JP2004315273A - Nickel oxide powder with high specific surface area and excellent sintering property and its manufacturing method - Google Patents

Nickel oxide powder with high specific surface area and excellent sintering property and its manufacturing method Download PDF

Info

Publication number
JP2004315273A
JP2004315273A JP2003110288A JP2003110288A JP2004315273A JP 2004315273 A JP2004315273 A JP 2004315273A JP 2003110288 A JP2003110288 A JP 2003110288A JP 2003110288 A JP2003110288 A JP 2003110288A JP 2004315273 A JP2004315273 A JP 2004315273A
Authority
JP
Japan
Prior art keywords
nickel
oxide powder
nickel oxide
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003110288A
Other languages
Japanese (ja)
Inventor
Hiromasa Toya
広将 戸屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003110288A priority Critical patent/JP2004315273A/en
Publication of JP2004315273A publication Critical patent/JP2004315273A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide nickel oxide powder suitable as the source material of a sintered body or a compacted body, having a porous fine structure with a high specific surface area, and having improved handling property and sintering property of the powder, and to provide its manufacturing method. <P>SOLUTION: The nickel oxide powder is manufactured by heat treating a nickel compound in the form of spheric particles by aggregation of primary particles in an oxidative atmosphere at 300 to 850°C. The nickel oxide powder is finely pulverized to have 0.1 to 50 μm average particle size, 0.05 to 0.50 cm<SP>3</SP>/g pore volume and 5 to 500 m<SP>2</SP>/g specific surface area. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高比表面積で焼結性に優れる酸化ニッケル粉末及びその製造方法に関し、さらに詳しくは、焼結体や圧粉体の原料として好適な、多孔質で高比表面積である微細構造を有しかつ粉末のハンドリング性及び焼結性に優れる酸化ニッケル粉末及びその製造方法に関する。特に、燃料電池の電極材料及び触媒若しくはその担持材料などの分野で利用される酸化ニッケル粉末として好適である。
【0002】
【従来の技術】
従来、酸化ニッケル粉末は、一般的な粉末冶金材料の他、ソフトフェライト、コンデンサー、バリスター、2次電池用活物質など特殊用途の原料として使用されている。
【0003】
このため、種々の製造方法による酸化ニッケルが提案されており、代表的なものとしては、以下のようなものが挙げられる。
(1)一般的な粉末冶金材料の他、ソフトフェライト、コンデンサー、バリスター用としては、炭酸ニッケルや硝酸ニッケルを酸化性雰囲気でカ焼して得た酸化ニッケルを平均粒径0.1〜10μmに粉砕したものを使用する(例えば、特許文献1参照)。
(2)低嵩密度用として、硫酸ニッケルを1000〜1150℃で焙焼して得た平均粒径が3μm以下の酸化ニッケル粉末が使用される(例えば、特許文献2参照)。
(3)リチウム電池に用いられる正極活物質用としては、炭酸ニッケルを酸化性雰囲気でカ焼して得た、平均粒子径が50nm以下でかつ比表面積が50m/g以上の微細で比表面積が大きな酸化ニッケル粉末が使用される(例えば、特許文献3参照)。
【0004】
これらの提案は、それぞれの用途に応じた酸化ニッケル粉末として貢献しているが、以下の課題がある。すなわち、近年、燃料電池の電極材料及び触媒若しくはその担持材料などの分野で、気体や液体の反応物質の反応界面が大きくとれる、又は活性な反応媒体として使用できる酸化ニッケル粉末が望まれている。ここで、酸化ニッケル粉末は、焼結体や圧粉体として利用され、反応ガスや反応液との接触面積が大きい方が有利であるので、細孔容積が大きく、また比表面積が大きい電極や触媒担持体が望ましい。しかし、実用上は、粉末のハンドリング性、基材との密着性、焼結体の形状安定性等も優れていることが要求されるので、適正な粒径範囲及び形状であることも同時に求められる。
【0005】
これに対して、上記提案による酸化ニッケル粉末では、細孔容積や比表面積等の微細構造についての記載がないため不明な点もあるが、高温で焙焼しているため比表面積や細孔容積が低かったり、あるいは粉末の粒径が小さ過ぎて空気中に飛散して吸引されるなどハンドリング性や安全性に課題があるなどの問題があった。
以上の状況から、反応特性に関わる微細構造が付与され、かつ適切な平均粒径及び形状にすることによって粉末のハンドリング性、基材との密着性、及び焼結性に優れた酸化ニッケル粉末及びその製造方法が求められている。
【0006】
【特許文献1】
特開平10−46213号公報(第1〜3頁)
【特許文献2】
特開2001−97720号公報(第1頁、第2頁)
【特許文献3】
特開平11−79751号公報(第1〜3頁)
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記の従来技術の問題点に鑑み、焼結体や圧粉体の原料として好適な、多孔質で高比表面積である微細構造を有しかつ粉末のハンドリング性及び焼結性に優れる酸化ニッケル粉末及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために、焼結体や圧粉体の原料として好適な酸化ニッケル粉末及びその製造方法について、鋭意研究を重ねた結果、特定のニッケル化合物を特定の条件で加熱処理したところ、多孔質で高比表面積である微細構造を有しかつ粉末のハンドリング性及び焼結性に優れる酸化ニッケル粉末が得られることを見出し、本発明を完成した。
【0009】
すなわち、本発明の第1の発明によれば、一次粒子が凝集して球状粒子を形成しているニッケル化合物を、酸化性雰囲気下300〜850℃で加熱処理することを特徴とする酸化ニッケル粉末の製造方法が提供される。
【0010】
また、本発明の第2の発明によれば、第1の発明において、さらに、加熱処理後に微粉砕することを特徴とする酸化ニッケル粉末の製造方法が提供される。
【0011】
また、本発明の第3の発明によれば、第1又は2の発明において、前記ニッケル化合物が、水酸化ニッケル、炭酸ニッケル又は塩基性炭酸ニッケルから選ばれる少なくとも1種であることを特徴とする酸化ニッケル粉末の製造方法が提供される。
【0012】
また、本発明の第4の発明によれば、第1〜3いずれかの製造方法により得られる、平均粒径が0.1〜50μm、細孔容積が0.05〜0.50cm/g、及び比表面積が5〜500m/gであることを特徴とする酸化ニッケル粉末が提供される。
【0013】
【発明の実施の形態】
以下、本発明の高比表面積で焼結性に優れる酸化ニッケル粉末及びその製造方法を詳細に説明する。
本発明の高比表面積で焼結性に優れる酸化ニッケル粉末の製造方法は、一次粒子が凝集して球状粒子を形成しているニッケル化合物を、酸化性雰囲気下300〜850℃で加熱処理する製造方法であり、これによって平均粒径が0.1〜50μm、細孔容積が0.05〜0.50cm/g、及び比表面積が5〜500m/gである高比表面積で焼結性に優れる酸化ニッケル粉末が得られる。
【0014】
本発明では、一次粒子が凝集して球状粒子を形成しているニッケル化合物を用いて、これを酸化性雰囲気下所定の温度で加熱処理することが重要である。これによって、ニッケル化合物が熱分解して酸化物を生成する際に、適切な平均粒径に調整して粉末のハンドリング性、基材との密着性、及び焼結性が付与され、かつ反応特性に関わる微細構造に優れた酸化ニッケル粉末が達成される。
【0015】
1.ニッケル化合物
本発明では、ニッケル原料として、一次粒子が凝集して球状粒子を形成しているニッケル化合物を用いることに重要な意義がある。すなわち、前記形態のニッケル化合物を用いることによって、多孔質で高比表面積である微細構造と同時に粉末のハンドリング性及び焼結性に大きく影響する粉末の粒径と形状の制御が行える。すなわち、所定条件での処理方法を行うことによって、所望の平均粒径、細孔容積、比表面積等の特性を有する焼結体や圧粉体の原料として好適な球状粒子を得ることができる。
これに対して、例えば、上記の形態を持たない通常のニッケル化合物を用いた場合、微細構造が満足される低温度でのカ焼では、粒径が微細でハンドリング性及び焼結性に問題が生ずる。一方粒径の制御が行える高温度でのカ焼では、良好な微細構造が実現できない。
【0016】
上記形態のニッケル化合物としては、市販の球状ニッケル化合物を用いることができる。上記形態のニッケル化合物の製造方法としては、特に限定されるものではなく、形態として一次粒子が凝集した球状粒子を形成できるニッケル化合物の製造方法が用いられる。例えば、水酸化ニッケル、炭酸ニッケル又は塩基性炭酸ニッケルの場合には、硫酸ニッケル、塩化ニッケル、硝酸ニッケル等の各種ニッケルを含む水溶液と、カ性アルカリ水溶液、炭酸アルカリ水溶液、又はアンモニウム水溶液から選ばれる少なくとも1種とを、液の供給速度、液の供給場所、液温度、pH、撹拌等を適正化した条件で反応させることによって所定の粒径の球状粒子が調製できる。
【0017】
上記ニッケル化合物としては、特に限定されるものではなく、本発明で用いる加熱温度で分解し、その特性上許容できる範囲内での不純物を含有する酸化ニッケルが得られる水酸化ニッケル、炭酸ニッケル、塩基性炭酸ニッケル、硝酸ニッケル等のニッケル化合物が使用されるが、その中で、特に多孔質で高比表面積の微細構造が得られる水酸化ニッケル、炭酸ニッケル又は塩基性炭酸ニッケルから選ばれる少なくとも1種が好ましく、水酸化ニッケル及び/又は塩基性炭酸ニッケルが特に好ましい。
【0018】
これらの中で、特に、球状の水酸化ニッケルあるいは塩基性炭酸ニッケルとしては、0.05〜0.1μmの一次粒子が凝集して、1〜100μmの平均粒径に調製されることが好ましく、5〜50μmの平均粒径に調製されることが特に好ましい。すなわち、水酸化ニッケル及び/又は塩基性炭酸ニッケルを用いた場合には、加熱過程での脱水や脱炭酸による微細孔の形成効果がより顕著になるからである。
【0019】
2.処理方法
本発明の処理方法では、上記ニッケル化合物を酸化性雰囲気下所定の温度で加熱処理して酸化ニッケル粉末を得る。さらに、前記酸化ニッケル粉末を微粉砕する工程を含む。
【0020】
上記加熱処理の温度は、300〜850℃である。すなわち、温度が300℃未満では、ニッケル化合物が分解して酸化ニッケルを生成する反応が不十分である。一方、850℃を超えると、細孔容積が減少し比表面積が低下するので、多孔質で高比表面積である酸化ニッケル粉末が得られない。ここで、所望の平均粒径、細孔容積、比表面積等の特性を有する球状粒子を得るためには、用いるニッケル化合物の種類及び装置によって、前記の温度範囲で所定の温度と処理時間が選ばれる。
【0021】
上記加熱処理の雰囲気としては、酸化性雰囲気で行う。すなわち、中性あるいは還元性雰囲気では、酸素含量の低い酸化ニッケルあるいは金属ニッケルが得られるからである。
上記加熱処理で使用する加熱装置としては、特に限定されるものではなく、酸化性雰囲気に調整されたマッフル炉、ポット炉、管状炉、転動炉などが用いられる。
【0022】
本発明の処理方法では、特に限定されるものではないが、必要によっては、上記加熱処理によって得られた球状酸化ニッケル粉末を微粉砕処理できる。これによって、酸化ニッケル粉末の粒径を正確に調整できる。上記微粉砕処理では、特に限定されるものではなく、ボールミル、ビーズミル、アトライターミル、ジェットミル、スタンプミルなど市販の各種粉砕装置が用いられる。
【0023】
3.酸化ニッケル粉末
本発明の製造方法で得られる酸化ニッケル粉末は、平均粒径が0.1〜50μm、細孔容積が0.05〜0.50cm/g、及び比表面積が5〜500m/gであり、平均粒径と微細構造とを両立させた焼結体や圧粉体の原料として好適な酸化ニッケル粉末である。
【0024】
上記酸化ニッケル粉末の平均粒径は、0.1〜50μmの範囲である。すなわち、平均粒径が0.1μm未満では、粉末のハンドリング性が悪く、また焼結処理では、焼結し易くて焼結収縮が大きくなるので基材からの剥離や焼結体の変形などの不具合が生じる。一方、50μmを超えると、粒子間の空隙が大きくなるため焼結性が悪くなるので、得られる焼結体は強度が弱く壊れ易いものになる。
【0025】
上記酸化ニッケル粉末の細孔容積は0.05〜0.50cm/g、また比表面積は5〜500m/gの範囲である。すなわち、細孔容積が0.05cm/g未満、あるいは比表面積が5m/g未満では、気体や液体の反応物質の反応界面又は反応媒体として利用した場合、反応ガスや反応液との接触面積が小さいため電極や触媒としての働きが小さく実用的でない。一方、細孔容積が0.5cm/gを超えるか、比表面積が500m/gを超えると、焼結体の強度が弱くなるので電極又は触媒として使用できる強度が得られない。
以上、本発明の製造方法によって、焼結体や圧粉体の原料として好適な、多孔質で高比表面積である微細構造を有し、かつ粉末のハンドリング性及び焼結性に優れる酸化ニッケル粉末が得られる。
【0026】
【実施例】
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例及び比較例によってなんら限定されるものではない。
なお、実施例および比較例で用いた結晶相、平均粒径、細孔容積及び比表面積の評価方法は、以下の通りである。
(1)結晶相の同定:粉末X線回折法で行った。
(2)平均粒径の測定:レーザー回析散乱法によるマイクロトラック装置(マイクロトラック社製)で行った。
(3)細孔容積の測定:平均細孔径測定装置(カンタクロム社製)で行った。
(4)比表面積の測定:BET法で行った。
【0027】
実施例1
ニッケル原料として、球状水酸化ニッケル粉末(住友金属鉱山(株)製、ニッケル水素電池正極材料用水酸化ニッケル、平均粒径13.7μm)を用いて、これをセラミックス製容器に入れて、マッフル炉にて以下の条件で加熱処理を行って酸化ニッケル粉末を得て、結晶相、平均粒径、細孔容積及び比表面積を測定した。なお、得られた酸化ニッケル粉末の形状は球状であった。結果を表1に示す。
[加熱処理条件]
(1)加熱温度:500℃、(2)加熱時間:1時間、及び(3)加熱雰囲気:大気中。
【0028】
実施例2
ニッケル原料として、球状塩基性炭酸ニッケル粉末末(住友金属鉱山(製)、G−炭酸ニッケル、平均粒径19.0μm)を用いて、これをセラミックス製容器に入れて、マッフル炉にて以下の条件で加熱処理を行って酸化ニッケル粉末を得て、結晶相、平均粒径、細孔容積及び比表面積を測定した。なお、得られた酸化ニッケル粉末の形状は球状であった。結果を表1に示す。
[加熱処理条件]
(1)加熱温度:300℃、(2)加熱時間:5時間、及び(3)加熱雰囲気:乾燥空気を5dm/minの流速で供給した。
【0029】
実施例3
ニッケル原料として、球状塩基性炭酸ニッケル粉末(住友金属鉱山(製)、G−炭酸ニッケル、平均粒子径19.0μm)を用いて、これをセラミックス製容器に入れて、マッフル炉にて以下の条件で加熱処理を行って酸化ニッケル粉末を得て、結晶相、平均粒径、細孔容積及び比表面積を測定した。なお、得られた酸化ニッケル粉末の形状は球状であった。結果を表1に示す。
[加熱処理条件]
(1)加熱温度:700℃、(2)加熱時間:1時間、及び(3)加熱雰囲気:大気中。
【0030】
実施例4
ニッケル原料として、球状炭酸ニッケル粗粒子(住友金属鉱山(製)、GW−炭酸ニッケル、平均粒子径31.3μm)を用いて、これをセラミックス製容器に入れて、マッフル炉にて以下の条件で加熱処理を行って酸化ニッケル粉末を得て、さらにこれを直径2mmのアルミナボールを使用してアルミナ製ボールミルにて乾式粉砕して微粒末を得て、結晶相、平均粒径、細孔容積及び比表面積を測定した。結果を表1に示す。
[加熱処理条件]
(1)加熱温度:300℃、(2)加熱時間:2時間、及び(3)加熱雰囲気:大気中。
【0031】
比較例1
ニッケル原料として、球状塩基性炭酸ニッケル(住友金属鉱山(製)、GW−炭酸ニッケル、平均粒子径31.3μm)を用いて、これをセラミックス製容器に入れて、マッフル炉にて以下の条件で加熱処理を行って酸化ニッケル粉末を得て、結晶相、平均粒径、細孔容積及び比表面積を測定した。結果を表1に示す。
[加熱処理条件]
(1)加熱温度:250℃、(2)加熱時間:12時間、及び(3)加熱雰囲気:大気中。
【0032】
比較例2
ニッケル原料として、球状水酸化ニッケル粉末(住友金属鉱山(株)製、ニッケル水素電池正極材料用水酸化ニッケル、平均粒径13.7μm)を用いて、これをセラミックス製容器に入れて、管状炉にて以下の条件で加熱処理を行って酸化ニッケル粉末を得て、結晶相、平均粒径、細孔容積及び比表面積を測定した。なお、得られた酸化ニッケル粉末の形状は球状であった。結果を表1に示す。
[加熱処理条件]
(1)加熱温度:900℃、(2)加熱時間:3時間、及び(3)加熱雰囲気:大気中。
【0033】
比較例3
ニッケル原料として、硫酸ニッケル水溶液と水酸化ナトリウム水溶液を反応させて得た水酸化ニッケルを粉砕した不規則形状の粉末状水酸化ニッケル(平均粒径0.5μm)を用いて、これをセラミックス製容器に入れて、マッフル炉にて以下の条件で加熱処理を行って酸化ニッケル粉末を得て、結晶相、平均粒径、細孔容積及び比表面積を測定した。なお、得られた酸化ニッケル粉末の形状は不規則形状であった。結果を表1に示す。
[加熱処理条件]
(1)加熱温度:300℃、(2)加熱時間:2時間、及び(3)加熱雰囲気:大気中。
【0034】
【表1】

Figure 2004315273
【0035】
表1より、実施例1〜4では、ニッケル原料として一次粒子が凝集して球状粒子を形成している球状ニッケル化合物粉末を用い、かつ酸化性雰囲気下で加熱温度が300〜850℃で本発明の方法に従って行われたので、平均粒径が0.1〜50μmで、細孔容積が0.05〜0.50cm/g、及び比表面積が5〜500m/gの範囲のものが得られ、平均粒径と微細構造とを両立させた焼結体や圧粉体の原料として好適な酸化ニッケル粉末が得られることが分かる。これに対して、比較例1〜3では、加熱温度及びニッケル原料の形態のいずれかがこれらの条件に合わないので、結晶相、平均粒径、細孔容積及び比表面積のいずれかによって満足すべき結果が得られないことが分かる。
【0036】
【発明の効果】
以上説明したように、本発明の酸化ニッケル粉末及びその製造方法は、焼結体や圧粉体の原料として好適な、多孔質で高比表面積である微細構造を有しかつ粉末のハンドリング性及び焼結性に優れる酸化ニッケル粉末及びその製造方法であり、その工業的価値は極めて大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nickel oxide powder having a high specific surface area and excellent sinterability and a method for producing the same, and more particularly, to a fine porous structure having a high specific surface area, which is suitable as a raw material for a sintered body or a green compact. The present invention relates to a nickel oxide powder which has excellent powder handling properties and sinterability, and a method for producing the same. In particular, it is suitable as a nickel oxide powder used in the fields of fuel cell electrode materials and catalysts or supporting materials thereof.
[0002]
[Prior art]
Conventionally, nickel oxide powder has been used as a raw material for special applications, such as a soft ferrite, a capacitor, a varistor, and an active material for a secondary battery, in addition to a general powder metallurgy material.
[0003]
For this reason, nickel oxide by various manufacturing methods has been proposed, and the following are typical examples.
(1) In addition to general powder metallurgy materials, for soft ferrites, capacitors and varistors, nickel oxide obtained by calcining nickel carbonate or nickel nitrate in an oxidizing atmosphere has an average particle size of 0.1 to 10 μm. (See, for example, Patent Document 1).
(2) For low bulk density, nickel oxide powder having an average particle size of 3 μm or less obtained by roasting nickel sulfate at 1000 to 1150 ° C. is used (for example, see Patent Document 2).
(3) For a positive electrode active material used in a lithium battery, a fine and specific surface area having an average particle diameter of 50 nm or less and a specific surface area of 50 m 2 / g or more obtained by calcining nickel carbonate in an oxidizing atmosphere. Is used (see, for example, Patent Document 3).
[0004]
These proposals have contributed as nickel oxide powder according to each application, but have the following problems. That is, in recent years, in the fields of electrode materials and catalysts for fuel cells and materials for supporting the same, nickel oxide powders that can provide a large reaction interface between gaseous and liquid reactants or can be used as an active reaction medium are desired. Here, the nickel oxide powder is used as a sintered body or a green compact, and it is advantageous that the contact area with the reaction gas or the reaction solution is large, so that the pore volume is large and the electrode or the specific surface area is large. Catalyst supports are preferred. However, in practical use, it is required that the powder handleability, the adhesion to the substrate, the shape stability of the sintered body, and the like be also excellent. Can be
[0005]
On the other hand, in the nickel oxide powder according to the above proposal, there is no description because there is no description about the fine structure such as the pore volume and the specific surface area, but the specific surface area and the pore volume are roasted at a high temperature. Or the powder has too small a particle size and is scattered in the air and sucked.
From the above situation, nickel oxide powder having a fine structure related to the reaction characteristics, and having an appropriate average particle size and shape, is excellent in powder handling properties, adhesion with a substrate, and sinterability. There is a need for a manufacturing method.
[0006]
[Patent Document 1]
JP 10-46213 A (pages 1 to 3)
[Patent Document 2]
JP 2001-97720 A (pages 1 and 2)
[Patent Document 3]
JP-A-11-79751 (pages 1 to 3)
[0007]
[Problems to be solved by the invention]
In view of the above problems of the prior art, an object of the present invention is a porous material having a fine structure with a high specific surface area, which is suitable as a raw material for a sintered body or a compact, and has a powder handling property and sintering property. An object of the present invention is to provide a nickel oxide powder having excellent properties and a method for producing the same.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a nickel oxide powder suitable as a raw material for a sintered body or a green compact and a method for producing the same, in order to achieve the above object. It was found that a nickel oxide powder having a fine structure having a high specific surface area and being excellent in powder handling properties and sintering properties was obtained by heat treatment with, and the present invention was completed.
[0009]
That is, according to the first invention of the present invention, a nickel compound in which primary particles are aggregated to form spherical particles is subjected to a heat treatment at 300 to 850 ° C. in an oxidizing atmosphere. Is provided.
[0010]
Further, according to a second aspect of the present invention, there is provided the method for producing a nickel oxide powder according to the first aspect, further comprising pulverizing after heat treatment.
[0011]
According to a third aspect of the present invention, in the first or second aspect, the nickel compound is at least one selected from nickel hydroxide, nickel carbonate and basic nickel carbonate. A method for producing nickel oxide powder is provided.
[0012]
Further, according to the fourth invention of the present invention, the average particle size obtained by any one of the first to third manufacturing methods is 0.1 to 50 μm, and the pore volume is 0.05 to 0.50 cm 3 / g. And a nickel oxide powder having a specific surface area of 5 to 500 m 2 / g.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a nickel oxide powder having a high specific surface area and excellent sinterability and a method for producing the same according to the present invention will be described in detail.
The method for producing a nickel oxide powder having a high specific surface area and excellent sinterability according to the present invention is a method in which a nickel compound in which primary particles are aggregated to form spherical particles is heat-treated at 300 to 850 ° C. in an oxidizing atmosphere. A high specific surface area having an average particle size of 0.1 to 50 μm, a pore volume of 0.05 to 0.50 cm 3 / g, and a specific surface area of 5 to 500 m 2 / g. The resulting nickel oxide powder is excellent.
[0014]
In the present invention, it is important to use a nickel compound in which primary particles are aggregated to form spherical particles and heat-treat this at a predetermined temperature in an oxidizing atmosphere. Thereby, when the nickel compound is thermally decomposed to form an oxide, the powder is adjusted to an appropriate average particle size to provide powder handling properties, adhesion to a base material, and sinterability, and a reaction property. Thus, a nickel oxide powder having an excellent microstructure can be obtained.
[0015]
1. Nickel Compound In the present invention, it is important to use a nickel compound in which primary particles are aggregated to form spherical particles as a nickel raw material. That is, by using the nickel compound in the above-described form, it is possible to control the particle size and shape of the powder, which greatly affects the powder handling and sintering properties, as well as the microstructure having a porous and high specific surface area. That is, by performing the treatment method under predetermined conditions, it is possible to obtain spherical particles suitable as a raw material of a sintered body or a green compact having desired characteristics such as an average particle diameter, a pore volume, and a specific surface area.
On the other hand, for example, when a normal nickel compound not having the above-mentioned form is used, calcining at a low temperature at which a fine structure is satisfied causes a problem in handling properties and sinterability due to a fine particle size. Occurs. On the other hand, calcination at a high temperature at which the particle size can be controlled cannot achieve a good microstructure.
[0016]
As the nickel compound having the above-mentioned form, a commercially available spherical nickel compound can be used. The method for producing the nickel compound in the above embodiment is not particularly limited, and a nickel compound production method capable of forming spherical particles in which primary particles are aggregated is used. For example, in the case of nickel hydroxide, nickel carbonate or basic nickel carbonate, it is selected from an aqueous solution containing various nickels such as nickel sulfate, nickel chloride, and nickel nitrate, and a caustic alkali aqueous solution, an alkali carbonate aqueous solution, or an ammonium aqueous solution. Spherical particles having a predetermined particle size can be prepared by reacting with at least one kind under conditions that optimize the liquid supply speed, liquid supply location, liquid temperature, pH, stirring, and the like.
[0017]
The nickel compound is not particularly limited, and may be decomposed at the heating temperature used in the present invention to obtain nickel oxide containing impurities within an allowable range in its characteristics.Nickel hydroxide, nickel carbonate, base Nickel compounds such as basic nickel carbonate and nickel nitrate are used, and among them, at least one selected from nickel hydroxide, nickel carbonate, and basic nickel carbonate, which is particularly porous and provides a fine structure with a high specific surface area Are preferred, and nickel hydroxide and / or basic nickel carbonate are particularly preferred.
[0018]
Among these, in particular, as spherical nickel hydroxide or basic nickel carbonate, primary particles of 0.05 to 0.1 μm are preferably aggregated to be adjusted to an average particle size of 1 to 100 μm, It is particularly preferable to adjust the average particle size to 5 to 50 μm. That is, when nickel hydroxide and / or basic nickel carbonate is used, the effect of forming micropores by dehydration and decarboxylation in the heating process becomes more remarkable.
[0019]
2. Treatment method In the treatment method of the present invention, the nickel compound is heated at a predetermined temperature in an oxidizing atmosphere to obtain a nickel oxide powder. The method further includes a step of pulverizing the nickel oxide powder.
[0020]
The temperature of the heat treatment is 300 to 850 ° C. That is, when the temperature is lower than 300 ° C., the reaction of decomposing the nickel compound to form nickel oxide is insufficient. On the other hand, if the temperature exceeds 850 ° C., the pore volume decreases and the specific surface area decreases, so that a porous nickel oxide powder having a high specific surface area cannot be obtained. Here, in order to obtain spherical particles having characteristics such as a desired average particle diameter, pore volume, and specific surface area, a predetermined temperature and treatment time are selected in the above-mentioned temperature range depending on the type and apparatus of the nickel compound used. It is.
[0021]
The heat treatment is performed in an oxidizing atmosphere. That is, in a neutral or reducing atmosphere, nickel oxide or nickel metal having a low oxygen content can be obtained.
The heating device used in the heat treatment is not particularly limited, and a muffle furnace, a pot furnace, a tubular furnace, a rolling furnace, or the like adjusted to an oxidizing atmosphere is used.
[0022]
In the treatment method of the present invention, although not particularly limited, the spherical nickel oxide powder obtained by the heat treatment can be finely pulverized, if necessary. Thereby, the particle size of the nickel oxide powder can be accurately adjusted. In the fine pulverization treatment, there is no particular limitation, and various commercially available pulverizers such as a ball mill, a bead mill, an attritor mill, a jet mill, and a stamp mill are used.
[0023]
3. Nickel oxide powder The nickel oxide powder obtained by the production method of the present invention has an average particle size of 0.1 to 50 µm, a pore volume of 0.05 to 0.50 cm 3 / g, and a specific surface area of 5 to 500 m 2 / g. g, which is a nickel oxide powder suitable as a raw material for a sintered body or green compact having both an average particle size and a fine structure.
[0024]
The average particle size of the nickel oxide powder is in the range of 0.1 to 50 μm. That is, if the average particle size is less than 0.1 μm, the powder handling property is poor, and in the sintering process, it is easy to sinter and the sintering shrinkage becomes large. Failure occurs. On the other hand, if it exceeds 50 μm, the voids between the particles become large and the sinterability deteriorates. Therefore, the obtained sintered body has low strength and is easily broken.
[0025]
The pore volume of the nickel oxide powder is 0.05 to 0.50 cm 3 / g, and the specific surface area is 5 to 500 m 2 / g. That is, when the pore volume is less than 0.05 cm 3 / g or the specific surface area is less than 5 m 2 / g, when the gas is used as a reaction interface or a reaction medium of a gaseous or liquid reactant, contact with a reaction gas or a reaction solution is caused. Since the area is small, the function as an electrode or a catalyst is small and not practical. On the other hand, if the pore volume exceeds 0.5 cm 3 / g or the specific surface area exceeds 500 m 2 / g, the strength of the sintered body is weakened, so that the strength that can be used as an electrode or a catalyst cannot be obtained.
As described above, according to the production method of the present invention, a nickel oxide powder having a microstructure having a porous and high specific surface area, which is suitable as a raw material for a sintered body or a green compact, and having excellent powder handling properties and sinterability. Is obtained.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited by these Examples and Comparative Examples.
In addition, the evaluation method of the crystal phase, the average particle diameter, the pore volume, and the specific surface area used in Examples and Comparative Examples is as follows.
(1) Identification of crystal phase: It was performed by powder X-ray diffraction method.
(2) Measurement of average particle size: The measurement was performed with a Microtrack device (manufactured by Microtrack) using a laser diffraction scattering method.
(3) Measurement of pore volume: It was carried out with an average pore diameter measuring device (manufactured by Qantachrome).
(4) Measurement of specific surface area: BET method was used.
[0027]
Example 1
As a nickel raw material, spherical nickel hydroxide powder (manufactured by Sumitomo Metal Mining Co., Ltd., nickel hydroxide for a nickel-metal hydride battery positive electrode material, average particle diameter: 13.7 μm) is put into a ceramic container, and put into a muffle furnace. A heat treatment was performed under the following conditions to obtain a nickel oxide powder, and the crystal phase, average particle size, pore volume, and specific surface area were measured. In addition, the shape of the obtained nickel oxide powder was spherical. Table 1 shows the results.
[Heat treatment conditions]
(1) Heating temperature: 500 ° C., (2) Heating time: 1 hour, and (3) Heating atmosphere: In the air.
[0028]
Example 2
As a nickel raw material, spherical basic nickel carbonate powder powder (Sumitomo Metal Mining Co., Ltd., G-nickel carbonate, average particle size: 19.0 μm) was used, placed in a ceramic container, and placed in a muffle furnace as follows. Heat treatment was performed under the conditions to obtain a nickel oxide powder, and the crystal phase, average particle size, pore volume, and specific surface area were measured. In addition, the shape of the obtained nickel oxide powder was spherical. Table 1 shows the results.
[Heat treatment conditions]
(1) Heating temperature: 300 ° C., (2) Heating time: 5 hours, and (3) Heating atmosphere: Dry air was supplied at a flow rate of 5 dm 3 / min.
[0029]
Example 3
Spherical basic nickel carbonate powder (Sumitomo Metal Mining Co., Ltd., G-nickel carbonate, average particle diameter 19.0 μm) was used as a nickel raw material, placed in a ceramic container, and then subjected to the following conditions in a muffle furnace. To obtain a nickel oxide powder, and the crystal phase, average particle size, pore volume and specific surface area were measured. In addition, the shape of the obtained nickel oxide powder was spherical. Table 1 shows the results.
[Heat treatment conditions]
(1) Heating temperature: 700 ° C., (2) Heating time: 1 hour, and (3) Heating atmosphere: In the air.
[0030]
Example 4
As a nickel raw material, spherical nickel carbonate coarse particles (Sumitomo Metal Mining Co., Ltd., GW-nickel carbonate, average particle diameter 31.3 μm) are used, placed in a ceramic container, and placed in a muffle furnace under the following conditions. A heat treatment was performed to obtain a nickel oxide powder, which was further dry-pulverized with an alumina ball mill using an alumina ball having a diameter of 2 mm to obtain fine powder, a crystal phase, an average particle diameter, a pore volume and The specific surface area was measured. Table 1 shows the results.
[Heat treatment conditions]
(1) Heating temperature: 300 ° C., (2) Heating time: 2 hours, and (3) Heating atmosphere: In the air.
[0031]
Comparative Example 1
As a nickel raw material, spherical basic nickel carbonate (Sumitomo Metal Mining Co., Ltd., GW-nickel carbonate, average particle diameter 31.3 μm) was used, placed in a ceramic container, and placed in a muffle furnace under the following conditions. Heat treatment was performed to obtain a nickel oxide powder, and the crystal phase, average particle size, pore volume, and specific surface area were measured. Table 1 shows the results.
[Heat treatment conditions]
(1) heating temperature: 250 ° C., (2) heating time: 12 hours, and (3) heating atmosphere: in the air.
[0032]
Comparative Example 2
As a nickel raw material, spherical nickel hydroxide powder (manufactured by Sumitomo Metal Mining Co., Ltd., nickel hydroxide for nickel-metal hydride battery positive electrode material, average particle diameter of 13.7 μm) was put into a ceramic container, and placed in a tube furnace. A heat treatment was performed under the following conditions to obtain a nickel oxide powder, and the crystal phase, average particle size, pore volume, and specific surface area were measured. In addition, the shape of the obtained nickel oxide powder was spherical. Table 1 shows the results.
[Heat treatment conditions]
(1) Heating temperature: 900 ° C., (2) Heating time: 3 hours, and (3) Heating atmosphere: in the air.
[0033]
Comparative Example 3
As a nickel raw material, an irregularly shaped powdery nickel hydroxide (average particle size: 0.5 μm) obtained by pulverizing nickel hydroxide obtained by reacting an aqueous solution of nickel sulfate and an aqueous solution of sodium hydroxide was used, and the resulting mixture was placed in a ceramic container. And subjected to a heat treatment in a muffle furnace under the following conditions to obtain a nickel oxide powder, and the crystal phase, average particle size, pore volume and specific surface area were measured. In addition, the shape of the obtained nickel oxide powder was irregular. Table 1 shows the results.
[Heat treatment conditions]
(1) Heating temperature: 300 ° C., (2) Heating time: 2 hours, and (3) Heating atmosphere: In the air.
[0034]
[Table 1]
Figure 2004315273
[0035]
As shown in Table 1, in Examples 1 to 4, the present invention uses, as a nickel raw material, a spherical nickel compound powder in which primary particles are aggregated to form spherical particles, and the heating temperature is 300 to 850 ° C. in an oxidizing atmosphere. The average particle diameter is 0.1 to 50 μm, the pore volume is 0.05 to 0.50 cm 3 / g, and the specific surface area is 5 to 500 m 2 / g. It can be seen that a nickel oxide powder suitable as a raw material for a sintered body or a green compact having both an average particle diameter and a fine structure can be obtained. On the other hand, in Comparative Examples 1 to 3, since either the heating temperature or the form of the nickel raw material does not meet these conditions, it is satisfied by any of the crystal phase, the average particle size, the pore volume, and the specific surface area. It turns out that the expected result cannot be obtained.
[0036]
【The invention's effect】
As described above, the nickel oxide powder of the present invention and the method for producing the same are suitable as a raw material for a sintered body or a green compact, have a porous structure having a high specific surface area and a powder handling property, and A nickel oxide powder excellent in sinterability and a production method thereof, and its industrial value is extremely large.

Claims (4)

一次粒子が凝集して球状粒子を形成しているニッケル化合物を、酸化性雰囲気下300〜850℃で加熱処理することを特徴とする酸化ニッケル粉末の製造方法。A method for producing nickel oxide powder, comprising subjecting a nickel compound in which primary particles are aggregated to form spherical particles to heat treatment at 300 to 850 ° C in an oxidizing atmosphere. さらに、加熱処理後に微粉砕することを特徴とする請求項1に記載の酸化ニッケル粉末の製造方法。The method for producing a nickel oxide powder according to claim 1, further comprising finely pulverizing after the heat treatment. 前記ニッケル化合物が、水酸化ニッケル、炭酸ニッケル又は塩基性炭酸ニッケルから選ばれる少なくとも1種であることを特徴とする請求項1又は2に記載の酸化ニッケル粉末の製造方法。3. The method according to claim 1, wherein the nickel compound is at least one selected from nickel hydroxide, nickel carbonate, and basic nickel carbonate. 請求項1〜3のいずれかに記載の製造方法により得られる、平均粒径が0.1〜50μm、細孔容積が0.05〜0.50cm/g、及び比表面積が5〜500m/gであることを特徴とする酸化ニッケル粉末。Obtained by the process according to any one of claims 1 to 3, an average particle diameter of 0.1 to 50 [mu] m, a pore volume of 0.05~0.50cm 3 / g, and a specific surface area of 5 to 500 m 2 / G nickel oxide powder.
JP2003110288A 2003-04-15 2003-04-15 Nickel oxide powder with high specific surface area and excellent sintering property and its manufacturing method Pending JP2004315273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110288A JP2004315273A (en) 2003-04-15 2003-04-15 Nickel oxide powder with high specific surface area and excellent sintering property and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110288A JP2004315273A (en) 2003-04-15 2003-04-15 Nickel oxide powder with high specific surface area and excellent sintering property and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004315273A true JP2004315273A (en) 2004-11-11

Family

ID=33471191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110288A Pending JP2004315273A (en) 2003-04-15 2003-04-15 Nickel oxide powder with high specific surface area and excellent sintering property and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004315273A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024197A (en) * 2007-07-17 2009-02-05 Sumitomo Metal Mining Co Ltd Method for producing nickel powder
JP2009155194A (en) * 2007-12-28 2009-07-16 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for manufacturing the same
KR100914632B1 (en) * 2009-03-20 2009-09-02 재단법인 구미전자정보기술원 Method for preparing a sintered nickel oxide
JP2009196870A (en) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd Nickel oxide powder and its production method
JP2010089988A (en) * 2008-10-08 2010-04-22 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method of producing the same
JP2010196118A (en) * 2009-02-25 2010-09-09 Sumitomo Metal Mining Co Ltd Method for producing nickel powder
JP2011042541A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method for producing the same
KR20190139514A (en) * 2018-06-08 2019-12-18 주식회사 엘지화학 Nickel oxide powder and method for preparing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024197A (en) * 2007-07-17 2009-02-05 Sumitomo Metal Mining Co Ltd Method for producing nickel powder
JP2009155194A (en) * 2007-12-28 2009-07-16 Sumitomo Metal Mining Co Ltd Nickel oxide powder and method for manufacturing the same
JP2009196870A (en) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd Nickel oxide powder and its production method
JP2010089988A (en) * 2008-10-08 2010-04-22 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method of producing the same
JP2010196118A (en) * 2009-02-25 2010-09-09 Sumitomo Metal Mining Co Ltd Method for producing nickel powder
KR100914632B1 (en) * 2009-03-20 2009-09-02 재단법인 구미전자정보기술원 Method for preparing a sintered nickel oxide
JP2011042541A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Mining Co Ltd Nickel oxide fine powder and method for producing the same
KR20190139514A (en) * 2018-06-08 2019-12-18 주식회사 엘지화학 Nickel oxide powder and method for preparing the same
KR102507912B1 (en) 2018-06-08 2023-03-08 주식회사 엘지화학 Nickel oxide powder and method for preparing the same

Similar Documents

Publication Publication Date Title
JP6196175B2 (en) Method for producing positive electrode active material for lithium secondary battery and active material precursor powder used therefor
EP2067196B1 (en) Pulverulent compounds, a process for the preparation thereof and the use thereof in lithium secondary batteries
JP6230540B2 (en) Positive electrode active material for lithium secondary battery and positive electrode using the same
JP4063151B2 (en) Porous spherical nickel powder and method for producing the same
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
Zhang et al. Sinterability and ionic conductivity of coprecipitated Ce0. 8Gd0. 2O2− δ powders treated via a high-energy ball-milling process
JP5830178B2 (en) Method for producing positive electrode active material for lithium secondary battery and active material precursor powder used therefor
JP5830179B2 (en) Method for producing positive electrode active material for lithium secondary battery and active material precursor powder used therefor
JP2005503661A (en) Method for producing niobium oxide
CN110235290A (en) Positive active material and its manufacturing method, anode and lithium ion battery
Wu et al. Synthesis, characterization, and microwave dielectric properties of Mg4Nb2O9 ceramics produced through the aqueous sol–gel process
JP2004315273A (en) Nickel oxide powder with high specific surface area and excellent sintering property and its manufacturing method
JPH05193943A (en) Method for preparing reduced titanium oxide
JPWO2003076336A1 (en) Cerium-based composite oxide, its sintered body and production method
JP2010184840A (en) Magnetic powder and magnetic sintered body and manufacturing method
KR102442201B1 (en) Ceramic powder material, manufacturing method of ceramic powder material, compact, sintered body and battery
WO2022065522A1 (en) Ceramic powder material, sintered body, and battery
WO2020230657A1 (en) Oxide-based solid-state electrolyte
JP2001010867A (en) Method for producing ceramic raw material particle
JP2019003818A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP2001122675A (en) Calcium zirconate/magnesia-based composite porous body and its manufacturing method
KR102016916B1 (en) Method for producing LLZO oxide solid electrolyte powder
JP6969120B2 (en) Manufacturing method of nickel oxide fine powder
JP6664881B2 (en) Composite oxide powder for fuel cell air electrode, method for producing the same, fuel cell air electrode and fuel cell
Torvela et al. Processing characteristics of tin and tungsten oxides relevant to production of gas sensors