JP2004314059A - Coating nozzle for hollow fiber membrane and production method of composite hollow fiber membrane using it - Google Patents

Coating nozzle for hollow fiber membrane and production method of composite hollow fiber membrane using it Download PDF

Info

Publication number
JP2004314059A
JP2004314059A JP2004084304A JP2004084304A JP2004314059A JP 2004314059 A JP2004314059 A JP 2004314059A JP 2004084304 A JP2004084304 A JP 2004084304A JP 2004084304 A JP2004084304 A JP 2004084304A JP 2004314059 A JP2004314059 A JP 2004314059A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
polymer solution
coating
coating nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004084304A
Other languages
Japanese (ja)
Other versions
JP5078050B2 (en
JP2004314059A5 (en
Inventor
Toshiyuki Ishizaki
利之 石崎
Shuji Furuno
修治 古野
Yoshifumi Odaka
善文 尾▲だか▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004084304A priority Critical patent/JP5078050B2/en
Publication of JP2004314059A publication Critical patent/JP2004314059A/en
Publication of JP2004314059A5 publication Critical patent/JP2004314059A5/ja
Application granted granted Critical
Publication of JP5078050B2 publication Critical patent/JP5078050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating nozzle capable diminishing a coating defect and a fiber clogging, originating from an outside diameter shape of a hollow fiber membrane forming a supporting membrane, and to provide a production method of a composite hollow fiber membrane. <P>SOLUTION: The coating nozzle of the hollow fiber membrane has an introduction hole of the hollow fiber membrane, a feeding hole of a polymer solution and an emission hole for guiding out the hollow fiber membrane coated with a polymer solution while coating the polymer solution around the hollow fiber membrane, wherein a part forming the emission hole is constituted with an elastic member. The polymer solution is coated around the hollow fiber membrane by feeding the polymer solution while introducing the hollow fiber membrane into the above coating nozzle and guiding out the hollow fiber membrane. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複合中空糸膜の製造工程に好適に用いることができる中空糸膜のコーティングノズルに関する。   The present invention relates to a hollow fiber membrane coating nozzle that can be suitably used in a production process of a composite hollow fiber membrane.

中空糸膜の複合化技術の一つとして、支持膜となる多孔性中空糸膜上にポリマー溶液をコーティングし、その後、ポリマー溶液を相分離させることで支持膜上に分離機能層などのコーティング層を形成する積層法がある。   As one of the composite technologies for hollow fiber membranes, a polymer solution is coated on a porous hollow fiber membrane serving as a support membrane, and then the polymer solution is phase-separated to form a coating layer such as a separation functional layer on the support membrane. Is formed.

このとき、支持膜に所定量のポリマー溶液をコーティングする方法としては、支持膜をポリマー溶液に浸漬し、自然液切りやエアーノズルで液切りする方法が知られているが(特許文献1参照)、設備的に省スペース化を図るとともに、形成するコーティング層の厚みの偏りを少なくするためには、たとえば特許文献2に記載されるエアースプレーガンのようなノズルを用い、支持膜をそのノズルの貫通孔に通してポリマー溶液とともに引き出せばよいとも考えられる。   At this time, as a method of coating the support film with a predetermined amount of the polymer solution, a method is known in which the support film is immersed in the polymer solution and drained naturally or with an air nozzle (see Patent Document 1). In order to save space in equipment and reduce unevenness in the thickness of a coating layer to be formed, for example, a nozzle such as an air spray gun described in Patent Document 2 is used, and It is thought that it is only necessary to pull out with the polymer solution through the through hole.

しかしながら、現実には、このような貫通孔を有するノズルを用いる方法において、コーティング層の厚みを一定にし膜性能を均質化することは難しい。すなわち、コーティング層の厚みを一定にするためには、ノズル内部を通過する支持膜とノズル内面との間にポリマー溶液が均一に流れる必要がある。しかしながら、ノズルの口径や形状は変動しない一方で、支持膜は完全な均質材料とはいえず経時的に外径や形状が少なからず変動する。その結果、支持材である中空糸膜とノズル内面との間隙は経時的に変化して、中空糸膜にポリマー溶液が塗布されていない部分が生じる。ポリマー溶液が塗布されていない部分は、たとえばそのポリマー溶液によって分離機能層を形成する場合などには、その部分の膜性能が中空糸膜全体の膜性能を低下させることにもなり、欠陥品を発生させることにもなり得る。また、上述のようなノズルの場合には、異物混入や吐出異常などによって発生した中空糸膜の欠点部がノズルを通過する場合には、糸詰まりが発生して連続コーティングが困難になるなどの問題もある。
特開平9−47644号公報 特開2002−1169号公報
However, in reality, in a method using a nozzle having such a through-hole, it is difficult to make the thickness of the coating layer constant and uniform the film performance. That is, in order to keep the thickness of the coating layer constant, the polymer solution needs to flow uniformly between the support film passing through the inside of the nozzle and the inner surface of the nozzle. However, while the diameter and shape of the nozzle do not change, the support film cannot be said to be a completely homogeneous material, and the outer diameter and shape change over time. As a result, the gap between the hollow fiber membrane as the support material and the inner surface of the nozzle changes with time, and a portion where the polymer solution is not applied to the hollow fiber membrane occurs. In the case where the polymer solution is not applied, for example, when a separation function layer is formed using the polymer solution, the membrane performance of the portion also lowers the membrane performance of the entire hollow fiber membrane, and defective products are not removed. Can also be generated. Further, in the case of the above-described nozzle, when a defective portion of the hollow fiber membrane generated due to foreign matter mixing or discharge abnormality passes through the nozzle, yarn clogging occurs and continuous coating becomes difficult. There are also problems.
JP-A-9-47644 JP-A-2002-1169

本発明の目的は、支持膜となる中空糸膜の外径形状に起因するコーティング不良や糸詰まりを軽減することができるコーティングノズルおよび複合中空糸膜の製造方法を提供することにある。   An object of the present invention is to provide a coating nozzle and a method for producing a composite hollow fiber membrane that can reduce coating defects and yarn clogging due to the outer diameter shape of the hollow fiber membrane serving as a support membrane.

