JP2004316987A - Continuous kiln with discharge gas treatment unit - Google Patents

Continuous kiln with discharge gas treatment unit Download PDF

Info

Publication number
JP2004316987A
JP2004316987A JP2003109414A JP2003109414A JP2004316987A JP 2004316987 A JP2004316987 A JP 2004316987A JP 2003109414 A JP2003109414 A JP 2003109414A JP 2003109414 A JP2003109414 A JP 2003109414A JP 2004316987 A JP2004316987 A JP 2004316987A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
temperature
treatment unit
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003109414A
Other languages
Japanese (ja)
Other versions
JP4010411B2 (en
Inventor
Iwao Morimoto
巌穂 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2003109414A priority Critical patent/JP4010411B2/en
Priority to TW093110365A priority patent/TWI323332B/en
Priority to KR1020040025669A priority patent/KR100600504B1/en
Priority to CNB2004100338230A priority patent/CN100408148C/en
Publication of JP2004316987A publication Critical patent/JP2004316987A/en
Application granted granted Critical
Publication of JP4010411B2 publication Critical patent/JP4010411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • F27D17/002Details of the installations, e.g. fume conduits or seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0031Regulation through control of the flow of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D2099/0085Accessories
    • F27D2099/0086Filters, e.g. for molten metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous kiln with a discharge gas treatment unit for exhausting by oxidizing-decomposing (burning) a binder volatile matter by a catalyst by wholly sucking atmospheric gas in a kiln body including the binder volatile matter generated from a baking object. <P>SOLUTION: This continuous kiln with the discharge gas treatment unit is constituted so that a tubular or slender box-shaped gas sucking member 3 for forming a large number of holes 3a or slits over the substantially total length for sucking the gas including the binder volatile matter generated from the baking object W, is arranged in the orthogonal direction to the carrying direction of the baking object W in an upper part in the kiln body 1, or arranged in the parallel direction to the carrying direction of the baking object W in a side part in the kiln body 1; and the discharge gas treatment unit 5 incorporated with a freely ventilable catalyst carrier 5a for carrying the catalyst for oxidizing-decomposing the binder volatile matter, is arranged in the middle of an exhaust pipe 4 derived outside the kiln body 1 from this gas sucking member 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被焼成物から発生するバインダー揮発物を含んだガスを処理する排出ガス処理ユニットを付設した連続焼成炉に関する。
【0002】
【従来の技術】
有機物を主成分とするバインダーを含んだ被焼成物を焼成する連続焼成炉においては、昇温中間領域(300〜400℃程度の領域)で被焼成物からバインダーが揮発する。このバインダー揮発物は焼成に悪影響を及ぼすため、バインダー揮発物を含んだガス(炉内の雰囲気ガス)を排気管路を通じて炉外へ排出している。けれども、排気管路内で排出ガスの温度が低下すると、バインダー揮発物が凝固して排気管路の内壁に付着し、焼成炉の排気システムや工場排気ダクトに悪影響を及ぼすという問題がある。
【0003】
このような問題に対処するため、排気管路を保温又は加熱してバインダー揮発物の凝固を防止する等の対策がとられているが、その場合は排気管路のメンテナンスが面倒である上に、排出されたガスが人体に有害なものであったり異臭を発するという不都合が生じる。
【0004】
そこで、連続焼成炉の炉内温度が所定の触媒の活性温度以上となる領域の炉壁に排気孔を設け、この排気孔中に触媒を担持した構造体を内蔵することによって、被焼成物から発生したバインダー揮発物を含むガスを排気孔から排出するときに、活性化した触媒によりバインダー揮発物を燃焼させて排出ガスを分解し無臭化する連続焼成炉が提案された(例えば特許文献1参照)。
【0005】
【特許文献1】
特開2001−241862号公報(第2頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記の連続焼成炉のように所定の触媒の活性化温度以上となる領域の炉壁に排気孔を設け、その内部に触媒を担持した構造体を内蔵したものは、被焼成物から発生するバインダー揮発物を含んだガスを排気孔から残らず排出することが難しいため、バインダー揮発物を含んだガスが炉内の雰囲気を汚染して被処理物の品質を悪化させたり、炉内の低温表面で凝集したり、連続焼成炉の被焼成物出口から多少なりとも放散されるという問題があった。また、この連続焼成炉のように炉壁に設けた排気孔に触媒を担持した構造体を内蔵してバインダー揮発物を燃焼させるものは、高い燃焼効率が得られるようにバインダー揮発物の燃焼状態を把握して調節することができないという問題もあった。
【0007】
本発明は、上記の問題を解決し得る排出ガス処理ユニット付き連続焼成炉の提供を目的とするものである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の排出ガス処理ユニット付き連続焼成炉は、被焼成物から発生するバインダー揮発物を含んだガスを吸い込む多数の孔又はスリットをほぼ全長にわたって形成した管状又は細長い箱状のガス吸込部材を、炉体内の上部において被焼成物の搬送方向と直交方向に設けるか、或いは、炉体内の側部において被焼成物の搬送方向と平行方向に設け、このガス吸込部材から炉体外へ導出した排気管路の途中に、上記バインダー揮発物を酸化分解する触媒を担持した通気自在な触媒担持体を内蔵する排出ガス処理ユニットを設けたことを特徴とするものである。
【0009】
この連続焼成炉のように、多数の孔又はスリットをほぼ全長にわたって形成した管状又は細長い箱状のガス吸込部材を、炉体内の上部において被焼成物の搬送方向と直交方向に設けるか、或いは、炉体内の側部において被焼成物の搬送方向と平行方向に設けてあると、被焼成物から発生するバインダー揮発物を含んだ炉体内のガスが広範囲にわたって上記ガス吸込部材の各孔又はスリットから残らず吸い込まれるため、炉内や雰囲気を汚染することなく、また炉体の被焼成物出口からバインダー揮発物を含んだガスが放散される心配はない。そして、ガス吸込部材から吸い込まれたバインダー揮発物を含むガスが排気管路の途中の排出ガス処理ユニットに内蔵された触媒担持体を通過するときに、該排出ガスに含まれているバインダー揮発物が触媒により酸化分解(燃焼)されるので、従来のように屋外へ通じる排気管路内でバインダー揮発物が凝固したり、異臭を出したりする心配はない。
【0010】
本発明の連続焼成炉においては、排出ガス処理ユニットの触媒担持体よりもガス導入口側に、排出ガスを触媒の活性温度以上に加熱する補助ヒーターを内蔵することが好ましい。このような補助ヒーターを内蔵してあると、排出ガス処理ユニットに導入される排出ガスの温度が触媒の活性化温度より低いときでも、補助ヒーターで排出ガスを活性化温度以上に加熱することによって、活性化した触媒で排出ガス中のバインダー揮発物を確実に酸化分解(燃焼)することが可能となり、また、酸化分解が十分でない場合には補助ヒーターで排出ガスの温度を更に高めて酸化分解を促進することができる。
【0011】
また、本発明の連続焼成炉においては、排出ガス処理ユニットの触媒担持体よりもガス導入口側に、補助ヒーターで加熱される排出ガスの温度を制御するための第一の温度センサを設けると共に、排出ガス処理ユニットの触媒担持体よりもガス排出口側に、処理後の排出ガスの温度を監視するための第二の温度センサを設けることが好ましい。このように第一の温度センサと第二の温度センサを設けてあると、第一の温度センサで検出した処理前の排出ガスの温度(補助ヒーターで加熱された処理前の排出ガスの温度)と第二の温度センサで検出した処理後の排出ガスの温度を対比することで、触媒によるバインダー揮発物の酸化分解処理(燃焼)の状態を把握することができる。即ち、処理後の排出ガスの温度が処理前の排出ガスの温度より上昇していれば、触媒によるバインダー揮発物の酸化分解処理(燃焼)が行われていると判断でき、双方の温度差が大きいほど酸化分解が効率良く盛んに行われていると判断できる。一方、処理後の排出ガスの温度が処理前のヒーターで加熱された排出ガスの温度より低い場合は、触媒によるバインダー揮発物の酸化分解処理が行われていないと判断できる。従って、バインダー揮発物の酸化分解処理が行われていないと判断された場合や不十分であると判断された場合には、補助ヒーターで処理前の排出ガスの加熱温度を上げたり、後述するように排出ガス処理ユニットの空気取込口から空気を取り込む量を加減することによって、触媒によるバインダー揮発物の酸化分解処理を確実かつ十分に行わせることができる。
【0012】
また、本発明の連続焼成炉においては、排出ガス処理ユニットの補助ヒーターよりもガス導入口側に、流量調節の可能な空気取込口を設けることが好ましく、このような空気取込口を設けると、外部から取り込んだ空気によってバインダー揮発物の酸化分解を促進することができ、空気の導入量を調節して酸化分解の効率を高めることができる。
【0013】
更に、本発明の連続焼成炉においては、排出ガス処理ユニットの触媒担持体よりも補助ヒーター側にフィルターを内蔵することが好ましく、このようにするとフィルターによって触媒担持体の目詰まりを防止することができる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の具体的な実施形態を詳述する。
【0015】
図1は本発明に係る排出ガス処理ユニット付き連続焼成炉の一実施形態を示す概略横断面図である。
【0016】
この排出ガス処理ユニット付き連続焼成炉は、セラミックスファイバーを真空成形した厚肉板状の硬質の断熱材よりなる底壁1a、天壁1b、左右側壁1c,1cによって偏平な直方体形状の炉体1が形成されており、天壁1b等に埋設された複数の電気ヒーター1dによって炉体内部が加熱されるようになっている。
【0017】
この炉体1は前後方向(図1においては紙面に垂直な方向)に長く形成され、炉体1を左右に貫通する搬送用ローラ2が前後方向に一定の間隔をあけて複数本配設されている。各搬送用ローラ2の両端部は回転自在に軸受され、ローラ一端のスプロケット2aが共通の駆動用チェーン(不図示)と噛み合っている。従って、共通の駆動用チェーンを起動させると、各搬送用ローラ2が一斉に所定の回転速度で回転し、被焼成物Wを前後方向に一定速度で搬送できるようになっている。
【0018】
被焼成物Wからバインダー揮発物が発生する炉体1内の昇温中間領域の上部には、管状のガス吸込部材3が被焼成物Wの搬送方向(前後方向)と直交方向、つまり炉体1の左右幅方向にほぼ全幅にわたって設けられている。このガス吸込部材3は、両端が閉塞された管体のほぼ全長にわたって、被焼成物Wから発生するバインダー揮発物を含んだ炉体1内の雰囲気ガスを吸い込む多数の孔3aを形成したものである。尚、この管状のガス吸込部材3に代えて、後述するスリットをほぼ全長にわたって形成した細長い箱状のガス吸込部材30を炉体1内の上部に設けてもよい。
【0019】
上記のガス吸込部材3には、炉体1の天壁1bを貫通して炉体1外に導出される複数本(図1では3本)に分岐した排気管路4が接続されている。これらの分岐した排気管路4は一本の排気管路にまとめられて、ベンチュリー効果を利用したインジェクター4aに接続されており、このインジェクター4aによって排気が行われるようになっている。尚、インジェクター4aに代えて、排気用のブロアに排気管路4を接続して排気を行うようにしてもよい。
【0020】
この排気管路4の途中には排出ガス処理ユニット5が設けられ、この排出ガス処理ユニット5から炉体1側の分岐した排気管路4が保温用ヒーター4bと保温用断熱材4cによって二重に被覆されている。従って、ガス吸込部材3から吸い込まれたバインダー揮発物を含むガスが上記処理ユニット5に導入されるまでに温度低下を生じてバインダー揮発物が凝固する心配はない。これらの保温用ヒーター4bや保温用断熱材4cは、上記処理ユニット5を炉体1に近づけることによって炉体1から上記処理ユニット5までの排気管路4の距離を短縮する場合には、不要である。
【0021】
上記の排出ガス処理ユニット5は、バインダー揮発物を酸化分解する触媒を担持した通気自在な触媒担持体5aが気密なユニットケースに脱着交換自在に内蔵されたものであって、この触媒担持体5aよりもガス導入口側には、排出ガスを触媒の活性温度以上に加熱する補助ヒーター5bが内蔵されると共に、該補助ヒーター5bで加熱される排出ガスの温度を制御するための第一の温度センサ5cが設けられており、また触媒担持体5aよりもガス排出口側には、処理後の排出ガスの温度を監視するための第二の温度センサ5dが設けられている。そして、触媒担持体5aの目詰まりを防止するフィルター5eが触媒担持体5aよりも補助ヒーター5b側に脱着交換自在に内蔵されており、更に、補助ヒーター5bよりもガス導入口側に流量調節バルブ5fのついた空気取込口5gが設けられている。触媒担持体5aとしては、接触面積が大きいハニカム構造のセラミックス製または耐熱金属製の担持体に、活性化温度が200〜350℃の範囲にあるPt,Pd,AgOなどの酸化触媒を担持させたものが好ましく使用される。
【0022】
以上のような構成の排出ガス処理ユニット付き連続焼成炉において、バインダーを含む被焼成物Wとして例えばプラズマディスプレイ用のガラス基板等をセッター上に搭載し、それを搬送ローラ2に載せて炉体1内を搬送しながら加熱すると、炉体1内の昇温中間領域に到達したときに被焼成物Wからバインダー揮発物が発生するが、このバインダー揮発物を含んだ炉体1内の雰囲気ガス(空気)は、広範囲にわたって管状のガス吸込部材3の多数の孔3aから残らず吸い込まれるため、同上炉体1の出口からバインダー揮発物を含んだ雰囲気ガスが放出される心配はなくなる。
【0023】
このようにガス吸込部材3から吸い込まれたバインダー揮発物を含むガスは、排気管路4を通って温度低下を生じることなく排出ガス処理ユニット5に送られ、補助ヒーター5bによって触媒の活性温度以上、好ましくは350℃以上に加熱される。そして、フィルター5eを通過するときに、排出ガス中の固形物等が除去され、さらに触媒担持体5aを通過するときに、排出ガス中のバインダー揮発物が活性化した酸化触媒により酸化分解(燃焼)されて、インジェクター4aで排気される。従って、従来のように排出ガス中のバインダー揮発物が凝固したり異臭を出したりすることはなくなる。尚、排出ガス処理ユニット5に送られる排出ガスの温度が触媒の活性化温度よりも十分に高い場合は、補助ヒーター5bで他熱されることなく触媒担持体5aに通されて酸化分解処理される。
【0024】
上記のように排出ガスに含まれるバインダー揮発物を酸化分解する際には、第一の温度センサ5cで検出される処理前の排出ガスの温度と第二の温度センサ5dで検出される処理後の排出ガスの温度をモニター等に表示して対比することにより、処理後の排出ガスの温度が処理前の排出ガスの温度よりも高温でバインダー揮発物の酸化分解が確実に行われていることを確認すると共に、酸化分解が不十分で双方の温度差が小さい場合には、補助ヒーター5bの加熱温度を上げたり流量調節バルブ5fで空気取込口5gからの空気導入量を増加させるなどして調節し、バインダー揮発物の酸化分解を促進し処理効率を向上させることが好ましい。
【0025】
図1に示す排出ガス処理ユニット付き連続焼成炉は、炉体1内の昇温中間領域の上部において、被焼成物Wの搬送方向と直交方向に管状のガス吸込部材3を一つだけ設けているが、昇温中間領域の上部に複数のガス吸込部材3を搬送方向に間隔をあけて設けることにより、被焼成物Wから発生するバインダー揮発物を含んだ雰囲気ガスの吸い込みをより確実に行うようにしてもよいことは言うまでもない。
【0026】
図2は本発明の他の実施形態に係る排出ガス処理ユニット付き連続焼成炉の概略横断面図、図3は同連続焼成炉の側面図である。
【0027】
この排出ガス処理ユニット付き連続焼成炉は、前述した管状のガス吸込部材3に代えて、下面のほぼ全長にわたってガス吸込用のスリット30a(図3参照)を形成した細長い箱状のガス吸込部材30が、炉体1内の昇温中間領域の上部において被焼成物Wの搬送方向と直交方向に設けられている。そして、このガス吸込部材30の両端から排気管路4,4が炉体1の左右側壁1c,1cを貫いて外部へ導出され、これらの排気管路4,4の途中(炉体1からの導出箇所に近い箇所)に前述の排出ガス処理ユニット5,5がそれぞれ設けられている。このように排気管路4,4の導出箇所から排出ガス処理ユニット5,5までの距離は短いので、排気管路4,4を被覆する保温用ヒーターや保温用断熱材は省略されている。
【0028】
この排出ガス処理ユニット付き連続焼成炉の他の構成は、前述した図1の排出ガス処理ユニット付き連続焼成炉と同様であるので、図2,図3において同一の部材に同一の符号を付し、説明を省略することにする。
このような実施形態の排出ガス処理ユニット付き連続焼成炉も、スリット30aを形成した細長い箱状のガス吸込部材30によって、被焼成物Wから発生するバインダー揮発物を含んだ雰囲気ガスが広範囲にわたって残らず吸い込まれ、排気管路4,4を通って排出ガス処理ユニット5,5に送られる。そして、触媒担持体5a,5aを通過するときにバインダー揮発物が酸化分解(燃焼)され、処理された排出ガスがインジェクター4a,4aで排気されるので、焼成雰囲気を清浄に保持でき、またバインダー揮発物が凝固したり異臭を出すことがない。しかも、バインダー揮発物の酸化分解の状態は、第一の温度センサ5cと第二の温度センサ5dで検出される処理前の排出ガス温度と処理後の排出ガス温度を対比することによって把握でき、酸化分解が不十分である場合には、補助ヒーター5bの加熱温度を上げたり空気取込口5gからの空気導入量を増やすなどして調節し、酸化分解を促進し、処理効率を高めることができる。
【0029】
図4は本発明の更に他の実施形態に係る排出ガス処理ユニット付き連続焼成炉の概略横断面図、図5は同連続焼成炉の側面図である。
【0030】
この排出ガス処理ユニット付き連続焼成炉は、搬送ローラ2により2段セッターに搭載された上下の被焼成物W,Wを同時に搬送しながら焼成するようにしたものであり、炉体1内の昇温中間領域の少なくとも一側部には、前述した管状のガス吸込部材3が被焼成物Wの搬送方向と平行方向に設けられている。そして、このガス吸込部材3から排気管路4が炉体1の側壁1cを貫いて外部へ導出され、この排気管路4の途中(炉体1からの導出箇所に近い箇所)に前述の排出ガス処理ユニット5が設けられている。ガス吸込部材3は、炉体1の側部において上下に複数設けるようにしてもよく、その場合は、バインダー揮発物を含んだ雰囲気ガスの吸い込みが一層良くなる。また、この連続焼成炉も排気管路4の導出箇所から排出ガス処理ユニット5までの距離が短いので、排気管路4を被覆する保温用ヒーターや保温用断熱材は省略されている。
【0031】
この排出ガス処理ユニット付き連続焼成炉の他の構成は、前述した図2,図3の排出ガス処理ユニット付き連続焼成炉と同様であるので、図4,図5において同一の部材に同一の符号を付し、説明を省略することにする。
【0032】
この実施形態の排出ガス処理ユニット付き連続焼成炉のように、上下の被焼成物W,Wを同時に搬送して焼成するタイプのものは、炉体1内の上部にガス吸込部材3を設けると、上下の被焼成物W,Wから発生するバインダー揮発物を含んだ雰囲気ガスを残らず吸い込んで排出することが困難であるが、この実施形態の連続焼成炉のように炉体1内の昇温中間領域の側部に管状のガス吸込部材3を被焼成物Wの搬送方向と平行方向に設けてあると、被焼成物Wから発生するバインダー揮発物を含んだ雰囲気ガスが被焼成物W,Wにより邪魔されることなく広範囲にわたって残らず吸い込まれ、排気管路4を通って排出ガス処理ユニット5に送られる。そして、触媒担持体5aを通過するときにバインダー揮発物が酸化分解(燃焼)され、処理された排出ガスがインジェクター4aで排気されるので、バインダー揮発物が凝固したり異臭を出すことがない。しかも、酸化分解の状態は、前述した図1,図2,図3の連続焼成炉と同様に第一の温度センサ5cと第二の温度センサ5dで検出される処理前の排出ガス温度と処理後の排出ガス温度を対比することによって把握でき、酸化分解が不十分である場合には、補助ヒーター5bの加熱温度を上げたり空気取込口5gからの空気導入量を増やすなどして酸化分解を促進し、処理効率を高めることができる。
【0033】
以上説明した実施形態の連続焼成炉はいずれも、ガス吸込部材を炉体内の上部又は側部のいずれかに設けているが、場合によっては炉体内の上部と側部の双方にガス吸込部材を設け、バインダー揮発物を含んだ雰囲気ガスの吸い込みを更に確実に行うようにしてもよい。
【0034】
【発明の効果】
本発明の排出ガス処理ユニット付き連続焼成炉は、被焼成物Wから発生するバインダー揮発物を含んだ雰囲気ガスを広範囲にわたって残らずガス吸込部材から吸い込んで排出ガス処理ユニットに送気し、該ユニットの触媒担持体を通過するときにバインダー揮発物を触媒で酸化分解(燃焼)して排気するため、炉内の汚染をなくし清浄な雰囲気中での焼成を可能にするとともに、バインダー揮発物の凝固、異臭の発生、炉体出口からの放散等の問題を解決できるといった効果を奏する。そして、排出ガス処理ユニットに補助ヒーター、第一及び第二の温度センサ、流量調節可能な空気取込口等を設けたものは、バインダー揮発物の酸化分解の状態を把握でき、補助ヒーターの加熱温度や空気取込口からの空気導入量を調節することによってバインダー揮発物の酸化分解を促進し、処理効率を高めることができるといった効果を併せて奏する。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る排出ガス処理ユニット付き連続焼成炉の概略横断面図である。
【図2】本発明の他の実施形態に係る排出ガス処理ユニット付き連続焼成炉の概略横断面図である。
【図3】同排出ガス処理ユニット付き連続焼成炉の側面図である。
【図4】本発明の更に他の実施形態に係る排出ガス処理ユニット付き連続焼成炉の概略横断面図である。
【図5】同排出ガス処理ユニット付き連続焼成炉の側面図である。
【符号の説明】
1 炉体
3,30 ガス吸込部材
3a ガス吸込部材の孔
30a ガス吸込部材のスリット
4 排気管路
5 排出ガス処理ユニット
5a 触媒担持体
5b 補助ヒーター
5c 第一の温度センサ
5d 第二の温度センサ
5e フィルター
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous firing furnace provided with an exhaust gas processing unit for processing a gas containing a volatile binder generated from an object to be fired.
[0002]
[Prior art]
In a continuous firing furnace for firing an object to be fired containing a binder containing an organic substance as a main component, the binder volatilizes from the object to be fired in a temperature rising intermediate region (a region of about 300 to 400 ° C.). Since the binder volatiles have an adverse effect on the firing, a gas containing the binder volatiles (atmosphere gas in the furnace) is discharged out of the furnace through an exhaust pipe. However, when the temperature of the exhaust gas decreases in the exhaust pipe, there is a problem in that the binder volatiles solidify and adhere to the inner wall of the exhaust pipe, which adversely affects the exhaust system of the firing furnace and the factory exhaust duct.
[0003]
In order to cope with such a problem, measures have been taken to keep the exhaust pipe warm or heated to prevent solidification of the binder volatiles, but in such a case, maintenance of the exhaust pipe is troublesome. The disadvantage is that the discharged gas is harmful to the human body or emits an odor.
[0004]
Therefore, an exhaust hole is provided in the furnace wall in a region where the furnace temperature of the continuous firing furnace is equal to or higher than the activation temperature of the predetermined catalyst, and a structure supporting the catalyst is built in the exhaust hole, so that the material to be fired can be removed. A continuous firing furnace has been proposed in which, when a gas containing generated binder volatiles is exhausted from an exhaust hole, the activated catalyst burns the binder volatiles to decompose the exhaust gas to make it odorless (for example, see Patent Document 1). ).
[0005]
[Patent Document 1]
JP-A-2001-241862 (page 2, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, in the case of the above-described continuous firing furnace, an exhaust hole is provided in a furnace wall in a region where the activation temperature of a predetermined catalyst is higher than or equal to the predetermined temperature, and a structure in which a catalyst is supported is built therein. Since it is difficult to exhaust all of the gas containing binder volatiles from the exhaust holes, the gas containing binder volatiles contaminates the atmosphere in the furnace and deteriorates the quality of the workpiece, There has been a problem that it is agglomerated on a low-temperature surface or is radiated to some extent from an outlet of an object to be fired in a continuous firing furnace. In the case of such a continuous firing furnace, which burns binder volatiles by incorporating a structure supporting a catalyst in exhaust holes provided in the furnace wall, the burning state of the binder volatiles is obtained so as to obtain high combustion efficiency. There was also a problem that it was impossible to grasp and adjust.
[0007]
An object of the present invention is to provide a continuous firing furnace with an exhaust gas treatment unit that can solve the above problems.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a continuous firing furnace with an exhaust gas treatment unit of the present invention has a tubular or elongated box in which a large number of holes or slits for sucking a gas containing a volatile substance generated from an object to be fired are formed over substantially the entire length. The gas suction member is provided in the upper part of the furnace in the direction perpendicular to the direction of conveyance of the object to be fired, or on the side of the furnace in the direction parallel to the direction of conveyance of the object to be fired. An exhaust gas treatment unit having a built-in gas-permeable catalyst carrier carrying a catalyst for oxidizing and decomposing the binder volatile matter is provided in the middle of an exhaust pipe led out of the furnace body.
[0009]
Like this continuous firing furnace, a tubular or elongated box-shaped gas suction member in which a large number of holes or slits are formed over substantially the entire length is provided in the upper part of the furnace in a direction orthogonal to the conveying direction of the object to be fired, or When provided in a side portion in the furnace in a direction parallel to the conveying direction of the object to be fired, the gas in the furnace including the volatile volatile matter generated from the object to be fired is widely transmitted from each hole or slit of the gas suction member. Since all of the gas is sucked, there is no risk of polluting the inside of the furnace or the atmosphere and the gas containing the volatile binder is released from the outlet of the fired material of the furnace body. When the gas containing the binder volatile matter sucked from the gas suction member passes through the catalyst carrier incorporated in the exhaust gas treatment unit in the middle of the exhaust pipe, the binder volatile matter contained in the exhaust gas is removed. Is oxidatively decomposed (combusted) by the catalyst, so that there is no concern that the binder volatiles solidify in the exhaust pipe leading to the outdoors or give off odors.
[0010]
In the continuous firing furnace of the present invention, it is preferable that an auxiliary heater for heating the exhaust gas to a temperature equal to or higher than the activation temperature of the catalyst is built in the exhaust gas treatment unit closer to the gas inlet than the catalyst carrier. By incorporating such an auxiliary heater, even when the temperature of the exhaust gas introduced into the exhaust gas treatment unit is lower than the activation temperature of the catalyst, the exhaust gas is heated by the auxiliary heater to the activation temperature or higher. The activated catalyst makes it possible to oxidatively decompose (burn) binder volatiles in the exhaust gas without fail. If the oxidative decomposition is not sufficient, the temperature of the exhaust gas is further increased by an auxiliary heater to perform the oxidative decomposition. Can be promoted.
[0011]
Further, in the continuous firing furnace of the present invention, a first temperature sensor for controlling the temperature of the exhaust gas heated by the auxiliary heater is provided on the gas inlet side of the exhaust gas treatment unit with respect to the catalyst carrier. Preferably, a second temperature sensor for monitoring the temperature of the exhaust gas after the treatment is provided on the gas exhaust port side of the exhaust gas treatment unit with respect to the catalyst carrier. If the first temperature sensor and the second temperature sensor are provided as described above, the temperature of the exhaust gas before the processing detected by the first temperature sensor (the temperature of the exhaust gas before the processing heated by the auxiliary heater) By comparing the temperature of the exhaust gas after the processing with the temperature detected by the second temperature sensor, it is possible to grasp the state of the oxidative decomposition processing (combustion) of the volatile binder by the catalyst. That is, if the temperature of the exhaust gas after the treatment