻線による起磁力の波形を正弦波に近づけることができる。これによって高調波成分を減らし、回転トルクまたは直進力を大きくすることができる。
【0014】
また、請求項5に記載のリニア誘導モータは、二次側導体を可動子としたもので、可動側に巻線がないため断線することがない。
【0015】
さらに、部品実装機のヘッド軸のように直進と回転の2方向駆動が必要な用途に上記のリニア誘導モータを用いれば、駆動源の構成をシンプルにすることができる。また、ヘッド軸を軽量化でき、可動させるモータの負担を軽減することができる。
【0016】
【実施例】
本発明の一実施例のリニア誘導モータについて図を参照しながら説明する。
【0017】
図1において、円筒状の電機子鉄心1に、複数のコイル群を螺旋状に巻回した第一巻線群3および第二巻線群4を設けて電機子を構成して固定側、円筒状の中空部を有する二次側導体2を可動側(可動子)とする。
【0018】
アルミ製の二次側導体2は、簡素な構成で軽量化できるため、加速性能の面からも都合がよい。また、可動側との連結が容易となる。
【0019】
2組の巻線群と二次側導体2の中空部間のギャップを保持した状態で、第一巻線群3と第二巻線群4に流す電流の大きさと周波数を制御することで、後述するように二次側導体2の回転駆動と直進駆動をそれぞれ制御できる。
【0020】
次に、電機子の製作について説明する。電機子鉄心1の外周には、交差した螺旋状の溝部(あるいは突起部)を設けており、巻回作業の容易化と巻線群の固定が容易となる。なお、この螺旋形状と交差角度は、出力である回転力および推力と関係するが、これについては後述する。
【0021】
電機子鉄心1の外周面を絶縁処理した後、螺旋状の溝部に沿って第一巻線群3を巻回する。その上から第二巻線群4を交差するように巻回し、2つの巻線群をワニスなどの絶縁材料で電機子鉄心1に固定する。
【0022】
第一巻線群3および第二巻線群4は、それぞれ6本のコイル群で構成され、U相巻線5、−W相巻線6、V相巻線7、−U相巻線8、W相巻線9、−V相巻線10の配列になるように片側の端部を接続する。
【0023】
次に、2組の巻線群と二次側導体間の出力の関係について、理解し易いように第一巻線群3と第二巻線群4とに分けて説明する。
【0024】
まず、第一巻線群3にU相,V相,W相に交流電流を印加すると二次側導体である可動子2に、3相コイルと直交方向に起磁力F1(ベクトル量)が誘起され、可動子2は回転しながら前進する(図2参照)。2相の接続順を変えれば、逆方向の−F1が誘起される。上述したように2組の巻線群は、電機子鉄心1の溝部で固定されており、通電による絶縁不良を防止できる。
【0025】
この起磁力F1は、推力F1a(アキシャル方向)と回転力F1r(回転方向)とに分けることができる。換言すれば、推力F1aと回転力F1rのベクトル合成したものが起磁力F1である。
【0026】
したがって、螺旋状に巻回するコイル群の角度を変えれば、誘起する起磁力F1の方向を変えることができる。すなわち、螺旋状の角度によって推力F1aと回転力F1rが任意に設定できる。この角度はあらかじめ設定できる。
【0027】
同様に、第二巻線群4にU相,V相,W相の順に交流電流を与えると、3相コイルと直交方向に起磁力F2が発生し、可動子2は回転しながら前進する(図3参照)。接続順の変更により−F2となるのも同じである。
【0028】
図2および図3から分かるように、2組の巻線群によって発生する起磁力F1と起磁力F2の違いは、同じ直進方向の推力に対して逆方向の回転力を持つことである。
【0029】
そこで、2組の巻線群の両方に同じ起磁力が発生するように電流を供給すれば、F1aとF2aは同じ方向に同じ力を持ち、直進力は2倍となる。ところが、F1rとF2rは逆方向の回転力なので打ち消され、可動子2は回転せずに直進駆動する。
【0030】
さらに、片方の巻線群のみ接続順を変更して、反対方向の起磁力を発生させるように電流を供給すれば、今度は推力が打ち消され、回転力は2倍となる。すなわち、可動子2は直進せずに回転駆動する。
【0031】
このように、2組の巻線群の接続方法により直進あるいは後退、CWあるいはCCWの両駆動を個別に制御できる。また、直進力と回転力の大きさは、電流の大きさによって調整できる。また、2つの巻線群に通電して回転させながら直進させることも可能で、2組の巻線群の電流と周波数の割合を調整して、所望の回転駆動と直進駆動を得るように制御する。
【0032】
このように巻線群の交差する角度、電流および周波数によって直進方向と回転方向の出力の割合を任意に設定できるシンプル構成のため、2方向駆動を必要とする部品実装機などに最適である。
【0033】
また、出力部を回転駆動および直進駆動させるには、可動子の外周に出力部と転がり軸受とを装着し、転がり軸受の内輪を可動子に固着、外輪をスライド軸受で保持して固定子と可動子のギャップを確保すればよい。
【0034】
【発明の効果】
上記の実施例から明らかなように請求項1に記載の発明によれば、それぞれに巻回された辺に対して直交方向の進行磁界を発生させ、2組の巻線群に流す電流の大きさと周波数を制御することで回転駆動と直進駆動をそれぞれ制御できる。
【0035】
また、請求項2に記載の発明によれば、2組の巻線群の交差角度によって回転トルクまたは直進力への分配度合いを変更できる。
【0036】
また、請求項3に記載の発明によれば、電機子鉄心に溝部(あるいは突起部)を設けることによって、コイルの巻回作業が容易となり、起磁力で巻線群が動き絶縁不良になるのを防止できる。
【0037】
また、請求項4に記載の発明によれば、起磁力の波形を正弦波に近づけることができ、回転トルクまたは直進力を大きくすることができる。
【0038】
さらに、請求項5あるいは請求項6に記載の発明によれば、断線することがなく、直進と回転の2方向駆動が必要な部品実装機など、駆動源の構成をシンプルにすることができる。
【図面の簡単な説明】
【図1】本発明の一実施例におけるリニア誘導モータの斜視図
【図2】本発明の第一巻線群と起磁力の説明図
【図3】本発明の第二巻線群と起磁力の説明図
【符号の説明】
1 電機子鉄心
2 二次側導体(可動子)
3 第一巻線群
4 第二巻線群
5 U相巻線
6 −W相巻線
7 V相巻線
8 −U相巻線
9 W相巻線
10 −V相巻線
F1、F2 起磁力
F1a、F2a 推力
F1r、F2r 回転力
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a linear induction motor that can control rotational driving and linear driving with one motor.
[0002]
[Prior art]
Conventionally, when rotational driving and linear driving are required at the tip of a component mounter, a combination of a rotary motor and a linear motor has been used.
[0003]
In addition, there is a motor that performs rotation drive and straight drive with one motor, but has a very complicated structure (for example, see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Utility Model Laid-Open No. 5-18270 [0005]
[Problems to be solved by the invention]
However, since the above-mentioned conventional rotary motor and straight-running motor are individually combined, the whole becomes large and heavy, and there is a problem.
[0006]
In addition, since a large torque is required to move the tip of the mounting machine, the power consumption increases and there is a problem.
[0007]
In addition, motors with complicated configurations have problems in cost and reliability.
[0008]
An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a highly reliable motor having a simple structure, capable of controlling a linear drive and a rotational drive.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a linear induction motor according to the present invention includes a secondary conductor having a hollow cylindrical portion, and a columnar armature core arranged with a gap held in the hollow portion of the secondary conductor. And two sets of winding groups in which a plurality of coil groups are spirally wound around the armature core. The two sets of winding groups are wound and arranged so as to intersect with each other. The magnetomotive force is adjusted according to the magnitude and frequency of the current flowing through the motor to control the rotation drive and the straight drive.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above-mentioned problem, in the linear induction motor according to claim 1, two winding groups are wound and arranged so as to intersect with each other, and the windings are respectively advanced in a direction orthogonal to the wound coils. By generating a magnetic field and adjusting the magnitude and frequency of the current, it is possible to control the rotation drive and the straight drive, respectively.
[0011]
Further, in the linear induction motor according to the second aspect, since a magnetomotive force is induced in the secondary conductor in a direction orthogonal to the winding, the distribution ratio between the rotational force and the straight-moving force is determined in advance by the intersection angle of the winding group. Can be set.
[0012]
In the linear induction motor according to the third aspect, the winding operation of the coil can be facilitated by the groove or the protrusion provided in the armature core.
[0013]
Further, the linear induction motor according to claim 4 is connected at one end side of the coil group and arranged in the order of U-phase, -W-phase, V-phase, -U-phase, W-phase, and -V-phase. The waveform of the magnetomotive force generated by the slave winding can be approximated to a sine wave. As a result, the harmonic component can be reduced, and the rotational torque or the linear force can be increased.
[0014]
In the linear induction motor according to the fifth aspect, the secondary-side conductor is a movable element, and there is no winding on the movable side, so that there is no disconnection.
[0015]
Furthermore, if the above-described linear induction motor is used for applications requiring two-way driving of linear movement and rotation, such as the head axis of a component mounter, the configuration of the drive source can be simplified. Further, the weight of the head shaft can be reduced, and the load on the motor to be moved can be reduced.
[0016]
【Example】
A linear induction motor according to one embodiment of the present invention will be described with reference to the drawings.
[0017]
In FIG. 1, a first armature group 3 and a second armature group 4 in which a plurality of coil groups are spirally wound around a cylindrical armature core 1 are provided to form an armature to form a fixed side, cylindrical The secondary-side conductor 2 having a hollow portion is defined as a movable side (movable element).
[0018]
Since the aluminum secondary conductor 2 can be reduced in weight with a simple configuration, it is convenient in terms of acceleration performance. Further, the connection with the movable side is facilitated.
[0019]
By controlling the magnitude and frequency of the current flowing through the first winding group 3 and the second winding group 4 while maintaining the gap between the two winding groups and the hollow portion of the secondary-side conductor 2, As will be described later, the rotation drive and the straight drive of the secondary-side conductor 2 can be respectively controlled.
[0020]
Next, the manufacture of the armature will be described. Crossed spiral grooves (or protrusions) are provided on the outer periphery of the armature core 1 to facilitate the winding operation and fix the winding group. The spiral shape and the intersection angle are related to the output rotational force and thrust, which will be described later.
[0021]
After the outer peripheral surface of the armature core 1 is insulated, the first winding group 3 is wound along the spiral groove. From above, the second winding group 4 is wound so as to intersect, and the two winding groups are fixed to the armature core 1 with an insulating material such as varnish.
[0022]
The first winding group 3 and the second winding group 4 are each composed of six coil groups, and include a U-phase winding 5, a -W-phase winding 6, a V-phase winding 7, and a -U-phase winding 8 , W-phase winding 9 and -V-phase winding 10 are connected at one end.
[0023]
Next, the relationship between the output of the two winding groups and the output between the secondary-side conductors will be described separately for the first winding group 3 and the second winding group 4 for easy understanding.
[0024]
First, when an alternating current is applied to the U-phase, V-phase, and W-phases to the first winding group 3, a magnetomotive force F1 (vector amount) is induced in the mover 2 as a secondary-side conductor in a direction orthogonal to the three-phase coil. Then, the mover 2 moves forward while rotating (see FIG. 2). Changing the connection order of the two phases induces -F1 in the opposite direction. As described above, the two sets of windings are fixed by the grooves of the armature core 1, and insulation failure due to energization can be prevented.
[0025]
The magnetomotive force F1 can be divided into a thrust F1a (axial direction) and a rotational force F1r (rotational direction). In other words, the magnetomotive force F1 is obtained by vector-combining the thrust F1a and the rotational force F1r.
[0026]
Therefore, by changing the angle of the coil group wound spirally, the direction of the induced magnetomotive force F1 can be changed. That is, the thrust F1a and the rotational force F1r can be arbitrarily set according to the spiral angle. This angle can be set in advance.
[0027]
Similarly, when an alternating current is applied to the second winding group 4 in the order of U-phase, V-phase, and W-phase, a magnetomotive force F2 is generated in a direction orthogonal to the three-phase coil, and the mover 2 moves forward while rotating ( (See FIG. 3). The same applies to -F2 due to the change in the connection order.
[0028]
As can be seen from FIGS. 2 and 3, the difference between the magnetomotive force F1 and the magnetomotive force F2 generated by the two winding groups is that they have a rotational force in the opposite direction to the same straight thrust.
[0029]
Therefore, if a current is supplied so that the same magnetomotive force is generated in both of the two winding groups, F1a and F2a have the same force in the same direction, and the straight traveling force is doubled. However, F1r and F2r are canceled out because they are rotational forces in opposite directions, and the mover 2 is driven straight without rotating.
[0030]
Further, by changing the connection order of only one of the winding groups and supplying a current so as to generate a magnetomotive force in the opposite direction, the thrust is canceled this time and the rotational force is doubled. That is, the mover 2 is driven to rotate without going straight.
[0031]
In this way, the straight or backward drive and the CW or CCW drive can be individually controlled by the connection method of the two winding groups. Further, the magnitude of the straight-moving force and the rotational force can be adjusted by the magnitude of the current. In addition, it is possible to energize the two winding groups and make them go straight while rotating. By controlling the ratio of the current and frequency of the two winding groups, control is performed to obtain the desired rotation drive and straight drive. I do.
[0032]
As described above, the simple configuration in which the ratio of the output in the linear direction and the output in the rotational direction can be arbitrarily set according to the angle at which the winding groups intersect, the current, and the frequency is suitable for a component mounter or the like that requires two-way driving.
[0033]
In addition, in order to drive the output section to rotate and drive straight ahead, the output section and the rolling bearing are mounted on the outer periphery of the mover, the inner ring of the rolling bearing is fixed to the mover, and the outer ring is held by the slide bearing and fixed to the stator. What is necessary is just to secure the gap of a mover.
[0034]
【The invention's effect】
As is apparent from the above embodiment, according to the first aspect of the present invention, a traveling magnetic field is generated in a direction orthogonal to each of the wound sides, and the magnitude of the current flowing through the two winding groups is increased. By controlling the frequency and frequency, the rotational drive and the straight drive can be controlled respectively.
[0035]
According to the second aspect of the present invention, the degree of distribution to the rotational torque or the straight running force can be changed by the intersection angle of the two winding groups.
[0036]
According to the third aspect of the present invention, by providing a groove (or a protrusion) in the armature core, the coil winding operation is facilitated, and the winding group moves due to the magnetomotive force, resulting in insulation failure. Can be prevented.
[0037]
According to the fourth aspect of the present invention, the waveform of the magnetomotive force can be approximated to a sine wave, and the rotational torque or the linear force can be increased.
[0038]
Furthermore, according to the invention described in claim 5 or claim 6, it is possible to simplify the configuration of the drive source, such as a component mounter that needs to be driven in two directions, linearly and rotationally, without disconnection.
[Brief description of the drawings]
FIG. 1 is a perspective view of a linear induction motor according to an embodiment of the present invention. FIG. 2 is an explanatory view of a first winding group and a magnetomotive force of the present invention. FIG. 3 is a second winding group and a magnetomotive force of the present invention. [Description of the symbols]
1 Armature core 2 Secondary conductor (movable element)
3 First winding group 4 Second winding group 5 U-phase winding 6 -W-phase winding 7 V-phase winding 8 -U-phase winding 9 W-phase winding 10 -V-phase winding F1, F2 Magnetomotive force F1a, F2a Thrust F1r, F2r Rotational force

Claims (6)

円筒の中空部を有する二次側導体と、前記二次側導体の中空部にギャップを保持して配置された円柱状の電機子鉄心と、前記電機子鉄心に複数のコイル群を螺旋状に巻回した2組の巻線群とを備え、前記2組の巻線群を互いに交差するように巻回配置し、この巻線群に流す電流の大きさと周波数を調整し、回転駆動と直進駆動を制御するリニア誘導モータ。A secondary-side conductor having a hollow portion of a cylinder, a columnar armature core arranged to hold a gap in the hollow portion of the secondary-side conductor, and a plurality of coil groups spirally arranged on the armature core. And two winding groups wound around each other. The two winding groups are wound so as to intersect with each other, the magnitude and frequency of the current flowing through the winding groups are adjusted, and the rotational drive and the straight drive are performed. Linear induction motor that controls driving. 2組の巻線群が交差する角度により、出力の割合を変更する請求項1に記載のリニア誘導モータ。2. The linear induction motor according to claim 1, wherein an output ratio is changed according to an angle at which the two winding groups intersect. 電機子鉄心に螺旋状の溝部または突起部を設けた請求項1または請求項2に記載のリニア誘導モータ。3. The linear induction motor according to claim 1, wherein a spiral groove or a protrusion is provided on the armature core. 1組の巻線群は6列のコイル群で構成され、コイル群の片端側で1列目と4列目、2列目と5列目、3列目と6列目をそれぞれ接続して、U相、−W相、V相、−U相、W相、−V相の順に配列した請求項1から請求項3のいずれか1項に記載のリニア誘導モータ。One set of winding groups is composed of six rows of coil groups. The first and fourth rows, the second and fifth rows, the third and sixth rows are connected at one end of the coil group. The linear induction motor according to any one of claims 1 to 3, wherein the linear induction motor is arranged in the order of, U phase, -W phase, V phase, -U phase, W phase, and -V phase. 二次側導体を可動子とした請求項1から請求項4のいずれか1項に記載のリニア誘導モータ。The linear induction motor according to any one of claims 1 to 4, wherein the secondary-side conductor is a mover. 請求項1から請求項5のいずれか1項に記載のリニア誘導モータを搭載した部品実装機。A component mounter on which the linear induction motor according to any one of claims 1 to 5 is mounted.
JP2003113864A 2003-04-18 2003-04-18 Linear induction motor Pending JP2004320934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113864A JP2004320934A (en) 2003-04-18 2003-04-18 Linear induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113864A JP2004320934A (en) 2003-04-18 2003-04-18 Linear induction motor