上記の目的を達成するための本発明は、中空糸膜にポリマー溶液をコーティングするコーティングノズルであって、中空糸膜の導入口と、ポリマー溶液の供給口と、中空糸膜の周囲にポリマー溶液をコーティングしながらポリマー溶液がコーティングされた中空糸膜を導き出す導出口とを備え、導出口を形成する部位が弾性部材で構成されている中空糸膜のコーティングノズルを特徴とするものである。また、上述のコーティングノズルが、前記導入口から前記導出口の間にわたって設けられた中空糸膜の挿入口を有するものであることが好ましく、また、中空糸膜の周方向に複数個に分割可能であることが好ましい。ここで、弾性部材は、静的せん断弾性係数が0.5〜2MPaの範囲内で、かつ、破断時の伸びが150〜400%の範囲内にあるものであることが好ましい。   The present invention for achieving the above object is a coating nozzle for coating a hollow fiber membrane with a polymer solution, comprising a hollow fiber membrane inlet, a polymer solution supply port, and a polymer solution around the hollow fiber membrane. And a lead-out port for guiding a hollow fiber membrane coated with a polymer solution while coating the polymer solution. The hollow fiber membrane coating nozzle is characterized in that a part forming the lead-out port is formed of an elastic member. Further, it is preferable that the above-mentioned coating nozzle has an insertion port for a hollow fiber membrane provided between the inlet and the outlet, and the coating nozzle can be divided into a plurality in the circumferential direction of the hollow fiber membrane. It is preferable that Here, the elastic member preferably has a static shear modulus in a range of 0.5 to 2 MPa and an elongation at break in a range of 150 to 400%.

そして、上述のいずれかのコーティングノズルに中空糸膜を導入し、ポリマー溶液を供給して前記中空糸膜を該ポリマー液とともに導き出すことでその中空糸膜の周囲にポリマー溶液をコーティングする複合中空糸膜の製造方法も好ましい態様である。このとき、中空糸膜にポリマー溶液をコーティングした後、そのポリマー溶液を相分離させ、中空糸膜の表面に分離機能層を形成することが好ましい。   Then, the hollow fiber membrane is introduced into any one of the above-described coating nozzles, and a polymer solution is supplied to draw out the hollow fiber membrane together with the polymer solution, thereby coating the polymer solution around the hollow fiber membrane with the polymer solution. The method for producing a film is also a preferred embodiment. At this time, it is preferable that after the hollow fiber membrane is coated with the polymer solution, the polymer solution is phase-separated to form a separation functional layer on the surface of the hollow fiber membrane.

本発明のコーティングノズルは、中空糸膜の導入口と、ポリマー溶液の供給口と、中空糸膜の周囲にポリマー溶液をコーティングしながらポリマー溶液がコーティングされた中空糸膜を導き出す導出口とを備え、導出口を形成する部位が弾性部材で構成されているので、支持膜となる中空糸膜の外径形状が長さ方向に不均一であっても、ポリマー溶液のコーティング不良、さらには欠陥品の発生を防ぐことができ、また、糸詰まりを軽減することもできる。   The coating nozzle of the present invention includes an inlet for the hollow fiber membrane, a supply port for the polymer solution, and an outlet for guiding the hollow fiber membrane coated with the polymer solution while coating the polymer solution around the hollow fiber membrane. Since the portion forming the outlet is made of an elastic member, even if the outer diameter of the hollow fiber membrane serving as the support membrane is non-uniform in the length direction, poor coating of the polymer solution and further defective products Can be prevented, and yarn clogging can be reduced.

図1に、本発明のコーティングノズルを用いた、支持膜上に分離機能膜を有する複合中空糸膜の製造工程の概略フロー図を示す。   FIG. 1 shows a schematic flow chart of a production process of a composite hollow fiber membrane having a separation function membrane on a support membrane using the coating nozzle of the present invention.

図1において、支持膜となる中空糸膜1は、送出装置2によって張力が付与された状態で送り出され、乾燥機4によって半乾燥状態あるいは絶乾状態にされた後、ガイドロール3を経てコーティングノズル5に導かれる。このときノズル内部で中空糸膜の弛みが生じると随伴するポリマー溶液の偏流などが起こりやすいので、中空糸膜に張力を連続的に付与することが好ましく、また、乾燥工程における乾燥収縮などによって中空糸膜に必然的に張力が作用する可能性があるので、送出装置2による張力は1本当たりに0.098〜9.8Nの範囲内にすることが好ましい。なお、送出装置2に代わり中空糸紡糸装置より紡糸した中空糸支持膜をオンラインで供給しても良い。   In FIG. 1, a hollow fiber membrane 1 serving as a support membrane is sent out in a state where tension is applied by a sending device 2, is made into a semi-dry state or a completely dry state by a dryer 4, and then is coated via a guide roll 3. It is guided to the nozzle 5. At this time, if the hollow fiber membrane is loosened inside the nozzle, the accompanying drift of the polymer solution is likely to occur. Therefore, it is preferable to continuously apply tension to the hollow fiber membrane, and the hollow fiber is dried by shrinkage in the drying step. Since tension may inevitably act on the yarn membrane, it is preferable that the tension by the delivery device 2 be in the range of 0.098 to 9.8 N per fiber. Instead of the delivery device 2, a hollow fiber support membrane spun from a hollow fiber spinning device may be supplied online.

コーティングノズル5は、図2に示すように、中空糸膜の流路を構成するノズル本体11に、中空糸膜1の導入口15、ポリマー溶液の供給口13、および、中空糸膜1を外部に送り出しながらその中空糸膜1の周囲にポリマー溶液をコーティングする導出口14が設けられており、また、ノズル本体11の内部にポリマー溶液の拡散部12が設けられている。   As shown in FIG. 2, the coating nozzle 5 has an inlet 15 for the hollow fiber membrane 1, a supply port 13 for the polymer solution, and the hollow fiber membrane 1 connected to a nozzle body 11 constituting a flow path of the hollow fiber membrane. An outlet 14 for coating the polymer solution around the hollow fiber membrane 1 while sending the solution to the nozzle body 11 is provided, and a polymer solution diffusion part 12 is provided inside the nozzle body 11.

