JP2004311184A - Electron transportation material formed of multinucleate phenanthroline derivative, charge control material, and organic luminescent element using them - Google Patents

Electron transportation material formed of multinucleate phenanthroline derivative, charge control material, and organic luminescent element using them Download PDF

Info

Publication number
JP2004311184A
JP2004311184A JP2003102333A JP2003102333A JP2004311184A JP 2004311184 A JP2004311184 A JP 2004311184A JP 2003102333 A JP2003102333 A JP 2003102333A JP 2003102333 A JP2003102333 A JP 2003102333A JP 2004311184 A JP2004311184 A JP 2004311184A
Authority
JP
Japan
Prior art keywords
group
layer
light emitting
charge control
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102333A
Other languages
Japanese (ja)
Inventor
Junji Kido
淳二 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003102333A priority Critical patent/JP2004311184A/en
Publication of JP2004311184A publication Critical patent/JP2004311184A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new electron transportation material and a new charge control material exhibiting electron transportation performance comparable favorably with that of Alq<SB>3</SB>; and to provide an organic luminescent element using them. <P>SOLUTION: This electron transportation material and this charge control material are each characteristically formed of a multinucleate phenanthroline derivative expressed by general formula (I): Z(Y)<SB>n</SB>, wherein Z is a bivalent or trivalent group selected from a group comprising a bivalent or trivalent aromatic hydrocarbon group and a bivalent or trivalent heterocyclic group; and Y is a phenanthroline group expressed by chemical formula 1. This organic luminescent element uses them. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フェナントロリン誘導体よりなる電子輸送材料、電荷制御材料およびそれを用いた有機発光素子に関する。
【0002】
【従来技術】
従来、下記式、
【化7】

Figure 2004311184
で示されるトリス(8−ヒドロキシキノリノラト)アルミニウム錯体(以下Alqと略称することがある)が有機EL素子の発光材料や電子輸送材料として広く使用されている。
【0003】
しかし、Alqは効率のよい電子輸送材料であるが、このものを使用すると本来緑色の発光材料であるから、緑色に発光する。しかし緑色より短い波長たとえば青色を取り出したい場合にはAlqは使用することができない。そこで大きなバンドギャップをもつ下記式
【化8】
Figure 2004311184
で示されるバソフェナントロリン(BPhen)や下記式
【化9】
Figure 2004311184
で示されるバソクプロイン(Bathocuproine:BCP)がホールブロック層および/または電子輸送剤として使用されている(特許文献1、特許文献2など参照)。
【0004】
特に、バソフェナントロリンは、電子の移動度が高いことが知られている(非特許文献1、特許文献3)。また、電子輸送材料にセシウム(Cs)をドーピングすることにより、低電圧化、高効率化が可能なことが、例えば山形大学、株式会社アイメス、松下電工株式会社から報告されている(非特許文献2、非特許文献3)。さらに、バソクプロインはリン光材料を利用した素子のホールブロック材料としても注目されている。そして、これらいずれの材料においても、エネルギーレベルのHOMO(最高占有分子軌道)レベルが大きく、バンドギャップが大きいことが特徴である。
【0005】
しかしながら、これらのいずれの材料も耐熱性が乏しく、これらの蒸着膜は再結晶化を起こしやすく、例えば一般的な保存温度範囲(−40℃から85℃)においてさえ、結晶化による素子特性の劣化が発生する。
【0006】
【特許文献1】
特開2001−297881号公報
【特許文献2】
特開2001−313178号公報
【特許文献3】
特開平5−331459号公報
【非特許文献1】
Shigeki Naka et al.,Applied Physics Letters,vol.76,No.2,p197−199
【非特許文献2】
Junji Kido et al.,Applied Physics Letters,vol.73,No.20,p2866−2868
【非特許文献3】
岸上他 高分子討論会 vol.49,No.11(2000),p3385−3386
【0007】
【発明が解決しようとする課題】
本発明の目的は、Alqに優るとも劣らない電子輸送性能を示す新規な電子輸送材料および電荷制御材料ならびにそれを用いた有機発光素子を提供する点にある。
【0008】
【課題を解決するための手段】
本発明の第1は、下記一般式(I)
【化10】
Z(Y) ……(I)
〔式中、Zは2価または3価の芳香族炭化水素基、および2価または3価の複素環基よりなる群から選ばれた2価または3価の基であり、Yは
【化11】
Figure 2004311184
で示されるフェナントロリン基であり、nは2または3であり、R〜Rは、水素、アルキル基、アルコキシ基、アリール基(アルキル基で置換されていてもよい)、アリーロキシ基、アラルキル基(アリール基部分がアルキル基で置換されていてもよい)、アルキルアミノ基、アリールアミノ基、RCOO−(Rはアルキル基、アリール基およびアラルキル基よりなる群から選ばれる)、カルボキシル基、アミノ基、トリフルオロメチル基、ニトロ基、ハロゲン、シアノ基および
【化12】
−XA
(XはO、S、SeおよびTeよりなる群から選ばれた元素であり、Aはアルキル基またはアリール基である)
よりなる群からそれぞれ独立して選ばれた基である。〕
で示される多核型フェナントロリン誘導体よりなることを特徴とする電子輸送材料に関する。
本発明の第2は、下記一般式(I)
【化13】
Z(Y) ……(I)
〔式中、Zは2価または3価の芳香族炭化水素基、および2価または3価の複素環基よりなる群から選ばれた2価または3価の基であり、Yは
【化14】
Figure 2004311184
で示されるフェナントロリン基であり、nは2または3であり、R〜Rは、水素、アルキル基、アルコキシ基、アリール基(アルキル基で置換されていてもよい)、アリーロキシ基、アラルキル基(アリール基部分がアルキル基で置換されていてもよい)、アルキルアミノ基、アリールアミノ基、RCOO−(Rはアルキル基、アリール基およびアラルキル基よりなる群から選ばれる)、カルボキシル基、アミノ基、トリフルオロメチル基、ニトロ基、ハロゲン、シアノ基および
【化15】
−XA
(XはO、S、SeおよびTeよりなる群から選ばれた元素であり、Aはアルキル基またはアリール基である)
よりなる群からそれぞれ独立して選ばれた基である。〕
で示される多核型フェナントロリン誘導体よりなることを特徴とする電荷制御材料に関する。
本発明の第3は、請求項1記載の電子輸送材料を含有する層および/または請求項2記載の電荷制御材料を含有する層を持つことを特徴とする有機発光素子に関する。
本発明の第4は、第1電極(陽極)、発光層、第2電極(陰極)を有する有機発光素子であって、発光層が少なくとも正孔輸送性発光剤と請求項1記載の電子輸送材料を含有するものであることを特徴とする有機発光素子に関する。
本発明の第5は、第1電極、発光層、電荷制御層、第2電極を有する有機発光素子であって、電荷制御層が請求項2記載の電荷制御材料を含有するものであることを特徴とする有機発光素子に関する。
本発明の第6は、第1電極、正孔輸送層、発光層、電荷制御層、第2電極を有する有機発光素子であって、電荷制御層が請求項2記載の電荷制御材料を含有するものであることを特徴とする有機発光素子に関する。
本発明の第7は、電荷制御層に隣接した(電荷制御層と第2電極の間)電子輸送層を有するものである請求項5または6記載の有機発光素子に関する。
本発明の第8は、正孔輸送層に隣接した(正孔輸送層と第1電極の間)正孔注入層を有するものである請求項6または7いずれか記載の有機発光素子に関する。
本発明の第9は、前記電荷制御層がアルカリ金属をドーピングしたものである請求項5〜8いずれか記載の有機発光素子に関する。
本発明の第10は、前記発光層が
(A)少なくとも正孔輸送性発光剤と請求項1記載の電子輸送材料とを含有する成分を分子分散させた層であるか、または、
(B)少なくとも正孔輸送性発光剤と請求項1記載の電子輸送材料とを含有する成分を分子分散させた層に発光剤をドープしてなる層である
請求項4〜9いずれか記載の有機発光素子に関する。
本発明の第11は、第1電極が透明基板上にITO薄膜を有するものである請求項4〜10いずれか記載の有機発光素子に関する。
【0009】
前記一般式(1)で示される化合物において、Zが2価の基であり、n=2の場合の化合物、すなわち2つのフェナントロリン基をもつフェナントロリン誘導体〔下記一般式(II)の化合物〕は、下記の反応により製造することができる。なお、以下のZおよびR〜Rは請求項で定義したとおりである。
【化16】
Figure 2004311184
【0010】
前記一般式(I)で示される化合物において、Zが3価の基であり、n=3の場合の化合物、すなわち3つのフェナントロリン基をもつフェナントロリン誘導体〔下記一般式(III)の化合物〕は、下記の反応により製造することができる。
【化17】
Figure 2004311184
【0011】
前記製造方法においては、反応溶媒を使用するが、反応溶媒としては一般にアルコールを使用することができ、好ましいアルコールとしては炭素数1〜6のもの、とくに好ましくは炭素数1〜4のものである。
反応補助剤としては、系をアルカリ性にするものを用いることができる。無機材料であれば炭酸や水酸化物などのアルカリ金属塩やアルカリ土類金属類、あるいはアルカリ金属やアルカリ土類金属の水酸塩などを挙げることができ、有機材料としては、アルカリ金属やアルカリ土類金属のアルコラートやアミン化合物を挙げることができる。
本反応は、好ましくは不活性雰囲気下、たとえば窒素、へリウム、ネオン、アルゴンなどの雰囲気下で行うことが好ましいが大気中であっても反応は進行する。
本反応温度は、とくに制限するものではないが、通常50℃以上、好ましくは使用する溶媒の沸点温度またはその近傍である。反応時間は3〜48時間、好ましくは10〜48時間、とくに好ましくは20〜36時間である。
【0012】
前記Zは、2価または3価の芳香族炭化水素基あるいは2価または3価の複素環基であり、前記芳香族炭化水素基としては、芳香族単環基や芳香族多環基である場合のほか、下記(a)〜(c)の組み合せからなる基が、−O−、−S−、飽和アルキレン、不飽和アルキレンあるいは結合手で結合していてもよい。(a)芳香族単環同士が結合している場合、(b)芳香族単環と芳香族多環とが結合している場合(Zが3価の場合は、2つが同一で他の1つが異なる場合も含まれる)、(c)芳香族多環同士が結合している場合(同一の芳香族多環同士あるいは異なった多環の組み合せでもよい。またZが3価の場合は、2つが同一で他の1つが異なる場合も含まれる)。
【0013】
また、前記複素環基としては、C以外にN、O、Sのいずれかを核構成元素として含む、いわゆる複素環基であればよく、複素環は3〜8員環のいずれであってもよいが、とくに5〜6員環のものが好ましい。複素環基は1個の複素環のみからなるものであってもよいが、1個の複素環と1個またはそれ以上の芳香族環が縮合した形のものであってもよいし、2個以上の複素環が縮合した形のものであってもよい。具体的には、トリアジン型、オキサゾール型、オキサチアジン型、フラン型、フラザン型、イミダゾール型、イミダゾリジン型、イミダゾリン型、クマロン型、クロメン型、インドール型、インドリン型、イソクマロン型、イソキノリン型、シンノリン型、アクリジン型、カルバゾール型などを挙げることができる。
【0014】
これら芳香族単炭化水素基あるいは複素環基にはそこに結合している水素が前記R〜Rの項で挙げた基で置換されていてもよいことは当然である。
【0015】
前記本発明に用いる2核型フェナントロリン誘導体〔前記一般式(II)で示す化合物である〕および3核型フェナントロリン誘導体〔前記一般式(III)で示す化合物である〕の具体的化合物を下記表に示す。
表中、Zの項における数字は、下記化18におけるZ=1〜Z=18までの数字で示されている2価または3価の基であることを示す。結合手のついている位置を特定していないケースにおいては2価の基の場合、第1順位は、パラ位であり、第2順位はメタ位である。また複素環の場合は、その複素原子に対して、5員環の場合2,5−または2,4−位、6員環の場合、2,4−、2,5−または2,6−位である。また3価の基におけるZ=4の場合は、通常1,3,6−位であり、Z=5の場合は、CHが1位とすると、通常2,4,5−位である。
【0016】
【化18】
Figure 2004311184
【0017】
【表1】
Figure 2004311184
【0018】
【表2】
Figure 2004311184
【0019】
【表3】
Figure 2004311184
【0020】
【表4】
Figure 2004311184
【0021】
【表5】
Figure 2004311184
【0022】
【表6】
Figure 2004311184
【0023】
【表7】
Figure 2004311184
【0024】
【表8】
Figure 2004311184
【0025】
【表9】
Figure 2004311184
【0026】
【表10】
Figure 2004311184
【0027】
【表11】
Figure 2004311184
【0028】
【表12】
Figure 2004311184
【0029】
【表13】
Figure 2004311184
【0030】
【表14】
Figure 2004311184
【0031】
【表15】
Figure 2004311184
【0032】
【表16】
Figure 2004311184
【0033】
【表17】
Figure 2004311184
【0034】
【表18】
Figure 2004311184
【0035】
【表19】
Figure 2004311184
【0036】
【表20】
Figure 2004311184
【0037】
【表21】
Figure 2004311184
【0038】
【表22】
Figure 2004311184
【0039】
【表23】
Figure 2004311184
【0040】
【表24】
Figure 2004311184
【0041】
【表25】
Figure 2004311184
【0042】
【表26】
Figure 2004311184
【0043】
【表27】
Figure 2004311184
【0044】
【表28】
Figure 2004311184
【0045】
【表29】
Figure 2004311184
【0046】
【表30】
Figure 2004311184
【0047】
【表31】
Figure 2004311184
【0048】
【表32】
Figure 2004311184
【0049】
【表33】
Figure 2004311184
【0050】
【表34】
Figure 2004311184
【0051】
【表35】
Figure 2004311184
【0052】
【表36】
Figure 2004311184
【0053】
【表37】
Figure 2004311184
【0054】
【表38】
Figure 2004311184
【0055】
【表39】
Figure 2004311184
【0056】
【表40】
Figure 2004311184
【0057】
【表41】
Figure 2004311184
【0058】
【表42】
Figure 2004311184
【0059】
【表43】
Figure 2004311184
【0060】
【表44】
Figure 2004311184
【0061】
【表45】
Figure 2004311184
【0062】
【表46】
Figure 2004311184
【0063】
【表47】
Figure 2004311184
【0064】
【表48】
Figure 2004311184
【0065】
【表49】
Figure 2004311184
【0066】
【表50】
Figure 2004311184
【0067】
【表51】
Figure 2004311184
【0068】
【表52】
Figure 2004311184
【0069】
【表53】
Figure 2004311184
【0070】
【表54】
Figure 2004311184
【0071】
【表55】
Figure 2004311184
【0072】
【表56】
Figure 2004311184
【0073】
【表57】
Figure 2004311184
【0074】
【表58】
Figure 2004311184
【0075】
【表59】
Figure 2004311184
【0076】
【表60】
Figure 2004311184
【0077】
【表61】
Figure 2004311184
【0078】
【表62】
Figure 2004311184
【0079】
【表63】
Figure 2004311184
【0080】
【表64】
Figure 2004311184
【0081】
【表65】
Figure 2004311184
【0082】
【表66】
Figure 2004311184
【0083】
【表67】
Figure 2004311184