Publications (1)

Publication Number Publication Date
JP2004320934A true JP2004320934A (en) 2004-11-11

Family

ID=33473630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113864A Pending JP2004320934A (en) 2003-04-18 2003-04-18 Linear induction motor

Country Status (1)

Country Link
JP (1) JP2004320934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739011A (en) * 2012-07-09 2012-10-17 史炎 Linear rotating motor
CN117318432A (en) * 2023-11-29 2023-12-29 湖南天友精密技术有限公司 Dynamic magnetic type permanent magnet motor and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739011A (en) * 2012-07-09 2012-10-17 史炎 Linear rotating motor
CN117318432A (en) * 2023-11-29 2023-12-29 湖南天友精密技术有限公司 Dynamic magnetic type permanent magnet motor and control method
CN117318432B (en) * 2023-11-29 2024-02-20 湖南天友精密技术有限公司 Dynamic magnetic type permanent magnet motor and control method

Similar Documents

Publication Publication Date Title
KR101011396B1 (en) Motor and motor system
US20060273686A1 (en) Hub motors
US11223311B2 (en) Rotary electric machine and rotary electric machine system
US8258665B2 (en) Motor winding
JPH11308829A (en) Electric machine, particularly synchronous generator for automobile
JP2008067592A (en) Electric motor
JP2003009486A (en) Variable speed motor
JP2004274963A (en) Permanent magnet motor for electric power steering device
US20110163641A1 (en) Permanent-magnet synchronous motor
GB2492259A (en) Magnetic transmission assembly and corresponding split phase motor
JP4576873B2 (en) Permanent magnet motor, driving method and manufacturing method thereof, compressor, blower and air conditioner
JP4635829B2 (en) Permanent magnet motor
EP3923462A1 (en) Electromagnetic machine using magnetic field binding of multiple multi-phase winding wires
Spiessberger et al. The four-pole planetary motor
JP2004320934A (en) Linear induction motor
US20190312476A1 (en) Motor
JP5739254B2 (en) Control device for synchronous motor
JP4525026B2 (en) Rotating electric machine
JP2002281721A (en) Permanent magnet synchronous motor
JP4056514B2 (en) Permanent magnet type three-phase rotating electric machine
JP6763312B2 (en) Rotating electric machine
JP2013039020A (en) Transverse flux machine
JP5953746B2 (en) Claw pole type motor
JP7325164B1 (en) Switched reluctance motor device
WO2021084889A1 (en) Dynamo-electric machine and drive device