JP2004316029A - Method for producing conductive fiber, conductive fiber produced thereby and conductive fiber structure produced by using the same - Google Patents

Method for producing conductive fiber, conductive fiber produced thereby and conductive fiber structure produced by using the same Download PDF

Info

Publication number
JP2004316029A
JP2004316029A JP2003112594A JP2003112594A JP2004316029A JP 2004316029 A JP2004316029 A JP 2004316029A JP 2003112594 A JP2003112594 A JP 2003112594A JP 2003112594 A JP2003112594 A JP 2003112594A JP 2004316029 A JP2004316029 A JP 2004316029A
Authority
JP
Japan
Prior art keywords
conductive
fiber
conductive fiber
thermoplastic resin
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003112594A
Other languages
Japanese (ja)
Inventor
Atsushi Takahira
高比良  淳
Masaharu Saito
雅春 斉藤
Yoshitomo Hara
義智 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2003112594A priority Critical patent/JP2004316029A/en
Publication of JP2004316029A publication Critical patent/JP2004316029A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a conductive fiber having high electrical conductivity without deteriorating the fiber properties and free from the lowering of the conductivity with time and provide a conductive fiber produced by the method and a conductive fiber structure produced by using the fiber. <P>SOLUTION: The conductive fiber is produced by spinning a fiber-forming component composed mainly of thermoplastic resins 3, 3' and further containing electrically conductive fine particles 4 and a metal 5 having low melting point. The spinning is carried out by melting the low-melting metal 5 together with the thermoplastic resins 3, 3'. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、導電性繊維の製法およびそれによって得られる導電性繊維、並びにそれを用いた導電性繊維構造体に関するものである。
【0002】
【従来の技術】
従来から、帯電防止等を目的として、各種の導電性繊維が提案されている。例えば、ポリエステル,ポリアミド,ポリオレフィン等の熱可塑性樹脂に導電物質を含有してなる導電成分と、導電物質を含まない非導電成分とを、特定の断面形状となるよう複合紡糸して得られる導電性複合繊維(特許文献1参照)や、非導電成分からなる繊維の表面を銀メッキすることにより導電性と電磁遮蔽性を付与した電磁波シールド性繊維構造物(特許文献2参照)があげられる。
【0003】
【特許文献1】
特公昭56−37322号公報
【特許文献2】
特開2002−266237号公報
【0004】
【発明が解決しようとする課題】
しかしながら、熱可塑性樹脂に導電物質を含有させた導電成分を用いた複合繊維の場合、導電物質の含有割合を高くすると可塑性が失われるため導電成分としてチップにすることができず、また仮にできたとしても、安定して繊維にすることができない。このため、付与できる導電性に限界があり、用途が帯電防止用途等に限られるという問題がある。
【0005】
一方、銀メッキを施した導電性繊維は、優れた導電性を有しているが、使用に伴い、繊維が繰り返し屈曲したり対象物と擦れたりすると、繊維表面の銀メッキが剥げ落ちたり磨耗したりするため、経時的に導電性が低下するという問題がある。
【0006】
本発明は、このような事情に鑑みなされたもので、繊維物性を損なうことなく高導電性を実現することができ、しかもその導電性が経時的に低下することのない、優れた導電性繊維の製法と、それによって得られる導電性繊維と、それを用いた導電性繊維構造体の提供をその目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、熱可塑性樹脂を主成分とし、導電微粒子と、低融点金属とを含有する繊維形成成分を紡糸して導電性繊維を得る方法であって、熱可塑性樹脂とともに低融点金属を溶融させた状態で紡糸するようにした導電性繊維の製法を第1の要旨とする。
【0008】
また、本発明は、上記導電性繊維の製法によって得られる導電性繊維であって、熱可塑性樹脂を主成分とし、導電微粒子と、上記繊維の紡糸温度よりも融点が低い低融点金属とを含有する導電性繊維を第2の要旨とする。
【0009】
さらに、本発明は、上記導電性繊維のなかでも、特に、熱可塑性樹脂を主成分とし導電微粒子と低融点金属とを含有する導電成分と、熱可塑性樹脂を主成分とし導電微粒子と低融点金属とを含有しない非導電成分とが、適宜の断面形状となるよう複合されている導電性繊維を第3の要旨とする。
【0010】
また、本発明は、それらのなかでも、特に、上記導電微粒子の含有割合が、導電性繊維全体に対し1〜15体積%に設定されており、上記低融点金属の含有割合が、導電性繊維全体に対し0.5〜10体積%に設定されている導電性繊維を第4の要旨とする。
【0011】
そして、本発明は、上記第2の要旨である導電性繊維のなかでも、特に、上記導電成分における熱可塑性樹脂の含有割合が、導電成分全体に対し20〜75体積%に設定されている導電性繊維を第5の要旨とする。
【0012】
また、本発明は、上記導電性繊維が少なくともその一部に用いられている導電性繊維構造体を第6の要旨とし、そのなかでも、特に、体積抵抗率が1×10−3〜1×10Ω・cmに設定されている導電性繊維構造体を第7の要旨とする。
【0013】
なお、本発明において、繊維構造体の体積抵抗率は、つぎのようにして求められる値である。すなわち、まず、試料を幅2cm×長さ12cmの形状に切断し、試料の両端1cmに導電性接着剤を塗布する。そして、この両端に、金属抵抗を金属端子で接触させ、23℃×65%RHの温湿度下、200Vの直流電流下で単位長さ(1cm)における電気抵抗率を求め、試料の厚みから求められる断面積を、上記電気抵抗率に乗じることにより、体積抵抗率を算出することができる。
【0014】
【発明の実施の形態】
つぎに、本発明の実施の形態について説明する。
【0015】
図1は、本発明の一実施の形態である導電性繊維を示している。この繊維は、芯部が導電成分1からなり、鞘部が非導電成分2からなる芯鞘型複合繊維のモノフィラメントで構成されており、上記導電成分1は、熱可塑性樹脂3に導電微粒子4と低融点金属5とを配合してなる繊維材で形成されている。また、上記非導電成分2は、熱可塑性樹脂3′のみからなる繊維材で形成されている。そして、この導電性繊維は、上記導電微粒子4と低融点金属5によって、体積抵抗率が1×10−3〜1×10Ω・cmという高い導電性が付与されている。
【0016】
上記導電成分1において、熱可塑性樹脂3は、従来から合成繊維の製造に用いられているどのようなものでもよく、例えばポリエチレン,ポリプロピレン等のポリオレフィン類、またはこれらを主成分とする変性ポリオレフィン、ナイロン6,ナイロン66,ナイロン10,ナイロン12等のポリアミド、またはこれらを主成分とする変性ポリアミド共重合体等があげられる。また、ポリエステルとしては、ポリエチレンテレフタレート,ポリブチレンテレフタレート,ポリテトラエチレンテレフタレート等の芳香族ポリエステル類、ポリエチレンオキシベンゾエート,ポリ乳酸等、またはこれらを主成分とする変性ポリエステル共重合体等があげられる。なかでも、融点が70〜300℃、特に120〜300℃のものが好適であり、種類としては、ポリエチレン,ポリプロピレン等のポリオレフィン系樹脂が好適である。
【0017】
上記熱可塑性樹脂3の配合割合は、導電成分1全体に対し、20〜75体積%に設定することが好適である。導電成分1を形成するためには、混練機等により熱可塑性樹脂3と低融点金属5を溶解させた状態で導電微粒子4を分散させ、上記3成分を均一混合し冷却した導電チップを形成するのが一般的であるが、熱可塑性樹脂3が20体積%未満では、上記導電チップの製作が極めて困難になるからである。仮に繊維を製作できたとしても可塑性が失われるため導電成分1が安定して繊維中に連続した状態で存在することが極めて困難となる。逆に、熱可塑性樹脂3が75体積%を超えると、導電微粒子4および低融点金属5の配合割合が少なすぎて充分な導電性が得られなくなるおそれがある。
【0018】
また、上記熱可塑性樹脂3に配合される導電微粒子4は、従来から導電性付与剤として用いられているどのようなものであってもよく、例えば、ケッチェンブラックやバルカン等のファーネスブラック、アセチレンブラック,サーマルブラック,チャンネルブラック等のカーボンブラック、アモルファスカーボン粉末、天然黒鉛粉末、人造黒鉛粉末、膨張黒鉛粉末、ピッチマイクロビーズ、カーボンファイバ等の気相成長炭素繊維、カーボンナノチューブ,カーボンナノファイバ等のカーボン系微粒子等があげられる。これらは、単独で用いても2種以上をブレンドして用いてもよい。また、Ag,Cu,Sn、Pb、Ni、Li、Bi、Inそれらの合金等の金属微粉末、ZnO,SnO,In、CuI、TiO/SnO・Sbドープ等の金属酸化物微粉末、Al等の金属フレーク、Al,Ni,ステンレス等の金属繊維、金属表面コーティングガラスビーズ、金属メッキカーボン等があげられる。なかでも、カーボンファイバ、TiO/SnO・Sbドープ粉末等が好適に用いられる。
【0019】
上記導電微粒子4の大きさは、その形状が粒状のものである場合、平均粒子径が3μm以下、なかでも1μm以下となるよう設定することが好適である。また、その形状が細長いものである場合(カーボンファイバや金属フレークの場合)、その長軸が3μm以下、アスペクト比が10〜200の範囲内のものが好適である。すなわち、導電微粒子4が上記範囲よりも大きすぎると、紡糸時に糸切れが生じやすく、また、糸切れしなくても繊維内にボイドが発生して繊維物性を損なうおそれがあるからである。
【0020】
なお、上記導電微粒子4の配合割合は、導電成分1全体に対し、5〜40体積%に設定することが好適である。すなわち、5体積%未満では充分な導電性が得られにくく、逆に40体積%を超えると、導電成分1の可塑性が失われ、導電チップの製作が極めて困難になるからである。仮に繊維を製作できたとしても可塑性が失われるため導電成分1が繊維中に連続した状態で存在することが極めて困難となる。
【0021】
さらに、上記導電微粒子4とともに熱可塑性樹脂3に配合される低融点金属5とは、この導電性繊維を紡糸する際の紡糸温度よりも融点が低いものでなければならない。すなわち、本発明では、紡糸時に低融点金属5が溶融し、固体のまま点在する導電微粒子と混じり合って、両者が繊維長手方向に連続して存在することによって、優れた導電性を発現させるようにしたものである。したがって、本発明において、「低融点金属」とは、「紡糸温度よりも融点が低い金属」という趣旨であり、特に融点が一定温度以下の金属を意味するものではない。
【0022】
なお、上記低融点金属5のみを多く配合して導電性を高めることも考えられるが、低融点金属5は、熱可塑性樹脂3に比べて溶融時の粘度が低く、両者の粘度差がありすぎて均一に分散させることができないことが判明した。そこで、本発明では、導電微粒子4を配合することによって、組成物全体の粘度を高め、3成分を均一に分散させた状態で紡糸できるようにしているのである。
【0023】
上記低融点金属としては、通常、融点70〜300℃のもののなかから、その紡糸温度を考慮して、適宜選択される。具体的には、Zn、Sn、Bi、Al、Cd、In、Pb等およびそれらの合金をあげることができる。このうち、好ましい合金の例として、Sn−Cu、Sn−Zn、Sn−Al、Sn−Ag等の低融点合金があげられる。
【0024】
なお、低融点金属5および熱可塑性樹脂3の融点は、示差走査熱量測定法(DSC)により測定することができる。ただし、2成分以上の金属で構成される合金からなる低融点金属5の融点は、固相線を融点とする。
【0025】
また、上記低融点金属5は、熱可塑性樹脂3と加熱混練される際に液状に溶融するため、原料段階での大きさは、特に問題にならないが、通常、粒状もしくは粉末状のものの方が均一に分散させやすいため、好適に用いられる。そして、その配合割合は、導電成分1全体に対し、5〜40体積%に設定することが好適である。すなわち、5体積%未満では充分な導電性が得られなくなるおそれがあり、逆に40体積%を超えると、導電成分1の可塑性が失われ、導電チップの製作が極めて困難になるからである。仮に繊維を製作できたとしても可塑性が失われるため導電成分1が繊維中に連続した状態で存在することが極めて困難となる。
【0026】
一方、上記導電成分1の周囲に、鞘部として形成される非導電成分2において、熱可塑性樹脂3′は、上記導電成分1の形成に用いる熱可塑性樹脂3と同様のものがあげられ、両熱可塑性樹脂3,3′は、互いに同一のものを用いても、異なるものを用いてもよい。ただし、導電成分1と非導電成分2の複合のさせ方によっては、その接合性を考慮すると、両熱可塑性樹脂3,3′は同一成分とすることが好適である。
【0027】
なお、上記導電成分1および非導電成分2には、それぞれ必要に応じて、分散剤、界面活性剤、顔料等を添加することができる。
【0028】
また、上記導電成分1と非導電成分2の割合は、導電成分1(X):非導電成分2(Y)が、体積基準で1:3〜1:12となるよう設定することが好適である。すなわち、導電成分1の割合が少なすぎると、繊維全体に対する導電物質の割合が少なくなり、好ましい導電性が得られなくなるおそれがあり、逆に、導電成分1の割合が大きすぎると、鞘部となる非導電成分2で導電成分1を被覆しにくくなるからである。
【0029】
図1に示す導電性繊維は、上記各成分原料を用い、従来公知の、芯鞘型複合繊維の製法に準じて製造することができる。その一例によれば、まず、熱可塑性樹脂3と低融点金属5とを混練して溶融状態にしたのち導電微粒子4を配合してさらに混練することにより、導電チップを得る。また、上記熱可塑性樹脂3と同一種類もしくは異なる種類の熱可塑性樹脂3′からなる非導電チップを用意する。
そして、両チップを芯鞘型複合繊維製造用の口金を備えた溶融紡糸装置にかける。このとき、芯部側に導電チップを供給して導電成分1とし、鞘部側に非導電チップを供給して非導電成分2として、所定の押出速度で両者を口金から同心円的に押し出し、冷却後、延伸巻き取りを行う。これにより、目的とする導電性繊維を得ることができる。
【0030】
このようにして得られる導電性繊維は、導電微粒子4と低融点金属5が含有されており、導電微粒子4の含有割合がそれほど多くなくても、繊維の長手方向に導電微粒子4と低融点金属5が実質的に連続して存在し、充分に高い導電性を備えている。そして、繊維の風合いや物性が損なわれておらず、むしろ適度に強度が補強されている。したがって、この導電性繊維を、導電性が要求される各種の用途に適した形態の繊維構造体にした上で、その用途に用いることができる。用途の例としては、例えば、電線、導線、電磁遮断材、発熱材、静電防護服等をあげることができる。
【0031】
なお、本発明の繊維構造体は、本発明の導電性繊維のみで構成されているものに限らず、本発明以外の導電性繊維や非導電性繊維と組み合わせて構成したものであっても差し支えない。ただし、繊維構造体全体が、要求される導電特性を備えたものとなるような構成にしなければならない。
【0032】
上記繊維構造体の例としては、導電性繊維のモノフィラメント糸、導電性繊維のみあるいは他の繊維と混繊したマルチフィラメント糸、短繊維に切断したものを用いた紡績糸、不織布、織編地、縫製や編立て、カットソウ等によって衣料等に仕上げられた最終繊維製品等、各種のものがあげられる。これらは、導電性が要求される適宜の用途に用いられる。
【0033】
なお、本発明の導電性繊維は、上記の例に限らず、適宜の断面形状にすることができる。例えば、図2(a)に示すように、芯部となる導電成分1が中心から偏って、その一部が繊維表面に露出している形状のものや、図2(b)に示すように、導電成分1が非導電成分2によって両側から挟まれている形状のもの等があげられる。これらのように、2成分の境界部が繊維表面に露出している場合は、両成分1,2の熱可塑性樹脂3,3′を、互いに同一種類にすることが好ましい。異なる種類の熱可塑性樹脂3,3′を用いると、両成分1,2の接合部分が剥がれてくるおそれがあるからである。
【0034】
また、本発明の導電性繊維は、必ずしも芯鞘型にする必要はなく、例えば、繊維全体に導電微粒子4と低融点金属5を含有させることにより、図2(c)に示すように、全体を導電成分1′のみで形成するようにしても差し支えない。あるいは、図2(d)に示すように、芯鞘型複合繊維であって、導電成分1′が鞘側に配置されているものであってもよい。ただし、導電成分1′が芯側において集束している方が、導電微粒子同士が近接した配置となり、通電時に電気が流れるネットワークがより多く形成されるため、好適である。さらに、他の態様として、図3(a)〜(c)に示すような断面形状のものがあげられる。
【0035】
もちろん、芯鞘型複合繊維にする場合、導電成分1と非導電成分2の2成分を組み合わせるだけでなく、導電成分1と非導電成分2の少なくとも一方を、成分組成を変えて2種類以上用意し、3成分以上が複合された繊維としてもよい。
【0036】
このように、繊維の形態は、芯鞘型に限定するものではなく、芯鞘型にする場合も、2以上の成分の配置は、特に限定されない。これらの場合も、繊維に含有させる導電微粒子4および低融点金属5の含有割合は、繊維物性を損なうことなく、高い導電性を付与することができるよう調整される。ちなみに、導電微粒子4の含有割合は、導電性繊維全体に対し、1〜15体積%に設定することが好適であり、低融点金属5の含有割合は、同じく導電性繊維全体に対し、0.5〜10体積%に設定することが好適である。
【0037】
つぎに、本発明の実施例について、比較例と併せて詳細に説明する。
【0038】
【実施例1】
[導電成分1の調製]
下記の組成で材料を準備し、2軸混練機で230℃に加熱しながら混練することにより、導電成分1形成用のチップAを得た。このものの体積抵抗率は3.0×10−3Ω・cmであった。
[導電成分1の組成]
熱可塑性樹脂3:ポリプロピレン(Y−2005GP,出光石油化学社製、融点165℃) 50体積%
導電微粒子4 :TiO/SnO・Sbドープ粉末(EC210、チタン工業社製) 40体積%
低融点金属5 :鉛フリーハンダ(Sn−Cu−Ni−At−150、福田金属箔粉工業社製、融点220℃、体積抵抗率1.0×10−5Ω・cm) 10体積%
【0039】
そして、非導電成分2形成用のポリアミド(6ナイロン)チップ(融点235℃)を用意し、これを鞘部側に配置し、上記チップAを芯部側に配置して、紡糸温度260℃で紡糸することにより、芯鞘比率(芯/鞘)が体積基準で1/10の芯鞘型複合フィラメントを得た。なお、紡糸速度600m/minで巻き取った後、延伸倍率が3.0倍となるよう延撚機で延伸した。得られた導電性繊維の繊度は22dtex、電気抵抗値は2.3×10Ω/cmであった。
【0040】
そして、この繊維を、56dtex/24fのレギュラーポリエステル糸でカバーリングして糸条イを得た。この糸条イと、56dtex/24fのレギュラーポリエステル糸とを、1本:10本の割合で経糸に並べた。また、糸条イと84dtex/36fのレギュラーポリエステル糸とを、1本:10本の割合で緯糸として打ち込んで、織密度が、経108本/2.54cm、緯79本/2.54cmの織物(タフタ)を得た。
【0041】
【実施例2】
導電成分1の組成を下記のように変えた。それ以外は実施例1と同様にして、織物(タフタ)を得た。
[導電成分1の組成]
熱可塑性樹脂3:ポリプロピレン(Y−2005GP,出光石油化学社製、融点165℃) 50体積%
導電微粒子4 :カーボンファイバ(VGCF、昭和電工社製 繊維長10〜20μm、アスペクト比50〜200)30体積%
低融点金属5 :鉛フリーハンダ(Sn−Cu−Ni−At−150、福田金属箔粉工業社製) 20体積%
【0042】
【実施例3】
導電成分1の組成の体積割合を下記のように変えた。それ以外は実施例1と同様にして、織物(タフタ)を得た。
[導電成分1の組成]
熱可塑性樹脂3:60体積%
導電微粒子4 :20体積%
低融点金属5 :20体積%
【0043】
【実施例4】
導電成分1の組成の体積割合を下記のように変えた。それ以外は実施例1と同様にして、織物(タフタ)を得た。
[導電成分1の組成]
熱可塑性樹脂3:35体積%
導電微粒子4 :40体積%
低融点金属5 :25体積%
【0044】
【比較例1】
導電成分1の組成を下記のように変えた。それ以外は実施例1と同様にして、織物(タフタ)を得た。
[導電成分1の組成]
熱可塑性樹脂3:ポリプロピレン(Y−2005GP,出光石油化学社製、融点165℃) 60体積%
導電微粒子4 :TiO/SnO・Sbドープ粉末(EC210、チタン工業社製) 40体積%
【0045】
【比較例2】
導電成分1の組成を下記のように変えた。それ以外は実施例1と同様にして、織物(タフタ)を得た。なお、この導電成分1形成用のチップAは、熱可塑性樹脂3と低融点金属5とが分離しており、2成分の混合率にばらつきが大きい様子であった。
[導電成分1の組成]
熱可塑性樹脂3:ポリプロピレン(Y−2005GP,出光石油化学社製、融点165℃) 60体積%
低融点金属5 :鉛フリーハンダ(Sn−Cu−Ni−At−150、福田金属箔粉工業社製) 40体積%
【0046】
【比較例3】
導電成分1の組成を下記のように変えた。それ以外は実施例1と同様にして、織物(タフタ)を得た。なお、この導電成分1形成用のチップAは、熱可塑性樹脂3と低融点金属5とが分離しており、2成分の混合率にばらつきが大きい様子であった。
[導電成分1の組成]
熱可塑性樹脂3:ポリプロピレン(Y−2005GP,出光石油化学社製、融点165℃) 35体積%
導電微粒子4 :TiO/SnO・Sbドープ粉末(EC210、チタン工業社製) 5体積%
低融点金属5 :鉛フリーハンダ(Sn−Cu−Ni−At−150、福田金属箔粉工業社製、融点220℃、体積抵抗率1.0×10−5Ω・cm) 60体積%
【0047】
【比較例4】
導電成分1の組成を下記のように変えた。それ以外は実施例1と同様にして、紡糸しようとしたが、紡糸することはできなかった。
[導電成分1の組成]
熱可塑性樹脂3:ポリプロピレン(Y−2005GP,出光石油化学社製、融点165℃) 40体積%
導電微粒子4 :TiO/SnO・Sbドープ粉末(EC210、チタン工業社製) 60体積%
【0048】
【比較例5】
33dtexのナイロン銀メッキモノフィラメント(X−Static、SAUQUIT社製)を56dtex/24fのレギュラーポリエステル糸でカバーリングして糸条ロを得た。この糸条ロと56dtex/24fのレギュラーポリエステル糸を1本:10本の割合で経糸に並べた。そして、糸条ロと84dtex/36fのレギュラーポリエステル糸を1本:10本の割合で緯糸として打ち込んで、織密度が経106本/2.54cm、緯76本/2.54cmの織物(タフタ)を得た。
【0049】
上記実施例1〜4品および比較例1〜5品の導電性繊維の単位長さでの抵抗率、体積抵抗率、電磁波遮断性を測定するとともに、その耐久性を測定した。これらの測定・評価結果を後記の表1、表2に併せて示す。なお、導電性繊維の単位長さでの抵抗率と体積抵抗率については、すでに述べた方法で測定した。また、電磁波遮断性および耐久性については、以下に示すように測定して評価した。
【0050】
[電磁波遮断性]
電磁波シールド評価器(MA8602B、アンリツ社製)を用い、KEC(関西電子工業振興センター)法に準じて100KHzと1000MHzでの電磁波遮断量Dvを求めた。なお、算出式は下記の式(1)のとおりである。
【0051】
【数1】

Figure 2004316029
【0052】
そして、その結果を下記の基準で評価した。
○:電磁波遮断量が30dB以上であった。
×:電磁波遮断量が30dB未満であった。
【0053】
[耐久性]
▲1▼クリーニング40分(本洗い→脱水→すすぎ1→脱水→すすぎ2→本脱水)
、▲2▼乾燥60分、▲3▼高圧蒸気滅菌60分、という工業洗濯を20サイクル実施し、実施後の電磁波遮断量(100KHz、1000MHz)を測定した。
【0054】
そして、その結果を下記の基準で評価した。
○:電磁波遮断量が30dB以上であった。
×:電磁波遮断量が30dB未満であった。
【0055】
【表1】
Figure 2004316029
【0056】
【表2】
Figure 2004316029
【0057】
上記の結果から、実施例1〜4品は、いずれも優れた導電性を示し、その耐久性も高いことがわかる。これに対し、比較例1品は、実施例1品と同一量の導電微粒子4が含有されているにもかかわらず、低融点金属5が含有されていないため、導電性があまり得られていない。また、比較例2品は、導電微粒子4が含有されておらず、低融点金属5のみ含有されているため、同じく導電性があまり得られていない。そして、比較例3品のように、低融点金属5のみを多く含有させても充分な導電性が得られない。また、比較例4品のように、導電微粒子4のみを多く含有させたものは、紡糸することができない。さらに、銀メッキ糸を用いた比較例5品は、当初は優れた導電性を備えているが、繊維表面の銀メッキが経時的に剥がれるか磨耗して、導電性が低下している。
【0058】
【発明の効果】
以上のように、本発明によれば、熱可塑性樹脂を主成分とし、導電微粒子と低融点金属を含有した繊維形成成分を用い、上記熱可塑性樹脂と低融点金属とが溶融した状態で繊維形成成分を紡糸して導電性繊維を得るため、導電性繊維内において、上記導電微粒子と低融点金属とが繊維長手方向に連続的に存在するようになる。このため、導電微粒子の含有割合がそれほど多くなくても、充分に高い導電性を備えたものとなる。そして、繊維の風合いや物性が損なわれておらず、むしろ適度に強度が補強されたものが得られる。したがって、この導電性繊維を、導電性が要求される各種の用途に適した形態の繊維構造体にした上で、その用途に用いることができる。用途の例としては、例えば、電線、導線、電磁遮断材、発熱材、静電防護服等をあげることができる。
【0059】
そして、本発明の導電性繊維構造体は、どのような形態であっても、長期にわたって、その導電性が低下することなく、良好に使用することができる。
【図面の簡単な説明】
【図1】
本発明の一実施例を示す模式的な説明図である。
【図2】
(a)〜(d)はいずれも本発明の他の実施例を示す縦断面図である。
【図3】
(a)〜(c)はいずれも本発明のさらに他の実施例を示す縦断面図である。
【符号の説明】
3,3′ 熱可塑性樹脂
4 導電微粒子
5 低融点金属[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a conductive fiber, a conductive fiber obtained by the method, and a conductive fiber structure using the same.
[0002]
[Prior art]
Conventionally, various conductive fibers have been proposed for the purpose of preventing static electricity and the like. For example, a conductive component obtained by compound-spinning a conductive component containing a conductive material in a thermoplastic resin such as polyester, polyamide, or polyolefin and a non-conductive component not containing the conductive material into a specific cross-sectional shape. Examples include conjugate fibers (see Patent Document 1) and electromagnetic wave shielding fiber structures (see Patent Document 2) in which conductivity and electromagnetic shielding properties are imparted by silver plating the surface of a fiber made of a non-conductive component.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 56-37322 [Patent Document 2]
JP-A-2002-266237
[Problems to be solved by the invention]
However, in the case of a conjugate fiber using a conductive component in which a conductive material is contained in a thermoplastic resin, if the content ratio of the conductive material is increased, plasticity is lost, so that a chip cannot be formed as a conductive component, and it was temporarily formed. However, the fibers cannot be stably formed. For this reason, there is a limit in the conductivity that can be provided, and there is a problem that the application is limited to antistatic applications and the like.
[0005]
On the other hand, silver-plated conductive fibers have excellent conductivity.However, if the fibers are repeatedly bent or rubbed against the object during use, the silver plating on the fiber surface will peel off or wear. For example, there is a problem that the conductivity decreases with time.
[0006]
The present invention has been made in view of such circumstances, and is an excellent conductive fiber that can realize high conductivity without impairing fiber properties and that the conductivity does not decrease over time. It is an object of the present invention to provide a production method of the above, a conductive fiber obtained thereby, and a conductive fiber structure using the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for obtaining a conductive fiber by spinning a fiber-forming component containing a thermoplastic resin as a main component, conductive fine particles, and a low-melting metal, comprising: A first gist of the present invention is a method for producing a conductive fiber in which a low-melting-point metal is melted together with a resin and spun.
[0008]
Further, the present invention is a conductive fiber obtained by the method for producing a conductive fiber, comprising a thermoplastic resin as a main component, conductive fine particles, and a low melting point metal having a melting point lower than the spinning temperature of the fiber. The conductive fiber to be used is defined as a second gist.
[0009]
Further, the present invention provides, among the above-mentioned conductive fibers, a conductive component containing a thermoplastic resin as a main component and containing conductive fine particles and a low melting point metal, and a conductive fine particle containing a thermoplastic resin as a main component and a low melting point metal. A third aspect of the present invention is a conductive fiber in which a non-conductive component containing no is mixed so as to have an appropriate cross-sectional shape.
[0010]
In addition, the present invention, among them, particularly, the content ratio of the conductive fine particles is set to 1 to 15% by volume with respect to the entire conductive fiber, and the content ratio of the low melting point metal is The fourth gist is a conductive fiber set to 0.5 to 10% by volume based on the whole.
[0011]
In the present invention, among the conductive fibers according to the second aspect, in particular, the content of the thermoplastic resin in the conductive component is set to 20 to 75% by volume based on the entire conductive component. A fifth aspect of the present invention is a conductive fiber.
[0012]
In addition, the present invention provides a conductive fiber structure in which the conductive fiber is used in at least a part thereof as a sixth gist. Among them, particularly, the volume resistivity is 1 × 10 −3 to 1 ×. A conductive fiber structure set to 10 5 Ω · cm is a seventh aspect.
[0013]
In the present invention, the volume resistivity of the fibrous structure is a value determined as follows. That is, first, the sample is cut into a shape having a width of 2 cm and a length of 12 cm, and a conductive adhesive is applied to both ends 1 cm of the sample. Then, a metal resistor is brought into contact with both ends with metal terminals, and the electrical resistivity at a unit length (1 cm) is determined under a temperature and humidity of 23 ° C. × 65% RH under a DC current of 200 V, which is determined from the thickness of the sample. The volume resistivity can be calculated by multiplying the sectional area by the electric resistivity.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described.
[0015]
FIG. 1 shows a conductive fiber according to an embodiment of the present invention. This fiber is composed of a core-sheath composite fiber monofilament having a core made of a conductive component 1 and a sheath made of a non-conductive component 2. The conductive component 1 is made of a thermoplastic resin 3 and conductive fine particles 4. It is formed of a fiber material mixed with the low melting point metal 5. Further, the non-conductive component 2 is formed of a fibrous material consisting of only the thermoplastic resin 3 '. The conductive fibers are provided with high conductivity having a volume resistivity of 1 × 10 −3 to 1 × 10 5 Ω · cm by the conductive fine particles 4 and the low melting point metal 5.
[0016]
In the conductive component 1, the thermoplastic resin 3 may be any of those conventionally used in the production of synthetic fibers, for example, polyolefins such as polyethylene and polypropylene, modified polyolefins containing these as main components, nylon Examples thereof include polyamides such as 6, nylon 66, nylon 10, and nylon 12, and modified polyamide copolymers containing these as main components. Examples of the polyester include aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polytetraethylene terephthalate; polyethylene oxybenzoate; polylactic acid; and modified polyester copolymers containing these as main components. Among them, those having a melting point of 70 to 300 ° C., particularly 120 to 300 ° C. are suitable, and as the type, polyolefin resins such as polyethylene and polypropylene are suitable.
[0017]
The mixing ratio of the thermoplastic resin 3 is preferably set to 20 to 75% by volume based on the entire conductive component 1. In order to form the conductive component 1, the conductive fine particles 4 are dispersed in a state in which the thermoplastic resin 3 and the low melting point metal 5 are dissolved by a kneader or the like, and the three components are uniformly mixed to form a cooled conductive chip. Generally, when the content of the thermoplastic resin 3 is less than 20% by volume, it is extremely difficult to manufacture the conductive chip. Even if the fiber can be manufactured, the plasticity is lost, so that it is extremely difficult for the conductive component 1 to be stably present in the fiber in a continuous state. On the other hand, if the content of the thermoplastic resin 3 exceeds 75% by volume, the mixing ratio of the conductive fine particles 4 and the low-melting metal 5 is too small, and sufficient conductivity may not be obtained.
[0018]
The conductive fine particles 4 mixed in the thermoplastic resin 3 may be any of those conventionally used as a conductivity-imparting agent, for example, furnace black such as Ketjen black or Vulcan, or acetylene. Carbon black such as black, thermal black, channel black, etc., amorphous carbon powder, natural graphite powder, artificial graphite powder, expanded graphite powder, pitch micro beads, vapor-grown carbon fiber such as carbon fiber, carbon nanotube, carbon nanofiber etc. And carbon-based fine particles. These may be used alone or as a blend of two or more. Metal fine powders such as Ag, Cu, Sn, Pb, Ni, Li, Bi and In alloys thereof, and metal oxides such as ZnO, SnO 2 , In 2 O 3 , CuI, and TiO 2 / SnO 2 .Sb dope. Fine powder, metal flakes such as Al, metal fibers such as Al, Ni and stainless steel, glass beads coated with a metal surface, and metal-plated carbon. Among them, carbon fibers, TiO 2 / SnO 2 · Sb doped powder or the like is preferably used.
[0019]
When the shape of the conductive fine particles 4 is granular, it is preferable to set the size so that the average particle size is 3 μm or less, and especially 1 μm or less. When the shape is elongated (in the case of carbon fiber or metal flake), it is preferable that the major axis is 3 μm or less and the aspect ratio is in the range of 10 to 200. That is, if the conductive fine particles 4 are larger than the above range, yarn breakage is likely to occur at the time of spinning, and even if yarn breakage does not occur, voids may be generated in the fiber and fiber physical properties may be impaired.
[0020]
The mixing ratio of the conductive fine particles 4 is preferably set to 5 to 40% by volume with respect to the entire conductive component 1. That is, if it is less than 5% by volume, it is difficult to obtain sufficient conductivity, whereas if it exceeds 40% by volume, the plasticity of the conductive component 1 is lost, and it becomes extremely difficult to produce a conductive chip. Even if a fiber can be manufactured, the plasticity is lost, so that it is extremely difficult for the conductive component 1 to be present in a continuous state in the fiber.
[0021]
Furthermore, the low-melting point metal 5 to be blended in the thermoplastic resin 3 together with the conductive fine particles 4 must have a melting point lower than the spinning temperature when spinning the conductive fiber. That is, in the present invention, the low-melting metal 5 is melted during spinning, mixed with conductive fine particles scattered as a solid, and both are continuously present in the longitudinal direction of the fiber, thereby exhibiting excellent conductivity. It is like that. Therefore, in the present invention, "low melting point metal" has the meaning of "metal having a melting point lower than the spinning temperature", and does not particularly mean a metal having a melting point of a certain temperature or lower.
[0022]
Although it is conceivable to increase the conductivity by blending only a large amount of the low melting point metal 5, the low melting point metal 5 has a lower viscosity at the time of melting than the thermoplastic resin 3, and there is an excessive difference in viscosity between the two. It was found that they could not be uniformly dispersed. Therefore, in the present invention, the viscosity of the entire composition is increased by blending the conductive fine particles 4 so that the spinning can be performed in a state where the three components are uniformly dispersed.
[0023]
The low-melting point metal is usually appropriately selected from those having a melting point of 70 to 300 ° C. in consideration of the spinning temperature. Specifically, Zn, Sn, Bi, Al, Cd, In, Pb and the like and alloys thereof can be mentioned. Among them, examples of preferable alloys include low melting point alloys such as Sn-Cu, Sn-Zn, Sn-Al, and Sn-Ag.
[0024]
The melting points of the low melting point metal 5 and the thermoplastic resin 3 can be measured by differential scanning calorimetry (DSC). However, the melting point of the low melting point metal 5 made of an alloy composed of two or more components is determined by using the solidus as the melting point.
[0025]
The low-melting point metal 5 melts into a liquid state when it is heated and kneaded with the thermoplastic resin 3. Therefore, the size at the raw material stage is not particularly problematic. Since it is easily dispersed uniformly, it is preferably used. And, the mixing ratio is preferably set to 5 to 40% by volume based on the whole conductive component 1. That is, if the content is less than 5% by volume, sufficient conductivity may not be obtained. On the other hand, if the content exceeds 40% by volume, the plasticity of the conductive component 1 is lost, and it becomes extremely difficult to produce a conductive chip. Even if a fiber can be manufactured, the plasticity is lost, so that it is extremely difficult for the conductive component 1 to be present in a continuous state in the fiber.
[0026]
On the other hand, in the non-conductive component 2 formed as a sheath around the conductive component 1, the thermoplastic resin 3 ′ may be the same as the thermoplastic resin 3 used for forming the conductive component 1. The same or different thermoplastic resins 3 and 3 'may be used. However, depending on how the conductive component 1 and the non-conductive component 2 are combined, it is preferable that both thermoplastic resins 3 and 3 ′ have the same component in consideration of the bonding property.
[0027]
Note that a dispersant, a surfactant, a pigment, and the like can be added to the conductive component 1 and the non-conductive component 2 as needed.
[0028]
The ratio between the conductive component 1 and the non-conductive component 2 is preferably set such that the ratio of the conductive component 1 (X) to the non-conductive component 2 (Y) is 1: 3 to 1:12 on a volume basis. is there. That is, if the ratio of the conductive component 1 is too small, the ratio of the conductive substance to the entire fiber becomes small, and there is a possibility that a preferable conductivity may not be obtained. This is because it becomes difficult to cover the conductive component 1 with the non-conductive component 2.
[0029]
The conductive fiber shown in FIG. 1 can be manufactured by using the above-mentioned respective component raw materials and according to a conventionally known method for manufacturing a core-sheath type composite fiber. According to one example, first, the thermoplastic resin 3 and the low melting point metal 5 are kneaded and melted, and then the conductive fine particles 4 are blended and further kneaded to obtain a conductive chip. Further, a non-conductive chip made of a thermoplastic resin 3 'of the same type or a different type as the thermoplastic resin 3 is prepared.
Then, both chips are applied to a melt spinning apparatus equipped with a die for producing a core-sheath type composite fiber. At this time, a conductive chip is supplied to the core side to make a conductive component 1, and a non-conductive chip is supplied to the sheath side to form a non-conductive component 2. The two are concentrically extruded from a die at a predetermined extrusion speed and cooled. Thereafter, stretching and winding are performed. Thereby, the desired conductive fiber can be obtained.
[0030]
The conductive fiber thus obtained contains the conductive fine particles 4 and the low melting point metal 5, and even if the content ratio of the conductive fine particles 4 is not so large, the conductive fine particles 4 and the low melting point metal 5 5 are substantially continuous and have sufficiently high conductivity. The texture and physical properties of the fibers are not impaired, but rather the strength is moderately reinforced. Therefore, the conductive fiber can be used for the purpose after forming into a fiber structure in a form suitable for various uses requiring conductivity. Examples of applications include, for example, electric wires, conducting wires, electromagnetic shielding materials, heating materials, electrostatic protective clothing, and the like.
[0031]
In addition, the fiber structure of the present invention is not limited to the fiber structure of the present invention, and may be a structure formed by combining with a conductive fiber or a non-conductive fiber other than the present invention. Absent. However, the structure must be such that the entire fibrous structure has the required conductive properties.
[0032]
Examples of the above-mentioned fiber structure, a monofilament yarn of conductive fibers, a multifilament yarn mixed with only conductive fibers or other fibers, a spun yarn using cut into short fibers, a nonwoven fabric, a woven or knitted fabric, Various types of textiles, such as finished textile products finished in clothing and the like by sewing, knitting, and cutting saw, etc., can be given. These are used for appropriate applications requiring conductivity.
[0033]
In addition, the conductive fiber of the present invention is not limited to the above example, and can have an appropriate cross-sectional shape. For example, as shown in FIG. 2A, a conductive component 1 serving as a core is deviated from the center and a part of the conductive component 1 is exposed on the fiber surface, or as shown in FIG. 2B. And those in which the conductive component 1 is sandwiched between the non-conductive components 2 from both sides. When the boundary between the two components is exposed on the fiber surface as described above, it is preferable that the thermoplastic resins 3 and 3 ′ of the two components 1 and 2 be of the same type. If different types of thermoplastic resins 3 and 3 'are used, the joint between the two components 1 and 2 may come off.
[0034]
In addition, the conductive fiber of the present invention does not necessarily have to be a core-sheath type. For example, by adding conductive fine particles 4 and a low melting point metal 5 to the entire fiber, as shown in FIG. May be formed only by the conductive component 1 '. Alternatively, as shown in FIG. 2D, a core-in-sheath type composite fiber in which the conductive component 1 'is disposed on the sheath side may be used. However, it is preferable that the conductive component 1 ′ is converged on the core side, since the conductive fine particles are arranged close to each other and a network in which electricity flows when energized is formed more. Further, as another embodiment, a cross-sectional shape as shown in FIGS.
[0035]
Of course, when the core-sheath type composite fiber is used, not only two components of the conductive component 1 and the non-conductive component 2 are combined, but also at least one of the conductive component 1 and the non-conductive component 2 is prepared by changing the component composition. Alternatively, a fiber in which three or more components are composited may be used.
[0036]
Thus, the form of the fiber is not limited to the core-in-sheath type, and even in the case of the core-in-sheath type, the arrangement of two or more components is not particularly limited. Also in these cases, the content ratio of the conductive fine particles 4 and the low melting point metal 5 to be contained in the fiber is adjusted so as to provide high conductivity without impairing the fiber properties. Incidentally, the content ratio of the conductive fine particles 4 is preferably set to 1 to 15% by volume with respect to the whole conductive fibers, and the content ratio of the low melting point metal 5 is also 0.1% to the whole conductive fibers. It is preferable to set it to 5 to 10% by volume.
[0037]
Next, examples of the present invention will be described in detail together with comparative examples.
[0038]
Embodiment 1
[Preparation of conductive component 1]
A material having the following composition was prepared and kneaded while heating to 230 ° C. with a biaxial kneader to obtain a chip A for forming the conductive component 1. This had a volume resistivity of 3.0 × 10 −3 Ω · cm.
[Composition of Conductive Component 1]
Thermoplastic resin 3: 50% by volume of polypropylene (Y-2005GP, manufactured by Idemitsu Petrochemical Co., Ltd., melting point: 165 ° C.)
Conductive particles 4: TiO 2 / SnO 2 · Sb doped powder (EC210, manufactured by Titan Kogyo) 40 vol%
Low melting point metal 5: Lead-free solder (Sn-Cu-Ni-At-150, manufactured by Fukuda Metal Foil & Powder Co., Ltd., melting point 220 ° C, volume resistivity 1.0 × 10 −5 Ω · cm) 10% by volume
[0039]
Then, a polyamide (6 nylon) chip (melting point: 235 ° C.) for forming the non-conductive component 2 is prepared, placed on the sheath side, the chip A is placed on the core side, and the spinning temperature is 260 ° C. By spinning, a core-sheath composite filament having a core-sheath ratio (core / sheath) of 1/10 by volume was obtained. After winding at a spinning speed of 600 m / min, the film was drawn by a twisting machine so that the draw ratio became 3.0 times. The fineness of the obtained conductive fiber was 22 dtex, and the electric resistance value was 2.3 × 10 4 Ω / cm.
[0040]
Then, the fiber was covered with 56 dtex / 24f regular polyester yarn to obtain a yarn A. This yarn A and 56 dtex / 24f regular polyester yarn were arranged in a ratio of 1:10 to warp. In addition, a yarn having a weft density of 108 / 2.54 cm and a weft of 79 / 2.54 cm is woven by weaving the yarn A and 84 dtex / 36f regular polyester yarn at a ratio of 1:10. (Taffeta) was obtained.
[0041]
Embodiment 2
The composition of the conductive component 1 was changed as follows. Otherwise in the same manner as in Example 1, a woven fabric (taffeta) was obtained.
[Composition of Conductive Component 1]
Thermoplastic resin 3: 50% by volume of polypropylene (Y-2005GP, manufactured by Idemitsu Petrochemical Co., Ltd., melting point: 165 ° C.)
Conductive fine particles 4: 30% by volume of carbon fiber (VGCF, manufactured by Showa Denko KK, fiber length: 10 to 20 μm, aspect ratio: 50 to 200)
Low melting point metal 5: Lead-free solder (Sn-Cu-Ni-At-150, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) 20% by volume
[0042]
Embodiment 3
The volume ratio of the composition of the conductive component 1 was changed as follows. Otherwise in the same manner as in Example 1, a woven fabric (taffeta) was obtained.
[Composition of Conductive Component 1]
Thermoplastic resin 3: 60% by volume
Conductive fine particles 4: 20% by volume
Low melting point metal 5: 20% by volume
[0043]
Embodiment 4
The volume ratio of the composition of the conductive component 1 was changed as follows. Otherwise in the same manner as in Example 1, a woven fabric (taffeta) was obtained.
[Composition of Conductive Component 1]
Thermoplastic resin 3: 35% by volume
Conductive fine particles 4: 40% by volume
Low melting point metal 5: 25% by volume
[0044]
[Comparative Example 1]
The composition of the conductive component 1 was changed as follows. Otherwise in the same manner as in Example 1, a woven fabric (taffeta) was obtained.
[Composition of Conductive Component 1]
Thermoplastic resin 3: Polypropylene (Y-2005GP, manufactured by Idemitsu Petrochemical Co., Ltd., melting point 165 ° C.) 60% by volume
Conductive particles 4: TiO 2 / SnO 2 · Sb doped powder (EC210, manufactured by Titan Kogyo) 40 vol%
[0045]
[Comparative Example 2]
The composition of the conductive component 1 was changed as follows. Otherwise in the same manner as in Example 1, a woven fabric (taffeta) was obtained. In the chip A for forming the conductive component 1, the thermoplastic resin 3 and the low-melting-point metal 5 were separated, and the mixing ratio of the two components seemed to vary greatly.
[Composition of Conductive Component 1]
Thermoplastic resin 3: Polypropylene (Y-2005GP, manufactured by Idemitsu Petrochemical Co., Ltd., melting point 165 ° C.) 60% by volume
Low melting point metal 5: lead-free solder (Sn-Cu-Ni-At-150, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) 40% by volume
[0046]
[Comparative Example 3]
The composition of the conductive component 1 was changed as follows. Otherwise in the same manner as in Example 1, a woven fabric (taffeta) was obtained. In the chip A for forming the conductive component 1, the thermoplastic resin 3 and the low-melting-point metal 5 were separated, and the mixing ratio of the two components seemed to vary greatly.
[Composition of Conductive Component 1]
Thermoplastic resin 3: Polypropylene (Y-2005 GP, manufactured by Idemitsu Petrochemical Co., Ltd., melting point: 165 ° C.) 35% by volume
Conductive particles 4: TiO 2 / SnO 2 · Sb doped powder (EC210, manufactured by Titan Kogyo) 5 vol%
Low melting point metal 5: Lead-free solder (Sn-Cu-Ni-At-150, manufactured by Fukuda Metal Foil & Powder Co., Ltd., melting point 220 ° C, volume resistivity 1.0 × 10 −5 Ω · cm) 60% by volume
[0047]
[Comparative Example 4]
The composition of the conductive component 1 was changed as follows. Otherwise, the spinning was attempted in the same manner as in Example 1, but could not be spun.
[Composition of Conductive Component 1]
Thermoplastic resin 3: Polypropylene (Y-2005 GP, manufactured by Idemitsu Petrochemical Co., Ltd., melting point: 165 ° C.) 40% by volume
Conductive particles 4: TiO 2 / SnO 2 · Sb doped powder (EC210, manufactured by Titan Kogyo) 60 vol%
[0048]
[Comparative Example 5]
A 33 dtex nylon silver-plated monofilament (X-Static, manufactured by SAUQUIT) was covered with 56 dtex / 24f regular polyester yarn to obtain a yarn. This yarn B and 56dtex / 24f regular polyester yarn were arranged in a ratio of 1:10 to warp. Then, the yarn b and a regular polyester yarn of 84 dtex / 36f are driven as a weft at a ratio of one to ten, and the weaving density is 106 / 2.54 cm for the warp and 76 / 2.54 cm for the weft (taffeta). Got.
[0049]
The resistivity, the volume resistivity, and the electromagnetic wave shielding property per unit length of the conductive fibers of the above Examples 1 to 4 and Comparative Examples 1 to 5 were measured, and the durability was measured. The results of these measurements and evaluations are shown in Tables 1 and 2 below. The resistivity and the volume resistivity of the conductive fiber at a unit length were measured by the methods described above. In addition, the electromagnetic wave shielding property and the durability were measured and evaluated as described below.
[0050]
[Electromagnetic wave blocking property]
Using an electromagnetic wave shield evaluator (MA8602B, manufactured by Anritsu Corporation), the amount of electromagnetic wave interruption Dv at 100 KHz and 1000 MHz was determined according to the KEC (Kansai Electronics Industry Promotion Center) method. The calculation formula is as the following formula (1).
[0051]
(Equation 1)
Figure 2004316029
[0052]
And the result was evaluated based on the following criteria.
:: The electromagnetic wave blocking amount was 30 dB or more.
D: The electromagnetic wave blocking amount was less than 30 dB.
[0053]
[durability]
(1) 40 minutes of cleaning (main washing → dehydration → rinse 1 → dehydration → rinse 2 → main dehydration)
, (2) drying for 60 minutes, and (3) high-pressure steam sterilization for 60 minutes, 20 cycles of industrial washing were performed, and the amount of blocked electromagnetic waves (100 KHz, 1000 MHz) was measured.
[0054]
And the result was evaluated based on the following criteria.
:: The electromagnetic wave blocking amount was 30 dB or more.
D: The electromagnetic wave blocking amount was less than 30 dB.
[0055]
[Table 1]
Figure 2004316029
[0056]
[Table 2]
Figure 2004316029
[0057]
From the above results, it can be seen that all of the products of Examples 1 to 4 show excellent conductivity and have high durability. On the other hand, the product of Comparative Example 1 does not contain the low melting point metal 5 even though it contains the same amount of the conductive fine particles 4 as that of the product of Example 1, and thus does not provide much conductivity. . In addition, the product of Comparative Example 2 did not contain the conductive fine particles 4 and contained only the low-melting-point metal 5, and thus did not provide much conductivity. As in the case of the product of Comparative Example 3, even if only a large amount of the low melting point metal 5 is contained, sufficient conductivity cannot be obtained. Moreover, what contains only the conductive fine particles 4 like the product of Comparative Example 4 cannot be spun. Furthermore, the product of Comparative Example 5 using silver-plated yarn has excellent conductivity at the beginning, but the silver plating on the fiber surface is peeled off or worn over time, and the conductivity is reduced.
[0058]
【The invention's effect】
As described above, according to the present invention, a fiber-forming component containing a thermoplastic resin as a main component, conductive fine particles and a low-melting metal is used, and fiber formation is performed in a state where the thermoplastic resin and the low-melting metal are melted. In order to obtain the conductive fiber by spinning the components, the conductive fine particles and the low melting point metal are continuously present in the conductive fiber in the longitudinal direction of the fiber. For this reason, even if the content ratio of the conductive fine particles is not so large, the conductive particles have sufficiently high conductivity. Further, a fiber whose strength and physical properties are not impaired but whose strength is moderately reinforced can be obtained. Therefore, the conductive fiber can be used for the purpose after being formed into a fibrous structure suitable for various uses requiring conductivity. Examples of applications include, for example, electric wires, conducting wires, electromagnetic shielding materials, heating materials, electrostatic protective clothing, and the like.
[0059]
In addition, the conductive fiber structure of the present invention can be used satisfactorily for a long period of time without lowering its conductivity.
[Brief description of the drawings]
FIG.
FIG. 2 is a schematic explanatory view showing one embodiment of the present invention.
FIG. 2
(A)-(d) are all longitudinal sectional views showing another embodiment of the present invention.
FIG. 3
(A)-(c) are all longitudinal sectional views showing still another embodiment of the present invention.
[Explanation of symbols]
3,3 'thermoplastic resin 4 conductive fine particles 5 low melting point metal

Claims (7)

熱可塑性樹脂を主成分とし、導電微粒子と、低融点金属とを含有する繊維形成成分を紡糸して導電性繊維を得る方法であって、熱可塑性樹脂とともに低融点金属を溶融させた状態で紡糸するようにしたことを特徴とする導電性繊維の製法。A method for obtaining conductive fibers by spinning a fiber-forming component containing a thermoplastic resin as a main component, conductive fine particles, and a low-melting metal, wherein the low-melting metal is melted together with the thermoplastic resin. A method for producing a conductive fiber, comprising: 請求項1記載の導電性繊維の製法によって得られる導電性繊維であって、熱可塑性樹脂を主成分とし、導電微粒子と、上記繊維の紡糸温度よりも融点が低い低融点金属とを含有することを特徴とする導電性繊維。A conductive fiber obtained by the method for producing a conductive fiber according to claim 1, comprising a thermoplastic resin as a main component, conductive fine particles, and a low melting point metal having a melting point lower than a spinning temperature of the fiber. A conductive fiber characterized by the above-mentioned. 熱可塑性樹脂を主成分とし導電微粒子と低融点金属とを含有する導電成分と、熱可塑性樹脂を主成分とし導電微粒子と低融点金属とを含有しない非導電成分とが、適宜の断面形状となるよう複合されている請求項2記載の導電性繊維。A conductive component containing a thermoplastic resin as a main component and containing conductive fine particles and a low-melting metal, and a non-conductive component containing a thermoplastic resin as a main component and containing no conductive fine particles and a low-melting metal have an appropriate cross-sectional shape. The conductive fiber according to claim 2, which is composited as described above. 上記導電微粒子の含有割合が、導電性繊維全体に対し1〜15体積%に設定されており、上記低融点金属の含有割合が、導電性繊維全体に対し0.5〜10体積%に設定されている請求項2または3記載の導電性繊維。The content ratio of the conductive fine particles is set to 1 to 15% by volume with respect to the whole conductive fiber, and the content ratio of the low melting point metal is set to 0.5 to 10% by volume with respect to the whole conductive fiber. The conductive fiber according to claim 2 or 3, wherein 上記導電成分における熱可塑性樹脂の含有割合が、導電成分全体に対し20〜75体積%に設定されている請求項3記載の導電性繊維。The conductive fiber according to claim 3, wherein a content ratio of the thermoplastic resin in the conductive component is set to 20 to 75% by volume based on the whole conductive component. 上記請求項2〜5のいずれか一項に記載の導電性繊維が少なくともその一部に用いられていることを特徴とする導電性繊維構造体。A conductive fiber structure, wherein the conductive fiber according to any one of claims 2 to 5 is used in at least a part thereof. 体積抵抗率が1×10−3〜1×10Ω・cmに設定されている請求項6記載の導電性繊維構造体。7. The conductive fiber structure according to claim 6, wherein the volume resistivity is set to 1 × 10 −3 to 1 × 10 5 Ω · cm.
JP2003112594A 2003-04-17 2003-04-17 Method for producing conductive fiber, conductive fiber produced thereby and conductive fiber structure produced by using the same Pending JP2004316029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112594A JP2004316029A (en) 2003-04-17 2003-04-17 Method for producing conductive fiber, conductive fiber produced thereby and conductive fiber structure produced by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112594A JP2004316029A (en) 2003-04-17 2003-04-17 Method for producing conductive fiber, conductive fiber produced thereby and conductive fiber structure produced by using the same

Publications (1)

Publication Number Publication Date
JP2004316029A true JP2004316029A (en) 2004-11-11

Family

ID=33472746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112594A Pending JP2004316029A (en) 2003-04-17 2003-04-17 Method for producing conductive fiber, conductive fiber produced thereby and conductive fiber structure produced by using the same

Country Status (1)

Country Link
JP (1) JP2004316029A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092234A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Conductive fiber and textile product made thereof
JP2007154015A (en) * 2005-12-05 2007-06-21 Sumitomo Chemical Co Ltd Process for producing molded article made of electroconductive thermoplastic resin
WO2013170547A1 (en) * 2012-05-14 2013-11-21 Mao Yingjun Warming and heat storage fiber, and preparation method and textile thereof
CN104099682A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/carbon nanotube/metal composite fiber and preparation method thereof
CN104099684A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/filler/metal composite fiber and preparation method thereof
CN104099681A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/ montmorillonite/metal composite fiber and preparation method thereof
CN104099680A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/nonconductive filling material/metal composite fiber and preparation method thereof
CN104099683A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/conductive filler/metal composite fiber and preparation method thereof
WO2014166420A1 (en) * 2013-04-12 2014-10-16 中国石油化工股份有限公司 Polymer/filler/metal composite fiber and preparation method thereof
CN106192050A (en) * 2016-08-23 2016-12-07 孟玲 Anti-electrostatic polymer composite fibre
CN111713771A (en) * 2020-05-20 2020-09-29 国网吉林省电力有限公司电力科学研究院 Anti-static protective clothing
KR20210124026A (en) * 2020-04-03 2021-10-14 코오롱인더스트리 주식회사 Cut-resistance complex fiber

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092234A (en) * 2005-09-29 2007-04-12 Toray Ind Inc Conductive fiber and textile product made thereof
JP2007154015A (en) * 2005-12-05 2007-06-21 Sumitomo Chemical Co Ltd Process for producing molded article made of electroconductive thermoplastic resin
WO2013170547A1 (en) * 2012-05-14 2013-11-21 Mao Yingjun Warming and heat storage fiber, and preparation method and textile thereof
WO2014166420A1 (en) * 2013-04-12 2014-10-16 中国石油化工股份有限公司 Polymer/filler/metal composite fiber and preparation method thereof
US10787754B2 (en) 2013-04-12 2020-09-29 China Petroleum & Chemical Corporation Polymer/filler/metal composite fiber and preparation method thereof
CN104099681A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/ montmorillonite/metal composite fiber and preparation method thereof
CN104099680A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/nonconductive filling material/metal composite fiber and preparation method thereof
CN104099683A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/conductive filler/metal composite fiber and preparation method thereof
CN104099682A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/carbon nanotube/metal composite fiber and preparation method thereof
JP2016519725A (en) * 2013-04-12 2016-07-07 中国石油化工股▲ふん▼有限公司 Polymer / filler / metal composite fiber and method for producing the same
CN104099684A (en) * 2013-04-12 2014-10-15 中国石油化工股份有限公司 Polymer/filler/metal composite fiber and preparation method thereof
KR101917257B1 (en) * 2013-04-12 2018-11-09 차이나 페트로리움 앤드 케미컬 코포레이션 Polymer/filler/metal composite fiber and preparation method thereof
TWI647263B (en) * 2013-04-12 2019-01-11 大陸商中國石油化工科技開發有限公司 Polymer/filler/metal composite fiber and preparation method thereof
CN106192050A (en) * 2016-08-23 2016-12-07 孟玲 Anti-electrostatic polymer composite fibre
KR20210124026A (en) * 2020-04-03 2021-10-14 코오롱인더스트리 주식회사 Cut-resistance complex fiber
KR102534492B1 (en) 2020-04-03 2023-05-26 코오롱인더스트리 주식회사 Cut-resistance complex fiber
CN111713771A (en) * 2020-05-20 2020-09-29 国网吉林省电力有限公司电力科学研究院 Anti-static protective clothing
CN111713771B (en) * 2020-05-20 2023-12-29 国网吉林省电力有限公司电力科学研究院 Antistatic protective clothing

Similar Documents

Publication Publication Date Title
EP1413653B1 (en) Conductive, soil-resistant core-sheath fibre with high resistance to chemicals, its production process and use
JP2004316029A (en) Method for producing conductive fiber, conductive fiber produced thereby and conductive fiber structure produced by using the same
EP1559815A2 (en) Conductive yarn, method of manufacture and use thereof
JP4923174B2 (en) Conductive composite yarn and conductive fabric
JP2008156810A (en) Core-sheath composite conductive fiber
JP4367038B2 (en) Fiber and fabric
JP5220673B2 (en) Conductive sewing thread and knitted fabric
JP4280546B2 (en) Conductive composite fiber and conductive woven / knitted fabric
JP2007002374A (en) Conductive conjugated fiber and conductive fabric
JP2004225214A (en) Electroconductive conjugated fiber
JP2018168501A (en) Electroconductive fabric and electroconductive fiber used for the electroconductive fabric
JPS60208467A (en) Composite flexible material
DE3888856T2 (en) Compound conductive fibers and fibrous articles containing these fibers.
JP2005194650A (en) Conductive conjugate fiber
JP2005002535A (en) Conductive conjugate fiber
JP2007092199A (en) Conductive conjugate fiber having moist heat resistance and conductive fabric having moist heat resistance
JP7340183B1 (en) Core-sheath type polyester composite fiber and its manufacturing method
JP2007092200A (en) Conductive conjugate fiber having moist heat resistance and conductive fabric having moist heat resistance
JP2006097145A (en) Fiber composite material and use thereof
JP2016069786A (en) Conductive core-sheath composite multifilament yarn
JPH073002B2 (en) Copper ammonia cellulose conductive fiber
JPS5860015A (en) Preparation of electrically conductive composite fiber
KR20170112137A (en) Coating composition, conductive fiber aggregate manufactured therewith and method for manufacturing the conductive fiber aggregate
CN117813425A (en) Core-sheath type polyester composite fiber and manufacturing method thereof
JPS61228821A (en) High performance wiper

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060320

A521 Written amendment

Effective date: 20060322

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Effective date: 20060501

Free format text: JAPANESE INTERMEDIATE CODE: A7422