【0084】
【表68】
Figure 2004311184
【0085】
【表69】
Figure 2004311184
【0086】
【表70】
Figure 2004311184
【0087】
【表71】
Figure 2004311184
【0088】
【表72】
Figure 2004311184
【0089】
【表73】
Figure 2004311184
【0090】
【表74】
Figure 2004311184
【0091】
【表75】
Figure 2004311184
【0092】
【表76】
Figure 2004311184
【0093】
【表77】
Figure 2004311184
【0094】
【表78】
Figure 2004311184
【0095】
【表79】
Figure 2004311184
【0096】
【表80】
Figure 2004311184
【0097】
【表81】
Figure 2004311184
【0098】
【表82】
Figure 2004311184
【0099】
【表83】
Figure 2004311184
【0100】
【表84】
Figure 2004311184
【0101】
【表85】
Figure 2004311184
【0102】
【表86】
Figure 2004311184
【0103】
【表87】
Figure 2004311184
【0104】
【表88】
Figure 2004311184
【0105】
【表89】
Figure 2004311184
【0106】
【表90】
Figure 2004311184
【0107】
前記表に示す化合物群のうち、一層代表的な化合物を1つ1つ具体的な構造式で示すと下記のとおりである。
【化19】
Figure 2004311184
【0108】
【化20】
Figure 2004311184
【0109】
【化21】
Figure 2004311184
【0110】
【化22】
Figure 2004311184
【0111】
【化23】
Figure 2004311184
【0112】
【化24】
Figure 2004311184
【0113】
【化25】
Figure 2004311184
【0114】
【化26】
Figure 2004311184
【0115】
【化27】
Figure 2004311184
【0116】
【化28】
Figure 2004311184
【0117】
【化29】
Figure 2004311184
【0118】
【化30】
Figure 2004311184
【0119】
【化31】
Figure 2004311184
【0120】
【化32】
Figure 2004311184
【0121】
【化33】
Figure 2004311184
【0122】
【化34】
Figure 2004311184
【0123】
【化35】
Figure 2004311184
【0124】
【化36】
Figure 2004311184
【0125】
【化37】
Figure 2004311184
【0126】
【化38】
Figure 2004311184
【0127】
【化39】
Figure 2004311184
【0128】
【化40】
Figure 2004311184
【0129】
【化41】
Figure 2004311184
【0130】
【化42】
Figure 2004311184
【0131】
【化43】
Figure 2004311184
【0132】
【化44】
Figure 2004311184
【0133】
【化45】
Figure 2004311184
【0134】
本発明の有機発光素子の各層の構成例としては、下記のものを例示することができる。
単層型
第1電極/発光層(1)/第2電極
(注1)発光層(1)としては、
(a)正孔輸送性発光剤と本発明の多核型フェナントロリン誘導体を含むものを分子分散させてなる膜または
(b)前記(a)に発光剤をドープした膜を用いる。
二層型
(1)第1電極/発光層(1)/電荷制御層/第2電極
(注2)発光層(1)としては、注1記載のものを用いる
(注3)電荷制御層としては、この例も含め、以下に出てくる電荷制御層においても、公知の電荷制御剤のほか、本発明の電荷制御材料も使用できる。また電荷制御層はアルカリ金属をドーピングしたものであってもよい。
(2)第1電極/発光層(2)/電荷制御層/第2電極
(注4)発光層(2)は正孔輸送性発光剤の膜または正孔輸送剤に発光剤をドープした膜。
多層型
(1)第1電極/正孔輸送層/発光層(1)または(2)/電荷制御層
/第2電極(2)第1電極/発光層(1)/電荷制御層/電子輸送層/第2電極
(3)第1電極/正孔注入層/発光層(1)/電荷制御層/第2電極
(4)第1電極/発光層(2)/電荷制御層/電子輸送層/第2電極
(5)第1電極/正孔注入層/発光層(2)/電荷制御層/第2電極
(6)第1電極/正孔輸送層/発光層(1)または(2)/電荷制御層/電子輸送層/第2電極
(7)第1電極/正孔注入層/正孔輸送層/発光層(1)または(2)/電荷制御層/第2電極
(8)第1電極/正孔注入層/発光層(1)または(2)/電荷制御層/電子輸送層/第2電極
(9)第1電極/正孔注入層/正孔輸送層/発光層(1)または(2)/電荷制御層/電子輸送層/第2電極
なお、通常前記第1電極は、ガラス、合成樹脂などの基板上にITO膜を形成したものを用い、第2電極としてはLiFとアルミニウムなどの金属とを設けたものを使用するが、これに限定されるものではない。
【0135】
【実施例】
以下に合成例、実施例、比較例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。
【0136】
合成例1
(1)7−メチル−8−ニトロキノリン(7−M−8−Nq)の合成
【化46】
Figure 2004311184
温度計、撹拌機のついた200mlの4つ口丸底フラスコに濃硫酸を25ml加え、氷浴中で−5℃に冷やした。良く撹拌しながら徐々に濃硝酸25mlを加え、混酸溶液を作った。一方、温度計、撹拌機のついた500mlの4つ口丸底フラスコに濃硫酸150mlを加え、撹拌しながら氷浴中で−5℃に冷やした。この中に7−メチルキノリン(7−Mq)50ml(349mmol)を徐々に滴下した。滴下終了後さらに氷浴中で−10℃まで冷やした。これに先に作った混酸溶液全量を滴下した。滴下終了後、室温で3時間反応を行なった。反応終了後、反応物を、氷1500gの入った2000mlフラスコに移し、反応液を48%水酸化ナトリウム水溶液で中和し、析出した結晶をろ過し、イソプロピルアルコールとトルエンの混合溶媒で再結晶を行い、目的の7−M−8−Nqが63g(335mmol)得られた。収率96% 融点186.0〜186.5℃。
【0137】
(2)7−[(N,N−ジメチルアミノ)エテニル]−8−ニトロキノリン(7−DME−8−Nq)の合成
【化47】
Figure 2004311184
温度計、冷却管、撹拌機のついた1000mlの4つ口丸底フラスコにN,N−ジメチルホルムアミド300ml、7−M−8−Nq63g(335mmol)、ジメチルホルムアミドジメチルアセタール120g(1mol)を加え、撹拌しながら130℃で24時間反応を行った。反応終了後、反応液を0℃まで冷却し、析出した結晶を吸引ろ過により集めた。さらに、ろ液を蒸留水500gで希釈し、析出した結晶を同様に集めた。これらの結晶をデシケーターで乾燥し、目的物の7−DME−8−Nqを75g(308mmol)を得た。収率92%融点189.0〜190.0℃
【0138】
(3)8−ニトロ−7−キノリンカルボアルデヒド(8−N−7−Qa)の合成
【化48】
Figure 2004311184
温度計、撹拌機のついた5000mlの4つ口丸底フラスコにテトラヒドロフラン1900mlと8−N−7−Qa75g(308mmol)を加え、室温で均一溶液になるまで撹拌した。この反応液にメタ過ヨウ素酸ナトリウム水溶液〔メタ過ヨウ素酸ナトリウム250g(1.17mol)を2200mlの蒸留水で希釈したもの〕を2時間かけて滴下した。滴下後、室温で3時間反応を行った。反応終了後、反応液を希アンモニア水で中和し、析出した結晶をろ過した。またろ液は酢酸エチル3000mlで抽出し、得られた結晶を先に得られた結晶と一つに纏めた。さらに結晶中の不純物を分けるために、酢酸エチル3200mlを加え、還留温度まで加熱し、熱時ろ過を行った。得られた溶液を室温まで冷却後、先に抽出して得られた酢酸エチル層と一つにし減圧下溶媒回収を行った。得られた残さはトルエンを用いて再結晶を行い、目的物の8−N−7−Qaが39g(193mmol)得られた。収率62% 融点181.0〜181.5℃。
【0139】
(4)8−アミノ−7−キノリンカルボアルデヒド(8−A−7−Qa)の合成
【化49】
Figure 2004311184
温度計、冷却管、アルゴンガス導入管、撹拌機のついた5000mlの4つ口丸底フラスコに8−N−7−Qa39g(193mmol)、エタノール670ml、蒸留水335ml、酢酸670mlと濃塩酸10mlを加え室温で撹拌する。この溶液に対して、鉄粉72.4g(1.3mol)をアルゴン気流下で徐々に加えた。添加後、還留温度で15分、室温で30分反応を行った。その後固形物をろ過し、得られたろ液は減圧下溶媒回収を行った。得られた油状物は蒸留水2000mlと酢酸エチル3000mlの入った5Lの分液ロートに移し、抽出を行った。水層を分離し、この水層をさらに3000mlの酢酸エチルで抽出を行い、この有機層は先の有機層と一緒にした。得られた有機層は減圧下溶媒回収を行い粗製オイルを得た。
この粗製オイルはシリカゲルカラムクロマトグラフ(展開溶媒クロロホルム)で精製し目的の8−A−7−Qaが19.6g(114mmol)得られた。収率59% 融点86.0〜87.0℃
【0140】
(5)1,4−ジ(1,10−フェナントロリン−2−イル)ベンゼン(DPB)の合成
【化50】
Figure 2004311184
温度計、冷却管、アルゴンガス導入管、撹拌機のついた1000mlの4つ口丸底フラスコに8−A−7−Qa9.8g(57.0mmol)、1,4−ジアセチルベンゼン4.6g(28.5mmol)、エタノール400mlおよび飽和水酸化カリウムエタノール溶液21mlを加え、撹拌しながらアルゴン気流下50℃で3時間、続いて90℃で18時間反応した。反応後室温まで冷却し、析出している結晶を吸引ろ過で集めた。この粗結晶は、シリカゲルカラムクロマトグラフ(展開溶媒クロロホルム)で精製し、目的のDPBが6.7g(15.4mmol)得られた。収率27%(8−A−7−Qa基準)融点423℃(DSC)
【0141】
合成例2
4,4′−ジ(1,10−フェナントロリン−2−イル)ビフェニル(DPBi)の合成
【化51】
Figure 2004311184
温度計、冷却管、アルゴンガス導入管、撹拌機のついた3000mlの4つ口丸底フラスコに8−A−7−Qa9.8g(57.0mmol)、4,4−ジアセチルビフェニル6.8g(28.5mmol)、エタノール2000mlおよび飽和水酸化カリウムエタノール溶液44mlを加え、撹拌しながらアルゴン気流下90℃で23時間反応した。反応後室温まで冷却し、析出している結晶を吸引ろ過で集めた。この粗結晶は、シリカゲルカラムクロマトグラフ(展開溶媒クロロホルム)で精製し、目的のDPBiが6.0g(11.7mmol)得られた。収率21%(8−A−7−Qa基準) 融点443℃(DSC)
【0142】
合成例3
1,5−ジ(1,10−フェナントロリン−2−イル)アントラセン(DPA)の合成
【化52】
Figure 2004311184
温度計、冷却管、アルゴンガス導入管、撹拌機のついた1000mlの4つ口丸底フラスコに8−A−7−Qa9.8g(57.0mmol)、1,5−ジアセチルアントラセン7.4g(28.2mmol)、エタノール430mlおよび飽和水酸化カリウムエタノール溶液31mlを加え、撹拌しながらアルゴン気流下還留温度で36時間反応した。反応後室温まで冷却し、さらに氷水浴中で一晩放置し、析出している結晶を吸引ろ過で集めた。この粗結晶は、シリカゲルカラムクロマトグラフ(展開溶媒クロロホルム)で精製し、目的のDPAが7.8g(14.6mmol)得られた。収率25%(8−A−7−Qa基準) 融点300℃以上
【0143】
合成例4
1,3,5−トリ(1,10−フェナントロリン−2−イル)ベンゼン(TPB)の合成
【化53】
Figure 2004311184
温度計、冷却管、アルゴンガス導入管、撹拌機のついた5000mlの4つ口丸底フラスコに8−A−7−Qa9.8g(57.0mmol)、1,3,5−トリアセチルベンゼン3.3g(16.3mmol)、エタノール4000mlおよび水酸化カリウム6.5g(130.6mmol)を加え、撹拌しながらアルゴン気流下還留温度で24時間反応した。反応後、室温まで冷却し、さらに氷水浴中で一晩放置し、析出している結晶を吸引ろ過で集めた。この粗結晶は、シリカゲルカラムクロマトグラフ(展開溶媒クロロホルム)で精製し、目的のTPBが7.4g(12.1mmol)得られた。収率21%(8−A−7−Qa基準) 融点300℃以上
【0144】
合成例5
2,6−ジ(1,10−フェナントロリン−2−イル)ピリジン(DPP)の合成
【化54】
Figure 2004311184
温度計、冷却管、アルゴンガス導入管、撹拌機のついた1000mlの4つ口丸底フラスコに8−A−7−Qa 9.8g(57.0mmol)、2,6−ジアセチルピリジン4.9g(28.4mmol)、エタノール1250mlおよび飽和水酸化カリウムエタノール溶液49mlを加え、撹拌しながらアルゴン気流下還留温度で24時間反応した。反応後反応液は室温まで冷却し、これを蒸留水2400ml中に排出した。反応母液は塩化メチレン2000mlで3回抽出し、これらの有機層は一つに集めたのち減圧下で溶媒を回収した。得られた粗製物は、少量の塩化メチレンで再結晶を行い目的のDPPが7.5g(17.2mmol)得られた。収率30%(8−A−7−Qa基準) 融点300℃以上。
【0145】
実施例1
本発明の実施例1を図1を参照しながら説明する。
パターニング済みの透明導電膜(ITO)3が200nm成膜されたガラス基板1を界面活性剤を含む水溶液中に浸漬して超音波洗浄し、純水にてリンスを行った。次にイソプロピルアルコールの超音波洗浄で脱脂洗浄し、紫外線を照射してUVオゾン洗浄を行った。〔なお、紫外線オゾン洗浄は、紫外線を使って活性酸素を発生させ、同時に基板表面に付着した有機物を分解、酸化揮発除去する洗浄方法である。実際には、酸素の存在する雰囲気下(この場合は大気雰囲気下)で透明導電膜付ガラス基板に低圧水銀灯により紫外線照射する。照射するのは185nmと254nmの輝線を含む、紫外線である。185nmは空気中の酸素に吸収されオゾンを発生し、254nmの光はオゾンに吸収され、活性酸素に分解する。また185nmのような短波長紫外線は有機物の結合を切断する。活性酸素の酸化作用と切断の作用により有機物は、酸化、分解、揮発される。〕この基板1を真空チャンバーに設置し、1×10−6Torrまで真空排気した。
真空チャンバー内には、有機材料を充填したタンタル性蒸着ボートと所定のパターンで成膜するための金属製薄板マスクを設置しておき、蒸着ボートに電流を流すことにより加熱し、有機材料を蒸発されて成膜をおこなった。最初に正孔注入層5として銅フタロシアニン(以下CuPc)を水晶振動子でモニターしながら22nm成膜した。次に正孔輸送層7として下記式
【化55】
Figure 2004311184
で示されるN,N′−ジ(α−ナフチル)−N,N′−ジフェニル−1,1′−ビフェニル−4,4′−ジアミン(以下αNPD)を34nm成膜し、青色発光層11として下記式
【化56】
Figure 2004311184
で示される4,4′−ビス(2,2′−ジフェニルビニル)ビフェニル(以下DPVBi)を23nm成膜した。
なお、DPVBiに代えてトリス(8−キノリノラト)アルミニウム錯体(Alq)を発光層用の材料として用いると緑色発光層を形成することができる。
【0146】
ついで、多核型フェナントロリン誘導体により電荷制御層を形成する。すなわち2核型フェナントロリンとして下記式
【化57】
Figure 2004311184
で示される1,4−ジ(1,10−フェナントロリン−2−イル)ベンゼン(DPB)を47nm成膜し、電荷制御層15を形成した。なお、本発明における電荷制御層とは、電子輸送能力を有する層、または電子輸送能力と電荷制御能力を有する層の意味で使用している。また、電荷制御能力とはホールブロック的機能である場合が多い。
【0147】
次に陰極を成膜する。上記の真空チャンバーから基板を取り出し、金属成膜用チャンバーに基板を取り付けた。成膜した有機材料の劣化を防止するため、大気に触れることなく真空一貫工程により基板を移動させた。金属成膜用チャンバーには、陰極用材料と陰極パターン用の金属性薄板マスクを設置した。すなわち、基板上に電極の形状に合わせた開口を有するマスクを設け、その上から陰極材料を蒸着した。有機材料と同様に1×10−6Torr(1.33×10−4Pa)の真空度において成膜を行った。金属製のチャンバー内において、フッ化リチウム(LiF)層17を0.1nm成膜した。次いでアルミニウム(Al)層19を100nm成膜し、陰極21形成した。Liは電極の安定化のために用いられ、Alを共蒸着しても良い。
【0148】
有機発光素子は水分の影響を受けやすいので、その影響を避けるため、成膜後のガラス基板1を不活性なガス、例えばNガスで満たされたグローブボックスに移動した。有機発光素子と別のガラス板とを紫外線硬化型接着材を用いて接着しパッケージを形成した。
【0149】
ガラス板を張り合せた有機発光素子の陽極3と陰極21とにDC電源23を接続した。
このようにして形成した有機発光素子にDC電源23により電流を流すと、ガラス基板1側からの発光が観測された。より詳細には、陰極21から注入された電子が電荷制御層15内を通り青色発光層11に向かう。一方陽極3から注入された正孔が正孔輸送層5と正孔注入層7を通り青色発光層11に向かう。青色発光層11内において、電子と正孔とが会合して励起子が発生する。励起子から青色の波長を有する発光が観測される。発光は、ガラス基板1の正面側(積層構造を設けていない側)から観測される。なお、電荷制御層15としてイオン化ポテンシャルが高い材料を選択すると、正孔のブロック機能が高くなり、ホールブロック材料として機能する。実施例1においては、電荷制御層15は、電子輸送機能とホールブロック機能とを有している。
【0150】
上記の工程により製造した有機発光素子に関して、正面方向(ガラス基板1の表面の法線方向)から測定した輝度を、ミノルタカメラ社製の輝度測定装置CS−100を用いて測定した。電流値、電圧値、輝度とから初期効率を計算した。
【0151】
実施例2
基板の種類と基板洗浄法に関しては実施例1の場合と同じである。正孔注入層として銅フタロシアニン(CuPc)を22nm成膜した。次に、正孔輸送層としてα−NPDを34nm成膜した。青色発光層としてDPVBiを23nm成膜した。次いで、電荷制御層として、下記式
【化58】
Figure 2004311184
で示される4,4′−ジ(1,10−フェナントロリン−2イル)ビフェニル(DPBi)を47nm成膜した。実施例2においても電荷制御層は電子輸送機能とホールブロック機能とを有している。陰極を成膜した後のパッケージ工程は、実施例1と同様の工程を適用した。測定手段およぼ測定方法も同じである。
【0152】
比較例1
次に実施例1および実施例2のよる有機発光素子との比較のために、電荷制御層として本発明の多核型フェナントロリン誘導体に代えて下記式
【化59】
Figure 2004311184