is higher than the temperature of the exhaust gas before the treatment, it can be determined that the oxidative decomposition treatment (combustion) of the binder volatiles by the catalyst is being performed, and the temperature difference between the two is reduced. It can be judged that the larger the value, the more efficiently the oxidative decomposition is performed. On the other hand, when the temperature of the exhaust gas after the treatment is lower than the temperature of the exhaust gas heated by the heater before the treatment, it can be determined that the oxidative decomposition treatment of the binder volatiles by the catalyst has not been performed. Therefore, when it is determined that the oxidative decomposition treatment of the volatile matter of the binder is not performed or is determined to be insufficient, the heating temperature of the exhaust gas before the treatment is increased by the auxiliary heater, or as described later. By adjusting the amount of air taken in from the air intake of the exhaust gas treatment unit, it is possible to reliably and sufficiently perform the oxidative decomposition treatment of the binder volatile by the catalyst.
[0012]
Further, in the continuous firing furnace of the present invention, it is preferable to provide an air intake capable of adjusting the flow rate on the gas introduction side of the exhaust gas treatment unit on the gas introduction side, and to provide such an air intake. Thus, the oxidative decomposition of the volatile matter of the binder can be promoted by the air taken in from the outside, and the efficiency of the oxidative decomposition can be increased by adjusting the amount of air introduced.
[0013]
Further, in the continuous firing furnace of the present invention, it is preferable to incorporate a filter on the auxiliary heater side of the catalyst carrier of the exhaust gas treatment unit, and in this case, it is possible to prevent the catalyst carrier from being clogged by the filter. it can.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a schematic cross-sectional view showing one embodiment of a continuous firing furnace with an exhaust gas processing unit according to the present invention.
[0016]
This continuous firing furnace with an exhaust gas treatment unit is a flat rectangular parallelepiped furnace body 1 having a bottom wall 1a, a top wall 1b, and left and right side walls 1c, 1c formed of a thick plate-shaped hard heat insulating material obtained by vacuum forming ceramic fibers. Are formed, and the inside of the furnace body is heated by a plurality of electric heaters 1d embedded in the ceiling wall 1b and the like.
[0017]
The furnace body 1 is formed to be long in the front-rear direction (in the direction perpendicular to the paper surface in FIG. 1), and a plurality of conveying rollers 2 penetrating the furnace body 1 in the left-right direction are arranged at regular intervals in the front-rear direction. ing. Both ends of each transport roller 2 are rotatably bearing, and a sprocket 2a at one end of the roller meshes with a common drive chain (not shown). Therefore, when the common drive chain is activated, the respective transport rollers 2 rotate at the same time at a predetermined rotational speed, and the workpiece W can be transported at a constant speed in the front-rear direction.
[0018]
A tubular gas suction member 3 is provided above the intermediate temperature-raising region in the furnace 1 in which binder volatiles are generated from the fired material W, in a direction orthogonal to the conveying direction (front-back direction) of the fired material W, that is, the furnace body. 1 is provided over substantially the entire width in the left-right width direction. The gas suction member 3 is formed with a large number of holes 3a for sucking the atmosphere gas in the furnace body 1 containing the volatile matter generated from the material to be fired W over substantially the entire length of the tube whose both ends are closed. is there. Instead of the tubular gas suction member 3, an elongated box-shaped gas suction member 30 having a slit described later formed over substantially the entire length may be provided at an upper portion in the furnace body 1.
[0019]
The gas suction member 3 is connected to a plurality of (three in FIG. 1) branched exhaust pipes 4 that pass through the top wall 1b of the furnace body 1 and are led out of the furnace body 1. These branched exhaust pipes 4 are combined into a single exhaust pipe and connected to an injector 4a utilizing the Venturi effect, and exhaust is performed by the injector 4a. In addition, instead of the injector 4a, the exhaust pipe 4 may be connected to a blower for exhaust to perform exhaust.
[0020]
An exhaust gas processing unit 5 is provided in the middle of the exhaust pipe 4, and the exhaust pipe 4 branched from the exhaust gas processing unit 5 on the furnace body 1 side is doubled by a heat retaining heater 4b and a heat insulating material 4c. Is coated. Accordingly, there is no concern that the temperature will drop before the gas containing binder volatiles sucked in from the gas suction member 3 is introduced into the processing unit 5 and the binder volatiles solidify. These heat retaining heaters 4b and heat insulating materials 4c are unnecessary when the processing unit 5 is brought close to the furnace body 1 to shorten the distance of the exhaust pipe 4 from the furnace body 1 to the processing unit 5. It is.
[0021]
The exhaust gas treatment unit 5 includes a gas permeable catalyst carrier 5a carrying a catalyst that oxidizes and decomposes a binder volatile substance and is detachably mounted in an airtight unit case. On the gas inlet side, an auxiliary heater 5b for heating the exhaust gas to the activation temperature of the catalyst or higher is built in, and a first temperature for controlling the temperature of the exhaust gas heated by the auxiliary heater 5b is provided. A sensor 5c is provided, and a second temperature sensor 5d for monitoring the temperature of the treated exhaust gas is provided on the gas outlet side of the catalyst carrier 5a. A filter 5e for preventing clogging of the catalyst carrier 5a is detachably mounted on the auxiliary heater 5b side of the catalyst carrier 5a, and is detachably exchanged. Further, a flow control valve is provided on the gas inlet side of the auxiliary heater 5b. An air intake 5g with 5f is provided. As the catalyst support 5a, an oxidation catalyst such as Pt, Pd, Ag 2 O having an activation temperature in the range of 200 to 350 ° C. is supported on a ceramic or heat-resistant metal support having a honeycomb structure having a large contact area. Those that have been used are preferably used.
[0022]
In the continuous firing furnace with the exhaust gas processing unit having the above-described configuration, for example, a glass substrate for a plasma display or the like is mounted on the setter as the material to be fired W containing the binder, and is placed on the transport roller 2 and the furnace body 1 When heating while transporting inside the furnace, binder volatiles are generated from the material to be fired W when it reaches the intermediate temperature-raising region in the furnace body 1. Air) is sucked over a wide range from the large number of holes 3 a of the tubular gas suction member 3, so that there is no fear that the atmospheric gas containing binder volatiles is released from the outlet of the furnace body 1.
[0023]
The gas containing the volatile matter of the binder sucked from the gas suction member 3 is sent to the exhaust gas treatment unit 5 through the exhaust pipe 4 without lowering the temperature. , Preferably heated to 350 ° C. or higher. Then, when passing through the filter 5e, solids and the like in the exhaust gas are removed, and when passing through the catalyst support 5a, the binder volatiles in the exhaust gas are oxidatively decomposed (combusted) by the activated oxidation catalyst. ) And exhausted by the injector 4a. Therefore, unlike the conventional case, the binder volatiles in the exhaust gas do not solidify or emit an unpleasant odor. If the temperature of the exhaust gas sent to the exhaust gas processing unit 5 is sufficiently higher than the activation temperature of the catalyst, the exhaust gas is passed through the catalyst carrier 5a without being heated by the auxiliary heater 5b and subjected to oxidative decomposition treatment. .
[0024]
As described above, when oxidizing and decomposing the binder volatile matter contained in the exhaust gas, the temperature of the exhaust gas before the processing detected by the first temperature sensor 5c and the temperature after the processing detected by the second temperature sensor 5d are detected. The temperature of the exhaust gas after treatment is higher than the temperature of the exhaust gas before treatment by displaying and comparing the temperature of the exhaust gas on the monitor etc. to ensure that the oxidative decomposition of the binder volatiles is performed And if the oxidative decomposition is insufficient and the temperature difference between the two is small, raise the heating temperature of the auxiliary heater 5b or increase the amount of air introduced from the air inlet 5g by the flow control valve 5f. It is preferable to adjust the temperature and promote the oxidative decomposition of the volatile matter of the binder to improve the processing efficiency.
[0025]
The continuous firing furnace with the exhaust gas processing unit shown in FIG. 1 is provided with only one tubular gas suction member 3 in a direction orthogonal to the direction of transport of the material W to be fired, in the upper part of the intermediate temperature rise area in the furnace body 1. However, by providing a plurality of gas suction members 3 at an interval in the transport direction at the upper part of the intermediate temperature-raising region, suction of the atmospheric gas containing volatile volatile matter generated from the material to be fired W is performed more reliably. Needless to say, this may be done.
[0026]
FIG. 2 is a schematic cross-sectional view of a continuous firing furnace with an exhaust gas processing unit according to another embodiment of the present invention, and FIG. 3 is a side view of the continuous firing furnace.
[0027]
This continuous firing furnace with an exhaust gas treatment unit is an elongated box-shaped gas suction member 30 having a gas suction slit 30a (see FIG. 3) formed over substantially the entire lower surface instead of the tubular gas suction member 3 described above. Are provided in the furnace body 1 at the upper part of the intermediate temperature rise area in a direction perpendicular to the direction in which the workpiece W is transported. Then, exhaust pipes 4, 4 are led out from both ends of the gas suction member 30 to the outside through the left and right side walls 1 c, 1 c of the furnace body 1, and in the middle of these exhaust pipes 4, 4 (from the furnace body 1). The above-mentioned exhaust gas processing units 5 and 5 are provided respectively at locations near the lead-out location). Since the distance from the outlets of the exhaust pipes 4 and 4 to the exhaust gas treatment units 5 and 5 is short, the heaters and heat insulating materials that cover the exhaust pipes 4 and 4 are omitted.
[0028]
Since the other configuration of the continuous firing furnace with the exhaust gas processing unit is the same as that of the continuous firing furnace with the exhaust gas processing unit in FIG. 1 described above, the same members in FIGS. , Will not be described.
In the continuous firing furnace with an exhaust gas treatment unit of such an embodiment, the elongated box-shaped gas suction member 30 formed with the slit 30a also leaves a wide range of atmospheric gas containing volatile volatile matter generated from the workpiece W. And is sent to the exhaust gas processing units 5 and 5 through the exhaust pipes 4 and 4. When passing through the catalyst carriers 5a, 5a, the binder volatiles are oxidized and decomposed (burned), and the treated exhaust gas is exhausted by the injectors 4a, 4a. No volatiles solidify or give off odor. In addition, the state of the oxidative decomposition of the binder volatile can be grasped by comparing the exhaust gas temperature before the treatment and the exhaust gas temperature after the treatment detected by the first temperature sensor 5c and the second temperature sensor 5d, When the oxidative decomposition is insufficient, the heating temperature of the auxiliary heater 5b is increased or the amount of air introduced from the air intake 5g is increased to adjust the temperature, thereby promoting the oxidative decomposition and increasing the processing efficiency. it can.
[0029]
FIG. 4 is a schematic cross-sectional view of a continuous firing furnace with an exhaust gas treatment unit according to still another embodiment of the present invention, and FIG. 5 is a side view of the continuous firing furnace.
[0030]
The continuous firing furnace with the exhaust gas treatment unit is configured to perform firing while simultaneously transporting upper and lower workpieces W, W mounted on a two-stage setter by transport rollers 2. On at least one side of the warm intermediate region, the above-described tubular gas suction member 3 is provided in a direction parallel to the direction in which the object to be fired W is conveyed. Then, the exhaust pipe 4 is led out from the gas suction member 3 through the side wall 1c of the furnace body 1 to the outside. A gas processing unit 5 is provided. A plurality of gas suction members 3 may be provided at the upper and lower sides of the furnace body 1, and in that case, the suction of the ambient gas containing volatile volatile matter is further improved. Also, in this continuous firing furnace, since the distance from the outlet of the exhaust pipe 4 to the exhaust gas treatment unit 5 is short, a heater for heating and a heat insulating material for insulating the exhaust pipe 4 are omitted.
[0031]
Since the other configuration of the continuous firing furnace with the exhaust gas processing unit is the same as that of the continuous firing furnace with the exhaust gas processing unit shown in FIGS. 2 and 3 described above, the same members as those in FIGS. And description thereof will be omitted.
[0032]
In the case of the type in which the upper and lower objects to be fired W and W are simultaneously transferred and fired, such as the continuous firing furnace with the exhaust gas treatment unit of this embodiment, the gas suction member 3 is provided in the upper part of the furnace body 1. It is difficult to suck and discharge all the atmospheric gas containing the volatile matter generated from the upper and lower workpieces W, W. However, as in the continuous firing furnace according to the present embodiment, the inside of the furnace body 1 rises. If the tubular gas suction member 3 is provided on the side of the warm intermediate region in a direction parallel to the transport direction of the material to be fired W, the atmospheric gas containing volatile substances generated from the material to be fired W contains the volatile material W. , W, and is sucked over a wide range without being disturbed by the exhaust gas treatment unit 5 through the exhaust pipe 4. Then, the binder volatile matter is oxidized and decomposed (burned) when passing through the catalyst carrier 5a, and the treated exhaust gas is exhausted by the injector 4a, so that the binder volatile matter does not solidify or emit an odor. Moreover, the state of the oxidative decomposition depends on the exhaust gas temperature before the treatment detected by the first temperature sensor 5c and the second temperature sensor 5d and the treatment temperature in the same manner as in the continuous baking furnace shown in FIGS. It can be grasped by comparing the exhaust gas temperature later, and if the oxidative decomposition is insufficient, the oxidative decomposition is performed by increasing the heating temperature of the auxiliary heater 5b or increasing the amount of air introduced from the air intake 5g. And promote the processing efficiency.
[0033]
In any of the continuous firing furnaces of the embodiments described above, the gas suction member is provided on either the upper part or the side part in the furnace body, but in some cases, the gas suction member is provided on both the upper part and the side part in the furnace body. It is also possible to provide a more reliable suction of the atmospheric gas containing the volatile volatile matter.
[0034]
【The invention's effect】
The continuous firing furnace with the exhaust gas processing unit of the present invention sucks all the atmospheric gas containing the volatile matter generated from the material to be fired W from the gas suction member over a wide range and sends it to the exhaust gas processing unit. Since the binder volatile matter is oxidized and decomposed (combusted) by a catalyst and exhausted when passing through the catalyst carrier, the furnace is free from contamination and firing in a clean atmosphere is possible. This has the effect of solving problems such as generation of an off-flavor and emission from the furnace body outlet. The exhaust gas treatment unit equipped with an auxiliary heater, first and second temperature sensors, and an air inlet with adjustable flow rate can grasp the state of oxidative decomposition of volatile substances in the binder, and heat the auxiliary heater. By adjusting the temperature and the amount of air introduced from the air intake, oxidative decomposition of the binder volatiles is promoted and the processing efficiency can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a continuous firing furnace with an exhaust gas treatment unit according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of a continuous firing furnace with an exhaust gas processing unit according to another embodiment of the present invention.
FIG. 3 is a side view of the continuous firing furnace with the exhaust gas processing unit.
FIG. 4 is a schematic cross-sectional view of a continuous firing furnace with an exhaust gas treatment unit according to still another embodiment of the present invention.
FIG. 5 is a side view of the continuous firing furnace with the exhaust gas processing unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace body 3, 30 Gas suction member 3a Gas suction member hole 30a Gas suction member slit 4 Exhaust line 5 Exhaust gas treatment unit 5a Catalyst carrier 5b Auxiliary heater 5c First temperature sensor 5d Second temperature sensor 5e filter

Claims (5)

被焼成物から発生するバインダー揮発物を含んだガスを吸い込む多数の孔又はスリットをほぼ全長にわたって形成した管状又は細長い箱状のガス吸込部材を、炉体内の上部において被焼成物の搬送方向と直交方向に設けるか、或いは、炉体内の側部において被焼成物の搬送方向と平行方向に設け、このガス吸込部材から炉体外へ導出した排気管路の途中に、上記バインダー揮発物を酸化分解する触媒を担持した通気自在な触媒担持体を内蔵する排出ガス処理ユニットを設けたことを特徴とする、排出ガス処理ユニット付き連続焼成炉。A tubular or elongated box-shaped gas suction member having a large number of holes or slits formed over substantially the entire length for sucking a gas containing binder volatiles generated from the object to be fired is provided at an upper portion in the furnace at right angles to the conveying direction of the object to be fired. Or in the side of the furnace in a direction parallel to the conveying direction of the object to be fired, and oxidatively decomposes the volatiles of the binder in the middle of an exhaust pipe led out of the furnace from the gas suction member. A continuous baking furnace with an exhaust gas treatment unit, comprising an exhaust gas treatment unit having a built-in catalyst-supporting body that carries a catalyst and is freely permeable. 排出ガス処理ユニットの触媒担持体よりもガス導入口側に、排出ガスを触媒の活性化温度以上に加熱する補助ヒーターを内蔵したことを特徴とする請求項1に記載の連続焼成炉。2. The continuous firing furnace according to claim 1, wherein an auxiliary heater for heating the exhaust gas to a temperature equal to or higher than the activation temperature of the catalyst is built in the exhaust gas treatment unit closer to the gas inlet than the catalyst carrier. 3. 排出ガス処理ユニットの触媒担持体よりもガス導入口側に、補助ヒーターで加熱される排出ガスの温度を制御するための第一の温度センサを設けると共に、排出ガス処理ユニットの触媒担持体よりもガス排出口側に、処理後の排出ガスの温度を監視するための第二の温度センサを設けたことを特徴とする請求項2に記載の連続焼成炉。A first temperature sensor for controlling the temperature of the exhaust gas heated by the auxiliary heater is provided closer to the gas inlet than the catalyst carrier of the exhaust gas processing unit, and the first temperature sensor is provided more than the catalyst carrier of the exhaust gas processing unit. The continuous firing furnace according to claim 2, wherein a second temperature sensor for monitoring the temperature of the exhaust gas after the treatment is provided on the gas outlet side. 排出ガス処理ユニットの補助ヒーターよりもガス導入口側に、流量調節の可能な空気取込口を設けたことを特徴とする請求項2又は請求項3に記載の連続焼成炉。4. The continuous firing furnace according to claim 2, wherein an air intake whose flow rate can be adjusted is provided on the gas introduction port side of the auxiliary heater of the exhaust gas treatment unit. 5. 排出ガス処理ユニットの触媒担持体よりも補助ヒーター側にフィルターを内蔵したことを特徴とする請求項2ないし請求項4のいずれかに記載の連続焼成炉。The continuous firing furnace according to any one of claims 2 to 4, wherein a filter is built in the auxiliary heater side of the exhaust gas treatment unit with respect to the catalyst carrier.
JP2003109414A 2003-04-14 2003-04-14 Continuous firing furnace with exhaust gas treatment unit Expired - Fee Related JP4010411B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003109414A JP4010411B2 (en) 2003-04-14 2003-04-14 Continuous firing furnace with exhaust gas treatment unit
TW093110365A TWI323332B (en) 2003-04-14 2004-04-14 Continuous kiln with unit of dealing with discharge gas
KR1020040025669A KR100600504B1 (en) 2003-04-14 2004-04-14 Continuous kiln with unit of dealing with discharge gas
CNB2004100338230A CN100408148C (en) 2003-04-14 2004-04-14 Continuous firing furnace with treatment unit for exhausted gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109414A JP4010411B2 (en) 2003-04-14 2003-04-14 Continuous firing furnace with exhaust gas treatment unit

Publications (2)

Publication Number Publication Date
JP2004316987A true JP2004316987A (en) 2004-11-11
JP4010411B2 JP4010411B2 (en) 2007-11-21

Family

ID=33470584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109414A Expired - Fee Related JP4010411B2 (en) 2003-04-14 2003-04-14 Continuous firing furnace with exhaust gas treatment unit

Country Status (4)

Country Link
JP (1) JP4010411B2 (en)
KR (1) KR100600504B1 (en)
CN (1) CN100408148C (en)
TW (1) TWI323332B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044821B2 (en) * 2002-12-25 2006-05-16 Pioneer Corporation Method of manufacturing a plasma display panel by decomposing impurities in exhaust gas with a catalyst
KR100707730B1 (en) 2007-01-29 2007-04-16 (주)씨맥스 Atmospheric plasma reactor of slot type
JP2007292362A (en) * 2006-04-24 2007-11-08 Koyo Thermo System Kk Exhaust gas treatment unit
JP2008039376A (en) * 2006-07-13 2008-02-21 Espec Corp Heat treating device
KR20080104973A (en) * 2007-05-29 2008-12-03 에스펙 가부시키가이샤 Gas treatment unit
JP2008298300A (en) * 2007-05-29 2008-12-11 Espec Corp Heat treatment device
JP2010104960A (en) * 2008-10-31 2010-05-13 Koyo Thermo System Kk Apparatus for treating exhaust gas
KR101308278B1 (en) * 2005-12-15 2013-09-13 고요 써모시스템 주식회사 Continuous burning furnace
JP2013255882A (en) * 2012-06-12 2013-12-26 Frontier Lab Kk Catalytic reaction simulation device
CN105222588A (en) * 2014-06-13 2016-01-06 长葛市吉庆机械厂 There is the kiln of guiding gutter
CN107328246A (en) * 2017-08-14 2017-11-07 通威太阳能(安徽)有限公司 A kind of cell piece sintering furnace air exhausting device and its sintering furnace
CN109141043A (en) * 2018-07-13 2019-01-04 余柳婵 A kind of waste gas recovery processing equipment of alloy refining equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979071B (en) * 2005-12-09 2010-09-22 光洋热***株式会社 Continuously baking furnace
JP2007212030A (en) * 2006-02-08 2007-08-23 Koyo Thermo System Kk Heat treatment device
LU92235B1 (en) * 2013-07-01 2015-01-02 Wurth Paul Sa Steam condensation tower for a granulation installation
CN108398031B (en) * 2018-01-30 2024-02-09 佛山高砂工业窑炉有限公司 Parallel tail gas combustion treatment device for lithium battery material firing furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159965A (en) * 1997-11-27 1999-06-15 Murata Mfg Co Ltd Heat treatment furnace
JP2001147008A (en) * 1999-09-09 2001-05-29 Ngk Insulators Ltd Method for treating binder elimination gas of baking furnace and baking furnace used therefor
JP2001241862A (en) * 1999-12-20 2001-09-07 Ngk Insulators Ltd Kiln with deodorizing function
JP2002257314A (en) * 2001-03-02 2002-09-11 Ngk Insulators Ltd Hot blast generator

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707317B1 (en) * 2002-12-25 2007-04-13 파이오니아 가부시키가이샤 Plasma Display Panel Manufacturing Method And Heat Treatment Apparatus
US7044821B2 (en) * 2002-12-25 2006-05-16 Pioneer Corporation Method of manufacturing a plasma display panel by decomposing impurities in exhaust gas with a catalyst
KR101308278B1 (en) * 2005-12-15 2013-09-13 고요 써모시스템 주식회사 Continuous burning furnace
CN101063571B (en) * 2006-04-24 2010-12-08 光洋热***株式会社 Exhaust gas treatment unit
JP2007292362A (en) * 2006-04-24 2007-11-08 Koyo Thermo System Kk Exhaust gas treatment unit
JP2008039376A (en) * 2006-07-13 2008-02-21 Espec Corp Heat treating device
KR100707730B1 (en) 2007-01-29 2007-04-16 (주)씨맥스 Atmospheric plasma reactor of slot type
JP4589942B2 (en) * 2007-05-29 2010-12-01 エスペック株式会社 Gas processing unit
JP2008298300A (en) * 2007-05-29 2008-12-11 Espec Corp Heat treatment device
JP4589941B2 (en) * 2007-05-29 2010-12-01 エスペック株式会社 Heat treatment equipment
KR20080104973A (en) * 2007-05-29 2008-12-03 에스펙 가부시키가이샤 Gas treatment unit
JP2008298301A (en) * 2007-05-29 2008-12-11 Espec Corp Gas treatment unit
KR101603326B1 (en) * 2007-05-29 2016-03-14 에스펙 가부시키가이샤 Gas treatment unit
JP2010104960A (en) * 2008-10-31 2010-05-13 Koyo Thermo System Kk Apparatus for treating exhaust gas
JP2013255882A (en) * 2012-06-12 2013-12-26 Frontier Lab Kk Catalytic reaction simulation device
CN105222588A (en) * 2014-06-13 2016-01-06 长葛市吉庆机械厂 There is the kiln of guiding gutter
CN107328246A (en) * 2017-08-14 2017-11-07 通威太阳能(安徽)有限公司 A kind of cell piece sintering furnace air exhausting device and its sintering furnace
CN109141043A (en) * 2018-07-13 2019-01-04 余柳婵 A kind of waste gas recovery processing equipment of alloy refining equipment
CN109141043B (en) * 2018-07-13 2020-02-04 温州申汇合金有限公司 Waste gas recovery treatment equipment of alloy refining equipment

Also Published As

Publication number Publication date
TW200506304A (en) 2005-02-16
CN100408148C (en) 2008-08-06
JP4010411B2 (en) 2007-11-21
KR20040075793A (en) 2004-08-30
TWI323332B (en) 2010-04-11
CN1540271A (en) 2004-10-27
KR100600504B1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4010411B2 (en) Continuous firing furnace with exhaust gas treatment unit
FI961663A (en) Method and apparatus for drying particulate matter
TW200821526A (en) Heat treating device
US20050048861A1 (en) Method and apparatus for manufacturing plasma display panel
JP4928876B2 (en) Heat purification equipment for contaminated soil
TWI606223B (en) Heat treatment furnace
JP5107528B2 (en) Exhaust gas treatment unit
JP2003214772A (en) Heating furnace
JP2001263944A (en) Conveyor furnace for drying sheet-form material
JP2005331162A (en) Continuous furnace
JP2001241862A (en) Kiln with deodorizing function
NL1018683C2 (en) Device for automatic insertion of coffin into cremator and removal of ashes involves roller track floor which when located above ash pan allows ash residues to fall directly into ash pan
JP4393178B2 (en) Heat purification equipment for contaminated soil
JP2005233540A (en) Stove
JP2008023512A (en) Stone furnace having de-smoking and deodorizing device
JPH10238739A (en) Dryer for industrial waste
JP2000304356A (en) Hot air heater
KR101308278B1 (en) Continuous burning furnace
JP2005230591A (en) System for treatment of contaminated object
JPH11207140A (en) Device for removing harmful substance
JPH0431002Y2 (en)
JP2001158612A (en) Continuous heating furnace for activating treatment
JP2001279249A (en) Carbonization treatment device
JP2005061714A (en) Drier of air filter unit
KR20190054621A (en) Smoking booth with air purification function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

R150 Certificate of patent or registration of utility model

Ref document number: 4010411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees