JP2004315936A - Extremely low carbon-based acid-proof dew point corrosion steel having excellent intergranular fracture resistance - Google Patents

Extremely low carbon-based acid-proof dew point corrosion steel having excellent intergranular fracture resistance Download PDF

Info

Publication number
JP2004315936A
JP2004315936A JP2003114468A JP2003114468A JP2004315936A JP 2004315936 A JP2004315936 A JP 2004315936A JP 2003114468 A JP2003114468 A JP 2003114468A JP 2003114468 A JP2003114468 A JP 2003114468A JP 2004315936 A JP2004315936 A JP 2004315936A
Authority
JP
Japan
Prior art keywords
dew point
steel
point corrosion
low carbon
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003114468A
Other languages
Japanese (ja)
Inventor
Toshiharu Sakamoto
俊治 坂本
Satoru Nishimura
哲 西村
Akira Usami
明 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003114468A priority Critical patent/JP2004315936A/en
Publication of JP2004315936A publication Critical patent/JP2004315936A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel which exhibits satisfactory corrosion resistance in an acid dew point corrosive environment while maintaining high workability by preventing intergranular fracture on working. <P>SOLUTION: The extra-low carbon-based acid-proof dew point corrosion steel has a composition comprising, by mass, ≤0.0100% C, 0.1 to 2.0% Si, ≤1.0% Mn, ≤0.05% P, ≤0.05% S, 0.05 to 1.0% Cu, ≤0.10% Al, ≤0.020% N and 0.0005 to 0.0050% B, and the balance Fe with subordinate components and/or inevitable impurities, and has a structure essentially consisting of ferrite with a mean crystal grain size of ≤100 μm. The content of C is desirably controlled to ≤0.0050%. If required, one or more kinds of metals selected from ≤1.0% Cr, ≤1.0% Mo, ≤0.5% Ni, ≤0.1% Nb, ≤0.1% V, ≤0.1% Ti and 0.01 to 0.2% Sn are incorporated therein. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、重油、石炭、ごみ等を燃焼させた排ガスに曝される煙道、煙突、ボイラー空気予熱器などの設備に使用される耐酸露点腐食鋼材に関し、特に、鋼材加工時における粒界割れに対する抵抗性に優れた極低炭素系耐食鋼に関する。
【0002】
【従来の技術】
イオウ分や塩素分を含有する燃料を燃焼させると、排ガス中にSOxやHClが生じ、これが水分と化合して硫酸や塩酸が生じ、煙道、煙突など排ガスに曝される鋼部材に酸露点腐食が生じる。
【0003】
このような問題に対し、従来から酸露点腐食性に優れた低合金系鋼材が提示されてきており、例えば、特許文献1に見られるように、0.1%程度のCを含有し耐硫酸腐食性に有効なSb、Cuを複合添加した低合金鋼が発明され、実用に供されてきている。
【0004】
一方、これら鋼材は何がしかの加工を施して供するのが通例である。例えば、回転再生式エアヒーターに使用される伝熱エレメントは、伝熱効率の観点から、冷延鋼板を波板状に冷間成形して適用されるが、伝熱効率を極大化する目的で、より複雑形状への成形を可能とする高加工性鋼材が要求されるようになってきている。
【0005】
この要求に対して、特許文献2に見られるように、C含有量を極低レベルに抑制して延性を確保した耐酸露点腐食鋼が開発されてきている。
【0006】
しかしながら、この種の鋼でも、2段階で成形するような場合には、粒界破壊が生じて加工できない場合がある。
【0007】
すなわち、加工性を担保すべく炭素含有量を極低化した成分系では、粒界割れ抵抗性が劣化するという問題があり、旧来の加工条件には対応できても、より複雑形状への加工に供するには、粒界割れ抵抗性を改善する必要がある。
【0008】
【特許文献1】
特公昭43−14585号公報
【特許文献2】
特開2001−164335号公報
【0009】
【発明が解決しようとする課題】
以上の状況に鑑み、本発明は、加工時の粒界割れを防止して高度な加工性を維持しつつ酸露点腐食環境において良好な耐食性を発揮できる鋼材を提供するものである。
【0010】
【課題を解決するための手段】
前記の課題に対し、本発明者らは、種々の鋼成分の供試材を作製し、引張試験による延性の評価と粒界割れの再現試験を行った。
【0011】
一般に、延性はC含有量に依存し、本発明では、引張試験の伸び値35%超の高延性の確保を目的として、C含有量を0.0100%以下、望ましくは0.0050%以下に設定した。
【0012】
しかしながら、C含有量を0.0100%以下に低減すると粒界割れが生じるようになる。特に、SbやCuといった耐酸性を改善する元素が含有される場合に、その傾向が顕著に現れる。
【0013】
これを抑止すべく、種々の微量成分について検討した結果、Bを0.0005%以上含有させるのが有効であることを知見した。
【0014】
しかしながら、図1に示すように、結晶粒径が100μmを超える場合には、Bの効果は安定的に発現されない。
【0015】
よって、B含有と結晶粒径制御の両者組み合わせが重要であることを知見した。
【0016】
本発明は、前記知見に基づいて構成したものであり、その要旨は以下のとおりである。
【0017】
(1) 質量%で、C:≦0.0100%、Si:0.1〜2.0%、Mn:≦1.0%、P:≦0.05%、S:≦0.05%、Cu:0.05〜1.0%、Al:≦0.10%、N:≦0.020%、B:0.0005〜0.0050%を含有し、残部が付随的成分および/または不可避的不純物を含むFeからなり、かつ、平均結晶粒径が100μm以下のフェライト主体の組織からなることを特徴とする粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。
【0018】
(2) 質量%で、C:≦0.0050%、Si:0.1〜2.0%、Mn:≦1.0%、P:≦0.05%、S:≦0.05%、Cu:0.05〜1.0%、Al:≦0.10%、N:≦0.020%、B:0.0005〜0.0050%を含有し、残部が付随的成分および/または不可避的不純物を含むFeからなり、かつ、平均結晶粒径が100μm以下のフェライト主体の組織からなることを特徴とする粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。
【0019】
(3) 質量%で、C:≦0.0100%、Si:0.1〜2.0%、Mn:≦1.0%、P:≦0.05%、S:≦0.05%、Cu:0.05〜1.0%、Sb:0.01〜0.30%、Al:≦0.10%、N:≦0.020%、B:0.0005〜0.0050%を含有し、残部が付随的成分および/または不可避的不純物を含むFeからなり、かつ、平均結晶粒径が100μm以下のフェライト主体の組織からなることを特徴とする粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。
【0020】
(4) 質量%で、C:≦0.0050%、Si:0.1〜2.0%、Mn:≦1.0%、P:≦0.05%、S:≦0.05%、Cu:0.05〜1.0%、Sb:0.01〜0.30%、Al:≦0.10%、N:≦0.020%、B:0.0005〜0.0050%を含有し、残部が付随的成分および/または不可避的不純物を含むFeからなり、かつ、平均結晶粒径が100μm以下のフェライト主体の組織からなることを特徴とする粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。
【0021】
(5) 鋼成分として、質量%で、さらに、Cr:≦1.0%、Mo:≦1.0%、Ni:≦0.5%、Nb:≦0.1%、V:≦0.1%、Ti:≦0.1%、Sn:0.01〜0.2%の1種または2種以上を含むことを特徴とする前記(1)〜(4)のいずれかに記載の粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。
【0022】
【発明の実施の形態】
本発明における鋼成分の限定理由について述べる。なお、%は質量%を意味する。
【0023】
C:Cは延性を支配する元素であり、加えて、耐食性にも有害な元素であるため、含有量は可及的に低レベルが望ましい。本発明では、引張試験の伸び値35%以上の高延性を確保する目的から、C含有量を0.0100%以下とした。望ましい含有量は0.0050%である。
【0024】
Si:耐食性に有効な元素であるが、含有させ過ぎると延性を低下させるため、適正含有量として0.1〜2.0%を設定した。
【0025】
Mn:Mnは強化に寄与し延性を低下させると共に粒界割れ感受性を高めるため、上限を1.0%に制限した。
【0026】
Cu:耐食性を確保するのに不可欠の元素であるため、0.05%以上を含有させるが、延性や粒界割れ感受性に悪影響を及ぼすため、上限を1.0%に規制する。
【0027】
Sb:Si、Cuと同様に耐食性確保に有用な元素であるが、粒界割れ感受性を高める作用も有するため、適正含有量として0.01〜0.30%を設定した。
【0028】
B:粒界割れ感受性を低減するのに極めて有効な元素であり、0.0005%以上を含有させるが、多量に含有させても効果が飽和するため、0.0050%を上限とする。
【0029】
P:精練過程で残留する不純物であり、0.05%を超えて残留すると粒界割れ感受性が増大するため、上限を0.05%とした。
【0030】
S:Pと同様、不純物であり、0.05%を超えて残留すると粒界割れ感受性が増大するため、上限を0.05%とした。
【0031】
Al:精練過程において脱酸目的で含有させてもよいが、0.10%を上限とする。
【0032】
N:P、Sと同様、不純物であり、Cと同様に延性を低下させるため、可及的に低レベルが望ましく、上限を0.020%とする。望ましくは、0.010%以下である。
【0033】
本発明の鋼は、以上の元素を基本成分とするが、これらの元素およびFeに加えて、さらなる粒界割れ感受性低減、耐食性改善、熱間加工性改善などの目的で、以下の元素を含有させてもよい。
【0034】
Cr:耐食性に有用であるが、1.0%を超えて含有させるとかえって耐食性を劣化させるため、添加する場合は、上限を1.0%とするのが望ましい。
【0035】
Mo:粒界割れ感受性低減に有効であるが、延性を劣化させるため、両者のバランスを考慮した範囲としては、1.0%以下が望ましい。
【0036】
Ni:Cuの熱間加工性劣化を防止するために利用できるが、0.5%を超えて含有させると耐食性が劣化する傾向があるため、添加する場合は、上限を0.5%として添加するのが望ましい。
【0037】
Nb、V、Ti:析出物形成を通じて結晶粒度調整に有用であるが、0.1%を超えて含有させると耐食性が劣化する傾向があるため、添加する場合は、上限を0.1%として添加するのが望ましい。
【0038】
Sn:耐食性改善に有効な元素であるが、0.01%未満では効果が発現せず、0.2%を超えると熱間加工性が劣化する傾向にあるため、添加する場合は、0.01〜0.2%とするのが望ましい。
【0039】
以上の組成からなる鋼は、通常の方法で溶製、鋳造された後、鍛造あるいは圧延といった通例の熱間加工方法によって板、管、棒、などの形状に加工される。さらに、必要に応じて、熱間加工品に対して焼鈍などの熱処理を施されるか、あるいは、引き続いて酸洗を施した後、冷間加工が加えられ、さらに、最終焼鈍が施される。
【0040】
このような製造工程を経て得られる鋼材の金属組織はフェライト主体の組織となるが、その結晶粒度によっては、粒界割れを防止できない場合がある。
【0041】
すなわち、前記の如く、Bを含有させても、平均結晶粒径が100μmを超える場合には、粒界割れを安定的に防止することができない。このため、鋼材の平均結晶粒径を100μm以下に規定する。
【0042】
平均結晶粒径100μmを安定的に得るために、熱延条件として、仕上温度を880〜830℃の範囲とし、冷延条件として、圧下率50%以上とし、最終焼鈍温度を700〜730℃の範囲とする。
【0043】
また、細粒化を徹底する手段としては、例えば、熱延工程において仕上圧延前の圧下が終了した直後に、Ar3点−30℃まで一旦急冷した後、直ちにAr3点+30℃まで急速加熱し、その後、直ちに、10%以上の圧下率で仕上圧延を行う方法が挙げられる。
【0044】
なお、ここで言う平均結晶粒度とは、ISO643(1983)で規定されたものである。
【0045】
【実施例】
(実施例1)
表1に示す化学成分の鋼を真空溶解炉で溶製し、50kgインゴットに鋳造した後、熱延仕上前の圧下終了直後に860℃(Ar3点890℃)まで水冷した後、直ちに、920℃まで急速加熱し、その後、直ちに、15%の圧下率で仕上げ圧延を行って肉厚6mmの熱延板とし、これを酸洗した後、圧下率50%の冷間圧延を施し、その後、720℃で焼鈍処理を施した。
【0046】
【表1】

Figure 2004315936
【0047】
これらの板材より、φ84mmの円盤試験片を採取して粒界割れ再現試験を実施した。試験方法としては、円盤試験片にポンチ径40mmの深絞り試験機で絞り比2.1の条件で円筒深絞り加工を加えた後、テーパー角37度のテーパー付きポンチを押し込んで割れ有無を評価する方法を採った。試験温度は0℃とした。
【0048】
また、併せて、結晶粒度測定と引張試験、さらに、(1)50%硫酸、80℃、(2)90%硫酸、160℃の2条件で浸漬試験を行った。
【0049】
試験結果を表2に示す。表中の粒界割れの欄には、割れの有無を●、○で示す。また、耐食性は、前記2条件における腐食速度の大きい方の値をもって評価し、腐食速度50g/m /h以下をA、50〜200g/m /hをB、200g/m /h超をCとして表示し、A、Bを満足すべき性能として評価した。
【0050】
【表2】
Figure 2004315936
【0051】
表2より、本発明では、いずれも、伸び値35%以上の高延性が得られ、粒界割れが生じず、耐食性も十分である。
【0052】
一方、比較例A−4、A−5では、鋼成分は本発明の範囲内にあるが、平均粒径が本発明の範囲を超えているため、粒界割れが生じている。
【0053】
比較例X−1、Y−1では、B含有量が本発明範囲を外れているため、粒界割れ抵抗性が不十分である。
【0054】
比較例Z−1では、C含有量が多過ぎるため伸び値が不十分であり、Cuが含有されていないため、耐食性も不十分となっている。
【0055】
これらの結果を、縦軸B量、横軸C量として図1に示す。
【0056】
【発明の効果】
以上より、本発明によれば、加工時の粒界割れを防止して高度な加工性を維持しつつ、酸露点腐食環境において良好な耐食性を発揮する鋼材を得ることができる。
【図面の簡単な説明】
【図1】極低炭素系鋼材の粒界割れの有無(表1および表2、参照)をC量とB量および平均結晶粒径に関連させて示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to acid dew-point corrosion resistant steel used for equipment such as a flue, a chimney, and a boiler air preheater that is exposed to exhaust gas obtained by burning heavy oil, coal, refuse, and the like. The present invention relates to an ultra-low carbon corrosion-resistant steel having excellent resistance to corrosion.
[0002]
[Prior art]
When a fuel containing sulfur or chlorine is burned, SOx and HCl are generated in the exhaust gas, which combine with moisture to produce sulfuric acid and hydrochloric acid. Corrosion occurs.
[0003]
To cope with such a problem, low alloy steels having excellent acid dew point corrosion resistance have been proposed. For example, as shown in Patent Document 1, about 0.1% of C is contained and sulfuric acid resistance is reduced. A low alloy steel to which Sb and Cu effective for corrosion have been added in combination has been invented and has been put to practical use.
[0004]
On the other hand, these steel materials are usually provided with some processing. For example, the heat transfer element used in the rotary regeneration type air heater is applied by cold forming a cold-rolled steel sheet into a corrugated sheet from the viewpoint of heat transfer efficiency, but for the purpose of maximizing the heat transfer efficiency, Highly workable steel materials capable of forming into complex shapes have been required.
[0005]
In response to this demand, as shown in Patent Document 2, acid dew-point corrosion resistant steel has been developed in which the C content is suppressed to an extremely low level to ensure ductility.
[0006]
However, even in this type of steel, when it is formed in two stages, grain boundary destruction may occur and processing may not be possible.
[0007]
In other words, in a component system in which the carbon content is extremely low to ensure workability, there is a problem that the resistance to grain boundary cracking is deteriorated. Therefore, it is necessary to improve the grain boundary crack resistance.
[0008]
[Patent Document 1]
Japanese Patent Publication No. 43-14585 [Patent Document 2]
JP 2001-164335 A
[Problems to be solved by the invention]
In view of the above situation, the present invention is to provide a steel material that can exhibit good corrosion resistance in an acid dew point corrosion environment while preventing grain boundary cracking during processing and maintaining high workability.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors prepared test materials of various steel components, evaluated ductility by a tensile test, and performed a test for reproducing grain boundary cracks.
[0011]
Generally, ductility depends on the C content, and in the present invention, the C content is reduced to 0.0100% or less, preferably 0.0050% or less for the purpose of ensuring high ductility with an elongation value of more than 35% in a tensile test. Set.
[0012]
However, when the C content is reduced to 0.0100% or less, grain boundary cracks occur. In particular, when an element that improves acid resistance, such as Sb or Cu, is contained, the tendency is remarkable.
[0013]
As a result of studying various trace components in order to suppress this, it was found that it is effective to contain B by 0.0005% or more.
[0014]
However, as shown in FIG. 1, when the crystal grain size exceeds 100 μm, the effect of B is not stably exhibited.
[0015]
Therefore, it was found that the combination of both the B content and the control of the crystal grain size is important.
[0016]
The present invention has been made based on the above findings, and the gist is as follows.
[0017]
(1) In mass%, C: ≦ 0.0100%, Si: 0.1 to 2.0%, Mn: ≦ 1.0%, P: ≦ 0.05%, S: ≦ 0.05%, Cu: 0.05 to 1.0%, Al: ≤ 0.10%, N: ≤ 0.020%, B: 0.0005 to 0.0050%, with the balance being incidental components and / or unavoidable Ultra-low carbon-based acid dew-point corrosion resistant steel excellent in grain boundary cracking resistance, which is made of Fe containing an impurity and has a structure mainly composed of ferrite having an average crystal grain size of 100 μm or less.
[0018]
(2) In mass%, C: ≦ 0.0050%, Si: 0.1 to 2.0%, Mn: ≦ 1.0%, P: ≦ 0.05%, S: ≦ 0.05%, Cu: 0.05 to 1.0%, Al: ≤ 0.10%, N: ≤ 0.020%, B: 0.0005 to 0.0050%, with the balance being incidental components and / or unavoidable Ultra-low carbon-based acid dew-point corrosion resistant steel excellent in grain boundary cracking resistance, which is made of Fe containing an impurity and has a structure mainly composed of ferrite having an average crystal grain size of 100 μm or less.
[0019]
(3) In mass%, C: ≦ 0.0100%, Si: 0.1 to 2.0%, Mn: ≦ 1.0%, P: ≦ 0.05%, S: ≦ 0.05%, Cu: 0.05 to 1.0%, Sb: 0.01 to 0.30%, Al: ≦ 0.10%, N: ≦ 0.020%, B: 0.0005 to 0.0050% And the balance is made of Fe containing ancillary components and / or unavoidable impurities, and has a structure mainly composed of ferrite having an average crystal grain size of 100 μm or less. Carbon-based acid dew-point corrosion resistant steel.
[0020]
(4) In mass%, C: ≦ 0.0050%, Si: 0.1 to 2.0%, Mn: ≦ 1.0%, P: ≦ 0.05%, S: ≦ 0.05%, Cu: 0.05 to 1.0%, Sb: 0.01 to 0.30%, Al: ≦ 0.10%, N: ≦ 0.020%, B: 0.0005 to 0.0050% And the balance is made of Fe containing ancillary components and / or unavoidable impurities, and has a structure mainly composed of ferrite having an average crystal grain size of 100 μm or less. Carbon-based acid dew-point corrosion resistant steel.
[0021]
(5) As steel components, in mass%, Cr: ≦ 1.0%, Mo: ≦ 1.0%, Ni: ≦ 0.5%, Nb: ≦ 0.1%, V: ≦ 0. The grain according to any one of (1) to (4), wherein one or more of 1%, Ti: ≤ 0.1%, and Sn: 0.01 to 0.2% are contained. Ultra low carbon acid dew point corrosion resistant steel with excellent crack resistance.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for limiting the steel components in the present invention will be described. In addition,% means mass%.
[0023]
C: C is an element that controls ductility, and is also an element that is harmful to corrosion resistance. Therefore, the content is desirably as low as possible. In the present invention, the C content is set to 0.0100% or less for the purpose of ensuring high ductility of 35% or more of the elongation value of the tensile test. A desirable content is 0.0050%.
[0024]
Si: An element effective for corrosion resistance, but if contained too much, the ductility is reduced. Therefore, an appropriate content is set to 0.1 to 2.0%.
[0025]
Mn: The upper limit of Mn was limited to 1.0% in order to contribute to strengthening, reduce ductility and increase susceptibility to grain boundary cracking.
[0026]
Cu: 0.05% or more is contained because it is an indispensable element for ensuring corrosion resistance. However, the upper limit is restricted to 1.0% because it adversely affects ductility and susceptibility to grain boundary cracking.
[0027]
Sb: Like Si and Cu, Sb is an element useful for ensuring corrosion resistance, but also has an effect of increasing the susceptibility to grain boundary cracking. Therefore, an appropriate content is set to 0.01 to 0.30%.
[0028]
B: An element extremely effective in reducing the susceptibility to grain boundary cracking, containing 0.0005% or more, but the effect is saturated even if it is contained in a large amount, so the upper limit is 0.0050%.
[0029]
P: An impurity remaining in the refining process, and if it exceeds 0.05%, the susceptibility to grain boundary cracking increases, so the upper limit was made 0.05%.
[0030]
S: Like P, it is an impurity, and if it exceeds 0.05%, the susceptibility to grain boundary cracking increases, so the upper limit was made 0.05%.
[0031]
Al: Although it may be contained for the purpose of deoxidation in the scouring process, the upper limit is 0.10%.
[0032]
N: Like P and S, it is an impurity and lowers the ductility like C, so that it is desirably as low as possible, and the upper limit is made 0.020%. Desirably, it is 0.010% or less.
[0033]
The steel of the present invention contains the above elements as basic components. In addition to these elements and Fe, the following elements are contained for the purpose of further reducing intergranular cracking susceptibility, improving corrosion resistance, improving hot workability, and the like. You may let it.
[0034]
Cr: Useful for corrosion resistance, but if added in excess of 1.0%, the corrosion resistance is rather deteriorated. Therefore, when Cr is added, the upper limit is desirably 1.0%.
[0035]
Mo: It is effective in reducing the susceptibility to grain boundary cracking, but since the ductility is degraded, the range considering the balance between the two is preferably 1.0% or less.
[0036]
Ni: Cu can be used to prevent the deterioration of hot workability. However, if the content exceeds 0.5%, the corrosion resistance tends to deteriorate, so when adding, the upper limit is set to 0.5%. It is desirable to do.
[0037]
Nb, V, Ti: Useful for crystal grain size adjustment through precipitate formation, but if contained in excess of 0.1%, corrosion resistance tends to be degraded. It is desirable to add.
[0038]
Sn: an element effective for improving corrosion resistance, but if less than 0.01%, no effect is exhibited, and if it exceeds 0.2%, hot workability tends to deteriorate. It is desirably set to 01 to 0.2%.
[0039]
The steel having the above composition is melted and cast by a usual method, and then processed into a plate, tube, rod, or the like by a usual hot working method such as forging or rolling. Furthermore, if necessary, the hot-worked product is subjected to a heat treatment such as annealing, or, after being subsequently subjected to pickling, is subjected to cold working, and is further subjected to final annealing. .
[0040]
The metal structure of the steel material obtained through such a manufacturing process is mainly a structure of ferrite. However, depending on the crystal grain size, grain boundary cracking may not be prevented in some cases.
[0041]
That is, as described above, even if B is contained, if the average crystal grain size exceeds 100 μm, it is not possible to stably prevent grain boundary cracking. For this reason, the average crystal grain size of the steel material is specified to be 100 μm or less.
[0042]
In order to stably obtain an average crystal grain size of 100 μm, as a hot rolling condition, a finishing temperature is in a range of 880 to 830 ° C., as a cold rolling condition, a rolling reduction is 50% or more, and a final annealing temperature is 700 to 730 ° C. Range.
[0043]
Further, as means for thorough grain refinement, for example, immediately after the reduction before finish rolling in the hot rolling process is completed, the alloy is rapidly cooled to an Ar3 point of −30 ° C., and immediately rapidly heated to an Ar3 point of + 30 ° C. Thereafter, a method of immediately performing finish rolling at a rolling reduction of 10% or more is exemplified.
[0044]
Here, the average grain size is defined by ISO643 (1983).
[0045]
【Example】
(Example 1)
Steel having the chemical composition shown in Table 1 was melted in a vacuum melting furnace, cast into a 50 kg ingot, and immediately after the reduction before hot-rolling, was water-cooled to 860 ° C. (Ar 3 points: 890 ° C.), and immediately at 920 ° C. And then immediately hot-rolled with a rolling reduction of 15% to obtain a hot-rolled sheet having a thickness of 6 mm, pickled, cold-rolled with a rolling reduction of 50%, and then 720 Annealing treatment was performed at ℃.
[0046]
[Table 1]
Figure 2004315936
[0047]
From these plates, a disc test piece of φ84 mm was sampled and a grain boundary crack reproduction test was performed. As a test method, after a cylindrical test piece was subjected to a cylindrical deep drawing process under a condition of a drawing ratio of 2.1 using a deep drawing tester having a punch diameter of 40 mm and a punch having a taper angle of 37 degrees, a punch having a taper angle of 37 degrees was pressed to evaluate the presence or absence of cracks. I took the method of doing. The test temperature was 0 ° C.
[0048]
In addition, a grain size measurement and a tensile test were performed, and further, an immersion test was performed under two conditions of (1) 50% sulfuric acid, 80 ° C., (2) 90% sulfuric acid, and 160 ° C.
[0049]
Table 2 shows the test results. In the column of grain boundary cracks in the table, the presence or absence of cracks is indicated by ● and ○. Also, corrosion resistance, and evaluated with a larger value of corrosion rate in the two conditions, the corrosion rate 50 g / m 2 / h or less A, the 50~200g / m 2 / h B, 200g / m 2 / h greater Was indicated as C, and A and B were evaluated as satisfactory performance.
[0050]
[Table 2]
Figure 2004315936
[0051]
From Table 2, it can be seen that, in each of the present inventions, high ductility with an elongation value of 35% or more was obtained, no intergranular cracking occurred, and the corrosion resistance was sufficient.
[0052]
On the other hand, in Comparative Examples A-4 and A-5, although the steel component is within the range of the present invention, since the average particle size exceeds the range of the present invention, grain boundary cracking occurs.
[0053]
In Comparative Examples X-1 and Y-1, the B content is out of the range of the present invention, so that the grain boundary cracking resistance is insufficient.
[0054]
In Comparative Example Z-1, the elongation value was insufficient because the C content was too large, and the corrosion resistance was also insufficient because Cu was not contained.
[0055]
These results are shown in FIG. 1 as the amount of ordinate B and the amount of C on the abscissa.
[0056]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a steel material exhibiting good corrosion resistance in an acid dew-point corrosion environment while maintaining high workability while preventing grain boundary cracking during processing.
[Brief description of the drawings]
FIG. 1 is a diagram showing the presence or absence of grain boundary cracks (see Tables 1 and 2) of an ultra-low carbon steel material in relation to the C content, the B content, and the average crystal grain size.

Claims (5)

質量%で、C:≦0.0100%、Si:0.1〜2.0%、Mn:≦1.0%、P:≦0.05%、S:≦0.05%、Cu:0.05〜1.0%、Al:≦0.10%、N:≦0.020%、B:0.0005〜0.0050%を含有し、残部が付随的成分および/または不可避的不純物を含むFeからなり、かつ、平均結晶粒径が100μm以下のフェライト主体の組織からなることを特徴とする粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。In mass%, C: ≤ 0.0100%, Si: 0.1 to 2.0%, Mn: ≤ 1.0%, P: ≤ 0.05%, S: ≤ 0.05%, Cu: 0 0.05 to 1.0%, Al: ≦ 0.10%, N: ≦ 0.020%, B: 0.0005 to 0.0050%, with the balance containing incidental components and / or unavoidable impurities. An ultra-low carbon-based acid dew point corrosion resistant steel having excellent resistance to grain boundary cracking, characterized by being composed of Fe and containing a ferrite-based structure having an average crystal grain size of 100 μm or less. 質量%で、C:≦0.0050%、Si:0.1〜2.0%、Mn:≦1.0%、P:≦0.05%、S:≦0.05%、Cu:0.05〜1.0%、Al:≦0.10%、N:≦0.020%、B:0.0005〜0.0050%を含有し、残部が付随的成分および/または不可避的不純物を含むFeからなり、かつ、平均結晶粒径が100μm以下のフェライト主体の組織からなることを特徴とする粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。In mass%, C: ≦ 0.0050%, Si: 0.1 to 2.0%, Mn: ≦ 1.0%, P: ≦ 0.05%, S: ≦ 0.05%, Cu: 0 0.05 to 1.0%, Al: ≦ 0.10%, N: ≦ 0.020%, B: 0.0005 to 0.0050%, with the balance containing incidental components and / or unavoidable impurities. An ultra-low carbon-based acid dew point corrosion resistant steel having excellent resistance to grain boundary cracking, characterized by being composed of Fe and containing a ferrite-based structure having an average crystal grain size of 100 μm or less. 質量%で、C:≦0.0100%、Si:0.1〜2.0%、Mn:≦1.0%、P:≦0.05%、S:≦0.05%、Cu:0.05〜1.0%、Sb:0.01〜0.30%、Al:≦0.10%、N:≦0.020%、B:0.0005〜0.0050%を含有し、残部が付随的成分および/または不可避的不純物を含むFeからなり、かつ、平均結晶粒径が100μm以下のフェライト主体の組織からなることを特徴とする粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。In mass%, C: ≤ 0.0100%, Si: 0.1 to 2.0%, Mn: ≤ 1.0%, P: ≤ 0.05%, S: ≤ 0.05%, Cu: 0 0.05 to 1.0%, Sb: 0.01 to 0.30%, Al: ≤ 0.10%, N: ≤ 0.020%, B: 0.0005 to 0.0050%, with the balance being Is composed of Fe containing ancillary components and / or unavoidable impurities, and is composed of a ferrite-based structure having an average crystal grain size of 100 μm or less. Dew point corrosion steel. 質量%で、C:≦0.0050%、Si:0.1〜2.0%、Mn:≦1.0%、P:≦0.05%、S:≦0.05%、Cu:0.05〜1.0%、Sb:0.01〜0.30%、Al:≦0.10%、N:≦0.020%、B:0.0005〜0.0050%を含有し、残部が付随的成分および/または不可避的不純物を含むFeからなり、かつ、平均結晶粒径が100μm以下のフェライト主体の組織からなることを特徴とする粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。In mass%, C: ≦ 0.0050%, Si: 0.1 to 2.0%, Mn: ≦ 1.0%, P: ≦ 0.05%, S: ≦ 0.05%, Cu: 0 0.05 to 1.0%, Sb: 0.01 to 0.30%, Al: ≤ 0.10%, N: ≤ 0.020%, B: 0.0005 to 0.0050%, with the balance being Is composed of Fe containing ancillary components and / or unavoidable impurities, and is composed of a ferrite-based structure having an average crystal grain size of 100 μm or less. Dew point corrosion steel. 鋼成分として、質量%で、さらに、Cr:≦1.0%、Mo:≦1.0%、Ni:≦0.5%、Nb:≦0.1%、V:≦0.1%、Ti:≦0.1%、Sn:0.01〜0.2%の1種または2種以上を含むことを特徴とする請求項1〜4のいずれか1項に記載の粒界割れ抵抗性に優れた極低炭素系耐酸露点腐食鋼。As steel components, in mass%, Cr: ≤ 1.0%, Mo: ≤ 1.0%, Ni: ≤ 0.5%, Nb: ≤ 0.1%, V: ≤ 0.1%, The grain boundary cracking resistance according to any one of claims 1 to 4, comprising one or more of Ti: ≤ 0.1% and Sn: 0.01 to 0.2%. Excellent low carbon acid dew point corrosion resistant steel.
JP2003114468A 2003-04-18 2003-04-18 Extremely low carbon-based acid-proof dew point corrosion steel having excellent intergranular fracture resistance Withdrawn JP2004315936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114468A JP2004315936A (en) 2003-04-18 2003-04-18 Extremely low carbon-based acid-proof dew point corrosion steel having excellent intergranular fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114468A JP2004315936A (en) 2003-04-18 2003-04-18 Extremely low carbon-based acid-proof dew point corrosion steel having excellent intergranular fracture resistance

Publications (1)

Publication Number Publication Date
JP2004315936A true JP2004315936A (en) 2004-11-11

Family

ID=33474052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114468A Withdrawn JP2004315936A (en) 2003-04-18 2003-04-18 Extremely low carbon-based acid-proof dew point corrosion steel having excellent intergranular fracture resistance

Country Status (1)

Country Link
JP (1) JP2004315936A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239095A (en) * 2006-02-10 2007-09-20 Nippon Steel Corp Acid corrosion resistant steel
JP2012180546A (en) * 2011-02-28 2012-09-20 Nisshin Steel Co Ltd Sulfuric acid dew point corrosion resistant steel and exhaust gas flow-path constructional element
CN103882315A (en) * 2012-12-20 2014-06-25 上海梅山钢铁股份有限公司 Making method of sulfuric acid dew point corrosion resistant hot continuous rolled steel
KR20140138770A (en) * 2012-03-19 2014-12-04 닛신 세이코 가부시키가이샤 Steel having acid dew corrosion resistance, and exhaust gas flow path constituent member
KR20160138185A (en) * 2014-03-28 2016-12-02 닛신 세이코 가부시키가이샤 Steel plate having excellent acid dew point corrosion resistance, method of production, and exhaust gas channel constituent member
CN109852891A (en) * 2017-11-30 2019-06-07 上海梅山钢铁股份有限公司 A kind of low-carbon boron-containing steel continuous casting steel billet corner crack control method
JP2019196534A (en) * 2018-05-11 2019-11-14 日本製鉄株式会社 Steel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239095A (en) * 2006-02-10 2007-09-20 Nippon Steel Corp Acid corrosion resistant steel
JP2012180546A (en) * 2011-02-28 2012-09-20 Nisshin Steel Co Ltd Sulfuric acid dew point corrosion resistant steel and exhaust gas flow-path constructional element
KR20140138770A (en) * 2012-03-19 2014-12-04 닛신 세이코 가부시키가이샤 Steel having acid dew corrosion resistance, and exhaust gas flow path constituent member
CN104204264A (en) * 2012-03-19 2014-12-10 日新制钢株式会社 Steel having acid dew corrosion resistance, and exhaust gas flow path constituent member
CN103882315A (en) * 2012-12-20 2014-06-25 上海梅山钢铁股份有限公司 Making method of sulfuric acid dew point corrosion resistant hot continuous rolled steel
JPWO2015147166A1 (en) * 2014-03-28 2017-04-13 日新製鋼株式会社 Steel plate excellent in acid dew point corrosion resistance, manufacturing method, and exhaust gas flow path component
KR20160138185A (en) * 2014-03-28 2016-12-02 닛신 세이코 가부시키가이샤 Steel plate having excellent acid dew point corrosion resistance, method of production, and exhaust gas channel constituent member
JP2017160544A (en) * 2014-03-28 2017-09-14 日新製鋼株式会社 Steel sheet excellent in acid dew point corrosion resistance and exhaust gas flow passage constituting member
CN109536827A (en) * 2014-03-28 2019-03-29 日新制钢株式会社 The steel plate and manufacturing method and exhaust flow path component parts that resistance to acid dew piont corrosion is improved
CN109536827B (en) * 2014-03-28 2021-10-12 日新制钢株式会社 Steel sheet having improved resistance to acid dew point corrosion, method for producing same, and exhaust gas flow path component
KR102462565B1 (en) * 2014-03-28 2022-11-03 닛테츠 닛신 세이코 가부시키가이샤 Steel plate having excellent acid dew point corrosion resistance, method of production, and exhaust gas channel constituent member
CN109852891A (en) * 2017-11-30 2019-06-07 上海梅山钢铁股份有限公司 A kind of low-carbon boron-containing steel continuous casting steel billet corner crack control method
CN109852891B (en) * 2017-11-30 2021-01-08 上海梅山钢铁股份有限公司 Corner crack control method for low-carbon boron-containing steel continuous casting slab
JP2019196534A (en) * 2018-05-11 2019-11-14 日本製鉄株式会社 Steel
JP7014042B2 (en) 2018-05-11 2022-02-01 日本製鉄株式会社 Steel material

Similar Documents

Publication Publication Date Title
JP4823930B2 (en) Acid corrosion resistant steel
JP6173567B2 (en) Manufacturing method of steel sheet with excellent acid dew point corrosion resistance
JP5186769B2 (en) Sulfuric acid dew-point corrosion steel
TWI531665B (en) Ferritic stainless steel having excellent oxidation resistance
JP6683294B1 (en) Steel plate and enamel products
TWI460292B (en) Ferritic stainless steel
JP4291573B2 (en) Steel and air preheater with excellent resistance to sulfuric acid dew point corrosion
JP6858056B2 (en) Low specific gravity ferritic stainless steel sheet and its manufacturing method
JP5658893B2 (en) Ferritic stainless steel sheet with excellent heat resistance and method for producing the same
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP5703075B2 (en) Ferritic stainless steel plate with excellent heat resistance
WO1999009231A1 (en) Austenitic stainless steel excellent in resistance to sulfuric acid corrosion and workability
JP4105962B2 (en) Sulfuric acid dew-point corrosion steel cold-rolled steel sheet for air preheater heat transfer element and manufacturing method thereof
JP6954105B2 (en) Steel material
JP2004315936A (en) Extremely low carbon-based acid-proof dew point corrosion steel having excellent intergranular fracture resistance
JPWO2021005959A1 (en) Seamless steel pipe with excellent sulfuric acid dew point corrosion resistance and its manufacturing method
JP5989162B2 (en) High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
JP6992499B2 (en) Steel material
JP7127355B2 (en) steel
JP2021055141A (en) Ferritic stainless steel
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
CN108138295B (en) Novel austenitic stainless alloy
WO2022210651A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704