で示されるバソフェナントロリン(Bphen)を47nm成膜した。陰極を成膜した後のパッケージ工程は、実施例1や2と同様の工程を適用した。測定手段および測定方法も同じである。
【0153】
比較例2
正孔注入層にCuPcを22nm成膜し、正孔輸送層としてα−NPDを34nm成膜し、青色発光層としてDPVBiを23nm成膜し、最後に電子輸送層としてトリス(8−ヒドロキシキノリノラト)アルミニウム錯体(Alq)を47nm成膜した以外は実施例1を繰り返した。
【0154】
<耐熱性のテスト>
実施例1および2による有機発光素子と比較例1による有機発光素子とを85℃の恒温槽中に入れ、耐熱性試験を行った。
図5に示すように、比較例1による有機発光素子においては85℃の耐熱性試験を開始してから24時間後には初期と比べて同じ電圧における輝度と効率とが大幅に低下した。すなわち、同じ輝度を得るために必要な電圧は高くなった。
図6に示すように、実施例1による有機発光素子においては85℃のおける耐熱性試験を開始してから313時間経過後であっても輝度の変化はわずかであった。すなわち、同じ輝度を得るのに必要な印加電圧の増加率は、比較例1の場合よりも小さかった。効率も低下したが、比較例1による有機発光素子の場合に比べると低下の割合は小さい。
図7に示すように実施例2による有機発光素子においては85℃における耐熱性試験を開始してから313時間経過後であっても、輝度の変化は非常にわずかであった。すなわち、実施例2による有機発光素子では、電圧の上昇、効率の低下もほとんどなく、初期の特性を維持することがわかる。
Bphen、DPBおよびDPBiのそれぞれの電荷制御層材料(または電子輸送層材料)として用いた場合の初期測定(電流密度、輝度および効率)にそれほど大きな差はない。これに対して、耐熱性試験を行った場合には、熱による特性の変化の度合いは、Bphenを用いた比較例の有機発光素子が最も大きく、DPBiを用いた有機発光素子が最も小さいことがわかる。
なお、比較例2のAlqに用いたものは耐熱性の点では左程の差がないが、以下の電気光学特性において差がみられた。
【0155】
<その他の物性のテスト>
図2から4までに実施例1および実施例2による有機発光素子の初期特性を示す。併せて、比較例1および2による有機発光素子の初期特性も示す。図2は、有機発光素子の電流密度の印加電圧依存性を示す図である。図3は、有機発光素子の輝度の印加電圧依存性を示す図である。図4は、有機発光素子の効率の印加電圧依存性を示す図である。
図2に示すように実施例1および2による有機発光素子の電流密度は、比較例1による有機発光素子と同様に印加電圧2.5V付近から急激に立ち上がっていることがわかる。実施例1および実施例2による有機発光素子と比較例1による有機発光素子の特性とに大きな違いはない。
図3に示すように、実施例1および2による有機発光素子の輝度は、比較例1による有機発光素子と同様に、印加電圧2.5V付近から急激に立ち上がっていることがわかる。実施例1および実施例2による有機発光素子と比較例1による有機発光素子の特性上、さほどの違いはない。
図4に示すように、実施例1および2による有機発光素子の効率は、印加電圧2.5V付近から急激に大きくなることがわかる。印加電圧が3Vから4Vまでの間においては3.5から4の高い効率を維持している。印加電圧が3Vから4Vまでの間においては、比較例1による有機発光素子の効率が最も高く、実施例2による有機発光素子、実施例1による有機発光素子の順となっている。
【0156】
表91は、図2から図4までから求められた有機発光素子の電気光学特性をまとめた表である。
【0157】
【表91】
Figure 2004311184
【0158】
表91に示すように、実施例1および実施例2による有機発光素子の発光開始電圧(輝度が1cd/mにおける電圧として規定した。)は、比較例1と同様に2.7Vである。輝度が300cd/mとなる電流密度は、比較例1による有機発光素子においては7.6mA/cmであり、その時の電圧は3.4Vである。電流効率は3.9cd/Aである。実施例1による有機発光素子においては輝度が300cd/mとなる電流密度は8.2mA/cmであり、その時の電圧は3.8Vである。電流効率は、3.7cd/A、電力効率は3.0lm/Wである。実施例2による有機発光素子においては輝度が300cd/mとなる電流密度は7.7mA/cmであり、その時の電圧は3.5Vである。電流効率は3.9cd/A、電力効率は3.5lm/Wである。
これらの値に関しても実施例1および2と比較例1との差はほとんどない。一方、実施例1および2と比較例2を対比すると、比較例2のものは電圧が高く電流密度も著しく高いのに電流効率、電力効率は実施例1および2の1/2程度と低いものであった。
【0159】
以上、説明したように、電荷制御材料として、代表的な1核型のバソフェナントロリン(Bphen)を用いた場合と本発明の多核型フェナントロリン誘導体に当る1,4−ジ(1,10−フェナントロリン−2−イル)ベンゼン(DPB)や4,4′−ジ(1,10−フェナントロリン−2−イル)ビフェニル(DPBi)を用いた場合とでは、初期特性にはほとんど差がでないが、耐熱性についてはDPB又はDPBiを用いた場合の方がBphenを用いた場合よりも優れていることがわかる。
また、電子輸送層として、代表的なAlqを用いた場合と本発明のDPBやDPBiを用いた場合とでは耐熱性では左程の差がないが電気光学的特性において、本発明のものが著しい改善効果を示していることが判る。
【0160】
実施例3、4、比較例3
実施例1における電荷制御層について、実施例3では、前記1,4−ジ(1,10−フェナントロリン−2−イル)ベンゼン(DPB)とセシウム(Cs)を共蒸着させて作り、実施例4では、前記4,4′−ジ(1,10−フェナントロリン−2−イル)ビフェニル(DPBi)とセシウム(Cs)を共蒸着させて作り、比較例3では前記バソフェナントロリン(BPhen)とセシウム(Cs)を共蒸着して作った以外は、実施例1を繰り返した。
セシウム(Cs)の量は、DPB:Cs、DPBi:Cs、BPhen:Csがいずれも3:1となるように調整した。
なお、いずれも陰極は厚さ100nmのAl層を用いた。
【0161】
共蒸着法は、真空容器内で複数の蒸着材料を個々に加熱蒸発させ、基板上に成膜させる方法である。この方法を用いると蒸着源ごとに蒸着速度を決定することができ、組成制御が容易に行える。
【0162】
実施例3および4の有機発光素子は、比較例3の有機発光素子に較べて耐熱性に優れていることは実施例1および2と比較例1の関係と同様であった。また実施例3および4と比較例3の有機発光素子の電気光学特性を表92に示す。
【0163】
【表92】
Figure 2004311184
【0164】
表91と表92を比較すると、電荷制御層にCsをドーピングした場合でも、Csをドーピングしていないものとほぼ同様の電気光学特性を得ることができる。
より詳細には、発光開始電圧(輝度は1cd/mになる電圧)は2.6から2.7Vであり、表91の値とほぼ同じであった。300cd/mにおける電流密度は、実施例3および実施例4による有機発光素子の方が実施例1および実施例2による有機発光素子よりも高い電流密度を有する。特に実施例4による有機発光素子における電流密度が高いことがわかる。
【0165】
一方、300cd/mを得ることができる印加電圧は、実施例3および実施例4による有機発光素子の方が実施例1および実施例2による有機発光素子よりも低い値を示す。電流効率は実施例3および実施例4による有機発光素子の方が、実施例1および実施例2による有機発光素子よりも低い。これによりアルカリ金属のセシウム(Cs)をドーピングした電荷制御層を用いることにより、有機発光素子の低電圧動作が可能になることがわかった。
【0166】
実施例5
図8に示す有機発光素子は、電荷制御層15とは別にAlqを用いて電子輸送層を形成した場合を例示している。この場合には、図1に示す構造に加えて、例えば、ホールブロック層として機能する厚さ10nmの電荷制御層15と陰極21との間に、厚さ40nmの電子輸送層25が形成された構造を有している。電荷制御層15としては、例えば2核型や3核型のフェナントロリン誘導体を用いることができる。
上記構造を用いると、電子輸送層と電荷制御層(ホールブロック層)とを別個に設けるので、所望の特性を得るための素子構造を設計する際の自由度が増すという利点がある。
【0167】
実施例6
パターニング済みの透明導電膜(ITO)が200nm成膜されたガラス基板を界面活性剤にて超音波洗浄し、純水にてリンスを行った。次にイソプロピルアルコールの超音波洗浄で脱脂洗浄し、紫外線を照射してUVオゾン洗浄を行った。この基板を真空チャンバーに設置し、1×10−6Torrまで真空排気した。
真空チャンバー内には、有機材料を充填したタンタル性蒸着ボートと所定のパターンで成膜するための金属製薄板マスクを設置しておき、蒸着ボートに電流を流すことにより加熱し、有機材料を蒸発されて成膜をおこなった。最初に正孔注入層として下記式
【化60】
Figure 2004311184
で示される4,4′,4″−トリス〔N,N−(2−ナフチル)フェニルアミノ〕トリフェニルアミン(以下、2−TNATA)を水晶振動子でモニターしながら60nm成膜した。次に正孔輸送層としてα−NPDを12nm成膜し、赤色発光層としてAlqと下記式
【化61】
Figure 2004311184
で示される蛍光性色素材料DCJTBを共蒸着し16.5nm成膜した。このときのDCJTBはAlqに対して3.5wt%の濃度とした。最後に電荷制御層としてDPBを40nm成膜した。
陰極を成膜するため、金属成膜用チャンバーに基板を移動した。移動の際は有機材料の劣化を防止するため、大気に触れることなく真空一貫で行った。金属成膜用チャンバーには陰極用材料と陰極用パターンの金属製薄板マスクを設置した。有機材料と同様に1×10−6Torrの真空度において成膜をおこなった。金属チャンバーでは、セシウム(Cs)を0.1nm成膜し、アルミニウム(Al)を100nm成膜し、陰極とした。
有機発光素子デバイスは水分の影響を受けやすいため、成膜したガラス基板を不活性ガスのNを満たしたグローブボックスに移動し、UV硬化型接着材を塗布した別のガラス板とUV硬化接着し、パッケージした。
ガラス板で貼り合せた有機発光素子デバイスの陽極、陰極にDC電源を接続し電流を印加した。デバイス正面方向の輝度をミノルタカメラ製CS−100にて測定し、そのときの電流値、電圧値から初期効率を計算した。
【0168】
比較例4
正孔注入層に2−TNATAを60nm成膜、正孔輸送層としてα−NPDを12nm成膜し、赤色発光層としてAlqと蛍光性色素材料DCJTBを共蒸着し16.5nm成膜し(このときDCJTBはAlqに対して3.5wt%の濃度とした。)、最後に電子輸送層としてAlqを40nm成膜した以外は実施例1を繰り返した。
【0169】
実施例6と比較例4の電気光学特性を表93に示す。
【表93】
Figure 2004311184
実施例6は比較例4と比べて同じ30cd/mの輝度を得るのに、低電圧および低電流である。また電流効率も実施例6の方が高く、高効率である。
発光スペクトルをみると、図10に示す比較例4のスペクトルはDCJTBの発光に加えて、電子輸送層のAlqに由来する520nm付近の発光が見られるのに対し、図9に示す実施例6ではDCJTBの発光のみ見られる。また、それぞれの色度にも差が確認された。DPBを用いた素子の色度は、Alqを用いた素子の色度よりも純粋な赤色の色度に近い値を示した。この色度の差はAlqに由来する520nmの発光の有無を示唆すると考えられる。このことから、比較例4では、発光領域が発光層および電子輸送層内まで広がっていることが考察され、純粋な赤色の色度が得られていない。それに対し、実施例6に用いた電荷制御材料では、発光領域が発光層内に限定されることで、目的の色度が得られている。これはDPBが電子輸送性に加えてホールブロック性をもつためと考察される。
【0170】
【発明の効果】
以上に説明したように、有機発光素子において電子輸送層又はホールブロック層として機能する電荷制御層の材料として多核型フェナントロリン誘導体を用いると、有機発光素子の耐熱性を向上させることができ、有機発光素子の信頼性が向上する。さらに、多核型フェナントロリン誘導体を用いた電荷制御層にアルカリ金属をドーピングすることにより、低い印加電圧でも発光させることができる。
また、電子輸送材料として代表的なAlqと比較すると、耐熱性の点では左程の差はないが電流効率および電力効率の点で著しい改善が認められた。
【図面の簡単な説明】
【図1】本発明の実施例1から実施例4までによる有機発光素子の構造を示す断面図である。
【図2】本発明の実施例1および2と比較例1および2による有機発光素子の電流密度の印加電圧依存性を示す図である。
【図3】本発明の実施例1および2と比較例1および2による有機発光素子の輝度の印加電圧依存性を示す図である。
【図4】本発明の実施例1および2と比較例1および2による有機発光素子の電流効率の印加電圧依存性を示す図である。
【図5】本発明の比較例1による有機発光素子の輝度と電流効率との印加電圧依存性を熱処理前と熱処理後で比較した図である。
【図6】本発明の実施例1による有機発光素子の輝度と電流効率との印加電圧依存性を熱処理前と熱処理後で比較した図である。
【図7】本発明の実施例2による有機発光素子の輝度と電流効率との印加電圧依存性を熱処理前と熱処理後で比較した図である。
【図8】本発明の実施例5による有機発光素子の構造を示す断面図である。
【図9】本発明の実施例6の有機発光素子の発光スペクトルである。
【図10】比較例4の有機発光素子の発光スペクトルである。
【符号の説明】
1 ガラス基板
3 透明導電膜(陽極)
5 正孔注入層
7 正孔輸送層
11 青色発光層
15 電荷制御層
17 フッ化リチウム(LiF)層
19 アルミニウム層
21 陰極
23 DC電源
25 電子輸送層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electron transport material and a charge control material comprising a phenanthroline derivative, and an organic light emitting device using the same.
[0002]
[Prior art]
Conventionally, the following formula,
Embedded image
Figure 2004311184
The tris (8-hydroxyquinolinolato) aluminum complex represented by 3 Is sometimes widely used as a light emitting material or an electron transporting material of an organic EL device.
[0003]
However, Alq 3 Is an efficient electron-transporting material, but emits green light because it is a green light-emitting material when used. However, if you want to extract wavelengths shorter than green, for example, blue, Alq 3 Can not be used. Therefore, the following equation with a large band gap
Embedded image
Figure 2004311184
Vasophenanthroline (BPhen) represented by
Embedded image
Figure 2004311184
Is used as a hole blocking layer and / or an electron transporting agent (see Patent Documents 1 and 2).
[0004]
In particular, it is known that bathophenanthroline has a high electron mobility (Non-Patent Document 1, Patent Document 3). For example, it is reported from Yamagata University, Aimes Corporation, and Matsushita Electric Works, Ltd. that doping of an electron transporting material with cesium (Cs) can reduce the voltage and increase the efficiency (Non-patent Documents). 2, Non-patent document 3). Further, bathocuproine has been attracting attention as a hole block material for devices using a phosphorescent material. Each of these materials is characterized by a large energy level of HOMO (highest occupied molecular orbital) and a large band gap.
[0005]
However, any of these materials has poor heat resistance, and these vapor-deposited films are liable to be recrystallized. For example, even in a general storage temperature range (−40 ° C. to 85 ° C.), device characteristics are deteriorated due to crystallization. Occurs.
[0006]
[Patent Document 1]
JP 2001-29781 A
[Patent Document 2]
JP 2001-313178 A
[Patent Document 3]
JP-A-5-331459
[Non-patent document 1]
Shigeki Naka et al. , Applied Physics Letters, vol. 76, No. 2, p197-199
[Non-patent document 2]
Junji Kido et al. , Applied Physics Letters, vol. 73, no. 20, p2866-2868
[Non-Patent Document 3]
Kishigami et al. Polymer Symposium Vol. 49, no. 11 (2000), p3385-3386
[0007]
[Problems to be solved by the invention]
The object of the present invention is to provide Alq 3 Another object of the present invention is to provide a novel electron transport material and a charge control material exhibiting an electron transport performance not less than that of an organic light emitting device and an organic light emitting device using the same.
[0008]
[Means for Solving the Problems]
A first aspect of the present invention is to provide the following general formula (I)
Embedded image
Z (Y) n ...... (I)
[Wherein, Z is a divalent or trivalent group selected from the group consisting of a divalent or trivalent aromatic hydrocarbon group and a divalent or trivalent heterocyclic group, and Y is
Embedded image
Figure 2004311184
Wherein n is 2 or 3, and R is 1 ~ R 5 Is hydrogen, an alkyl group, an alkoxy group, an aryl group (which may be substituted with an alkyl group), an aryloxy group, an aralkyl group (an aryl group part may be substituted with an alkyl group), an alkylamino group, an aryl An amino group, RCOO- (R is selected from the group consisting of an alkyl group, an aryl group and an aralkyl group), a carboxyl group, an amino group, a trifluoromethyl group, a nitro group, a halogen, a cyano group and
Embedded image
-XA
(X is an element selected from the group consisting of O, S, Se and Te, and A is an alkyl group or an aryl group)
Groups independently selected from the group consisting of ]
And a polynuclear phenanthroline derivative represented by the formula:
In the second aspect of the present invention, the following general formula (I)
Embedded image
Z (Y) n ...... (I)
[Wherein, Z is a divalent or trivalent group selected from the group consisting of a divalent or trivalent aromatic hydrocarbon group and a divalent or trivalent heterocyclic group, and Y is
Embedded image
Figure 2004311184
Wherein n is 2 or 3, and R is 1 ~ R 5 Is hydrogen, an alkyl group, an alkoxy group, an aryl group (which may be substituted with an alkyl group), an aryloxy group, an aralkyl group (an aryl group part may be substituted with an alkyl group), an alkylamino group, an aryl An amino group, RCOO- (R is selected from the group consisting of an alkyl group, an aryl group and an aralkyl group), a carboxyl group, an amino group, a trifluoromethyl group, a nitro group, a halogen, a cyano group and
Embedded image
-XA
(X is an element selected from the group consisting of O, S, Se and Te, and A is an alkyl group or an aryl group)
Groups independently selected from the group consisting of ]
And a charge control material comprising a polynuclear phenanthroline derivative represented by the formula:
A third aspect of the present invention relates to an organic light-emitting device having a layer containing the electron transport material according to claim 1 and / or a layer containing the charge control material according to claim 2.
A fourth aspect of the present invention is an organic light-emitting device having a first electrode (anode), a light-emitting layer, and a second electrode (cathode), wherein the light-emitting layer is at least a hole-transporting luminescent agent and the electron transport according to claim 1. The present invention relates to an organic light emitting device containing a material.
A fifth aspect of the present invention is an organic light emitting device having a first electrode, a light emitting layer, a charge control layer, and a second electrode, wherein the charge control layer contains the charge control material according to claim 2. The present invention relates to a characteristic organic light emitting device.
A sixth aspect of the present invention is an organic light emitting device having a first electrode, a hole transport layer, a light emitting layer, a charge control layer, and a second electrode, wherein the charge control layer contains the charge control material according to claim 2. And an organic light-emitting device.
A seventh aspect of the present invention relates to the organic light-emitting device according to claim 5 or 6, further comprising an electron transporting layer adjacent to the charge control layer (between the charge control layer and the second electrode).
An eighth aspect of the present invention relates to the organic light-emitting device according to any one of claims 6 and 7, further comprising a hole injection layer adjacent to the hole transport layer (between the hole transport layer and the first electrode).
The ninth aspect of the present invention relates to the organic light emitting device according to any one of claims 5 to 8, wherein the charge control layer is doped with an alkali metal.
A tenth aspect of the present invention is that the light emitting layer is
(A) a layer in which a component containing at least a hole transporting luminescent agent and the electron transporting material according to claim 1 is molecularly dispersed, or
(B) a layer obtained by doping a luminescent agent into a layer in which a component containing at least a hole transporting luminescent agent and the electron transporting material according to claim 1 is molecularly dispersed.
An organic light-emitting device according to any one of claims 4 to 9.
An eleventh aspect of the present invention relates to the organic light-emitting device according to any one of claims 4 to 10, wherein the first electrode has an ITO thin film on a transparent substrate.
[0009]
In the compound represented by the general formula (1), a compound in which Z is a divalent group and n = 2, that is, a phenanthroline derivative having two phenanthroline groups [compound of the following general formula (II)] It can be produced by the following reaction. The following Z and R 1 ~ R 5 Is as defined in the claims.
Embedded image
Figure 2004311184
[0010]
In the compound represented by the general formula (I), a compound in which Z is a trivalent group and n = 3, that is, a phenanthroline derivative having three phenanthroline groups [compound of the following general formula (III)] It can be produced by the following reaction.
Embedded image
Figure 2004311184
[0011]
In the production method, a reaction solvent is used, and as the reaction solvent, an alcohol can be generally used, and a preferable alcohol has 1 to 6 carbon atoms, and particularly preferably has 1 to 4 carbon atoms. .
As the reaction aid, those which make the system alkaline can be used. Examples of the inorganic material include alkali metal salts such as carbonic acid and hydroxide, alkaline earth metals, and alkali metal and alkaline earth metal hydroxides. Examples of the organic material include alkali metals and alkali metals. Examples include earth metal alcoholates and amine compounds.
This reaction is preferably performed in an inert atmosphere, for example, in an atmosphere of nitrogen, helium, neon, argon or the like, but the reaction proceeds even in the air.
The reaction temperature is not particularly limited, but is usually 50 ° C. or higher, preferably at or near the boiling point of the solvent used. The reaction time is 3 to 48 hours, preferably 10 to 48 hours, particularly preferably 20 to 36 hours.
[0012]
Z is a divalent or trivalent aromatic hydrocarbon group or a divalent or trivalent heterocyclic group, and the aromatic hydrocarbon group is an aromatic monocyclic group or an aromatic polycyclic group. In addition to the case, a group consisting of a combination of the following (a) to (c) may be bonded to -O-, -S-, a saturated alkylene, an unsaturated alkylene, or a bond. (A) when the aromatic monocycles are bonded to each other; (b) when the aromatic monocycle is bonded to the aromatic polycycle (when Z is trivalent, two are the same and the other 1 (C) when aromatic polycycles are bonded to each other (the same aromatic polycycles may be combined or different polycycles may be combined. When Z is trivalent, 2 One is the same and the other is different).
[0013]
The heterocyclic group may be any so-called heterocyclic group containing any of N, O, and S as a core constituent element in addition to C, and the heterocyclic ring may be any of a 3- to 8-membered ring. Good, but a 5- or 6-membered ring is particularly preferred. The heterocyclic group may be composed of only one heterocyclic ring, but may be a condensed form of one heterocyclic ring and one or more aromatic rings, or two The above heterocyclic ring may be in a condensed form. Specifically, triazine type, oxazole type, oxathiazine type, furan type, furazane type, imidazole type, imidazolidine type, imidazoline type, coumarone type, chromene type, indole type, indoline type, isocoumarone type, isoquinoline type, cinnoline type , Acridine type, carbazole type and the like.
[0014]
The hydrogen bonded to the aromatic monohydrocarbon group or heterocyclic group is represented by R 1 ~ R 5 Of course may be substituted with the groups listed in the section.
[0015]
Specific compounds of the binuclear phenanthroline derivative [the compound represented by the general formula (II)] and the trinuclear phenanthroline derivative [the compound represented by the general formula (III)] used in the present invention are shown in the following table. Show.
In the table, the number in the Z section indicates that the group is a divalent or trivalent group represented by a number from Z = 1 to Z = 18 in Chemical Formula 18 below. In the case where the position where the bond is attached is not specified, in the case of a divalent group, the first rank is the para rank and the second rank is the meta rank. In the case of a heterocyclic ring, it is 2,5- or 2,4-position in the case of a 5-membered ring, and 2,4-, 2,5- or 2,6- in the case of a 6-membered ring, with respect to the hetero atom. Rank. In addition, when Z = 4 in the trivalent group, it is usually at the 1,3,6-position, and when Z = 5, CH is 3 Is usually the 2,4,5-position.
[0016]
Embedded image
Figure 2004311184
[0017]
[Table 1]
Figure 2004311184
[0018]
[Table 2]
Figure 2004311184
[0019]
[Table 3]
Figure 2004311184
[0020]
[Table 4]
Figure 2004311184
[0021]
[Table 5]
Figure 2004311184
[0022]
[Table 6]
Figure 2004311184
[0023]
[Table 7]
Figure 2004311184
[0024]
[Table 8]
Figure 2004311184
[0025]
[Table 9]
Figure 2004311184
[0026]
[Table 10]
Figure 2004311184
[0027]
[Table 11]
Figure 2004311184
[0028]
[Table 12]
Figure 2004311184
[0029]
[Table 13]
Figure 2004311184
[0030]
[Table 14]
Figure 2004311184
[0031]
[Table 15]
Figure 2004311184
[0032]
[Table 16]
Figure 2004311184
[0033]
[Table 17]
Figure 2004311184
[0034]
[Table 18]
Figure 2004311184
[0035]
[Table 19]
Figure 2004311184
[0036]
[Table 20]
Figure 2004311184
[0037]
[Table 21]
Figure 2004311184
[0038]
[Table 22]
Figure 2004311184
[0039]
[Table 23]
Figure 2004311184
[0040]
[Table 24]
Figure 2004311184
[0041]
[Table 25]
Figure 2004311184
[0042]
[Table 26]
Figure 2004311184
[0043]
[Table 27]
Figure 2004311184
[0044]
[Table 28]
Figure 2004311184
[0045]
[Table 29]
Figure 2004311184
[0046]
[Table 30]
Figure 2004311184
[0047]
[Table 31]
Figure 2004311184
[0048]
[Table 32]
Figure 2004311184
[0049]
[Table 33]
Figure 2004311184
[0050]
[Table 34]
Figure 2004311184
[0051]
[Table 35]
Figure 2004311184
[0052]
[Table 36]
Figure 2004311184
[0053]
[Table 37]
Figure 2004311184
[0054]
[Table 38]
Figure 2004311184
[0055]
[Table 39]
Figure 2004311184
[0056]
[Table 40]
Figure 2004311184
[0057]
[Table 41]
Figure 2004311184
[0058]
[Table 42]
Figure 2004311184
[0059]
[Table 43]
Figure 2004311184
[0060]
[Table 44]
Figure 2004311184
[0061]
[Table 45]
Figure 2004311184
[0062]
[Table 46]
Figure 2004311184
[0063]
[Table 47]
Figure 2004311184
[0064]
[Table 48]
Figure 2004311184
[0065]
[Table 49]
Figure 2004311184
[0066]
[Table 50]
Figure 2004311184
[0067]
[Table 51]
Figure 2004311184
[0068]
[Table 52]
Figure 2004311184
[0069]
[Table 53]
Figure 2004311184
[0070]
[Table 54]
Figure 2004311184
[0071]
[Table 55]
Figure 2004311184
[0072]
[Table 56]
Figure 2004311184
[0073]
[Table 57]
Figure 2004311184
[0074]
[Table 58]
Figure 2004311184
[0075]
[Table 59]
Figure 2004311184
[0076]
[Table 60]
Figure 2004311184
[0077]
[Table 61]
Figure 2004311184
[0078]
[Table 62]
Figure 2004311184
[0079]
[Table 63]
Figure 2004311184
[0080]
[Table 64]
Figure 2004311184
[0081]
[Table 65]
Figure 2004311184
[0082]
[Table 66]
Figure 2004311184
[0083]
[Table 67]
Figure 2004311184
[0084]
[Table 68]
Figure 2004311184
[0085]
[Table 69]
Figure 2004311184
[0086]
[Table 70]
Figure 2004311184
[0087]
[Table 71]
Figure 2004311184
[0088]
[Table 72]
Figure 2004311184
[0089]
[Table 73]
Figure 2004311184
[0090]
[Table 74]
Figure 2004311184
[0091]
[Table 75]
Figure 2004311184
[0092]
[Table 76]
Figure 2004311184
[0093]
[Table 77]
Figure 2004311184
[0094]
[Table 78]
Figure 2004311184
[0095]
[Table 79]
Figure 2004311184
[0096]
[Table 80]
Figure 2004311184
[0097]
[Table 81]
Figure 2004311184
[0098]
[Table 82]
Figure 2004311184
[0099]
[Table 83]
Figure 2004311184
[0100]
[Table 84]
Figure 2004311184
[0101]
[Table 85]
Figure 2004311184
[0102]
[Table 86]
Figure 2004311184
[0103]
[Table 87]
Figure 2004311184
[0104]
[Table 88]
Figure 2004311184
[0105]
[Table 89]
Figure 2004311184
[0106]
[Table 90]
Figure 2004311184
[0107]
Among the compound groups shown in the above table, more typical compounds are shown below by specific structural formulas one by one.
Embedded image
Figure 2004311184
[0108]
Embedded image
Figure 2004311184
[0109]
Embedded image
Figure 2004311184
[0110]
Embedded image
Figure 2004311184
[0111]
Embedded image
Figure 2004311184
[0112]
Embedded image
Figure 2004311184
[0113]
Embedded image
Figure 2004311184
[0114]
Embedded image
Figure 2004311184
[0115]
Embedded image
Figure 2004311184
[0116]
Embedded image
Figure 2004311184
[0117]
Embedded image
Figure 2004311184
[0118]
Embedded image
Figure 2004311184
[0119]
Embedded image
Figure 2004311184
[0120]
Embedded image
Figure 2004311184
[0121]
Embedded image
Figure 2004311184
[0122]
Embedded image
Figure 2004311184
[0123]
Embedded image
Figure 2004311184
[0124]
Embedded image
Figure 2004311184
[0125]
Embedded image
Figure 2004311184
[0126]
Embedded image
Figure 2004311184
[0127]
Embedded image
Figure 2004311184
[0128]
Embedded image
Figure 2004311184
[0129]
Embedded image
Figure 2004311184
[0130]
Embedded image
Figure 2004311184
[0131]
Embedded image
Figure 2004311184
[0132]
Embedded image
Figure 2004311184
[0133]
Embedded image
Figure 2004311184
[0134]
Examples of the configuration of each layer of the organic light emitting device of the present invention include the following.
Single layer type
First electrode / light-emitting layer (1) / second electrode
(Note 1) As the light emitting layer (1),
(A) a film comprising a molecule containing a hole-transporting luminescent agent and a polynuclear phenanthroline derivative of the present invention, or
(B) A film obtained by doping the luminescent agent in (a) is used.
Two-layer type
(1) First electrode / light-emitting layer (1) / charge control layer / second electrode
(Note 2) As the light emitting layer (1), those described in Note 1 are used.
(Note 3) As the charge control layer, including this example, the charge control layer of the present invention can be used in the charge control layer described below, in addition to a known charge control agent. The charge control layer may be one doped with an alkali metal.
(2) First electrode / light-emitting layer (2) / charge control layer / second electrode
(Note 4) The light-emitting layer (2) is a film of a hole-transporting light-emitting agent or a film obtained by doping a hole-transporting agent with a light-emitting agent.
Multi-layer type
(1) First electrode / hole transport layer / light emitting layer (1) or (2) / charge control layer
/ Second electrode (2) first electrode / light emitting layer (1) / charge control layer / electron transport layer / second electrode
(3) First electrode / hole injection layer / light emitting layer (1) / charge control layer / second electrode
(4) First electrode / light-emitting layer (2) / charge control layer / electron transport layer / second electrode
(5) First electrode / hole injection layer / light emitting layer (2) / charge control layer / second electrode
(6) First electrode / hole transport layer / light emitting layer (1) or (2) / charge control layer / electron transport layer / second electrode
(7) First electrode / hole injection layer / hole transport layer / light emitting layer (1) or (2) / charge control layer / second electrode
(8) First electrode / hole injection layer / light emitting layer (1) or (2) / charge control layer / electron transport layer / second electrode
(9) First electrode / hole injection layer / hole transport layer / light emitting layer (1) or (2) / charge control layer / electron transport layer / second electrode
Normally, the first electrode is formed by forming an ITO film on a substrate such as glass or synthetic resin, and the second electrode is formed by providing LiF and a metal such as aluminum. It is not limited.
[0135]
【Example】
Hereinafter, the present invention will be described with reference to Synthesis Examples, Examples, and Comparative Examples, but the present invention is not limited thereto.
[0136]
Synthesis Example 1
(1) Synthesis of 7-methyl-8-nitroquinoline (7-M-8-Nq)
Embedded image
Figure 2004311184
25 ml of concentrated sulfuric acid was added to a 200 ml four-necked round bottom flask equipped with a thermometer and a stirrer, and cooled to -5 ° C in an ice bath. 25 ml of concentrated nitric acid was gradually added with good stirring to form a mixed acid solution. On the other hand, 150 ml of concentrated sulfuric acid was added to a 500 ml four-necked round bottom flask equipped with a thermometer and a stirrer, and cooled to -5 ° C in an ice bath with stirring. 50 ml (349 mmol) of 7-methylquinoline (7-Mq) was gradually dropped therein. After the completion of the dropwise addition, the mixture was further cooled to −10 ° C. in an ice bath. The whole amount of the mixed acid solution prepared above was added dropwise thereto. After the completion of the dropwise addition, the reaction was carried out at room temperature for 3 hours. After completion of the reaction, the reaction product was transferred to a 2000 ml flask containing 1500 g of ice, the reaction solution was neutralized with a 48% aqueous sodium hydroxide solution, the precipitated crystals were filtered, and recrystallized with a mixed solvent of isopropyl alcohol and toluene. As a result, 63 g (335 mmol) of the target 7-M-8-Nq was obtained. Yield 96%, mp 186.0-186.5 ° C.
[0137]
(2) Synthesis of 7-[(N, N-dimethylamino) ethenyl] -8-nitroquinoline (7-DME-8-Nq)
Embedded image
Figure 2004311184
300 ml of N, N-dimethylformamide, 63 g of 7-M-8-Nq (335 mmol) and 120 g (1 mol) of dimethylformamide dimethyl acetal were added to a 1000 ml four-necked round bottom flask equipped with a thermometer, a cooling tube and a stirrer. The reaction was carried out at 130 ° C. for 24 hours with stirring. After the completion of the reaction, the reaction solution was cooled to 0 ° C., and the precipitated crystals were collected by suction filtration. Further, the filtrate was diluted with 500 g of distilled water, and the precipitated crystals were collected in the same manner. These crystals were dried in a desiccator to obtain 75 g (308 mmol) of 7-DME-8-Nq as a target product. Yield 92% Melting point 189.0-190.0C
[0138]
(3) Synthesis of 8-nitro-7-quinolinecarbaldehyde (8-N-7-Qa)
Embedded image
Figure 2004311184
To a 5000 ml four-necked round bottom flask equipped with a thermometer and a stirrer were added 1900 ml of tetrahydrofuran and 75 g (308 mmol) of 8-N-7-Qa, and the mixture was stirred at room temperature until a homogeneous solution was obtained. An aqueous solution of sodium metaperiodate (250 g (1.17 mol) of sodium metaperiodate diluted with 2200 ml of distilled water) was added dropwise to the reaction solution over 2 hours. After the addition, the reaction was carried out at room temperature for 3 hours. After completion of the reaction, the reaction solution was neutralized with dilute aqueous ammonia, and the precipitated crystals were filtered. The filtrate was extracted with 3000 ml of ethyl acetate, and the obtained crystals were combined with the previously obtained crystals. Further, in order to separate impurities in the crystal, 3200 ml of ethyl acetate was added, the mixture was heated to the distillation temperature, and filtered while hot. After the obtained solution was cooled to room temperature, it was combined with the ethyl acetate layer obtained by extraction beforehand, and the solvent was recovered under reduced pressure. The obtained residue was recrystallized using toluene to obtain 39 g (193 mmol) of 8-N-7-Qa as a target product. Yield 62% mp 181.0-181.5 [deg.] C.
[0139]
(4) Synthesis of 8-amino-7-quinolinecarbaldehyde (8-A-7-Qa)
Embedded image
Figure 2004311184
39 g (193 mmol) of 8-N-7-Qa, 670 ml of ethanol, 335 ml of distilled water, 670 ml of acetic acid and 10 ml of concentrated hydrochloric acid were placed in a 5000 ml four-necked round bottom flask equipped with a thermometer, a cooling tube, an argon gas introduction tube, and a stirrer. Add and stir at room temperature. To this solution, 72.4 g (1.3 mol) of iron powder was gradually added under an argon stream. After the addition, the reaction was carried out at a distillation temperature for 15 minutes and at room temperature for 30 minutes. Thereafter, the solid was filtered, and the obtained filtrate was subjected to solvent recovery under reduced pressure. The obtained oil was transferred to a 5 L separating funnel containing 2,000 ml of distilled water and 3000 ml of ethyl acetate, and extracted. The aqueous layer was separated, the aqueous layer was extracted with a further 3000 ml of ethyl acetate, and the organic layer was combined with the previous organic layer. The resulting organic layer was subjected to solvent recovery under reduced pressure to obtain a crude oil.
This crude oil was purified by silica gel column chromatography (developing solvent: chloroform) to obtain 19.6 g (114 mmol) of the target 8-A-7-Qa. Yield 59% Melting point 86.0-87.0 ° C
[0140]
(5) Synthesis of 1,4-di (1,10-phenanthroline-2-yl) benzene (DPB)
Embedded image
Figure 2004311184
9.8 g (57.0 mmol) of 8-A-7-Qa and 4.6 g of 1,4-diacetylbenzene were placed in a 1000 ml four-necked round bottom flask equipped with a thermometer, a cooling tube, an argon gas introduction tube, and a stirrer. 28.5 mmol), 400 ml of ethanol and 21 ml of a saturated ethanol solution of potassium hydroxide were added, and the mixture was reacted at 50 ° C. for 3 hours under a stream of argon with stirring, and then at 90 ° C. for 18 hours. After the reaction, the mixture was cooled to room temperature, and the precipitated crystals were collected by suction filtration. The crude crystals were purified by silica gel column chromatography (developing solvent: chloroform) to obtain 6.7 g (15.4 mmol) of the target DPB. Yield 27% (based on 8-A-7-Qa) Melting point 423 ° C (DSC)
[0141]
Synthesis Example 2
Synthesis of 4,4'-di (1,10-phenanthroline-2-yl) biphenyl (DPBi)
Embedded image
Figure 2004311184
9.8 g (57.0 mmol) of 8-A-7-Qa and 6.8 g of 4,4-diacetylbiphenyl were placed in a 3000 ml four-necked round bottom flask equipped with a thermometer, a cooling tube, an argon gas introduction tube, and a stirrer. 28.5 mmol), 2000 ml of ethanol and 44 ml of a saturated ethanol solution of potassium hydroxide were added, and the mixture was reacted at 90 ° C. for 23 hours under a stream of argon while stirring. After the reaction, the mixture was cooled to room temperature, and the precipitated crystals were collected by suction filtration. The crude crystals were purified by silica gel column chromatography (developing solvent: chloroform) to obtain 6.0 g (11.7 mmol) of the target DPBi. Yield 21% (based on 8-A-7-Qa) Melting point 443 ° C (DSC)
[0142]
Synthesis Example 3
Synthesis of 1,5-di (1,10-phenanthroline-2-yl) anthracene (DPA)
Embedded image
Figure 2004311184
9.8 g (57.0 mmol) of 8-A-7-Qa and 7.4 g of 1,5-diacetylanthracene were placed in a 1000 ml four-necked round bottom flask equipped with a thermometer, a cooling tube, an argon gas introduction tube, and a stirrer. 28.2 mmol), 430 ml of ethanol and 31 ml of a saturated ethanol solution of potassium hydroxide were added, and the mixture was reacted at a reflux temperature for 36 hours under a stream of argon while stirring. After the reaction, the reaction mixture was cooled to room temperature, and left standing in an ice water bath overnight, and the precipitated crystals were collected by suction filtration. The crude crystals were purified by silica gel column chromatography (developing solvent: chloroform) to obtain 7.8 g (14.6 mmol) of the target DPA. Yield 25% (based on 8-A-7-Qa) Melting point 300 ° C or higher
[0143]
Synthesis Example 4
Synthesis of 1,3,5-tri (1,10-phenanthroline-2-yl) benzene (TPB)
Embedded image
Figure 2004311184
9.8 g (57.0 mmol) of 8-A-7-Qa, 1,3,5-triacetylbenzene 3 was placed in a 5000 ml four-necked round bottom flask equipped with a thermometer, a cooling tube, an argon gas inlet tube, and a stirrer. Then, 0.3 g (16.3 mmol), 4000 ml of ethanol and 6.5 g (130.6 mmol) of potassium hydroxide were added, and the mixture was reacted for 24 hours at a reflux temperature under a stream of argon while stirring. After the reaction, the reaction solution was cooled to room temperature, left standing overnight in an ice water bath, and the precipitated crystals were collected by suction filtration. The crude crystals were purified by silica gel column chromatography (developing solvent: chloroform) to obtain 7.4 g (12.1 mmol) of the target TPB. Yield 21% (based on 8-A-7-Qa) Melting point 300 ° C or higher
[0144]
Synthesis Example 5
Synthesis of 2,6-di (1,10-phenanthroline-2-yl) pyridine (DPP)
Embedded image
Figure 2004311184
9.8 g (57.0 mmol) of 8-A-7-Qa and 4.9 g of 2,6-diacetylpyridine were placed in a 1000 ml four-necked round bottom flask equipped with a thermometer, a cooling tube, an argon gas introduction tube, and a stirrer. (28.4 mmol), 1250 ml of ethanol and 49 ml of a saturated potassium hydroxide ethanol solution were added, and the mixture was reacted at a reflux temperature for 24 hours under a stream of argon while stirring. After the reaction, the reaction solution was cooled to room temperature and discharged into 2400 ml of distilled water. The reaction mother liquor was extracted three times with 2,000 ml of methylene chloride. These organic layers were combined, and the solvent was recovered under reduced pressure. The obtained crude product was recrystallized from a small amount of methylene chloride to obtain 7.5 g (17.2 mmol) of the target DPP. Yield 30% (based on 8-A-7-Qa) Melting point: 300 ° C or higher.
[0145]
Example 1
Embodiment 1 of the present invention will be described with reference to FIG.
The glass substrate 1 on which the patterned transparent conductive film (ITO) 3 was formed to a thickness of 200 nm was immersed in an aqueous solution containing a surfactant, ultrasonically washed, and rinsed with pure water. Next, degrease cleaning was performed by ultrasonic cleaning of isopropyl alcohol, and UV ozone cleaning was performed by irradiating ultraviolet rays. [UV ozone cleaning is a cleaning method in which active oxygen is generated using ultraviolet light, and at the same time, organic substances attached to the substrate surface are decomposed, oxidized and volatilized and removed. Actually, a glass substrate with a transparent conductive film is irradiated with ultraviolet light from a low-pressure mercury lamp in an atmosphere in which oxygen is present (in this case, in an air atmosphere). Irradiation is with ultraviolet light, including 185 nm and 254 nm emission lines. 185 nm is absorbed by oxygen in the air to generate ozone, and 254 nm light is absorbed by ozone and decomposed into active oxygen. In addition, short-wavelength ultraviolet rays such as 185 nm break the bonds of organic substances. Organic substances are oxidized, decomposed, and volatilized by the oxidizing action and the cutting action of active oxygen. This substrate 1 is placed in a vacuum chamber, and 1 × 10 -6 Evacuated to Torr.
In the vacuum chamber, a tantalum evaporation boat filled with an organic material and a thin metal mask for forming a film in a predetermined pattern are installed, and heating is performed by passing a current through the evaporation boat to evaporate the organic material. Then, a film was formed. First, copper phthalocyanine (hereinafter referred to as CuPc) was deposited as a hole injection layer 5 to a film thickness of 22 nm while monitoring with a quartz oscillator. Next, the following formula is used as the hole transport layer 7.
Embedded image
Figure 2004311184
N, N′-di (α-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine (hereinafter referred to as αNPD) having a thickness of 34 nm The following formula
Embedded image
Figure 2004311184
4,4'-bis (2,2'-diphenylvinyl) biphenyl (hereinafter referred to as DPVBi) having a thickness of 23 nm was formed.
Note that a tris (8-quinolinolato) aluminum complex (Alq 3 ) Can be used as a material for a light emitting layer to form a green light emitting layer.
[0146]
Next, a charge control layer is formed with a polynuclear phenanthroline derivative. That is, as a dinuclear phenanthroline, the following formula
Embedded image
Figure 2004311184
The charge control layer 15 was formed by forming a film of 1,4-di (1,10-phenanthroline-2-yl) benzene (DPB) having a thickness of 47 nm. In the present invention, the term “charge control layer” refers to a layer having an electron transporting ability or a layer having an electron transporting ability and a charge controlling ability. In addition, the charge control ability is often a hole block function.
[0147]
Next, a cathode is formed. The substrate was taken out of the above-mentioned vacuum chamber, and the substrate was attached to the metal film forming chamber. In order to prevent the deterioration of the formed organic material, the substrate was moved by an integrated vacuum process without being exposed to the atmosphere. The metal film forming chamber was provided with a cathode material and a metal thin plate mask for a cathode pattern. That is, a mask having an opening conforming to the shape of the electrode was provided on the substrate, and a cathode material was vapor-deposited thereon. 1 × 10 as well as organic materials -6 Torr (1.33 × 10 -4 The film was formed at a degree of vacuum of Pa). In a metal chamber, a lithium fluoride (LiF) layer 17 was formed to a thickness of 0.1 nm. Next, an aluminum (Al) layer 19 was formed to a thickness of 100 nm to form a cathode 21. Li is used for stabilizing the electrode, and Al may be co-deposited.
[0148]
Since the organic light emitting element is easily affected by moisture, in order to avoid the influence, the glass substrate 1 after film formation is treated with an inert gas such as N 2. 2 Moved to gas filled glove box. The organic light-emitting device and another glass plate were bonded using an ultraviolet-curable adhesive to form a package.
[0149]
A DC power source 23 was connected to the anode 3 and the cathode 21 of the organic light-emitting device to which the glass plates were attached.
When a current was applied to the organic light emitting device formed in this manner by the DC power supply 23, light emission from the glass substrate 1 side was observed. More specifically, electrons injected from the cathode 21 pass through the charge control layer 15 and travel toward the blue light emitting layer 11. On the other hand, holes injected from the anode 3 pass through the hole transport layer 5 and the hole injection layer 7 toward the blue light emitting layer 11. In the blue light emitting layer 11, electrons and holes associate with each other to generate excitons. Light emission having a blue wavelength is observed from the exciton. Light emission is observed from the front side of the glass substrate 1 (the side where the laminated structure is not provided). When a material having a high ionization potential is selected as the charge control layer 15, the hole blocking function is enhanced, and the charge control layer 15 functions as a hole blocking material. In the first embodiment, the charge control layer 15 has an electron transport function and a hole blocking function.
[0150]
With respect to the organic light emitting device manufactured by the above process, the luminance measured from the front direction (the normal direction of the surface of the glass substrate 1) was measured using a luminance measuring device CS-100 manufactured by Minolta Camera Co., Ltd. The initial efficiency was calculated from the current value, the voltage value, and the luminance.
[0151]
Example 2
The type of the substrate and the substrate cleaning method are the same as those in the first embodiment. Copper phthalocyanine (CuPc) was deposited to a thickness of 22 nm as a hole injection layer. Next, α-NPD was deposited to a thickness of 34 nm as a hole transport layer. DPVBi was deposited to a thickness of 23 nm as a blue light emitting layer. Next, as a charge control layer, the following formula
Embedded image
Figure 2004311184
4,4′-di (1,10-phenanthroline-2-yl) biphenyl (DPBi) having a thickness of 47 nm was formed. Also in Example 2, the charge control layer has an electron transport function and a hole blocking function. The same process as in Example 1 was applied to the packaging process after forming the cathode. The measuring means and the measuring method are the same.
[0152]
Comparative Example 1
Next, for comparison with the organic light-emitting devices of Examples 1 and 2, the following formula was used in place of the polynuclear phenanthroline derivative of the present invention as a charge control layer.
Embedded image
Figure 2004311184
The bathophenanthroline (Bphen) shown by the formula was formed into a film having a thickness of 47 nm. The same processes as those in Examples 1 and 2 were applied to the packaging process after forming the cathode. The measuring means and the measuring method are the same.
[0153]
Comparative Example 2
A film of CuPc is formed to a thickness of 22 nm on the hole injection layer, a film of α-NPD is formed to a thickness of 34 nm as a hole transport layer, a film of DPVBi is formed to a thickness of 23 nm as a blue light-emitting layer, and finally, tris (8-hydroxyquinolino) is formed as an electron transport layer. (Rat) aluminum complex (Alq 3 Example 1 was repeated except that a) was formed to a thickness of 47 nm.
[0154]
<Heat resistance test>
The organic light emitting devices according to Examples 1 and 2 and the organic light emitting device according to Comparative Example 1 were placed in a thermostat at 85 ° C. and subjected to a heat resistance test.
As shown in FIG. 5, in the organic light emitting device according to Comparative Example 1, the luminance and the efficiency at the same voltage were significantly reduced 24 hours after the start of the heat resistance test at 85 ° C., compared with the initial stage. That is, the voltage required to obtain the same luminance was increased.
As shown in FIG. 6, in the organic light emitting device according to Example 1, a change in luminance was slight even after 313 hours had passed since the start of the heat resistance test at 85 ° C. That is, the rate of increase of the applied voltage required to obtain the same luminance was smaller than that of Comparative Example 1. Although the efficiency also decreased, the rate of decrease was smaller than that of the organic light emitting device according to Comparative Example 1.
As shown in FIG. 7, in the organic light emitting device according to Example 2, the change in luminance was very small even after 313 hours had passed since the start of the heat resistance test at 85 ° C. That is, it can be seen that the organic light emitting device according to Example 2 hardly increases the voltage and decreases the efficiency, and maintains the initial characteristics.
There is no significant difference in the initial measurements (current density, brightness and efficiency) when Bphen, DPB and DPBi are used as charge control layer materials (or electron transport layer materials), respectively. On the other hand, when the heat resistance test was performed, the degree of change in the characteristics due to heat was the largest for the organic light-emitting device of the comparative example using Bphen and the smallest for the organic light-emitting device using DPBi. Understand.
In addition, Alq of Comparative Example 2 3 Although there was no difference in heat resistance with the one used in the above, there was a difference in the following electro-optical characteristics.
[0155]
<Test of other physical properties>
2 to 4 show the initial characteristics of the organic light emitting devices according to the first and second embodiments. In addition, initial characteristics of the organic light emitting devices according to Comparative Examples 1 and 2 are also shown. FIG. 2 is a diagram showing the applied voltage dependence of the current density of the organic light emitting device. FIG. 3 is a diagram illustrating the applied voltage dependency of the luminance of the organic light emitting device. FIG. 4 is a diagram showing the applied voltage dependence of the efficiency of the organic light emitting device.
As shown in FIG. 2, it can be seen that the current density of the organic light emitting devices according to Examples 1 and 2 sharply rises from around an applied voltage of 2.5 V, similarly to the organic light emitting device according to Comparative Example 1. There is no significant difference between the characteristics of the organic light emitting devices according to Example 1 and Example 2 and the organic light emitting device according to Comparative Example 1.
As shown in FIG. 3, it can be seen that the luminance of the organic light emitting devices according to Examples 1 and 2 sharply rises from around an applied voltage of 2.5 V, similarly to the organic light emitting device according to Comparative Example 1. The characteristics of the organic light emitting devices according to Example 1 and Example 2 and the organic light emitting device according to Comparative Example 1 are not so different.
As shown in FIG. 4, it can be seen that the efficiency of the organic light emitting devices according to Examples 1 and 2 sharply increases near the applied voltage of 2.5 V. When the applied voltage is between 3 V and 4 V, a high efficiency of 3.5 to 4 is maintained. When the applied voltage is between 3 V and 4 V, the efficiency of the organic light emitting device according to Comparative Example 1 is the highest, and the order of the organic light emitting device according to Example 2 and the organic light emitting device according to Example 1 is in that order.
[0156]
Table 91 is a table summarizing the electro-optical characteristics of the organic light-emitting device obtained from FIGS. 2 to 4.
[0157]
[Table 91]
Figure 2004311184
[0158]
As shown in Table 91, the light emission starting voltage (the luminance is 1 cd / m2) of the organic light emitting devices according to the first and second examples. 2 The voltage was defined as ) Is 2.7 V as in Comparative Example 1. Brightness is 300 cd / m 2 Is 7.6 mA / cm in the organic light emitting device according to Comparative Example 1. 2 And the voltage at that time is 3.4V. The current efficiency is 3.9 cd / A. In the organic light emitting device according to Example 1, the luminance was 300 cd / m. 2 Is 8.2 mA / cm 2 And the voltage at that time is 3.8V. The current efficiency is 3.7 cd / A and the power efficiency is 3.0 lm / W. In the organic light emitting device according to Example 2, the luminance was 300 cd / m. 2 Is 7.7 mA / cm 2 And the voltage at that time is 3.5V. The current efficiency is 3.9 cd / A and the power efficiency is 3.5 lm / W.
Also with respect to these values, there is almost no difference between Examples 1 and 2 and Comparative Example 1. On the other hand, comparing Examples 1 and 2 with Comparative Example 2, Comparative Example 2 has a high voltage and a very high current density, but the current efficiency and the power efficiency are as low as about 1/2 of Examples 1 and 2. Met.
[0159]
As described above, the case where a typical mononuclear type bathophenanthroline (Bphen) is used as the charge control material and the case where the 1,4-di (1,10-phenanthroline-) corresponding to the polynuclear type phenanthroline derivative of the present invention are used. Although the initial characteristics are almost the same as those using 2-yl) benzene (DPB) or 4,4'-di (1,10-phenanthroline-2-yl) biphenyl (DPBi), the heat resistance is poor. It can be seen that the case where DPB or DPBi is used is superior to the case where Bphen is used.
In addition, as an electron transport layer, a typical Alq 3 Although there is no difference in the heat resistance between the case of using the present invention and the case of using the DPB or DPBi of the present invention, it can be seen that the present invention shows a remarkable improvement in electro-optical characteristics.
[0160]
Examples 3, 4 and Comparative Example 3
In Example 3, the charge control layer in Example 1 was prepared by co-evaporating the 1,4-di (1,10-phenanthroline-2-yl) benzene (DPB) and cesium (Cs). Then, the above 4,4'-di (1,10-phenanthroline-2-yl) biphenyl (DPBi) and cesium (Cs) are co-evaporated, and in Comparative Example 3, the bathophenanthroline (BPhen) and cesium (Cs) are produced. Example 1 was repeated except that the above was made by co-evaporation.
The amount of cesium (Cs) was adjusted so that DPB: Cs, DPBi: Cs, and BPhen: Cs were all 3: 1.
In each case, an Al layer having a thickness of 100 nm was used as a cathode.
[0161]
The co-evaporation method is a method in which a plurality of evaporation materials are individually heated and evaporated in a vacuum vessel to form a film on a substrate. With this method, the deposition rate can be determined for each deposition source, and composition control can be easily performed.
[0162]
The organic light-emitting devices of Examples 3 and 4 were superior to the organic light-emitting device of Comparative Example 3 in heat resistance, similar to the relationship between Examples 1 and 2 and Comparative Example 1. Table 92 shows electro-optical characteristics of the organic light-emitting devices of Examples 3 and 4 and Comparative Example 3.
[0163]
[Table 92]
Figure 2004311184
[0164]
Comparing Table 91 and Table 92, even when the charge control layer is doped with Cs, it is possible to obtain almost the same electro-optical characteristics as those obtained when Cs is not doped.
More specifically, the light emission start voltage (the luminance is 1 cd / m 2 Is 2.6 to 2.7 V, which is almost the same as the value in Table 91. 300 cd / m 2 , The organic light emitting devices according to Examples 3 and 4 have a higher current density than the organic light emitting devices according to Examples 1 and 2. In particular, the current density of the organic light emitting device according to Example 4 is high.
[0165]
On the other hand, 300 cd / m 2 Is lower in the organic light emitting devices according to Examples 3 and 4 than in the organic light emitting devices according to Examples 1 and 2. The current efficiency of the organic light emitting devices according to Examples 3 and 4 is lower than that of the organic light emitting devices according to Examples 1 and 2. Thus, it was found that the use of the charge control layer doped with the alkali metal cesium (Cs) enabled low-voltage operation of the organic light-emitting device.
[0166]
Example 5
The organic light emitting device shown in FIG. 3 The case where the electron transport layer is formed using is described. In this case, in addition to the structure shown in FIG. 1, for example, an electron transport layer 25 having a thickness of 40 nm was formed between the charge control layer 15 having a thickness of 10 nm functioning as a hole blocking layer and the cathode 21. It has a structure. As the charge control layer 15, for example, a binuclear or trinuclear phenanthroline derivative can be used.
When the above structure is used, since the electron transport layer and the charge control layer (hole blocking layer) are separately provided, there is an advantage that the degree of freedom in designing an element structure for obtaining desired characteristics is increased.
[0167]
Example 6
A glass substrate on which a patterned transparent conductive film (ITO) having a thickness of 200 nm was formed was ultrasonically cleaned with a surfactant, and rinsed with pure water. Next, degrease cleaning was performed by ultrasonic cleaning of isopropyl alcohol, and UV ozone cleaning was performed by irradiating ultraviolet rays. This substrate was placed in a vacuum chamber and 1 × 10 -6 Evacuated to Torr.
In the vacuum chamber, a tantalum evaporation boat filled with an organic material and a thin metal mask for forming a film in a predetermined pattern are installed, and heating is performed by passing a current through the evaporation boat to evaporate the organic material. Then, a film was formed. First, as a hole injection layer, the following formula
Embedded image
Figure 2004311184
4,4 ', 4 "-tris [N, N- (2-naphthyl) phenylamino] triphenylamine (hereinafter referred to as 2-TNATA) was formed to a thickness of 60 nm while monitoring with a quartz oscillator. Α-NPD is deposited to a thickness of 12 nm as a hole transport layer, and Alq is formed as a red light emitting layer. 3 And the following equation
Embedded image
Figure 2004311184
Are co-evaporated to form a film of 16.5 nm. DCJTB at this time is Alq 3 With respect to the concentration of 3.5 wt%. Finally, a DPB film having a thickness of 40 nm was formed as a charge control layer.
The substrate was moved to a metal deposition chamber to form a cathode. In order to prevent the organic material from deteriorating during the transfer, the transfer was performed in a vacuum without contacting the atmosphere. A metal thin film mask having a cathode material and a cathode pattern was provided in the metal film forming chamber. 1 × 10 as well as organic materials -6 The film was formed at a degree of vacuum of Torr. In the metal chamber, cesium (Cs) was deposited to a thickness of 0.1 nm, and aluminum (Al) was deposited to a thickness of 100 nm to form a cathode.
Since the organic light emitting device is easily affected by moisture, the formed glass substrate is replaced with an inert gas N2. 2 Then, it was moved to a glove box filled with and cured by UV curing with another glass plate coated with a UV curing adhesive, and packaged.
A DC power supply was connected to the anode and the cathode of the organic light emitting device bonded together with a glass plate, and a current was applied. The luminance in the front direction of the device was measured with a CS-100 manufactured by Minolta Camera, and the initial efficiency was calculated from the current value and voltage value at that time.
[0168]
Comparative Example 4
A 2-TNATA film is formed to a thickness of 60 nm on the hole injection layer, an α-NPD is formed to a thickness of 12 nm as the hole transport layer, and Alq is formed as a red light emitting layer. 3 And a fluorescent dye material DCJTB are co-evaporated to form a film of 16.5 nm (in this case, DCJTB is Alq 3 With respect to the concentration of 3.5 wt%. ), And finally, Alq as the electron transport layer 3 Example 1 was repeated except that was formed to a thickness of 40 nm.
[0169]
Table 93 shows the electro-optical characteristics of Example 6 and Comparative Example 4.
[Table 93]
Figure 2004311184
Example 6 has the same 30 cd / m as that of Comparative Example 4. 2 Low voltage and low current in order to obtain a high brightness. In addition, the current efficiency of the sixth embodiment is higher and higher.
Looking at the emission spectrum, the spectrum of Comparative Example 4 shown in FIG. 10 shows that the electron transport layer Alq 3 In contrast to this, in the sixth embodiment shown in FIG. 9, only the emission of DCJTB is observed, while the emission around 520 nm derived from is observed. Also, a difference was confirmed in each chromaticity. The chromaticity of a device using DPB is Alq 3 The value was closer to the chromaticity of pure red than the chromaticity of the device using. This difference in chromaticity is Alq 3 It is considered to indicate the presence or absence of 520 nm light emission derived from. From this, in Comparative Example 4, it was considered that the light emitting region was extended to the inside of the light emitting layer and the electron transport layer, and pure red chromaticity was not obtained. On the other hand, in the charge control material used in Example 6, the target chromaticity was obtained by limiting the light emitting region within the light emitting layer. This is considered because DPB has a hole blocking property in addition to the electron transporting property.
[0170]
【The invention's effect】
As described above, when a polynuclear phenanthroline derivative is used as a material of a charge control layer that functions as an electron transport layer or a hole blocking layer in an organic light-emitting element, the heat resistance of the organic light-emitting element can be improved, The reliability of the device is improved. Further, by doping the charge control layer using a polynuclear phenanthroline derivative with an alkali metal, light can be emitted even at a low applied voltage.
In addition, Alq, which is a typical electron transport material, 3 As compared with, there was no significant difference in terms of heat resistance, but significant improvements in current efficiency and power efficiency were observed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a structure of an organic light emitting device according to Examples 1 to 4 of the present invention.
FIG. 2 is a diagram showing the applied voltage dependence of the current density of the organic light emitting devices according to Examples 1 and 2 of the present invention and Comparative Examples 1 and 2.
FIG. 3 is a diagram showing the applied voltage dependence of the luminance of the organic light emitting devices according to Examples 1 and 2 of the present invention and Comparative Examples 1 and 2.
FIG. 4 is a diagram showing the applied voltage dependence of the current efficiency of the organic light emitting devices according to Examples 1 and 2 of the present invention and Comparative Examples 1 and 2.
FIG. 5 is a diagram comparing the applied voltage dependence of luminance and current efficiency of an organic light emitting device according to Comparative Example 1 of the present invention before and after heat treatment.
FIG. 6 is a diagram comparing the applied voltage dependence of luminance and current efficiency of an organic light emitting device according to Example 1 of the present invention before and after heat treatment.
FIG. 7 is a diagram comparing the applied voltage dependence of luminance and current efficiency of an organic light emitting device according to Example 2 of the present invention before and after heat treatment.
FIG. 8 is a cross-sectional view illustrating a structure of an organic light emitting device according to a fifth embodiment of the present invention.
FIG. 9 is an emission spectrum of the organic light emitting device of Example 6 of the present invention.
FIG. 10 is an emission spectrum of the organic light emitting device of Comparative Example 4.
[Explanation of symbols]
1 Glass substrate
3 Transparent conductive film (anode)
5 hole injection layer
7 hole transport layer
11 Blue light emitting layer
15 Charge control layer
17 Lithium fluoride (LiF) layer
19 Aluminum layer
21 cathode
23 DC power supply
25 Electron transport layer

Claims (11)

下記一般式(I)
Figure 2004311184
〔式中、Zは2価または3価の芳香族炭化水素基、および2価または3価の複素環基よりなる群から選ばれた2価または3価の基であり、Yは
Figure 2004311184
で示されるフェナントロリン基であり、nは2または3であり、R〜Rは、水素、アルキル基、アルコキシ基、アリール基(アルキル基で置換されていてもよい)、アリーロキシ基、アラルキル基(アリール基部分がアルキル基で置換されていてもよい)、アルキルアミノ基、アリールアミノ基、RCOO−(Rはアルキル基、アリール基およびアラルキル基よりなる群から選ばれる)、カルボキシル基、アミノ基、トリフルオロメチル基、ニトロ基、ハロゲン、シアノ基および
Figure 2004311184
(XはO、S、SeおよびTeよりなる群から選ばれた元素であり、Aはアルキル基またはアリール基である)
よりなる群からそれぞれ独立して選ばれた基である。〕
で示される多核型フェナントロリン誘導体よりなることを特徴とする電子輸送材料。
The following general formula (I)
Figure 2004311184
[Wherein, Z is a divalent or trivalent group selected from the group consisting of a divalent or trivalent aromatic hydrocarbon group and a divalent or trivalent heterocyclic group, and Y is
Figure 2004311184
Wherein n is 2 or 3, and R 1 to R 5 are hydrogen, an alkyl group, an alkoxy group, an aryl group (which may be substituted by an alkyl group), an aryloxy group, or an aralkyl group. (The aryl group may be substituted with an alkyl group), an alkylamino group, an arylamino group, RCOO- (R is selected from the group consisting of an alkyl group, an aryl group and an aralkyl group), a carboxyl group, an amino group , Trifluoromethyl group, nitro group, halogen, cyano group and
Figure 2004311184
(X is an element selected from the group consisting of O, S, Se and Te, and A is an alkyl group or an aryl group)
Groups independently selected from the group consisting of ]
An electron transporting material comprising a polynuclear phenanthroline derivative represented by the formula:
下記一般式(I)
Figure 2004311184
〔式中、Zは2価または3価の芳香族炭化水素基、および2価または3価の複素環基よりなる群から選ばれた2価または3価の基であり、Yは
Figure 2004311184
で示されるフェナントロリン基であり、nは2または3であり、R〜Rは、水素、アルキル基、アルコキシ基、アリール基(アルキル基で置換されていてもよい)、アリーロキシ基、アラルキル基(アリール基部分がアルキル基で置換されていてもよい)、アルキルアミノ基、アリールアミノ基、RCOO−(Rはアルキル基、アリール基およびアラルキル基よりなる群から選ばれる)、カルボキシル基、アミノ基、トリフルオロメチル基、ニトロ基、ハロゲン、シアノ基および
Figure 2004311184
(XはO、S、SeおよびTeよりなる群から選ばれた元素であり、Aはアルキル基またはアリール基である)
よりなる群からそれぞれ独立して選ばれた基である。〕
で示される多核型フェナントロリン誘導体よりなることを特徴とする電荷制御材料。
The following general formula (I)
Figure 2004311184
[Wherein, Z is a divalent or trivalent group selected from the group consisting of a divalent or trivalent aromatic hydrocarbon group and a divalent or trivalent heterocyclic group, and Y is
Figure 2004311184
Wherein n is 2 or 3, and R 1 to R 5 are hydrogen, an alkyl group, an alkoxy group, an aryl group (which may be substituted by an alkyl group), an aryloxy group, or an aralkyl group. (The aryl group may be substituted with an alkyl group), an alkylamino group, an arylamino group, RCOO- (R is selected from the group consisting of an alkyl group, an aryl group and an aralkyl group), a carboxyl group, an amino group , Trifluoromethyl group, nitro group, halogen, cyano group and
Figure 2004311184
(X is an element selected from the group consisting of O, S, Se and Te, and A is an alkyl group or an aryl group)
Groups independently selected from the group consisting of ]
A charge control material comprising a polynuclear phenanthroline derivative represented by the formula:
請求項1記載の電子輸送材料を含有する層および/または請求項2記載の電荷制御材料を含有する層を持つことを特徴とする有機発光素子。An organic light emitting device comprising a layer containing the electron transport material according to claim 1 and / or a layer containing the charge control material according to claim 2. 第1電極(陽極)、発光層、第2電極(陰極)を有する有機発光素子であって、発光層が少なくとも正孔輸送性発光剤と請求項1記載の電子輸送材料を含有するものであることを特徴とする有機発光素子。An organic light-emitting device having a first electrode (anode), a light-emitting layer, and a second electrode (cathode), wherein the light-emitting layer contains at least a hole-transporting luminescent agent and the electron-transporting material according to claim 1. An organic light-emitting device, comprising: 第1電極、発光層、電荷制御層、第2電極を有する有機発光素子であって、電荷制御層が請求項2記載の電荷制御材料を含有するものであることを特徴とする有機発光素子。An organic light emitting device having a first electrode, a light emitting layer, a charge control layer, and a second electrode, wherein the charge control layer contains the charge control material according to claim 2. 第1電極、正孔輸送層、発光層、電荷制御層、第2電極を有する有機発光素子であって、電荷制御層が請求項2記載の電荷制御材料を含有するものであることを特徴とする有機発光素子。An organic light emitting device having a first electrode, a hole transport layer, a light emitting layer, a charge control layer, and a second electrode, wherein the charge control layer contains the charge control material according to claim 2. Organic light emitting device. 電荷制御層に隣接した(電荷制御層と第2電極の間)電子輸送層を有するものである請求項5または6記載の有機発光素子。7. The organic light emitting device according to claim 5, further comprising an electron transport layer adjacent to the charge control layer (between the charge control layer and the second electrode). 正孔輸送層に隣接した(正孔輸送層と第1電極の間)正孔注入層を有するものである請求項6または7いずれか記載の有機発光素子。The organic light-emitting device according to claim 6, further comprising a hole injection layer adjacent to the hole transport layer (between the hole transport layer and the first electrode). 前記電荷制御層がアルカリ金属をドーピングしたものである請求項5〜8いずれか記載の有機発光素子。9. The organic light emitting device according to claim 5, wherein said charge control layer is doped with an alkali metal. 前記発光層が
(A)少なくとも正孔輸送性発光剤と請求項1記載の電子輸送材料とを含有する成分を分子分散させた層であるか、または、
(B)少なくとも正孔輸送性発光剤と請求項1記載の電子輸送材料とを含有する成分を分子分散させた層に発光剤をドープしてなる層である
請求項4〜9いずれか記載の有機発光素子。
The light emitting layer is a layer in which a component containing (A) at least a hole transporting light emitting agent and the electron transporting material according to claim 1 is molecularly dispersed, or
(B) A layer obtained by doping a luminescent agent into a layer in which a component containing at least a hole transporting luminescent agent and the electron transporting material according to claim 1 is molecularly dispersed. Organic light emitting device.
第1電極が透明基板上にITO薄膜を有するものである請求項4〜10いずれか記載の有機発光素子。The organic light-emitting device according to any one of claims 4 to 10, wherein the first electrode has an ITO thin film on a transparent substrate.
JP2003102333A 2003-04-04 2003-04-04 Electron transportation material formed of multinucleate phenanthroline derivative, charge control material, and organic luminescent element using them Pending JP2004311184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102333A JP2004311184A (en) 2003-04-04 2003-04-04 Electron transportation material formed of multinucleate phenanthroline derivative, charge control material, and organic luminescent element using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102333A JP2004311184A (en) 2003-04-04 2003-04-04 Electron transportation material formed of multinucleate phenanthroline derivative, charge control material, and organic luminescent element using them

Publications (1)

Publication Number Publication Date
JP2004311184A true JP2004311184A (en) 2004-11-04

Family

ID=33465791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102333A Pending JP2004311184A (en) 2003-04-04 2003-04-04 Electron transportation material formed of multinucleate phenanthroline derivative, charge control material, and organic luminescent element using them

Country Status (1)

Country Link
JP (1) JP2004311184A (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187728A (en) * 2006-01-11 2007-07-26 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008120688A (en) * 2006-11-08 2008-05-29 Chemiprokasei Kaisha Ltd Novel di (phenanthroline) derivative, electron-transporting material comprised of the same and organoelectroluminescent element comprising the same
JP2008222624A (en) * 2007-03-12 2008-09-25 Chemiprokasei Kaisha Ltd Novel 1,10-phenanethroline derivative, electron-transporting material, electron-injecting material, and organoelectroluminescent element comprising the same
EP1993154A1 (en) 2007-05-16 2008-11-19 Yamagata Promotional Organization for Industrial Technology Electron transporting materials and organic light-emitting devices therewith
US7553558B2 (en) 2005-11-30 2009-06-30 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011032686A1 (en) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulas for producing electronic devices
US7931975B2 (en) 2008-11-07 2011-04-26 Global Oled Technology Llc Electroluminescent device containing a flouranthene compound
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
DE102010006280A1 (en) 2010-01-30 2011-08-04 Merck Patent GmbH, 64293 color conversion
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011137922A1 (en) 2010-05-03 2011-11-10 Merck Patent Gmbh Formulations and electronic devices
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
US8076009B2 (en) 2007-10-26 2011-12-13 Global Oled Technology, Llc. OLED device with fluoranthene electron transport materials
US8088500B2 (en) 2008-11-12 2012-01-03 Global Oled Technology Llc OLED device with fluoranthene electron injection materials
WO2012013272A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Quantum dots and hosts
WO2012013270A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Nanocrystals in devices
WO2012084114A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
WO2012110178A1 (en) 2011-02-14 2012-08-23 Merck Patent Gmbh Device and method for treatment of cells and cell tissue
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
US8420229B2 (en) 2007-10-26 2013-04-16 Global OLED Technologies LLC OLED device with certain fluoranthene light-emitting dopants
US8431242B2 (en) 2007-10-26 2013-04-30 Global Oled Technology, Llc. OLED device with certain fluoranthene host
WO2013060411A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, methods for producing same, and use of same in electronic devices
JP2013093593A (en) * 2005-12-15 2013-05-16 Konica Minolta Inc Organic electroluminescent element, display device and lighting device
US8795855B2 (en) 2007-01-30 2014-08-05 Global Oled Technology Llc OLEDs having high efficiency and excellent lifetime
WO2015014429A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electroluminescence device
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
US9040170B2 (en) 2004-09-20 2015-05-26 Global Oled Technology Llc Electroluminescent device with quinazoline complex emitter
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
JPWO2014083786A1 (en) * 2012-11-30 2017-01-05 パナソニックIpマネジメント株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
US10249824B2 (en) 2012-05-03 2019-04-02 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode comprising the same
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
CN110892541A (en) * 2017-07-10 2020-03-17 东丽株式会社 Light-emitting element, display including the same, lighting device, and sensor
WO2020064582A1 (en) 2018-09-24 2020-04-02 Merck Patent Gmbh Method for the production of a granular material
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
WO2021259824A1 (en) 2020-06-23 2021-12-30 Merck Patent Gmbh Method for producing a mixture
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022243403A1 (en) 2021-05-21 2022-11-24 Merck Patent Gmbh Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040170B2 (en) 2004-09-20 2015-05-26 Global Oled Technology Llc Electroluminescent device with quinazoline complex emitter
US7553558B2 (en) 2005-11-30 2009-06-30 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative
JP2013093593A (en) * 2005-12-15 2013-05-16 Konica Minolta Inc Organic electroluminescent element, display device and lighting device
JP4709014B2 (en) * 2006-01-11 2011-06-22 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007187728A (en) * 2006-01-11 2007-07-26 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008120688A (en) * 2006-11-08 2008-05-29 Chemiprokasei Kaisha Ltd Novel di (phenanthroline) derivative, electron-transporting material comprised of the same and organoelectroluminescent element comprising the same
US9620721B2 (en) 2007-01-30 2017-04-11 Global Oled Technology Llc OLEDs having high efficiency and excellent lifetime
US8795855B2 (en) 2007-01-30 2014-08-05 Global Oled Technology Llc OLEDs having high efficiency and excellent lifetime
JP2008222624A (en) * 2007-03-12 2008-09-25 Chemiprokasei Kaisha Ltd Novel 1,10-phenanethroline derivative, electron-transporting material, electron-injecting material, and organoelectroluminescent element comprising the same
EP1993154A1 (en) 2007-05-16 2008-11-19 Yamagata Promotional Organization for Industrial Technology Electron transporting materials and organic light-emitting devices therewith
US8076009B2 (en) 2007-10-26 2011-12-13 Global Oled Technology, Llc. OLED device with fluoranthene electron transport materials
US8420229B2 (en) 2007-10-26 2013-04-16 Global OLED Technologies LLC OLED device with certain fluoranthene light-emitting dopants
US8431242B2 (en) 2007-10-26 2013-04-30 Global Oled Technology, Llc. OLED device with certain fluoranthene host
US7931975B2 (en) 2008-11-07 2011-04-26 Global Oled Technology Llc Electroluminescent device containing a flouranthene compound
US8088500B2 (en) 2008-11-12 2012-01-03 Global Oled Technology Llc OLED device with fluoranthene electron injection materials
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011032686A1 (en) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulas for producing electronic devices
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011091946A1 (en) 2010-01-30 2011-08-04 Merck Patent Gmbh Organic electroluminescent device comprising an integrated layer for colour conversion
DE102010006280A1 (en) 2010-01-30 2011-08-04 Merck Patent GmbH, 64293 color conversion
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011137922A1 (en) 2010-05-03 2011-11-10 Merck Patent Gmbh Formulations and electronic devices
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
EP3309236A1 (en) 2010-05-27 2018-04-18 Merck Patent GmbH Compositions comprising quantum dots
WO2012013270A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Nanocrystals in devices
WO2012013272A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Quantum dots and hosts
WO2012084114A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
WO2012110178A1 (en) 2011-02-14 2012-08-23 Merck Patent Gmbh Device and method for treatment of cells and cell tissue
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
DE102011117422A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, process for their preparation and their use in electronic devices
WO2013060411A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, methods for producing same, and use of same in electronic devices
US10249824B2 (en) 2012-05-03 2019-04-02 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode comprising the same
JPWO2014083786A1 (en) * 2012-11-30 2017-01-05 パナソニックIpマネジメント株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
WO2015014429A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electroluminescence device
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
EP3581633A1 (en) 2015-06-12 2019-12-18 Merck Patent GmbH Esters containing non-aromatic cycles as solvents for oled formulations
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
EP4084109A1 (en) 2015-12-15 2022-11-02 Merck Patent GmbH Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
WO2017157783A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Receptacle comprising a formulation containing at least one organic semiconductor
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
CN110892541A (en) * 2017-07-10 2020-03-17 东丽株式会社 Light-emitting element, display including the same, lighting device, and sensor
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
WO2020064582A1 (en) 2018-09-24 2020-04-02 Merck Patent Gmbh Method for the production of a granular material
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
WO2021259824A1 (en) 2020-06-23 2021-12-30 Merck Patent Gmbh Method for producing a mixture
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022243403A1 (en) 2021-05-21 2022-11-24 Merck Patent Gmbh Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks

Similar Documents

Publication Publication Date Title
JP2004311184A (en) Electron transportation material formed of multinucleate phenanthroline derivative, charge control material, and organic luminescent element using them
EP2760846B1 (en) Spirobifluorene compounds for light emitting devices
JP6815326B2 (en) Organic electroluminescence device
JP6786767B2 (en) New heterocyclic compounds and organic light emitting devices containing them
JP3965063B2 (en) Organic electroluminescence device
CN107978693B (en) Organic electroluminescent device
JP6705586B2 (en) Heterocyclic compound and organic electroluminescent device containing the same
JP2011023744A (en) Organic light-emitting element and planar display having the same
JP2007145799A (en) Fluorene compound and organic light emitting element
JP7197076B2 (en) Compound and organic light-emitting device containing the same
CN111699177A (en) Heterocyclic compound and organic light emitting device including the same
JP6743896B2 (en) Heterocyclic compound and organic electroluminescent device containing the same
WO2005092857A1 (en) Carbazole derivative containing fluorene group and organic electroluminescent element
JP6801162B2 (en) New heterocyclic compounds and organic light emitting devices using them
CN109563065B (en) Compound and organic light emitting device including the same
JP4082297B2 (en) Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
CN112005393A (en) Organic light emitting device
RU2447050C1 (en) DIBENZO[c, g]FLUORENE COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE USING SAID COMPOUND
WO2018225940A1 (en) Novel heterocyclic compound and organic light-emitting element using same
JPWO2017104839A1 (en) Red light emitting iridium complex, light emitting material and organic light emitting device using the compound
KR102088506B1 (en) Organic light emitting device
JP2011157359A (en) Aromatic compound of triphenylene base, and organic light emitting diode using the same
CN111699178B (en) Compound and organic light emitting device comprising the same
JP2005011804A (en) Organic electroluminescent element
JP2004091342A (en) Aromatic methylidene compound, compound for manufacturing the same, their manufacturing method and organoelectroluminescent element obtained by using aromatic methylidene compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520