また、中空糸膜の送出、乾燥、張力付与が安定した後など、連続して走行している中空糸膜をコーティングノズルに導入するため、コーティングノズル5は、図3に示すように、導入口15から導出口14の間にわたって設けられた中空糸膜の挿入口17を有することが好ましい。また、連続して走行している中空糸膜をコーティングノズルに導入するためには、図4に示すように、中空糸膜の周方向に複数個に分割可能とすることも好ましい。このように中空糸膜の周方向に複数個に分割可能とする場合、図6に示すようにコーティングノズルを完全に分離するように構成してもよいし、図7に示すように完全に分離するのではなく、コーティングノズルの分割した部材が中空糸膜1と平行な軸19を中心に回動するように構成してもよい。   In order to introduce the continuously running hollow fiber membrane into the coating nozzle, for example, after the delivery, drying, and tension application of the hollow fiber membrane are stabilized, the coating nozzle 5 is provided with an inlet as shown in FIG. It is preferable to have a hollow fiber membrane insertion port 17 provided from 15 to the outlet 14. In order to introduce the continuously running hollow fiber membrane into the coating nozzle, it is also preferable that the hollow fiber membrane can be divided into a plurality of pieces in the circumferential direction as shown in FIG. When the hollow fiber membrane can be divided into a plurality in the circumferential direction as described above, the coating nozzle may be completely separated as shown in FIG. 6 or completely separated as shown in FIG. Instead, the divided members of the coating nozzle may be configured to rotate around a shaft 19 parallel to the hollow fiber membrane 1.

そして、挿入口17を設ける場合、使用時には導出管部16においてその挿入口17が閉塞するように構成する必要がある。そのため、上述したようにコーティングノズルを中空糸膜の周方向に複数個に分割可能とした場合、たとえば図8のように、アクチュエーター20により挿入口を閉塞するように構成すればよい。また、たとえば図5に示すように、挿入口17を設けるものの負荷(外力)がかからない状態において挿入口17の対向面18が密着するように構成し、弾性部材である導出管部16を可逆的に変形させ、挿入口17を開いて中空糸膜を挿入口17から流路に挿入するように構成してもよい。   In the case where the insertion port 17 is provided, it is necessary to configure the insertion port 17 to be closed in the outlet pipe section 16 when used. Therefore, when the coating nozzle can be divided into a plurality of pieces in the circumferential direction of the hollow fiber membrane as described above, for example, as shown in FIG. Further, as shown in FIG. 5, for example, the insertion surface 17 is provided, but the opposing surface 18 of the insertion hole 17 is configured to be in close contact in a state where no load (external force) is applied. The insertion port 17 may be opened to insert the hollow fiber membrane into the channel from the insertion port 17.

コーティングノズル5に導かれた中空糸膜1は、コーティングノズル5内に供給されたポリマー溶液とともに導出口14の方向へ走行し、弾性部材で形成された導出口14を通過することで、中空糸膜1に付与されるポリマー溶液が一定量の範囲内に制御されつつ、コーティング斑の発生が防止される。   The hollow fiber membrane 1 guided to the coating nozzle 5 travels in the direction of the outlet 14 together with the polymer solution supplied into the coating nozzle 5 and passes through the outlet 14 formed of an elastic member, thereby forming the hollow fiber. While the polymer solution applied to the film 1 is controlled within a certain range, the occurrence of coating unevenness is prevented.

続いて、ポリマー溶液が付与された中空糸膜1は、その後、凝固浴6、脱溶媒浴7およびグリセリン浴9にこの順序で導入され、中空糸膜1の表層にコーティング層が形成される。凝固浴6にて、中空糸膜1の表層に付与されたポリマー溶液を凝固・相分離させ、脱溶媒浴7にて溶媒を抽出し、グリセリン浴によって乾燥防止処理を行う。   Subsequently, the hollow fiber membrane 1 to which the polymer solution has been applied is thereafter introduced into the coagulation bath 6, the desolvation bath 7, and the glycerin bath 9 in this order, and a coating layer is formed on the surface layer of the hollow fiber membrane 1. In the coagulation bath 6, the polymer solution applied to the surface layer of the hollow fiber membrane 1 is coagulated and phase-separated, the solvent is extracted in the desolvation bath 7, and the anti-drying treatment is performed in the glycerin bath.

このようにして形成された複合中空糸膜は、その後、所望の長さにラインカッター10でカットされる。   The composite hollow fiber membrane thus formed is then cut by the line cutter 10 to a desired length.

ここで、ノズル本体11は、中空糸膜1の周囲にポリマー溶液を実質的に均一にコーティングするために、導出口14を形成している部位(以下、導出管部16という)が弾性部材で構成されている。   Here, in the nozzle body 11, a portion (hereinafter, referred to as a lead-out tube portion 16) forming the outlet 14 is an elastic member in order to substantially uniformly coat the polymer solution around the hollow fiber membrane 1. It is configured.

流体力学における流体潤滑の原理によれば、2つの面の間に潤滑物質を流し、しかも上記の2つの面の間隔が潤滑物質の流れ方向に沿って狭くなっている場合、流れている潤滑物質にはその流れと直交する方向に潤滑膜圧力が発生し、潤滑物質が幅方向に拡げられる。これを絞り膜圧作用(スクイーズ作用)というが、本発明においてもこれを利用する。   According to the principle of hydrodynamic lubrication in hydrodynamics, when a lubricating material flows between two surfaces, and the distance between the two surfaces is narrowed along the flow direction of the lubricating material, the lubricating material flowing , A lubricating film pressure is generated in a direction orthogonal to the flow, and the lubricating substance is spread in the width direction. This is called a diaphragm film pressure action (squeeze action), and this is also used in the present invention.

すなわち導出管部16の内表面と中空糸膜1の外表面とが上述の2つの面に相当し、また用いるポリマー溶液が潤滑物質に相当する。導出管部16の内表面と中空糸膜1の外表面で形成される隙間を流れるポリマー溶液には、この隙間を通過するときにその流れ方向と直交する方向に膜圧力が発生する。したがって中空糸膜1とポリマー溶液とを一緒に導出口14を通過させるときに、ポリマー溶液が絞り膜圧(押圧)作用を受けて中空糸膜1がコーティングされる。この際、導出口14に過大な外力(押圧)が働くと、弾性部材で構成されている導出管部16は変形し外力との平衡が保たれる。つまり中空糸膜1の外径変動が起こっても可逆的に変形して均一なコーティングをすることができる。さらに導出管部16が拡張することで糸詰まりも緩和され、連続コーティングにおける糸詰まりも防ぐことができる。   That is, the inner surface of the outlet tube portion 16 and the outer surface of the hollow fiber membrane 1 correspond to the above-described two surfaces, and the polymer solution used corresponds to the lubricating substance. When a polymer solution flows through a gap formed between the inner surface of the outlet pipe portion 16 and the outer surface of the hollow fiber membrane 1, a membrane pressure is generated in a direction perpendicular to the flow direction when passing through the gap. Therefore, when the hollow fiber membrane 1 and the polymer solution are passed through the outlet 14 together, the polymer solution is subjected to a squeezing membrane pressure (pressing) action to coat the hollow fiber membrane 1. At this time, when an excessive external force (pressing) acts on the outlet 14, the outlet tube portion 16 formed of an elastic member is deformed and the balance with the external force is maintained. That is, even if the outer diameter of the hollow fiber membrane 1 fluctuates, it can be reversibly deformed and a uniform coating can be performed. Further, the expansion of the lead-out tube portion 16 reduces the clogging of the yarn, thereby preventing the clogging of the continuous coating.

弾性部材としては、反発力を示す弾性係数の指標の一つである引っ張りによる静的せん断弾性係数が0.5〜2MPaの範囲内で、かつ、破断時の伸びが150〜400%の範囲内にあるものが好ましい。中でも、ポリマー溶液に使用する溶媒に対する耐溶剤性と機械的強度を兼備するイソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、ブチルゴム、エチレンプロピレンゴム、及びシリコーンゴムなどを用いることが好ましい。なお、静的せん断弾性係数は、JIS K 6254の5(低変形引張試験)によって、25%伸長応力σ25(MPa)を測定し、次式により静的せん断弾性係数を算出し、破断時の伸びは、JIS K 6251(加硫ゴムの引張試験方法)による値をみる。 As the elastic member, the static shear modulus of elasticity by pulling, which is one of the indexes of the elastic modulus indicating the repulsive force, is in the range of 0.5 to 2 MPa, and the elongation at break is in the range of 150 to 400%. Are preferred. Among them, it is preferable to use isoprene rubber, styrene butadiene rubber, butadiene rubber, butyl rubber, ethylene propylene rubber, silicone rubber, or the like, which has both solvent resistance and mechanical strength to the solvent used in the polymer solution. The static shear modulus was determined by measuring the 25% elongation stress σ 25 (MPa) according to JIS K 6254, 5 (low deformation tensile test), calculating the static shear modulus by the following formula, For elongation, a value according to JIS K6251 (a tensile test method for vulcanized rubber) is observed.

S=1.639σ25
ここで、GS:静的せん断弾性係数(MPa)
導出管部16は、ポリマーの滞留を防ぐために、内径が導出口14に向かって小さくなるように形成されていることが好ましく、さらには、テーパー状であると上述の絞り膜圧作用を受け易くなるので好ましい。また、導出口14は、負荷(外力)がかからない状態において実質的に円形であることが好ましい。中空糸膜にポリマー溶液を実質的に均一に塗布することができる程度であれば、楕円であっても何ら問題はない。
G S = 1.639σ 25
Here, G S : static shear modulus (MPa)
The outlet pipe portion 16 is preferably formed so that the inner diameter decreases toward the outlet port 14 in order to prevent stagnation of the polymer. Further, if the outlet pipe portion 16 is tapered, it is easily affected by the above-mentioned diaphragm film pressure effect. Is preferred. The outlet 14 is preferably substantially circular when no load (external force) is applied. There is no problem with an elliptical shape as long as the polymer solution can be applied substantially uniformly to the hollow fiber membrane.

一方、ノズル本体11の導出管部16以外の部分は、もちろん導出管部と同一部材で構成されていてもよいが、ポリエチレン、ポリプロピレンなどのプラスチックスやステンレスなどの金属から、耐溶剤性や機械的強度などを考慮して選ぶことが好ましい。   On the other hand, the portion of the nozzle body 11 other than the outlet pipe 16 may be made of the same member as the outlet pipe, but may be made of plastics such as polyethylene and polypropylene, metals such as stainless steel, etc. It is preferable to select in consideration of target strength and the like.

また、支持膜として使用される中空糸膜は特に限定されず、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリビニルアルコール、セルロースアセテート、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、その他の素材からなる有機膜、或いは無機膜から選択することができる。   The hollow fiber membrane used as the support membrane is not particularly limited, and may be an organic membrane made of polysulfone, polyether sulfone, polyacrylonitrile, polyvinyl alcohol, cellulose acetate, polyethylene, polypropylene, polyvinylidene fluoride, or another material, or an inorganic membrane. You can choose from membranes.

ポリマー溶液に使用するポリマーとしては、特に限定されないが、支持膜とのポリマー相溶性などを考慮すると、支持膜素材と同じポリマーである、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリビニルアルコール、セルロースアセテート、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、その他のポリマー素材などが好ましい。   The polymer used in the polymer solution is not particularly limited, but in consideration of the polymer compatibility with the support membrane, etc., the same polymer as the support membrane material, polysulfone, polyether sulfone, polyacrylonitrile, polyvinyl alcohol, cellulose acetate, Polyethylene, polypropylene, polyvinylidene fluoride, and other polymer materials are preferred.

そして、ポリマーは、コーティングノズル5の拡散部12におけるポリマー溶液の滞留を防ぐために、45℃における溶液粘度が0.1〜100Pa・sの範囲になるように調整されることが好ましく。さらには0.1〜50Pa・sの範囲になるように調整されることが好ましい。   The polymer is preferably adjusted so that the solution viscosity at 45 ° C. is in the range of 0.1 to 100 Pa · s in order to prevent the stagnation of the polymer solution in the diffusion section 12 of the coating nozzle 5. Further, it is preferable to adjust the pressure so as to be in the range of 0.1 to 50 Pa · s.

ポリマー溶液に使用する溶媒としては、N−メチル−2−ピロリドン、ジメチルスルホキド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル、シクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、フタル酸ジメチルなどを例示することができる。これらを単独で用いても良いし、2種類以上を混合して用いても良い。   Solvents used in the polymer solution include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethyl urea, trimethyl phosphate, cyclohexanone, isophorone, γ-butyrolactone, methyl Examples include isoamyl ketone and dimethyl phthalate. These may be used alone or as a mixture of two or more.

さらに、ポリマー溶液には、所望の形状、大きさの細孔を形成するために、溶媒以外の成分を添加しても良い。例えばポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルピロリドン、ポリアクリル酸などの水溶性ポリマー、およびグリセリンなどの多価アルコールである。また、非溶媒として、水、ヘキサン、ペンタン、ベンゼン、メタノール、トルエンなどのが例示できるが、取り扱い容易な水が好ましく用いられる。   Further, components other than the solvent may be added to the polymer solution in order to form pores having a desired shape and size. For example, water-soluble polymers such as polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, and polyacrylic acid, and polyhydric alcohols such as glycerin. In addition, examples of the non-solvent include water, hexane, pentane, benzene, methanol, and toluene, and water that is easy to handle is preferably used.

実施例1
図1の工程に図2で示したコーティングノズルを設け、支持膜となる中空糸膜の表面に平均細孔径が0.02μmの分離機能層を有する複合中空糸膜を製造した。なお、詳細な条件は次のとおりであった。
Example 1
The coating nozzle shown in FIG. 2 was provided in the process of FIG. 1 to produce a composite hollow fiber membrane having a separation functional layer having an average pore diameter of 0.02 μm on the surface of the hollow fiber membrane serving as a support membrane. The detailed conditions were as follows.

支持膜となる中空糸膜については、アクリルニトリル/アクリル酸メチル/メタリルスルホン酸ソーダ/ジメチルスルホキシドが重量比で20.6/1.3/0.1/78になるように原液調製したものを、2重管ノズルを用いて溶液紡糸法により紡糸し、ジメチルスルホキシド水溶液中で凝固させて中空糸膜を得た。このアクリロニトリル系中空糸膜(平均外径860μm)を支持膜として2000m巻きを用意した。   The hollow fiber membrane used as the support membrane was prepared as a stock solution such that the weight ratio of acrylonitrile / methyl acrylate / sodium methallylsulfonate / dimethyl sulfoxide was 20.6 / 1.3 / 0.1 / 78. Was spun by a solution spinning method using a double tube nozzle, and coagulated in an aqueous dimethyl sulfoxide solution to obtain a hollow fiber membrane. Using this acrylonitrile-based hollow fiber membrane (average outer diameter: 860 μm) as a support membrane, a 2,000 m winding was prepared.

支持膜となる中空糸膜としては、アクリロニトリル系中空糸膜(平均外径860μm)と同一ロットの支持膜の2000m巻きを用意した。   As the hollow fiber membrane serving as the support membrane, a 2,000-m winding of a support membrane of the same lot as the acrylonitrile-based hollow fiber membrane (average outer diameter: 860 μm) was prepared.

送出装置2によって、中空糸膜1を、1本当たり0.49Nの張力を付与した状態で送り出した。乾燥機4の温度は90℃に設定した。   The hollow fiber membrane 1 was sent out by the feeding device 2 in a state where a tension of 0.49 N was applied to each hollow fiber membrane. The temperature of the dryer 4 was set to 90 ° C.

コーティングノズル5は、導出管部16をシリコーンゴムで構成し、導入口15の内径を3mm、導出口14の内径を0.8mmとした。   In the coating nozzle 5, the outlet pipe portion 16 was made of silicone rubber, the inner diameter of the inlet 15 was 3 mm, and the inner diameter of the outlet 14 was 0.8 mm.

ポリマー溶液は、アクリルニトリル(平均分子量14万)/アクリル酸メチル/アリルスルホン酸ソーダ/ジメチルスルホキシドを重量比が44:1:0.5:54.5となるように調整し、コーティングノズル5に1.5g/分で供給した。   The polymer solution was prepared by adjusting the weight ratio of acrylonitrile (average molecular weight: 140,000) / methyl acrylate / sodium allyl sulfonate / dimethyl sulfoxide to 44: 1: 0.5: 54.5. It was fed at 1.5 g / min.

中空糸膜1は、導出口14での走行速度が10m/分となるように走行させ、引き続き凝固浴6に導入した後に溶媒抽出してラインカッター10で2m置きにカットして複合中空糸膜を得た。   The hollow fiber membrane 1 is run so that the running speed at the outlet 14 is 10 m / min, and subsequently introduced into the coagulation bath 6, and then the solvent is extracted and cut by the line cutter 10 every 2 m to form a composite hollow fiber membrane. Got.

得られた複合中空糸膜20本をSEM(走査型電子顕微鏡)によって倍率40倍、1000倍、5000倍で横断面方向の観察を行った。その結果、複合中空糸膜の平均外径は902μmであって、表面の分離機能層の平均厚みは21μm、最大厚み32μm、最小厚み18μmであった。またコーティング中における糸切れは皆無であった。   Twenty of the obtained composite hollow fiber membranes were observed in the cross-sectional direction at magnifications of 40, 1000, and 5000 by SEM (scanning electron microscope). As a result, the average outer diameter of the composite hollow fiber membrane was 902 μm, and the average thickness of the surface separation function layer was 21 μm, the maximum thickness was 32 μm, and the minimum thickness was 18 μm. There was no yarn breakage during coating.

なお、平均外径は、横断面SEM観察写真から((長径+短径)/2)としてn=20の加重平均とした。分離機能層の厚みは、横断面SEM観察写真から長径と短径の部分の厚さを測定し、n=20の加重平均、最小、最大値を求めた。
実施例2
支持膜となる中空糸膜として、実施例1と同様にして得た、アクリロニトリル系中空糸膜(平均外径1060μm)と同一ロットの支持膜の2000m巻きを用意した。
The average outer diameter was a weighted average of n = 20 as ((major axis + minor axis) / 2) from a cross-sectional SEM observation photograph. Regarding the thickness of the separation functional layer, the thicknesses of the major axis and the minor axis were measured from a cross-sectional SEM observation photograph, and the weighted average, minimum, and maximum values of n = 20 were determined.
Example 2
As a hollow fiber membrane serving as a support membrane, a 2,000-m roll of a support membrane of the same lot as an acrylonitrile-based hollow fiber membrane (average outer diameter: 1060 μm) obtained in the same manner as in Example 1 was prepared.

コーティングノズル5の導入口15の内径を4mm、導出口14の内径を1.0mmとしてた以外は、実施例1と同様にして複合中空糸膜を製造し、SEM(走査型電子顕微鏡)を用いて横断面方向の観察を行った。   A composite hollow fiber membrane was produced in the same manner as in Example 1 except that the inner diameter of the inlet 15 of the coating nozzle 5 was 4 mm and the inner diameter of the outlet 14 was 1.0 mm, and a scanning electron microscope (SEM) was used. To observe the cross section direction.

その結果、複合中空糸膜の平均外径は1092μmであって、表面の分離機能層の平均厚み18μm、最大厚み25μm、最小厚み13μmであった。またコーティング中における糸切れは皆無であった。
実施例3
支持膜となる中空糸膜として、実施例1と同様にして得た、ポリアクリロニトリル系中空糸膜(平均外径1060μm)の2000m巻きを用意した。
As a result, the average outer diameter of the composite hollow fiber membrane was 1092 μm, and the average thickness of the separation functional layer on the surface was 18 μm, the maximum thickness was 25 μm, and the minimum thickness was 13 μm. There was no yarn breakage during coating.
Example 3
As a hollow fiber membrane serving as a supporting membrane, a 2,000 m winding of a polyacrylonitrile-based hollow fiber membrane (average outer diameter: 1060 μm) obtained in the same manner as in Example 1 was prepared.

ポリマー溶液をアクリルニトリ(平均分子量34万)ル/ジメチルスルホキシド/ポリエチレングリコールを重量比が10:89:1となるように調整し、コーティングノズル5に1.5g/分で供給した以外は、実施例2と同様にして複合中空糸膜を製造し、SEM(走査型電子顕微鏡)を用いて横断面方向の観察を行った。   Except that the polymer solution was adjusted to have a weight ratio of acrylonitrile (average molecular weight: 340,000) / dimethyl sulfoxide / polyethylene glycol of 10: 89: 1 and supplied to the coating nozzle 5 at 1.5 g / min. A composite hollow fiber membrane was produced in the same manner as in Example 2, and the cross section was observed using a scanning electron microscope (SEM).

その結果、複合中空糸膜の平均外径は1098μmであって、表面の分離機能層の平均厚み20μm、最大厚み28μm、最小厚み13μmであった。またコーティング中における糸切れは皆無であった。
実施例4
図1の工程に図2で示したコーティングノズルを設け、支持膜となる中空糸膜の表面に平均細孔径が0.2μmの分離機能層を有する複合中空糸膜を製造した。なお、詳細な条件は次のとおりであった。
As a result, the average outer diameter of the composite hollow fiber membrane was 1098 μm, and the average thickness of the separation functional layer on the surface was 20 μm, the maximum thickness was 28 μm, and the minimum thickness was 13 μm. There was no yarn breakage during coating.
Example 4
The process shown in FIG. 1 was provided with the coating nozzle shown in FIG. 2 to produce a composite hollow fiber membrane having a separation functional layer having an average pore diameter of 0.2 μm on the surface of the hollow fiber membrane serving as a support membrane. The detailed conditions were as follows.

支持膜となる中空糸膜について、ポリフッ化ビニリデン/ジメチルホルムアミドが重量比で25/75になるように原液調製したものを、2重管ノズルを用いて溶液紡糸法により紡糸し、エタノール水溶液中で凝固させて中空糸膜を得た。このポリフッ化ビニリデン系中空糸膜(平均外径860μm)を支持膜として2000m巻きを用意した。   A hollow fiber membrane serving as a support membrane was prepared by preparing a stock solution so that the weight ratio of polyvinylidene fluoride / dimethylformamide was 25/75, and was spun by a solution spinning method using a double-tube nozzle. This was solidified to obtain a hollow fiber membrane. Using this polyvinylidene fluoride-based hollow fiber membrane (average outer diameter: 860 μm) as a support membrane, a 2,000 m winding was prepared.

ポリマー溶液をポリフッ化ビニリデン、ジメチルホルムアミドおよびグリセリンを重量比が15:80:5となるなるように調整し、コーティングノズル5に1.6g/分で供給し、乾燥温度を120℃にした。   The polymer solution was adjusted to a weight ratio of polyvinylidene fluoride, dimethylformamide and glycerin of 15: 80: 5, supplied to the coating nozzle 5 at 1.6 g / min, and the drying temperature was set to 120 ° C.

これらのこと以外は実施例1と同様にして複合中空糸膜を製造し、SEM(走査型電子顕微鏡)を用いて横断面方向の観察を行った。   Except for these, a composite hollow fiber membrane was manufactured in the same manner as in Example 1, and the cross section was observed using a scanning electron microscope (SEM).

その結果、複合中空糸膜の平均外径は924μmであって、表面の分離機能層の平均厚みは21μm、最大厚み34μm、最小厚み15μmであった。またコーティング中における糸切れは皆無であった。
比較例1
支持膜となる中空糸膜として、実施例1と同様にして得た、アクリロニトリル系中空糸膜(平均外径860μm)と同一ロットの支持膜の2000m巻きを用意した。
As a result, the average outer diameter of the composite hollow fiber membrane was 924 μm, and the average thickness of the separation functional layer on the surface was 21 μm, the maximum thickness was 34 μm, and the minimum thickness was 15 μm. There was no yarn breakage during coating.
Comparative Example 1
As a hollow fiber membrane serving as a support membrane, a 2,000-m roll of a support membrane of the same lot as an acrylonitrile-based hollow fiber membrane (average outer diameter: 860 μm) obtained in the same manner as in Example 1 was prepared.

導入口15の内径が3mm、導出口14の内径が0.9mmでテーパー状のステンレス金属製の導出管部16有するコーティングノズル5を使用した以外は、実施例1と同様のポリマー溶液をコーティングして複合中空糸膜を製造し、SEM(走査型電子顕微鏡)を用いて横断面方向の観察を行った。その結果、240、490、1240m付近で糸切れが発生した。また、得られた複合中空糸膜の平均外径は906μmであって、表面の活性層の平均厚み23μm、最大厚み35μm、最小厚み10μmであったが、横断面の一部に応力集中による凹みがみられた。   The same polymer solution as in Example 1 was coated except that the inner diameter of the inlet 15 was 3 mm, the inner diameter of the outlet 14 was 0.9 mm, and the coating nozzle 5 having a tapered stainless steel outlet tube 16 was used. Thus, a composite hollow fiber membrane was manufactured, and the cross section was observed using an SEM (scanning electron microscope). As a result, yarn breakage occurred near 240, 490, and 1240 m. The average outer diameter of the obtained composite hollow fiber membrane was 906 μm, and the average thickness of the active layer on the surface was 23 μm, the maximum thickness was 35 μm, and the minimum thickness was 10 μm. Was seen.

本発明に係るコーティングノズルを組み込んだ複合中空糸膜の製造工程の一実施態様を示す概略フロー図である。1 is a schematic flow chart showing one embodiment of a production process of a composite hollow fiber membrane incorporating a coating nozzle according to the present invention. 本発明の一実施態様を示すコーティングノズルの概略縦断面図である。FIG. 1 is a schematic vertical sectional view of a coating nozzle showing one embodiment of the present invention. 本発明の一実施態様を示すコーティングノズルの概略斜視図である。1 is a schematic perspective view of a coating nozzle showing one embodiment of the present invention. 本発明の一実施態様を示すコーティングノズルの概略斜視図である。1 is a schematic perspective view of a coating nozzle showing one embodiment of the present invention. 本発明の一実施態様を示すコーティングノズルの概略斜視図である。1 is a schematic perspective view of a coating nozzle showing one embodiment of the present invention. 本発明の一実施態様を示すコーティングノズルの概略横断面図である。1 is a schematic cross-sectional view of a coating nozzle showing one embodiment of the present invention. 本発明の一実施態様を示すコーティングノズルの概略横断面図である。1 is a schematic cross-sectional view of a coating nozzle showing one embodiment of the present invention. 本発明の一実施態様を示すコーティングノズルの概略横断面図である。1 is a schematic cross-sectional view of a coating nozzle showing one embodiment of the present invention.

符号の説明Explanation of reference numerals

1・・・ 中空糸膜
2・・・ 送出装置
3・・・ ガイドロール
4・・・ 乾燥機
5・・・ コーティングノズル
6・・・ 凝固浴
7・・・ 脱溶媒浴
8・・・ ポリマー溶液の供給ライン
9・・・ グリセリン浴
10・・ ラインカッター
11・・ ノズル本体
12・・ ポリマー溶液の拡散部
13・・ ポリマー溶液の供給口
14・・ 導出口
15・・ 導入口
16・・ 導出管部
17・・ 挿入口
18・・ 挿入口の対向面
19・・ 軸
20・・ アクチュエーター
DESCRIPTION OF SYMBOLS 1 ... Hollow fiber membrane 2 ... Delivery device 3 ... Guide roll 4 ... Dryer 5 ... Coating nozzle 6 ... Coagulation bath 7 ... Desolvent bath 8 ... Polymer solution Supply line 9 ... glycerin bath 10 ... line cutter 11 ... nozzle body 12 ... diffusion part 13 of polymer solution ... supply port 14 of polymer solution ... outlet 15 ... inlet 16 ... outlet pipe Part 17 ······································· Actuator

Claims (6)

中空糸膜にポリマー溶液をコーティングするコーティングノズルであって、中空糸膜の導入口と、ポリマー溶液の供給口と、中空糸膜の周囲にポリマー溶液をコーティングしながらポリマー溶液がコーティングされた中空糸膜を導き出す導出口とを備え、導出口を形成する部位が弾性部材で構成されていることを特徴とするコーティングノズル。   A coating nozzle for coating a hollow fiber membrane with a polymer solution, wherein the hollow fiber membrane has an inlet, a polymer solution supply port, and a hollow fiber coated with the polymer solution while coating the polymer solution around the hollow fiber membrane. A coating nozzle, comprising: a lead-out port for leading a film; and a part forming the lead-out port is formed of an elastic member. 前記導入口から前記導出口の間にわたって設けられた中空糸膜の挿入口を有する、請求項1に記載のコーティングノズル。   The coating nozzle according to claim 1, further comprising a hollow fiber membrane insertion port provided between the introduction port and the outlet port. 中空糸膜の周方向に複数個に分割可能である、請求項1に記載のコーティングノズル。   The coating nozzle according to claim 1, wherein the coating nozzle can be divided into a plurality of pieces in the circumferential direction of the hollow fiber membrane. 弾性部材は、静的せん断弾性係数が0.5〜2MPaの範囲内で、かつ、破断時の伸びが150〜400%の範囲内にあるものである、請求項1〜3のいずれかに記載のコーティングノズル。   The elastic member has a static shear modulus in a range of 0.5 to 2 MPa and an elongation at break in a range of 150 to 400%. Coating nozzle. 請求項1〜4のいずれかに記載のコーティングノズルに中空糸膜を導入し、ポリマー溶液を供給して前記中空糸膜を該ポリマー液とともに導き出すことでその中空糸膜の周囲にポリマー溶液をコーティングすることを特徴とする複合中空糸膜の製造方法。   A hollow fiber membrane is introduced into the coating nozzle according to any one of claims 1 to 4, a polymer solution is supplied, and the hollow fiber membrane is led out together with the polymer liquid to coat the polymer solution around the hollow fiber membrane. A method for producing a composite hollow fiber membrane. 中空糸膜にポリマー溶液をコーティングした後、そのポリマー溶液を相分離させ、中空糸膜の表面に分離機能層を形成する、請求項5に記載の複合中空糸膜の製造方法。   The method for producing a composite hollow fiber membrane according to claim 5, wherein after coating the hollow fiber membrane with the polymer solution, the polymer solution is subjected to phase separation to form a separation functional layer on the surface of the hollow fiber membrane.
JP2004084304A 2003-03-31 2004-03-23 Coating nozzle for hollow fiber membrane and method for producing composite hollow fiber membrane using the same Expired - Fee Related JP5078050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084304A JP5078050B2 (en) 2003-03-31 2004-03-23 Coating nozzle for hollow fiber membrane and method for producing composite hollow fiber membrane using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003093482 2003-03-31
JP2003093482 2003-03-31
JP2004084304A JP5078050B2 (en) 2003-03-31 2004-03-23 Coating nozzle for hollow fiber membrane and method for producing composite hollow fiber membrane using the same

Publications (3)

Publication Number Publication Date
JP2004314059A true JP2004314059A (en) 2004-11-11
JP2004314059A5 JP2004314059A5 (en) 2009-06-18
JP5078050B2 JP5078050B2 (en) 2012-11-21

Family

ID=33478588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084304A Expired - Fee Related JP5078050B2 (en) 2003-03-31 2004-03-23 Coating nozzle for hollow fiber membrane and method for producing composite hollow fiber membrane using the same

Country Status (1)

Country Link
JP (1) JP5078050B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240899A (en) * 2008-03-31 2009-10-22 Toray Ind Inc Composite hollow fiber membrane and its method for manufacturing
JP2012254411A (en) * 2011-06-09 2012-12-27 Mitsubishi Rayon Co Ltd Method and apparatus for manufacturing porous hollow fiber membrane
KR20140066471A (en) * 2012-11-23 2014-06-02 코웨이 주식회사 Hollow fiber, and sealing and coating equipment of it
KR20140066473A (en) * 2012-11-23 2014-06-02 코웨이 주식회사 Hollow fiber and coating equipment of it
KR101572735B1 (en) 2013-12-31 2015-11-27 도레이케미칼 주식회사 Device for coating jig hollow fiber membrane
JP2016128166A (en) * 2011-02-07 2016-07-14 三菱レイヨン株式会社 Braid supply device and braid supply method
CN106311551A (en) * 2016-10-17 2017-01-11 天津膜天膜科技股份有限公司 Coating assembly for hollow fiber membrane spinning

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163711A (en) * 1986-01-14 1987-07-20 Daicel Chem Ind Ltd Production of hollow yarn type composite membrane
JPS62114024U (en) * 1986-01-06 1987-07-20
JPS62191838U (en) * 1986-05-27 1987-12-05
JPH026828A (en) * 1988-02-23 1990-01-11 Air Prod And Chem Inc Method for continuously applying an uniform semipermeable coating onto a hollow fiber wed
JPH05117908A (en) * 1991-10-24 1993-05-14 Sumika Hercules Kk New spinning device and dry-wet spinning method using the device
JPH0952030A (en) * 1995-06-05 1997-02-25 Kuraray Co Ltd Polyvinyl alcohol hollow yarn membrane and its manufacture
JPH09286640A (en) * 1996-04-23 1997-11-04 Mitsubishi Cable Ind Ltd Die for coating optical fiber with resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114024U (en) * 1986-01-06 1987-07-20
JPS62163711A (en) * 1986-01-14 1987-07-20 Daicel Chem Ind Ltd Production of hollow yarn type composite membrane
JPS62191838U (en) * 1986-05-27 1987-12-05
JPH026828A (en) * 1988-02-23 1990-01-11 Air Prod And Chem Inc Method for continuously applying an uniform semipermeable coating onto a hollow fiber wed
JPH05117908A (en) * 1991-10-24 1993-05-14 Sumika Hercules Kk New spinning device and dry-wet spinning method using the device
JPH0952030A (en) * 1995-06-05 1997-02-25 Kuraray Co Ltd Polyvinyl alcohol hollow yarn membrane and its manufacture
JPH09286640A (en) * 1996-04-23 1997-11-04 Mitsubishi Cable Ind Ltd Die for coating optical fiber with resin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240899A (en) * 2008-03-31 2009-10-22 Toray Ind Inc Composite hollow fiber membrane and its method for manufacturing
JP2016128166A (en) * 2011-02-07 2016-07-14 三菱レイヨン株式会社 Braid supply device and braid supply method
JP2012254411A (en) * 2011-06-09 2012-12-27 Mitsubishi Rayon Co Ltd Method and apparatus for manufacturing porous hollow fiber membrane
KR20140066471A (en) * 2012-11-23 2014-06-02 코웨이 주식회사 Hollow fiber, and sealing and coating equipment of it
KR20140066473A (en) * 2012-11-23 2014-06-02 코웨이 주식회사 Hollow fiber and coating equipment of it
KR101960050B1 (en) * 2012-11-23 2019-03-20 코웨이엔텍 주식회사 Hollow fiber, and sealing and coating equipment of it
KR101963360B1 (en) * 2012-11-23 2019-03-28 코웨이엔텍 주식회사 Hollow fiber and coating equipment of it
KR101572735B1 (en) 2013-12-31 2015-11-27 도레이케미칼 주식회사 Device for coating jig hollow fiber membrane
CN106311551A (en) * 2016-10-17 2017-01-11 天津膜天膜科技股份有限公司 Coating assembly for hollow fiber membrane spinning

Also Published As

Publication number Publication date
JP5078050B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
CN102713029B (en) Process for the preparation of hyperbranched hollow fibers
JP4757311B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
KR101930147B1 (en) Hollow fiber membrane, and method for producing hollow fiber membrane
US20080241451A1 (en) Reinforced Capollary Membranes and Process For Manufacturing Thereof
WO2001038614A1 (en) Apparatus and method for forming materials
JP2004314059A (en) Coating nozzle for hollow fiber membrane and production method of composite hollow fiber membrane using it
JP2006506537A (en) Apparatus and method for forming materials
JP2020015005A (en) Hollow fiber membrane, and manufacturing method of hollow fiber membrane
JP2815405B2 (en) Method for producing spinneret and hollow fiber
JP6638276B2 (en) Method for producing porous hollow fiber membrane
US11932971B2 (en) Method of producing precursor fiber for carbon fiber and carbon fiber
WO2020067570A1 (en) Wet spun fibers, wet formed film, and production method therefor
JP2019107577A (en) Coating nozzle of fibrous product and manufacturing method of composite fibrous product
US11813577B2 (en) System and method for producing hollow fibre membranes
US10633769B2 (en) Method for producing filaments of polyacrylonitrile and extrusion head for carrying out said method
CN113634140B (en) Internal support polyvinylidene fluoride hollow dry film and preparation method thereof
JP2021112736A (en) Manufacturing method for composite hollow fiber film
JP2021035666A (en) Coating nozzle for composite hollow fiber membrane production and production method of composite hollow fiber membrane
Hao et al. Spinning of cellulose acetate hollow fiber by dry‐wet technique of 3C‐shaped spinneret
JPWO2015016228A1 (en) Hollow porous membrane manufacturing apparatus and manufacturing method
JP6232897B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP2012152705A (en) Method for manufacturing fiber reinforced porous hollow fiber membrane
JP2002066272A (en) Method for manufacturing hollow fiber membrane
JP2004305953A (en) Method of manufacturing hollow fiber membrane
JPH10314558A (en) Preparation of hollow fiber blood purification membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110427

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5078050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees