JP2004316873A - One-way clutch built-in type rolling bearing and one-way clutch built-in type pulley device - Google Patents

One-way clutch built-in type rolling bearing and one-way clutch built-in type pulley device Download PDF

Info

Publication number
JP2004316873A
JP2004316873A JP2003129764A JP2003129764A JP2004316873A JP 2004316873 A JP2004316873 A JP 2004316873A JP 2003129764 A JP2003129764 A JP 2003129764A JP 2003129764 A JP2003129764 A JP 2003129764A JP 2004316873 A JP2004316873 A JP 2004316873A
Authority
JP
Japan
Prior art keywords
way clutch
raceway
built
cam members
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003129764A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hatanaka
和幸 畑中
Hiroshige Sakota
裕成 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003129764A priority Critical patent/JP2004316873A/en
Publication of JP2004316873A publication Critical patent/JP2004316873A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/001Integrated brakes or clutches for stopping or coupling the relatively movable parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/069Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags
    • F16D41/07Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags between two cylindrical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/43Clutches, e.g. disengaging bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D2041/0605Spring details

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Pulleys (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a one-way clutch built-in type rolling bearing having a reduced axial size into a smaller and lighter structure for securing reliability and durability while hardly dislocating the center axis of an inner ring 21 from the axis of an outer ring 22 even when moment load is applied thereto. <P>SOLUTION: Between an cylindrical inner ring raceway 29 formed on the outer peripheral face of the inner ring 21 and an cylindrical outer ring raceway 32 formed on the inner peripheral face of the outer ring 22, a plurality of cylindrical rollers 23, 23 and a plurality of cams members 24, 24 are arranged alternately in a circumferential direction. During torque transmission, the cam members 24, 24 are stretched between the inner ring raceway 29 and the outer ring raceway 32. On the contrary, during overrun, the inner ring raceway 29 and the outer ring raceway 32 are relatively rotatable with the rolling of the cylindrical rollers 23, 23. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明に係る一方向クラッチ内蔵型転がり軸受は、所定方向の回転力のみを伝達するもので、例えばアイドリングストップ車用の動力伝達装置に、或はオルタネータの回転軸に設ける従動プーリに、それぞれ組み込んだ状態で使用する。又、本発明の対象となる一方向クラッチ内蔵型プーリ装置は、上記オルタネータの回転軸に設ける従動プーリとして、或は上記動力伝達装置を構成する駆動プーリ或は従動プーリとして、それぞれ使用する。
【0002】
【従来の技術】
一方向クラッチを組み込んだアイドリングストップ車用の動力伝達装置として、特許文献1には、図12〜13に示す様な構造が記載されている。この従来構造の場合、エンジン1と変速機2との間に設けられ、このエンジン1のクランクシャフトと共に回転するフライホイール3の外周縁部に、リングギヤ4を設けている。そして、このリングギヤ4とピニオンギヤ5とを、常時噛合させている。このピニオンギヤ5の内径側には、このピニオンギヤ5を駆動する為のスタータモータ6の出力軸7の先端部(図12の左端部)を、このピニオンギヤ5に対し同心に挿入している。そして、このピニオンギヤ5の内周面と上記出力軸7の外周面との間に、一方向クラッチであるローラクラッチ8と、それぞれ1対ずつの、サポート軸受9、9及びシールリング10、10とを設けている。
【0003】
上述の様に構成する自動車用エンジンの起動装置によれば、停車に伴ってエンジンをアイドリングさせずに停止(アイドリングストップ)させた自動車を再発進させる為、クラッチペダル(或はアクセルペダル)を踏み込んでからエンジン1を再起動させるべくスタータモータ6を起動させるまでの間に、ピニオンギヤ5を前進させる必要がない。即ち、このピニオンギヤ5は、前記リングギヤ4と常時噛合したままであるから、自動車を再発進させる動作に基づいて生じる信号により上記スタータモータ6を起動さえすれば、上記ローラクラッチ8が接続状態となり、上記出力軸7からピニオンギヤ5に動力が伝達され、上記エンジン1の再起動を行なえる。この為、自動車を再発進させる為の動作を開始してから実際にエンジン1が再始動するまでの間に存在するタイムラグが小さくなって、運転者に違和感を与える事がなくなる。これに対して、エンジン1が再起動し、上記ピニオンギヤ5の回転速度が、前記出力軸7の回転速度よりも速くなると、上記ローラクラッチ8の接続が断たれ、起動した上記エンジン1の回転が上記スタータモータ6に伝わるのを防止する。従って、このスタータモータ6が上記エンジン1の運転に対する負荷になる事はない。尚、スタータモータ6の出力軸7とエンジン1のクランクシャフトとの間の動力伝達を無端ベルトにより行なう構造の場合も、上記出力軸7の端部に設けるプーリを、一方向クラッチ内蔵型とする事により、同様の作用・効果を得られる。
【0004】
又、オルタネータの回転軸の端部に、一方向クラッチを内蔵したプーリを組み込む事も、例えば特許文献2等に記載されている様に、従来から考えられ、一部で実施されている。図14は、この様な一方向クラッチ内蔵型プーリ装置の1例を示している。この従来構造の場合、外周面に無端ベルトを掛け渡し自在としたプーリ11の内周面と、回転軸に外嵌固定自在としたスリーブ12の外周面との間の環状空間13内に1対のサポート軸受9、9を、互いに間隔をあけて配置している。そして、これら両転がり軸受9、9同士の間に、ローラクラッチ8を配置している。この様な一方向クラッチ内蔵型プーリ装置を、オルタネータ用の従動プーリとして使用する場合、上記プーリ11から上記スリーブ12を外嵌固定した回転軸への回転伝達を行なうのに対して、この回転軸からこのプーリ11への回転伝達は行なわない。この為、このプーリ11に掛け渡した無端ベルトへの摩擦力の作用方向を一定にしてこの無端ベルトの耐久性向上を図れる。又、エンジンの回転速度が急減する場合には、オルタネータのロータを慣性により回転させ、このロータの回転速度が急に低下する事を防止する事で、このオルタネータの発電効率の向上を図れる。
【0005】
又、特許文献3〜5には、内輪の外周面と外輪の内周面との間に、転がり軸受を構成する転動体と、一方向クラッチを構成するスプラグとを、円周方向に関して交互に配置した、一方向クラッチ内蔵型の転がり軸受が記載されている。図15は、このうちの特許文献4に記載された、一方向クラッチ内蔵型の転がり軸受を示している。この従来構造の場合、内輪14の外周面中央部に深溝型の内輪軌道15を、外輪16の内周面中央部に深溝型の外輪軌道17を、それぞれ形成し、これら内輪軌道15と外輪軌道17との間に複数の玉18を、転動自在に保持している。又、円周方向に関してこれら各玉18から外れた部分に複数のスプラグ19を配置し、これら各スプラグ19を、上記内輪14の外周面両端部と上記外輪16の内周面両端部とに係合自在としている。
【0006】
【特許文献1】
特開2000−297730号公報
【特許文献2】
特開2000−320650号公報
【特許文献3】
特開平9−96325号公報
【特許文献4】
特開平10−103390号公報
【特許文献5】
特開2000−2271号公報
【0007】
【発明が解決しようとする課題】
特許文献1〜2に記載される等により従来から知られている、前述の図12〜13或は図14に示した構造の場合、一方向クラッチであるローラクラッチ8を軸方向両側から挟む位置に1対のサポート軸受9、9を設ける為、軸方向寸法並びにコストが嵩む。
これに対して、特許文献3〜5に記載された、例えば図15に示した様な構造の場合には、部品点数が少ない為、軸方向寸法の短縮を図れる。又、コスト低減も図れる可能性はあるが、十分な耐久性及び信頼性を確保する事は難しいものと考えられる。
【0008】
例えば、一方向クラッチ内蔵型転がり軸受を備えた一方向クラッチ内蔵型プーリ装置を、アイドリングストップ車用の動力伝達機構中に組み込んだ状態では、プーリ11(図14参照)に、ラジアル荷重だけでなく、モーメント荷重も加わる。この様なモーメント荷重は、上記プーリ11と、エンジンのクランクシャフトに固定された別のプーリとの間に存在するミスアライメント(中央位置の不一致、中心軸の非平行)に基づき、上記両プーリ同士の間に掛け渡された無端ベルトから上記プーリ11に加わる。そして、上記モーメント荷重により上記プーリ11が、運転時に角度振れを生じる可能性がある。この様な角度振れを生じると、このプーリ11に掛け渡した無端ベルトが偏摩耗する他、玉18の転動面と内輪軌道15と外輪軌道17と接触状態、並びに、各スプラグ19と内輪14の外周面両端部及び外輪16の内周面両端部との係合状態が不良になる。この結果、一方向クラッチ内蔵型プーリ装置の耐久性が損なわれるだけでなく、本来の機能も十分に発揮できなくなって、信頼性が低下する。
【0009】
上述の様な耐久性及び信頼性の低下を防止する為には、内輪14と外輪16との相対回転を許容する為の転がり軸受(図15参照)の、モーメント荷重に対する剛性を高くする必要がある。これに対して、図15に示した従来構造の場合、上記転がり軸受が単列深溝型の玉軸受である為、上記剛性を十分に高くする事は難しい。
【0010】
更に、図15に示した従来構造の場合には、上記内輪14と上記外輪16とが相対回転する状態(オーバラン状態)で、上記各スプラグ19と上記外輪16の内周面両端部とが擦れ合う事が避けられず、この面からも十分な耐久性を確保する事が難しい。
即ち、図15に示した従来構造の場合、上記各玉18と上記各スプラグ19とが、同一の保持器20に保持されており、上記内輪14と上記外輪16との相対回転時にはこの保持器20が、上記各玉18の公転運動に伴って回転する。従って、上記各スプラグ19も、これら各玉18と共に公転運動する。この公転運動に伴う、上記内輪14及び外輪16に対する相対回転速度は、上記内輪14と上記外輪16との相対回転速度の凡そ1/2ずつである。又、上記各スプラグ19は、回転運動に基づく遠心力により径方向外方に変位し、その一部が上記外輪16の内周面両端部に当接する。従って、上記オーバラン状態では、上記内輪14と上記外輪16との何れが停止して何れが回転しているかに関係なく、上記各スプラグ19の一部と上記外輪16の内周面両端部とが擦れ合う。この結果、これら各スプラグ19の一部と外輪16の内周面両端部との摩耗が進む事が避けられず、耐久性確保の面からは不利である。
本発明の一方向クラッチ内蔵型転がり軸受及び一方向クラッチ内蔵型プーリ装置は、この様な事情に鑑みて発明したものである。
【0011】
【課題を解決するための手段】
本発明の一方向クラッチ内蔵型転がり軸受及び一方向クラッチ内蔵型プーリ装置のうち、請求項1に記載した一方向クラッチ内蔵型転がり軸受は、内輪と、外輪と、複数個の円筒ころと、複数個のカム部材と、保持器と、弾性部材とを備える。
このうちの内輪は、外周面に円筒状の内輪軌道を設けている。
又、上記外輪は、内周面に円筒状の外輪軌道を設け、上記内輪と同心に配置されている。
又、上記各円筒ころは、上記外輪軌道と上記内輪軌道との間の環状空間に設けられている。
又、上記各カム部材は、上記環状空間の一部で円周方向に関する位相がこれら各円筒ころと異なる部分に配置されたもので、中心軸に直交する仮想平面に関する断面形状のうちの最大径が上記環状空間の径方向に関する厚さよりも大きく、同じく最小径がこの厚さよりも小さい。
又、上記保持器は、上記各円筒ころを転動自在に、上記各カム部材を揺動変位自在に、それぞれ保持する。
更に、上記弾性部材は上記各カム部材を、上記内輪軌道と上記外輪軌道との間で突っ張る方向に付勢する。
【0012】
又、好ましくは、請求項2に記載した様に、上記外輪の内周面のうちで外輪軌道の少なくとも軸方向一端に内向鍔部を、内輪の外周面のうちで内輪軌道の少なくとも軸方向他端に外向鍔部を、それぞれ設けると共に、これら両鍔部の内側面を各円筒ころの軸方向両端面に対向させる。この構成により、上記外輪の軸方向他端向き、上記内輪の軸方向一端向きのアキシアル荷重を支承自在とする。
【0013】
又、請求項5に記載した一方向クラッチ内蔵型転がり軸受の場合には、上記保持器に、内輪と外輪との相対回転時にこの保持器の回転に伴って各カム部材に加わる遠心力により、これら各カム部材が上記内輪及び外輪の径方向外方に変位する事を規制する抑え片を設けると共に、上記各カム部材を付勢する弾性部材のばね特性を、これら各カム部材の上記径方向外方への変位に伴って変形量が多くなる程弾性力が大きくなる非線形としている。そして、上記相対回転時に上記各カム部材の表面を、内輪軌道及び外輪軌道から離隔させる様に構成している。
【0014】
更に、請求項7に記載した一方向クラッチ内蔵型プーリ装置の場合には、外周面に無端ベルトを掛け渡し自在としたプーリの内周面と、回転軸に外嵌固定自在としたスリーブの外周面との間の環状空間内に、上述した様な一方向クラッチ内蔵型転がり軸受を組み付けている。
【0015】
【作用】
上述の様に構成する本発明の一方向クラッチ内蔵型転がり軸受及び一方向クラッチ内蔵型プーリ装置は、それぞれ複数個ずつの円筒ころとカム部材とを同一円周上に配置できる為、軸方向寸法を短縮して、小型・軽量化を図れる。又、サポート軸受として機能する、上記各円筒ころにより構成する円筒ころ軸受は、転がり接触部が軸方向に長い直線状である為、従来構造の様な単列深溝型玉軸受に比べて、モーメント荷重に対する剛性が高い。
【0016】
特に、請求項2に係る発明の様に、内向、外向両鍔部の内側面を上記各円筒ころの軸方向両端面に対向させてアキシアル荷重を支承自在とすれば、上記モーメント荷重に対する剛性をより向上させる事ができる。この為、プーリ等の回転伝達部材にモーメント荷重が作用した場合にも、この回転伝達部材の傾斜を抑えられて、無端ベルト等の他の部材、及び、一方向クラッチ内蔵型転がり軸受及び一方向クラッチ内蔵型プーリ装置の耐久性を向上させる事ができる。
【0017】
又、請求項5に係る発明の様に、内輪と外輪との相対回転時に上記各カム部材の表面を、内輪軌道及び外輪軌道から離隔させる様に構成すれば、各カム部材の表面と内輪軌道及び外輪軌道との摩擦を防止して、これら各カム部材の表面と内輪軌道及び外輪軌道との摩耗を抑え、耐久性確保を図れる。
【0018】
【発明の実施の形態】
図1〜4は、請求項1、2、4に対応する、本発明の実施の形態の第1例を示している。本例の一方向クラッチ内蔵型転がり軸受は、内輪21と、外輪22と、複数個の円筒ころ23、23と、複数個のカム部材24、24と、1個の保持器25と、それぞれが請求項1に記載した弾性部材である、これら各カム部材24、24と同数の弾性片43、43とを備える。
【0019】
このうちの内輪21は、断面L字形で全体を円環状とした主輪27と、円輪状の鍔輪28とを、軸方向に重ね合わせて成る。このうちの主輪27の外周面の中間部乃至一端部(図1の右端部)に円筒面状の内輪軌道29を、他端部に第一の外向鍔部30を、それぞれ形成している。又、上記鍔輪28を上記主輪27に重ね合わせた状態で、この鍔輪28の外径寄り部分が、上記内輪軌道29よりも径方向外方に突出する、第二の外向鍔部31を構成する。
【0020】
又、上記外輪22は、内周面の中央部に円筒面状の外輪軌道32を、同じく両端部に第一、第二の内向鍔部33、34を、それぞれ設け、上記内輪21と同心に配置されている。
又、上記各円筒ころ23、23は、上記外輪軌道32と上記内輪軌道29との間の環状空間35に、それぞれの転動面(外周面)をこれら外輪軌道32と内輪軌道29とに接触させた状態で、転動自在に設けられている。
【0021】
又、上記各カム部材24、24は、上記環状空間35の一部でこの環状空間35の円周方向に関する位相が上記各円筒ころ23、23と異なる部分に、それぞれ配置されている。本例の場合には、これら各円筒ころ23、23と上記各カム部材24とを、円周方向に関して交互に配置している。これら各カム部材24、24は、中心軸に直交する仮想平面に関する断面形状(図2〜4に表れる端面形状と同じ)は、上記外輪22及び内輪21の径方向に関して外側の中間部が、上記カム部材24、24の揺動中心となる凸部26となっている。そして、この凸部26と上記外輪軌道32との当接部を基準とする直径を考えた場合に、最大径DMAX が上記環状空間35の径方向に関する厚さT35よりも大きく、同じく最小径DMIN がこの厚さT35よりも小さい(DMAX >T35>DMIN )。具体的には、本例の場合に上記各カム部材24、24は、上記各円筒ころ23、23の外径よりも大きな外径を有する円柱状の素材の一部を除去した如き外周面を有する。そして、この外周面には、曲率半径の大きな第一円筒面部36と、曲率半径の小さな第二円筒面部37と、これら両円筒面部36、37の両端部同士を連続させる、第一、第二平坦面部38、39とを設けている。上記凸部26は、このうちの第二円筒面部37により構成される。又、上記各カム部材24、24の軸方向中央部で、組み付け状態で前記内輪21及び外輪22の径方向に関して外側の部分に、これら内輪21及び外輪22の円周方向に亙る凹溝40を形成している。この凹溝40の底面の形状は、中間部一端寄り(図2〜4の反時計方向前寄り)が最も突出した、山形としている。尚、カム部材としては、図示の様な形状のものに限らず、従来から一方向クラッチ用として知られている、各種形状のものを使用できる。
【0022】
又、前記保持器25は、上記各円筒ころ23、23を転動自在に、上記各カム部材24、24を揺動変位自在に、それぞれ保持する。本例の場合に上記保持器25は、ステンレス鋼板等の弾性を有する金属板を曲げ成形したり、或は弾性を有する合成樹脂を射出成形して成る。そして、この様な保持器25に、上記各円筒ころ23、23を転動自在に保持する為の第一のポケット41、41と、上記各カム部材24、24を自身の中心軸を中心とする揺動変位自在に保持する為の第二のポケット42、42とを、円周方向に関して交互に設けている。又、上記保持器25の一部に、弾性片43、43を設けている。これら各弾性片43、43は、第一、第二のポケット41、42を仕切る柱部44、44のうち、1個置きの柱部44、44の円周方向片端縁にそれぞれの基端部を連結された状態で、上記各第二のポケット42、42の軸方向中央部分に延出している。
【0023】
この様な各弾性片43、43の先端部は、上記各カム部材24、24に形成した上記凹溝40の底部のうちで最も突出した部分に、弾性的に当接させている。この最も突出した部分は、上述の様に上記凹溝40の中間部一端寄りに存在する為、上記各カム部材24、24には、図2〜4で反時計方向に揺動する方向の弾力が付与されている。そして、上記各カム部材24、24の最大径DMAX 部分と、上記各弾性片43、43の先端部と上記凹溝40との当接部との位置関係により、他の力が加わらない限り、上記各カム部材24、24が前記内輪軌道29と前記外輪軌道32との間で突っ張る傾向になる。
【0024】
上述の様に本例の一方向クラッチ内蔵型転がり軸受は、前記内輪21に対し前記外輪22が図2〜4の反時計方向に相対回転する傾向の場合には、これら内輪21と外輪22との間でトルクを伝達可能にする。この場合には、上記各カム部材24、24と、前記内輪軌道29及び外輪軌道32との摺接部に加わる摩擦力が、これら各カム部材24、24を図2〜4の反時計方向に揺動変位させる方向に、上記各弾性片43、43の弾力に付加された状態で加わる。この結果、上記各カム部材24、24が、図3に示す様に、上記内輪軌道29及び外輪軌道32との間で突っ張り、一方向クラッチがロック状態となって、上記内輪21と上記外輪22との間でトルクを伝達可能にする。
【0025】
これに対して、上記内輪21に対し上記外輪22が図2〜4の時計方向に相対回転する傾向の場合には、これら内輪21と外輪22との間でのトルクの伝達を遮断する。この場合には、上記各カム部材24、24と、上記外輪軌道32との摺接部に加わる摩擦力が、これら各カム部材24、24を図2〜4の時計方向に揺動変位させる方向に、上記各弾性片43、43の弾力に抗する状態で加わる。この結果、上記各カム部材24、24が、図4に示す様に、上記各弾性片43、43を弾性変形させながら変位し、これら各カム部材24、24と上記内輪軌道29との当接圧が喪失する。この状態では、一方向クラッチがオーバラン状態となって、これら各カム部材24、24と上記内輪21との間でのトルク伝達が行なわれなくなり、上記内輪21と上記外輪22との相対回転が許容される。
【0026】
上述の様に構成され作用する本例の一方向クラッチ内蔵型転がり軸受は、それぞれ複数個ずつの円筒ころ23、23とカム部材24、24とを、同一円周上に配置している。この為、前述の図12〜14に示した従来構造の第1〜2例の様に、1対のサポート軸受9、9の間部分にローラクラッチ8を配置した構造に比べ、軸方向寸法を短縮して、小型・軽量化を図れる。
【0027】
又、本例の構造の場合にサポート軸受として機能する、上記各円筒ころ23、23により構成する円筒ころ軸受は、これら各円筒ころ23、23の転動面と上記内輪軌道29及び前記外輪軌道32との転がり接触部が、軸方向に長い直線状である。この為、前述の図15に示した従来構造の第3例の様な、単列深溝型玉軸受に比べて、モーメント荷重に対する剛性が高い。しかも本例の場合には、前記内輪21の両端部外周面に設けた第一、第二の外向鍔部30、31及び上記外輪22の両端部内周面に設けた第一、第二の内向鍔部33、34と、上記各円筒ころ23、23の軸方向両端面との係合により、前記内輪21と前記外輪22との間に作用するアキシアル荷重を支承する。従って、上記モーメント荷重に対する剛性をより向上させる事ができる。尚、上記アキシアル荷重を支承する鍔部は、このアキシアル荷重の作用方向により異なり、第一の外向鍔部30と第二の内向鍔部34との組み合せ、又は、第二の外向鍔部31と第一の内向鍔部33との組み合せで、各方向のアキシアル荷重を支承する。
【0028】
この為、プーリ等、上記外輪22の周囲に設けた回転伝達部材に何れの方向のモーメント荷重が作用した場合にも、この回転伝達部材の傾斜を抑えて、上記プーリに掛け渡した無端ベルトの耐久性向上を図れる。又、上記転がり接触部に過大な面圧が作用する事も防止して、一方向クラッチ内蔵型転がり軸受自体の耐久性を向上させる事もできる。尚、上記モーメント荷重に対する剛性を高くする為には、上記第一、第二の外向鍔部30、31同士の間隔、及び、上記第一、第二の内向鍔部33、34同士の間隔は、上記各円筒ころ23、23の軸方向長さと同じか、この長さよりも僅かに大きいだけにする事が好ましい。これに対して、前記各カム部材24、24の軸方向長さは、上記各円筒ころ23、23の軸方向長さよりも短くして、これら各カム部材24、24と上記各鍔部30、31、33、34と擦れ合わない様にする事が好ましい(請求項3)。
【0029】
次に、図5〜6は、請求項1、4、5に対応する、本発明の実施の形態の第2例を示している。本例の場合には、内輪21と外輪22との相対回転時に、各カム部材24、24の表面と内輪軌道29及び外輪軌道32とが擦れ合う事を防止する為に、保持器25bに、弾性片43aと抑え片49とを設けている。即ち、上記各カム部材24、24を保持する為に上記保持器25bに設けた第二のポケット42、42の円周方向両側縁のうち、一方(時計方向後側)の側縁に弾性片43a、43aを、他方(時計方向前側)の側縁に抑え片49、49を、それぞれ円周方向に関して上記第二のポケット42、42内に突出する状態で形成している。
【0030】
上記各弾性片43a、43aと抑え片49、49とのうちの弾性片43a、43aは、上記各カム部材24、24に形成した凹溝40の中間部一端寄りに存在する突出部50に弾性的に当接してこれら各カム部材24、24に、上記内輪軌道29と上記外輪軌道32との間で突っ張る方向の弾力を付与している。本例の場合、上記各弾性片43a、43aのばね特性を、上記各カム部材24、24の上記径方向外方への変位に伴って変形量が多くなる程急激に弾性力が大きくなる、非線形としている。即ち、上記各弾性片43a、43aが上記突出部50を上記保持器25bの径方向内方に押圧する弾力は、この突出部50がこの径方向内方に存在する場合に比べて径方向外方に存在する場合が、二次曲線的に大きくなる様にしている。従って上記各弾性片43a、43aは、上記各カム部材24、24が遠心力に基づいて上記径方向外方に或る程度変位すると、これら各カム部材24、24の一端寄り(図6の左寄り)部分が、それ以上径方向外方に変位する事を抑える機能を有する。
【0031】
これに対して上記各抑え片49、49は、上記各カム部材24、24に形成した凹溝40内に挿入している。これら各抑え片49、49は、上記保持器25bの回転に伴う遠心力により上記各カム部材24、24がこの保持器25bの径方向外方に変位すると上記凹溝40の底面に当接し、これらカム部材24、24他端寄り(図6の右寄り)部分が、それ以上径方向外方に変位する事を抑える機能を有する。
【0032】
本例の場合には、前記第二のポケット42、42の円周方向両側縁に上述の様な弾性片43a、43aと抑え片49、49とを設ける事により、前記内輪21と外輪22との相対回転時に、上記各カム部材24、24の表面を、この内輪21の外周面に設けた内輪軌道29と、上記外輪22の内周面に設けた外輪軌道32とから離隔させる事ができる。即ち、本例の場合には、上記内輪21と外輪22との間で動力を伝達する(これら内輪21と外輪22とが同期して回転する=相対回転しない)際には、図6(A)に示す様に、上記各カム部材24が上記内輪軌道29と上記外輪軌道32との間で突っ張る。この状態での作用は、前述した第1例の場合と同様である。
【0033】
これに対して、上記内輪21と上記外輪22との間で動力を伝達せず、これら内輪21と外輪22とが相対回転する際には、各円筒ころ23、23の公転運動に伴って上記保持器25bが回転し、上記各カム部材24、24全体が、この保持器25bの径方向外方に変位する傾向になる。この状態では、上記各第二のポケット42、42の円周方向両側縁に設けた弾性片43a、43aと抑え片49、49とが、上記各カム部材24、24が、或る程度以上、上記径方向外方に変位する事を阻止する。従って、上記各弾性片43a、43aの設置位置及びばね特性と、上記各抑え片49、49の設置位置とを適切に規制すれば、上記内輪21と外輪22との相対回転時に上記各カム部材24、24の表面を、図6(B)に示す様に、上記内輪軌道29及び外輪軌道32から離隔させる事ができる。この結果、上記各カム部材24、24の表面と内輪軌道29及び外輪軌道32との摩擦を防止して、これら各カム部材24、24の表面と内輪軌道29及び外輪軌道32との摩耗を抑え、一方向クラッチ内蔵型転がり軸受の耐久性確保を図れる。
【0034】
次に、図7は、請求項1、4、5、6に対応する、本発明の実施の形態の第3例を示している。本例の場合には、弾性部材を、弾性片43bとバックアップ片51とから構成している。このうちの弾性片43bは、保持器25cと別体のばね片を、この保持器25cと一体のバックアップ片51に、接着、溶接、ねじ止め等により固定したもので、上述した第2例の場合と同様に、各カム部材24に形成した凹溝40の突出部50を、上記保持器25cの径方向内方に向け弾性的に押圧する。これに対して上記バックアップ片51は、内輪21及び外輪22の径方向に関して上記弾性片43bよりも外側に設けられており、十分な(遠心力に基づく各カム部材24の径方向外方への変位を阻止できる程度の)剛性を有する。この様なバックアップ片51は、遠心力に基づく上記各カム部材24の変位に伴って上記弾性片43bが弾性変形した状態でこの弾性片43bをバックアップし、この弾性片43bがそれ以上弾性変形する事を阻止する。
【0035】
この様な本例の場合には、上記内輪21と上記外輪22との相対回転時に上記保持器25cの回転に伴って上記カム部材24がこの保持器25cの径方向外方に変位する傾向になった場合に、このカム部材24の一端寄り(図7の左寄り)部分の、上記径方向に関する位置決めを正確に行なえる。この為、上記カム部材24の表面と内輪軌道29及び外輪軌道32との擦れ合い防止を確実に図れる。その他の構成及び作用は、前述した第2例の場合と同様である。
【0036】
次に、図8は、本発明の実施の形態の第4例を示している。本例の場合には、外輪22の両端部内周面に形成した係止溝にそれぞれの外周縁部を係止したシールリング47、47の内周縁部を、それぞれ内輪21の一部に、全周に亙って摺接させている。本例の場合にはこの構成により、円筒ころ23及びカム部材24を収納した環状空間35内のグリースが外部に漏洩したり、周囲に存在する異物がこの環状空間35内に入り込む事を防止している。その他の部分の構成及び作用に就いては、前述した第1例と同様である。
【0037】
次に、図9は、本発明の実施の形態の第5例を示している。本例の場合には、内輪21aを一体型とする代わりに、外輪22aを、1対の外輪素子48、48を軸方向に突き合わせて成る2分割型としている。その他の部分の構成及び作用に就いては、上述した第4例と同様である。
【0038】
次に、図10は、請求項7に対応する、本発明の実施の形態の第6例を示している。本例の場合には、外周面に無端ベルトを掛け渡し自在としたプーリ11aの内周面と、回転軸に外嵌固定自在としたスリーブ12aの外周面との間に、上述の図8に示した構造を有する一方向クラッチ内蔵型転がり軸受を組み付けている。この構成により、上記プーリ11aと上記スリーブ12aとの間で、所定方向の回転力の伝達のみを自在としている。一方向クラッチ内蔵型転がり軸受の構造及び作用に就いては、先に述べた通りであるから、重複する説明は省略する。
【0039】
次に、図11は、請求項7〜9に対応する、本発明の実施の形態の第7例を示している。本例の場合には、プーリ11bの内周面に直接外輪軌道32aを形成する事により独立した外輪を省略すると共に、スリーブ12bの外周面に直接内輪軌道29aを形成する事により独立した内輪を省略している。その他の部分の構成及び作用に就いては、上述した第6例の場合と同様であるから、重複する説明は省略する。
【0040】
尚、本発明は、図示の様な構造に限らず、特許請求の範囲の記載を満たす範囲で、適宜変更実施する事もできる。例えば、一方向クラッチがロック状態で使用される事がオーバラン状態で使用される場合よりも多い用途であれば、カム部材として、遠心力に基づいてロック方向に変位するものを使用し、エンゲージ方式の一方向クラッチを構成しても良い。
【0041】
【発明の効果】
本発明は、以上に述べた通り構成され作用するので、信頼性及び耐久性を確保しつつ、一方向クラッチ内蔵型転がり軸受及び一方向クラッチ内蔵型プーリ装置の軸方向寸法を短縮して、小型・軽量化を図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を示す、中心軸を含む仮想平面に関する断面図。
【図2】一部を省略して示す、図1のA−A断面図。
【図3】一方向クラッチのロック状態を示す、図2のB部拡大図。
【図4】同じくオーバラン状態を示す、図2のB部拡大図。
【図5】本発明の実施の形態の第2例を示す、図2と同様の断面図。
【図6】一方向クラッチのロック状態とオーバラン状態とを示す、図5のC部拡大図。
【図7】本発明の実施の形態の第3例を示す、図6と同様の図。
【図8】本発明の実施の形態の第4例を示す、図1と同様の図。
【図9】同第5例を示す、図1と同様の図。
【図10】同第6例を示す、図1と同様の図。
【図11】同第7例を示す、図1と同様の図。
【図12】従来構造の第1例を示す断面図。
【図13】同じく部分拡大断面図。
【図14】従来構造の第2例を示す、中心軸を含む仮想平面に関する半部断面図。
【図15】同第3例を示す、中心軸を含む仮想平面に関する断面図。
【符号の説明】
1 エンジン
2 変速機
3 フライホイール
4 リングギヤ
5 ピニオンギヤ
6 スタータモータ
7 出力軸
8 ローラクラッチ
9 サポート軸受
10 シールリング
11、11a、11b プーリ
12、12a、12b スリーブ
13 環状空間
14 内輪
15 内輪軌道
16 外輪
17 外輪軌道
18 玉
19 スプラグ
20 保持器
21、21a 内輪
22、22a 外輪
23 円筒ころ
24 カム部材
25、25a、25b、25c 保持器
26 凸部
27 主輪
28 鍔輪
29、29a 内輪軌道
30 第一の外向鍔部
31 第二の外向鍔部
32、32a 外輪軌道
33 第一の内向鍔部
34 第二の内向鍔部
35 環状空間
36 第一円筒面部
37 第二円筒面部
38 第一平坦部
39 第二平坦部
40 凹溝
41 第一のポケット
42 第二のポケット
43、43a、43b 弾性片
44 柱部
47 シールリング
48 外輪素子
49 抑え片
50 突出部
51 バックアップ片
[0001]
TECHNICAL FIELD OF THE INVENTION
The rolling bearing with a built-in one-way clutch according to the present invention transmits only rotational force in a predetermined direction, and is incorporated in, for example, a power transmission device for an idling stop vehicle or a driven pulley provided on a rotating shaft of an alternator. Use it in the condition. The pulley device with a built-in one-way clutch, which is an object of the present invention, is used as a driven pulley provided on the rotating shaft of the alternator, or as a driving pulley or a driven pulley constituting the power transmission device.
[0002]
[Prior art]
As a power transmission device for an idling stop vehicle incorporating a one-way clutch, Patent Document 1 describes a structure as shown in FIGS. In the case of this conventional structure, a ring gear 4 is provided between the engine 1 and the transmission 2 and on the outer peripheral edge of the flywheel 3 that rotates together with the crankshaft of the engine 1. The ring gear 4 and the pinion gear 5 are always meshed. A distal end (left end in FIG. 12) of an output shaft 7 of a starter motor 6 for driving the pinion gear 5 is inserted concentrically with the pinion gear 5 on the inner diameter side of the pinion gear 5. A roller clutch 8, which is a one-way clutch, and a pair of support bearings 9, 9, and seal rings 10, 10, respectively, are provided between the inner peripheral surface of the pinion gear 5 and the outer peripheral surface of the output shaft 7. Is provided.
[0003]
According to the starting device for an automobile engine configured as described above, the clutch pedal (or the accelerator pedal) is depressed in order to restart the automobile in which the engine is stopped (idling stop) without idling when the vehicle stops. It is not necessary to advance the pinion gear 5 from the time when the starter motor 6 is started to restart the engine 1. That is, since the pinion gear 5 is always meshed with the ring gear 4, if the starter motor 6 is started by a signal generated based on the operation of restarting the vehicle, the roller clutch 8 is connected, Power is transmitted from the output shaft 7 to the pinion gear 5 so that the engine 1 can be restarted. For this reason, the time lag existing between the start of the operation for restarting the vehicle and the actual restart of the engine 1 is reduced, and the driver does not feel uncomfortable. On the other hand, when the engine 1 is restarted and the rotation speed of the pinion gear 5 becomes faster than the rotation speed of the output shaft 7, the connection of the roller clutch 8 is disconnected and the rotation of the started engine 1 is reduced. The transmission to the starter motor 6 is prevented. Therefore, the starter motor 6 does not become a load for the operation of the engine 1. In the case where the power transmission between the output shaft 7 of the starter motor 6 and the crankshaft of the engine 1 is performed by an endless belt, the pulley provided at the end of the output shaft 7 is a one-way clutch built-in type. Thus, the same operation and effect can be obtained.
[0004]
In addition, as described in, for example, Patent Document 2, etc., it has been conventionally conceived to incorporate a pulley incorporating a one-way clutch at an end of a rotating shaft of an alternator, and a part of the pulley has been implemented. FIG. 14 shows an example of such a pulley device with a built-in one-way clutch. In the case of this conventional structure, one pair is provided in the annular space 13 between the inner peripheral surface of the pulley 11 on which the endless belt can be freely wound around the outer peripheral surface and the outer peripheral surface of the sleeve 12 which can be externally fixed on the rotating shaft. Are arranged at an interval from each other. The roller clutch 8 is disposed between the two rolling bearings 9. When such a one-way clutch built-in pulley device is used as a driven pulley for an alternator, rotation is transmitted from the pulley 11 to a rotation shaft on which the sleeve 12 is externally fixed. No rotation is transmitted to the pulley 11. For this reason, the durability of the endless belt can be improved by keeping the direction of action of the frictional force on the endless belt stretched over the pulley 11 constant. Further, when the rotation speed of the engine suddenly decreases, the rotor of the alternator is rotated by inertia to prevent the rotation speed of the rotor from suddenly decreasing, thereby improving the power generation efficiency of the alternator.
[0005]
Further, Patent Documents 3 to 5 disclose that a rolling element constituting a rolling bearing and a sprag constituting a one-way clutch are alternately arranged in the circumferential direction between an outer peripheral surface of an inner race and an inner peripheral surface of an outer race. An arranged one-way clutch-integrated rolling bearing is described. FIG. 15 shows a rolling bearing with a built-in one-way clutch described in Patent Document 4 of the above. In the case of this conventional structure, a deep groove type inner raceway 15 is formed at the center of the outer peripheral surface of the inner race 14, and a deep groove type outer raceway 17 is formed at the center of the inner peripheral surface of the outer race 16, respectively. A plurality of balls 18 are held between the rollers 18 and 17 so as to freely roll. In addition, a plurality of sprags 19 are arranged at portions deviating from the respective balls 18 in the circumferential direction, and these sprags 19 are engaged with both ends of the outer peripheral surface of the inner ring 14 and both ends of the inner peripheral surface of the outer ring 16. It is free to fit.
[0006]
[Patent Document 1]
JP 2000-297730 A
[Patent Document 2]
JP 2000-320650 A
[Patent Document 3]
JP-A-9-96325
[Patent Document 4]
JP-A-10-103390
[Patent Document 5]
JP 2000-2271 A
[0007]
[Problems to be solved by the invention]
In the case of the structure shown in FIGS. 12 to 13 or 14 described above, which is conventionally known, for example, as described in Patent Documents 1 and 2, a position where the roller clutch 8 which is a one-way clutch is sandwiched from both axial sides. Since a pair of support bearings 9 and 9 are provided in each case, the axial dimension and cost are increased.
On the other hand, in the case of the structure described in Patent Documents 3 to 5 as shown in FIG. 15, for example, the number of components is small, so that the axial dimension can be reduced. Although there is a possibility that the cost can be reduced, it is considered difficult to secure sufficient durability and reliability.
[0008]
For example, when a pulley device with a built-in one-way clutch equipped with a rolling bearing with a built-in one-way clutch is incorporated in a power transmission mechanism for an idling stop vehicle, not only a radial load but also a pulley 11 (see FIG. 14) is generated. And a moment load is also applied. Such a moment load is based on a misalignment (misalignment of the center position, non-parallel of the center axis) existing between the pulley 11 and another pulley fixed to the crankshaft of the engine. From the endless belt stretched between the pulleys 11. The moment load may cause the pulley 11 to oscillate during operation. When such an angular run-out occurs, the endless belt wrapped around the pulley 11 is worn unevenly, and the rolling surface of the ball 18 is in contact with the inner raceway 15 and the outer raceway 17, and each sprag 19 and the inner race 14 Of the outer ring 16 and the both ends of the inner peripheral surface of the outer ring 16 become defective. As a result, not only is the durability of the one-way clutch built-in type pulley device impaired, but also the original function cannot be sufficiently exhibited, and the reliability is reduced.
[0009]
In order to prevent the reduction in durability and reliability as described above, it is necessary to increase the rigidity of the rolling bearing (see FIG. 15) for allowing relative rotation between the inner ring 14 and the outer ring 16 with respect to moment load. is there. On the other hand, in the case of the conventional structure shown in FIG. 15, since the rolling bearing is a single row deep groove ball bearing, it is difficult to sufficiently increase the rigidity.
[0010]
Further, in the case of the conventional structure shown in FIG. 15, in a state where the inner race 14 and the outer race 16 are relatively rotated (overrun state), each sprag 19 and both ends of the inner peripheral surface of the outer race 16 rub against each other. Things are inevitable, and it is difficult to secure sufficient durability from this aspect.
That is, in the case of the conventional structure shown in FIG. 15, each of the balls 18 and each of the sprags 19 are held by the same cage 20, and when the inner ring 14 and the outer ring 16 rotate relative to each other, this cage 20 rotates with the orbital motion of each ball 18. Therefore, the sprags 19 revolve with the balls 18. The relative rotation speed of the inner ring 14 and the outer ring 16 due to the revolving motion is approximately ず つ of the relative rotation speed of the inner ring 14 and the outer ring 16. The sprags 19 are displaced radially outward by centrifugal force based on the rotational motion, and a part of the sprags 19 comes into contact with both ends of the inner peripheral surface of the outer ring 16. Accordingly, in the overrun state, regardless of which of the inner ring 14 and the outer ring 16 is stopped and which is rotating, a part of each of the sprags 19 and both ends of the inner peripheral surface of the outer ring 16 are formed. rub against. As a result, it is inevitable that a part of each of the sprags 19 and both ends of the inner peripheral surface of the outer ring 16 are worn, which is disadvantageous from the viewpoint of ensuring durability.
The rolling bearing with built-in one-way clutch and the pulley device with built-in one-way clutch of the present invention have been made in view of such circumstances.
[0011]
[Means for Solving the Problems]
Among the rolling bearings with a built-in one-way clutch and the pulley device with a built-in one-way clutch according to the present invention, the rolling bearing with a built-in one-way clutch according to claim 1 has an inner ring, an outer ring, a plurality of cylindrical rollers, and a plurality of cylindrical rollers. A cam member, a retainer, and an elastic member.
The inner race has a cylindrical inner raceway on its outer peripheral surface.
The outer race has a cylindrical outer raceway on its inner peripheral surface and is arranged concentrically with the inner race.
Each of the cylindrical rollers is provided in an annular space between the outer raceway and the inner raceway.
In addition, each of the cam members is arranged in a part of the annular space, in which a phase in a circumferential direction is different from those of the cylindrical rollers, and has a maximum diameter of a sectional shape with respect to an imaginary plane orthogonal to the central axis. Is larger than the radial thickness of the annular space, and the minimum diameter is also smaller than this thickness.
The retainer holds the cylindrical rollers so as to freely roll, and the cam members so as to swing freely.
Further, the elastic member urges each of the cam members in a direction in which the cam member stretches between the inner raceway and the outer raceway.
[0012]
Preferably, as described in claim 2, at least one axial end of the outer raceway in the inner peripheral surface of the outer race has an inward flange portion, and at least one of the inner raceways in the outer peripheral surface of the inner raceway has an inner peripheral surface. Outer flanges are provided at the ends, and the inner surfaces of both flanges are opposed to both axial end surfaces of each cylindrical roller. With this configuration, it is possible to freely support an axial load in the other axial direction of the outer ring and one axial direction of the inner ring.
[0013]
Further, in the case of the rolling bearing with a built-in one-way clutch according to claim 5, the centrifugal force applied to each cam member along with the rotation of the retainer at the time of relative rotation between the inner ring and the outer ring, Each of the cam members is provided with a suppressing piece for restricting the inner ring and the outer ring from being displaced radially outward, and the spring characteristic of the elastic member for urging each of the cam members is adjusted in accordance with the radial direction of each of the cam members. The nonlinearity is such that the elastic force increases as the amount of deformation increases with the outward displacement. The surface of each cam member is separated from the inner raceway and the outer raceway during the relative rotation.
[0014]
Further, in the case of the pulley device with a built-in one-way clutch according to claim 7, an inner peripheral surface of a pulley in which an endless belt can be freely wound around an outer peripheral surface, and an outer peripheral surface of a sleeve which can be externally fitted and fixed to a rotating shaft. A rolling bearing with a built-in one-way clutch as described above is assembled in an annular space between the bearings.
[0015]
[Action]
The one-way clutch built-in rolling bearing and the one-way clutch built-in pulley device of the present invention configured as described above can be arranged in a plurality of cylindrical rollers and cam members on the same circumference. And reduce the size and weight. In addition, the cylindrical roller bearing, which is composed of the above-described cylindrical rollers, which functions as a support bearing, has a rolling contact portion that is linear in the axial direction and is longer than the single-row deep groove ball bearing of the conventional structure. High rigidity to load.
[0016]
In particular, as in the invention according to claim 2, if the inner surfaces of the inward and outward flange portions are opposed to both axial end surfaces of each of the cylindrical rollers so that an axial load can be supported, the rigidity against the moment load can be reduced. It can be further improved. Therefore, even when a moment load is applied to a rotation transmitting member such as a pulley, the inclination of the rotation transmitting member is suppressed, and other members such as an endless belt, a one-way clutch built-in rolling bearing and a one-way The durability of the pulley device with a built-in clutch can be improved.
[0017]
Further, if the surface of each of the cam members is separated from the inner raceway and the outer raceway when the inner ring and the outer race rotate relative to each other as in the invention according to claim 5, the surface of each cam member and the inner raceway are formed. In addition, the friction between the inner ring raceway and the outer raceway and the surface of each cam member is prevented by preventing friction with the outer raceway, thereby ensuring durability.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 4 show a first example of an embodiment of the present invention corresponding to claims 1, 2, and 4. FIG. The one-way clutch built-in type rolling bearing of the present example includes an inner ring 21, an outer ring 22, a plurality of cylindrical rollers 23, 23, a plurality of cam members 24, 24, and a single retainer 25. Each of the cam members 24, 24, which is the elastic member described in claim 1, is provided with the same number of elastic pieces 43, 43.
[0019]
The inner ring 21 is formed by laminating a main wheel 27 having an L-shaped cross section and an annular shape as a whole, and a collar ring 28 having an annular shape in the axial direction. A cylindrical inner raceway 29 is formed at the middle or one end (the right end in FIG. 1) of the outer peripheral surface of the main wheel 27, and a first outward flange 30 is formed at the other end. . In a state where the collar ring 28 is superimposed on the main wheel 27, a portion of the collar ring 28 closer to the outer diameter projects radially outward from the inner ring raceway 29, and a second outward flange portion 31. Is composed.
[0020]
The outer race 22 is provided with a cylindrical outer raceway 32 at the center of the inner peripheral surface, and first and second inward flanges 33 and 34 at both ends thereof, respectively, and concentrically with the inner race 21. Are located.
Each of the cylindrical rollers 23 and 23 comes into contact with an annular space 35 between the outer raceway 32 and the inner raceway 29 and a rolling surface (outer peripheral surface) thereof with the outer raceway 32 and the inner raceway 29. In this state, it is provided so as to roll freely.
[0021]
Each of the cam members 24 is disposed in a portion of the annular space 35 where the phase of the annular space 35 in the circumferential direction is different from that of each of the cylindrical rollers 23. In the case of this example, these cylindrical rollers 23, 23 and the cam members 24 are alternately arranged in the circumferential direction. Each of the cam members 24, 24 has a cross-sectional shape (same as an end surface shape shown in FIGS. 2 to 4) on an imaginary plane orthogonal to the central axis. The projections 26 serve as swing centers of the cam members 24, 24. When the diameter based on the contact portion between the convex portion 26 and the outer raceway 32 is considered, the maximum diameter D MAX Is the thickness T of the annular space 35 in the radial direction. 35 Larger than the minimum diameter D MIN Is this thickness T 35 Less than (D MAX > T 35 > D MIN ). Specifically, in the case of this example, each of the cam members 24, 24 has an outer peripheral surface obtained by removing a part of a columnar material having an outer diameter larger than the outer diameter of each of the cylindrical rollers 23, 23. Have. On the outer peripheral surface, a first cylindrical surface portion 36 having a large radius of curvature, a second cylindrical surface portion 37 having a small radius of curvature, and both first and second cylindrical surface portions 36 and 37 are connected. Flat surface portions 38 and 39 are provided. The convex portion 26 is constituted by the second cylindrical surface portion 37 among them. Further, a concave groove 40 extending in the circumferential direction of the inner ring 21 and the outer ring 22 is provided at a central portion in the axial direction of each of the cam members 24 and 24 in a radially outer portion of the inner ring 21 and the outer ring 22 in an assembled state. Has formed. The shape of the bottom surface of the concave groove 40 is a mountain-like shape in which the one end near the middle portion (counterclockwise front in FIGS. 2 to 4) projects most. The cam member is not limited to the shape shown in the figure, but may be any of various shapes conventionally known for one-way clutches.
[0022]
The retainer 25 holds the cylindrical rollers 23, 23 so as to freely roll, and the cam members 24, 24 so as to freely swing. In the case of this example, the retainer 25 is formed by bending an elastic metal plate such as a stainless steel plate or by injection molding an elastic synthetic resin. Then, the first pockets 41, 41 for holding the respective cylindrical rollers 23, 23 in such a manner that the cylindrical rollers 23, 23 can be freely rolled, and the respective cam members 24, 24 are centered on their own central axes. The second pockets 42, 42 for holding the swinging freely are alternately provided in the circumferential direction. Further, elastic pieces 43, 43 are provided in a part of the retainer 25. Each of the elastic pieces 43, 43 has a base end portion at one circumferential end of every other one of the pillar portions 44, 44 that partition the first and second pockets 41, 42. Are connected to each other and extend to axially central portions of the second pockets 42, 42.
[0023]
The distal ends of the elastic pieces 43, 43 are elastically brought into contact with the most protruding portions of the bottoms of the concave grooves 40 formed in the cam members 24, 24. Since the most protruding portion exists near one end of the intermediate portion of the concave groove 40 as described above, each of the cam members 24, 24 has an elastic force in the direction of swinging counterclockwise in FIGS. Is given. The maximum diameter D of each of the cam members 24, 24 MAX Due to the positional relationship between the portion and the contact portion between the tip of each of the elastic pieces 43, 43 and the concave groove 40, the cam members 24, 24 are connected to the inner raceway 29 unless other force is applied. There is a tendency to stretch between the outer raceway 32.
[0024]
As described above, the one-way clutch-equipped rolling bearing of the present embodiment includes the inner ring 21 and the outer ring 22 when the outer ring 22 has a tendency to rotate counterclockwise in FIGS. Between the torques. In this case, the frictional force applied to the sliding portions between the cam members 24 and 24 and the inner raceway 29 and the outer raceway 32 causes the cam members 24 and 24 to move counterclockwise in FIGS. The elastic pieces 43 are added to the elastic pieces 43 in the direction in which they are oscillated. As a result, as shown in FIG. 3, the cam members 24, 24 are stretched between the inner raceway 29 and the outer raceway 32, and the one-way clutch is locked, so that the inner race 21 and the outer race 22 are locked. Torque can be transmitted between and.
[0025]
On the other hand, when the outer ring 22 tends to rotate clockwise in FIGS. 2 to 4 with respect to the inner ring 21, transmission of torque between the inner ring 21 and the outer ring 22 is interrupted. In this case, the frictional force applied to the sliding contact portion between the cam members 24, 24 and the outer raceway 32 causes the cam members 24, 24 to swing and displace clockwise in FIGS. To the elastic pieces 43, 43 against the elasticity of the elastic pieces 43. As a result, as shown in FIG. 4, the cam members 24, 24 are displaced while elastically deforming the elastic pieces 43, 43, and the cam members 24, 24 abut on the inner raceway 29. Pressure is lost. In this state, the one-way clutch is in an overrun state, so that torque transmission between these cam members 24 and 24 and the inner ring 21 is not performed, and the relative rotation between the inner ring 21 and the outer ring 22 is allowed. Is done.
[0026]
In the rolling bearing with a built-in one-way clutch constructed and operated as described above, a plurality of cylindrical rollers 23, 23 and cam members 24, 24 are respectively arranged on the same circumference. Therefore, as compared with the structure in which the roller clutch 8 is disposed between the pair of support bearings 9 as in the first and second examples of the conventional structure shown in FIGS. It is possible to shorten the size and reduce the size and weight.
[0027]
In the case of the structure of the present example, the cylindrical roller bearing constituted by the cylindrical rollers 23, 23 functioning as a support bearing is composed of the rolling surfaces of the cylindrical rollers 23, 23, the inner raceway 29, and the outer raceway. The rolling contact portion with the shaft 32 has a linear shape elongated in the axial direction. Therefore, the rigidity against a moment load is higher than that of the single row deep groove type ball bearing as in the third example of the conventional structure shown in FIG. Moreover, in the case of this example, the first and second outward flange portions 30 and 31 provided on the outer peripheral surfaces of both ends of the inner ring 21 and the first and second inward surfaces provided on the inner peripheral surfaces of both ends of the outer ring 22 are provided. An axial load acting between the inner race 21 and the outer race 22 is supported by engagement between the flanges 33 and 34 and the axial end surfaces of the cylindrical rollers 23 and 23. Therefore, the rigidity against the moment load can be further improved. The flange supporting the axial load varies depending on the direction in which the axial load acts, and the combination of the first outward flange 30 and the second inward flange 34, or the second outward flange 31, In combination with the first inward flange portion 33, an axial load in each direction is supported.
[0028]
For this reason, even when a moment load in any direction is applied to the rotation transmitting member provided around the outer ring 22 such as a pulley, the inclination of the rotation transmitting member is suppressed, and the endless belt is stretched over the pulley. The durability can be improved. In addition, it is possible to prevent an excessive surface pressure from acting on the rolling contact portion, thereby improving the durability of the rolling bearing with a built-in one-way clutch. In order to increase the rigidity against the moment load, the distance between the first and second outward flanges 30 and 31 and the distance between the first and second inward flanges 33 and 34 are It is preferable that the length of each of the cylindrical rollers 23 is equal to or slightly larger than the axial length. On the other hand, the axial length of each of the cam members 24, 24 is shorter than the axial length of each of the cylindrical rollers 23, 23, so that each of the cam members 24, 24 and each of the flange portions 30, It is preferable not to rub against 31, 33, 34 (claim 3).
[0029]
Next, FIGS. 5 and 6 show a second example of the embodiment of the present invention corresponding to claims 1, 4 and 5. FIG. In the case of this example, when the inner ring 21 and the outer ring 22 are rotated relative to each other, the retainer 25b has elasticity to prevent the surfaces of the cam members 24, 24 from rubbing against the inner ring raceway 29 and the outer ring raceway 32. A piece 43a and a holding piece 49 are provided. That is, the elastic piece is attached to one (clockwise rear side) of the circumferential side edges of the second pockets 42 provided on the retainer 25b for holding the cam members 24. 43a, 43a are formed on the other side (clockwise front side) of the holding pieces 49, 49 so as to protrude into the second pockets 42, 42 in the circumferential direction, respectively.
[0030]
The elastic pieces 43a, 43a of the elastic pieces 43a, 43a and the holding pieces 49, 49 are elastically attached to the protruding portion 50 located near one end of the middle portion of the concave groove 40 formed in each of the cam members 24, 24. The cam members 24, 24 are provided with elasticity in a direction in which the cam members 24, 24 are stretched between the inner raceway 29 and the outer raceway 32. In the case of this example, the spring characteristics of the elastic pieces 43a, 43a are set such that the elastic force increases rapidly as the amount of deformation increases with the radial displacement of the cam members 24, 24. Non-linear. That is, the elasticity of the elastic pieces 43a, 43a pressing the projecting portion 50 radially inward of the retainer 25b is smaller than that of the case where the projecting portion 50 is present radially inward. Is present on the other side so as to increase in a quadratic curve. Therefore, when the cam members 24, 24 are displaced to the outside in the radial direction to some extent due to centrifugal force, the elastic pieces 43a, 43a are shifted toward one end of the cam members 24, 24 (to the left in FIG. 6). ) Has a function of suppressing further displacement of the portion radially outward.
[0031]
On the other hand, each of the pressing pieces 49, 49 is inserted into a concave groove 40 formed in each of the cam members 24, 24. When the cam members 24, 24 are displaced radially outward of the retainer 25b due to centrifugal force caused by the rotation of the retainer 25b, the pressing pieces 49, 49 contact the bottom surface of the concave groove 40, These cam members 24, 24 have a function to prevent the other end (to the right in FIG. 6) from being further displaced radially outward.
[0032]
In the case of this example, the inner ring 21 and the outer ring 22 are provided by providing the elastic pieces 43a, 43a and the holding pieces 49, 49 as described above on both circumferential edges of the second pockets 42, 42. During the relative rotation, the surfaces of the cam members 24, 24 can be separated from the inner raceway 29 provided on the outer peripheral surface of the inner race 21 and the outer raceway 32 provided on the inner peripheral surface of the outer race 22. . That is, in the case of this example, when power is transmitted between the inner ring 21 and the outer ring 22 (the inner ring 21 and the outer ring 22 rotate synchronously = do not rotate relative to each other), FIG. ), Each of the cam members 24 stretches between the inner raceway 29 and the outer raceway 32. The operation in this state is similar to that of the first example described above.
[0033]
On the other hand, when power is not transmitted between the inner ring 21 and the outer ring 22, and the inner ring 21 and the outer ring 22 rotate relative to each other, the above-described rotation occurs with the revolving motion of the cylindrical rollers 23, 23. The retainer 25b rotates, and the cam members 24, 24 as a whole tend to be displaced radially outward of the retainer 25b. In this state, the elastic members 43a, 43a and the holding pieces 49, 49 provided on both circumferential sides of the second pockets 42, 42 are formed by the cam members 24, 24 to a certain extent. The displacement in the radially outward direction is prevented. Therefore, if the installation positions and spring characteristics of the elastic pieces 43a, 43a and the installation positions of the pressing pieces 49, 49 are appropriately regulated, the cam members at the time of relative rotation between the inner ring 21 and the outer ring 22 are provided. As shown in FIG. 6 (B), the surfaces of 24, 24 can be separated from the inner raceway 29 and the outer raceway 32. As a result, friction between the surfaces of the cam members 24, 24 and the inner raceway 29 and the outer raceway 32 is prevented, and wear on the surfaces of the cam members 24, 24 and the inner raceway 29 and the outer raceway 32 is suppressed. In addition, the durability of the rolling bearing with a built-in one-way clutch can be ensured.
[0034]
Next, FIG. 7 shows a third example of the embodiment of the present invention corresponding to claims 1, 4, 5, and 6. In the case of this example, the elastic member is constituted by the elastic piece 43b and the backup piece 51. The elastic piece 43b is formed by fixing a spring piece separate from the retainer 25c to the backup piece 51 integrated with the retainer 25c by bonding, welding, screwing, or the like. Similarly to the case, the protrusion 50 of the concave groove 40 formed in each cam member 24 is elastically pressed inward in the radial direction of the retainer 25c. On the other hand, the backup piece 51 is provided outside the elastic piece 43b with respect to the radial direction of the inner ring 21 and the outer ring 22 and has a sufficient amount (toward the radial direction outward of each cam member 24 based on centrifugal force). (To the extent that displacement can be prevented). Such a backup piece 51 backs up the elastic piece 43b in a state where the elastic piece 43b is elastically deformed with the displacement of each of the cam members 24 due to the centrifugal force, and the elastic piece 43b is further elastically deformed. Prevent things.
[0035]
In the case of such an example, the cam member 24 tends to be displaced radially outward of the retainer 25c with the rotation of the retainer 25c when the inner ring 21 and the outer ring 22 rotate relative to each other. In this case, the position of the cam member 24 near the one end (to the left in FIG. 7) can be accurately positioned in the radial direction. For this reason, the friction between the surface of the cam member 24 and the inner raceway 29 and the outer raceway 32 can be reliably prevented. Other configurations and operations are the same as those of the above-described second example.
[0036]
Next, FIG. 8 shows a fourth example of the embodiment of the present invention. In the case of the present example, the inner peripheral edges of the seal rings 47, 47 in which the respective outer peripheral edges are locked in the locking grooves formed in the inner peripheral surfaces of both ends of the outer ring 22, respectively, are partially attached to the inner ring 21. Sliding contact is made over the circumference. In the case of this example, this configuration prevents the grease in the annular space 35 containing the cylindrical roller 23 and the cam member 24 from leaking to the outside, and preventing foreign substances existing around from entering the annular space 35. ing. The configuration and operation of the other parts are the same as in the first example described above.
[0037]
Next, FIG. 9 shows a fifth example of the embodiment of the present invention. In the case of this example, instead of forming the inner ring 21a as an integral type, the outer ring 22a is formed as a two-part type formed by abutting a pair of outer ring elements 48, 48 in the axial direction. The configuration and operation of the other parts are the same as in the above-described fourth example.
[0038]
Next, FIG. 10 shows a sixth example of the embodiment of the present invention corresponding to claim 7. In the case of this example, between the inner peripheral surface of the pulley 11a that allows the endless belt to be freely wrapped around the outer peripheral surface and the outer peripheral surface of the sleeve 12a that can be externally fixed to the rotating shaft, as shown in FIG. The one-way clutch built-in rolling bearing having the structure shown is assembled. With this configuration, only the transmission of the rotational force in the predetermined direction can be freely performed between the pulley 11a and the sleeve 12a. The structure and operation of the rolling bearing with a built-in one-way clutch are the same as those described above, and a duplicate description will be omitted.
[0039]
Next, FIG. 11 shows a seventh example of the embodiment of the present invention corresponding to claims 7 to 9. In the case of this example, the independent outer ring is omitted by forming the outer raceway 32a directly on the inner circumferential surface of the pulley 11b, and the independent inner race is formed by forming the inner raceway 29a directly on the outer circumferential surface of the sleeve 12b. Omitted. The configuration and operation of the other parts are the same as in the case of the above-described sixth example, and thus redundant description will be omitted.
[0040]
The present invention is not limited to the structure shown in the drawings, but can be appropriately modified and implemented within a range satisfying the description of the claims. For example, if the one-way clutch is used in the locked state more frequently than when the one-way clutch is used in the overrun state, a cam member that is displaced in the locking direction based on centrifugal force is used as the cam member. May be constituted.
[0041]
【The invention's effect】
Since the present invention is configured and operates as described above, it is possible to reduce the axial dimension of the one-way clutch built-in rolling bearing and the one-way clutch built-in pulley device while ensuring reliability and durability, thereby reducing the size. -Lightening can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first example of an embodiment of the present invention and relating to a virtual plane including a central axis.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
FIG. 3 is an enlarged view of a portion B in FIG. 2 showing a locked state of the one-way clutch.
FIG. 4 is an enlarged view of a portion B in FIG. 2 similarly showing an overrun state.
FIG. 5 is a sectional view similar to FIG. 2, showing a second example of the embodiment of the present invention;
FIG. 6 is an enlarged view of a part C in FIG. 5, showing a locked state and an overrun state of the one-way clutch.
FIG. 7 is a view similar to FIG. 6, showing a third example of the embodiment of the present invention;
FIG. 8 is a view similar to FIG. 1, showing a fourth example of the embodiment of the present invention.
FIG. 9 is a view similar to FIG. 1, showing the fifth example;
FIG. 10 is a view similar to FIG. 1, showing the sixth example;
FIG. 11 is a view similar to FIG. 1, showing the seventh example;
FIG. 12 is a sectional view showing a first example of a conventional structure.
FIG. 13 is a partially enlarged sectional view of the same.
FIG. 14 is a half cross-sectional view showing a second example of the conventional structure, with respect to a virtual plane including a central axis.
FIG. 15 is a sectional view showing a virtual plane including a central axis, showing the third example.
[Explanation of symbols]
1 engine
2 transmission
3 flywheel
4 Ring gear
5 Pinion gear
6 Starter motor
7 Output shaft
8 Roller clutch
9 Support bearing
10 Seal ring
11, 11a, 11b Pulley
12, 12a, 12b sleeve
13 Annular space
14 Inner ring
15 Inner ring track
16 Outer ring
17 Outer ring track
18 balls
19 Sprag
20 cage
21, 21a Inner ring
22, 22a Outer ring
23 cylindrical roller
24 Cam member
25, 25a, 25b, 25c Cage
26 convex
27 main wheels
28 Tsuba
29, 29a Inner ring track
30 First outward flange
31 Second outward flange
32, 32a Outer ring track
33 first inward collar
34 Second inward collar
35 Annular space
36 First cylindrical surface
37 Second cylindrical surface
38 First flat part
39 2nd flat part
40 groove
41 first pocket
42 Second pocket
43, 43a, 43b elastic piece
44 pillar
47 Seal ring
48 Outer ring element
49 Retainer
50 Projection
51 Backup piece

Claims (9)

外周面に円筒状の内輪軌道を設けた内輪と、内周面に円筒状の外輪軌道を設け、この内輪と同心に配置された外輪と、この外輪軌道と上記内輪軌道との間の環状空間に設けられた複数個の円筒ころと、この環状空間の一部で円周方向に関する位相がこれら各円筒ころと異なる部分に配置された、中心軸に直交する仮想平面に関する断面形状のうちの最大径が上記環状空間の径方向に関する厚さよりも大きく、同じく最小径がこの厚さよりも小さい複数個のカム部材と、上記各円筒ころを転動自在に、これら各カム部材を揺動変位自在に、それぞれ保持する保持器と、これら各カム部材を、上記内輪軌道と上記外輪軌道との間で突っ張る方向に付勢する弾性部材とを備えた一方向クラッチ内蔵型転がり軸受。An inner ring provided with a cylindrical inner raceway on an outer peripheral surface, a cylindrical outer raceway provided on an inner peripheral surface, an outer race arranged concentrically with the inner race, and an annular space between the outer raceway and the inner raceway And a plurality of cylindrical rollers provided in the annular space, and a phase in the circumferential direction in a part of the annular space is arranged at a portion different from each of the cylindrical rollers. A plurality of cam members whose diameters are greater than the thickness in the radial direction of the annular space, and the minimum diameter is also smaller than this thickness, and each of the cylindrical rollers is rollable, and each of the cam members is swingably displaceable. A rolling bearing with a built-in one-way clutch, comprising a retainer for holding each of them, and an elastic member for urging each of the cam members in a direction in which the cam members are stretched between the inner raceway and the outer raceway. 外輪の内周面のうちで外輪軌道の少なくとも軸方向一端に内向鍔部を、内輪の外周面のうちで内輪軌道の少なくとも軸方向他端に外向鍔部を、それぞれ設けると共に、これら両鍔部の内側面を各円筒ころの軸方向両端面に対向させる事により、上記外輪の軸方向他端向き、上記内輪の軸方向一端向きのアキシアル荷重を支承自在とした、請求項1に記載した一方向クラッチ内蔵型転がり軸受。An inward flange is provided on at least one axial end of the outer raceway on the inner peripheral surface of the outer race, and an outward flange is provided on at least the other axial end of the inner raceway on the outer peripheral surface of the inner race. The axial load in the axial direction of the outer ring and the axial direction of the inner ring at one end in the axial direction can be freely supported by opposing the inner surface of the roller to the axial end surfaces of each cylindrical roller. Rolling bearing with built-in directional clutch. 各カム部材の軸方向長さが各円筒ころの軸方向長さよりも小さい、請求項1〜2の何れかに記載した一方向クラッチ内蔵型転がり軸受。3. The rolling bearing with a built-in one-way clutch according to claim 1, wherein the axial length of each cam member is smaller than the axial length of each cylindrical roller. 各カム部材が、それぞれの軸方向中間部で内輪及び外輪の径方向に関して外側の部分に、これら内輪及び外輪の円周方向に亙る凹溝が形成されたものであり、弾性部材が、弾性材製の保持器に設けられてこの凹溝の底部にその先端部を当接させた弾性片である、請求項1〜3の何れかに記載した一方向クラッチ内蔵型転がり軸受。Each of the cam members has a groove formed in a radially outer portion of the inner ring and the outer ring at an intermediate portion in the axial direction and a groove extending in a circumferential direction of the inner ring and the outer ring. The one-way clutch built-in type rolling bearing according to any one of claims 1 to 3, wherein the resilient piece is provided on a retainer made of steel and has a tip portion abutting against a bottom portion of the concave groove. 保持器に、内輪と外輪との相対回転時にこの保持器の回転に伴って各カム部材に加わる遠心力により、これら各カム部材が上記内輪及び外輪の径方向外方に変位する事を規制する抑え片を設けると共に、上記各カム部材を付勢する弾性部材のばね特性を、これら各カム部材の上記径方向外方への変位に伴って変形量が多くなる程弾性力が大きくなる非線形とする事により、上記相対回転時に上記各カム部材の表面を、内輪軌道及び外輪軌道から離隔させる、請求項1〜4の何れかに記載した一方向クラッチ内蔵型転がり軸受。Due to the centrifugal force applied to each cam member in accordance with the rotation of the cage when the inner ring and the outer ring rotate relative to each other, the cage is restricted from being displaced radially outward of the inner ring and the outer ring. Along with the provision of the holding piece, the spring characteristic of the elastic member that urges each of the cam members is set to a non-linear shape in which the elastic force increases as the amount of deformation increases with the radially outward displacement of each of the cam members. The rolling bearing with a built-in one-way clutch according to any one of claims 1 to 4, wherein the surface of each of the cam members is separated from the inner raceway and the outer raceway during the relative rotation. 弾性部材が、各カム部材に当接してこれら各カム部材を押圧する弾性片と、内輪及び外輪の径方向に関してこの弾性片よりも外側に設けられ、遠心力に基づく上記各カム部材の変位に伴ってこの弾性片が弾性変形した状態でこの弾性片をバックアップし、この弾性片がそれ以上弾性変形する事を阻止するバックアップ片とから成る、請求項5に記載した一方向クラッチ内蔵型転がり軸受。An elastic member is provided outside the elastic piece with respect to the radial direction of the inner ring and the outer ring, the elastic piece being in contact with each cam member and pressing these cam members. 6. The rolling bearing with a built-in one-way clutch according to claim 5, further comprising a backup piece for backing up the elastic piece in a state where the elastic piece is elastically deformed and for preventing the elastic piece from being further elastically deformed. . 外周面に無端ベルトを掛け渡し自在としたプーリの内周面と、回転軸に外嵌固定自在としたスリーブの外周面との間の環状空間内に、請求項1〜6の何れかに記載した一方向クラッチ内蔵型転がり軸受を組み付けて成る、一方向クラッチ内蔵型プーリ装置。7. An annular space between an inner peripheral surface of a pulley that allows an endless belt to be stretched around an outer peripheral surface and an outer peripheral surface of a sleeve that can be externally fixed to a rotating shaft. A pulley device with a built-in one-way clutch that is assembled with a rolling bearing with a built-in one-way clutch. プーリの内周面に直接外輪軌道を形成する事により外輪を省略した、請求項7に記載した一方向クラッチ内蔵型プーリ装置。The one-way clutch built-in type pulley device according to claim 7, wherein the outer ring is omitted by forming the outer ring track directly on the inner peripheral surface of the pulley. スリーブの外周面に直接内輪軌道を形成する事により内輪を省略した、請求項7に記載した一方向クラッチ内蔵型プーリ装置。8. The pulley device with a built-in one-way clutch according to claim 7, wherein the inner race is omitted by forming an inner raceway directly on the outer peripheral surface of the sleeve.
JP2003129764A 2003-02-24 2003-05-08 One-way clutch built-in type rolling bearing and one-way clutch built-in type pulley device Pending JP2004316873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129764A JP2004316873A (en) 2003-02-24 2003-05-08 One-way clutch built-in type rolling bearing and one-way clutch built-in type pulley device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003045266 2003-02-24
JP2003129764A JP2004316873A (en) 2003-02-24 2003-05-08 One-way clutch built-in type rolling bearing and one-way clutch built-in type pulley device

Publications (1)

Publication Number Publication Date
JP2004316873A true JP2004316873A (en) 2004-11-11

Family

ID=33478008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129764A Pending JP2004316873A (en) 2003-02-24 2003-05-08 One-way clutch built-in type rolling bearing and one-way clutch built-in type pulley device

Country Status (1)

Country Link
JP (1) JP2004316873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739320B2 (en) 2013-09-04 2017-08-22 Mitsubishi Electric Corporation Cam clutch
CN115076253A (en) * 2022-06-10 2022-09-20 福建中青传动科技有限公司 Controllable multi-state overrunning clutch
CN118149025A (en) * 2024-05-10 2024-06-07 宁波东煌轴承有限公司 One-way bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739320B2 (en) 2013-09-04 2017-08-22 Mitsubishi Electric Corporation Cam clutch
CN115076253A (en) * 2022-06-10 2022-09-20 福建中青传动科技有限公司 Controllable multi-state overrunning clutch
CN118149025A (en) * 2024-05-10 2024-06-07 宁波东煌轴承有限公司 One-way bearing

Similar Documents

Publication Publication Date Title
US6394250B1 (en) Alternator pulley unit with a built-in one-way clutch
EP1028265B1 (en) Roller clutch built-in type pulley apparatus for alternator
JP2001317567A (en) Rotation transmission device with built-in one-way clutch
JP5169794B2 (en) Speed increaser with clutch mechanism
JP2004316873A (en) One-way clutch built-in type rolling bearing and one-way clutch built-in type pulley device
JP2006144812A (en) Sealing device
JP5041328B2 (en) One-way clutch and manufacturing method thereof
JP2002349677A (en) Roller clutch and roller clutch built-in type rotary transmission device
JP2004232703A (en) Rolling bearing equipped with one-way clutch function
JP5780006B2 (en) One-way clutch built-in type rotation transmission device
JP4239682B2 (en) Roller clutch and roller clutch built-in pulley device
JPH1182690A (en) Pulley integrated with clutch
JP2005257021A (en) One-way clutch and pulley unit with one-way clutch
JP4389581B2 (en) Pulley unit with built-in clutch
JP2000291782A (en) Pulley device with built-in one-way clutch for alternator
JP2007040376A (en) One-way clutch and pulley device incorporated with one-way clutch
JP2000240687A (en) Roller clutch and roller clutch built-in type pulley device for alternator
JP5112721B2 (en) Pulley unit with built-in one-way clutch
JP2002317862A (en) Electric motor integrated with reduction gear
JP2005299825A (en) One-way clutch and one-way clutch-incorporating pulley device
JP5112722B2 (en) One-way clutch
JP2011012762A (en) One-way clutch and pulley unit with the one-way clutch built therein
JP2000320651A (en) Pulley device with built-in one-way clutch for alternator and manufacture thereof
JP2009008197A (en) One-way clutch
JP2004144170A (en) Pulley device with built-in roller clutch