JP2004309589A - Progressive power lens and its design method - Google Patents

Progressive power lens and its design method Download PDF

Info

Publication number
JP2004309589A
JP2004309589A JP2003099624A JP2003099624A JP2004309589A JP 2004309589 A JP2004309589 A JP 2004309589A JP 2003099624 A JP2003099624 A JP 2003099624A JP 2003099624 A JP2003099624 A JP 2003099624A JP 2004309589 A JP2004309589 A JP 2004309589A
Authority
JP
Japan
Prior art keywords
progressive
axis
original
refraction
refracting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003099624A
Other languages
Japanese (ja)
Inventor
Tadayuki Kaga
唯之 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003099624A priority Critical patent/JP2004309589A/en
Priority to EP04725195A priority patent/EP1610168A4/en
Priority to PCT/JP2004/004802 priority patent/WO2004090615A1/en
Priority to US10/509,601 priority patent/US7125118B2/en
Publication of JP2004309589A publication Critical patent/JP2004309589A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Eyeglasses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new progressive power lens having eyesight compensating ability and astigmatism correcting ability on the same refractive surface by providing a new composing expression for composing a progressive refractive surface and a toric face. <P>SOLUTION: A refractive surface 2 on an eyeball side or a refractive surface 3 on an object side is formed as a curved surface expressed by a composed refractive surface 14+15 where an original progressive refractive surface 14 set only to achieve desired eyesight compensating characteristic and an original toric surface 15 set only to achieve desired astigmatism correcting characteristic are composed by using the composing expression shown by an expression (1). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、視力補正能力と乱視矯正能力とを有する累進多焦点レンズ及びその設計方法に関する。
【0002】
【従来の技術】
累進多焦点レンズは、屈折力の異なる2つの視野部分と、これらの間で屈折力が累進的に変わる視野部分とを備えたレンズであり、これらの視野部分に境目がなく外観的に優れ、さらに、1つのレンズで異なる屈折力の視野を得ることができる。このため、老視などの視力の補正機能を備えた眼鏡レンズとして多く用いられている。
【0003】
図7(a)に、眼鏡レンズとして多く用いられている従来の累進多焦点レンズの一般的な構造を示す。この累進多焦点レンズ100は、遠距離の物を見るための視野部分である遠用部11が上方に設けられ、近距離の物を見るための遠用部11と異なる屈折力を備えた視野部分が近用部12として遠用部11の下方に設けられている。そして、これら遠用部11と近用部12が、遠距離と近距離の中間距離の物を見るために連続的に変化する屈折力を備えた視野部分である累進部13によって滑らかに連絡されている。
【0004】
眼鏡用に用いられる単板のレンズにおいては、図7(b)に示すように、眼球側の屈折面2と、注視する物体側の屈折面3の2つの屈折面によって眼鏡レンズに要求される全ての性能、例えば、ユーザーの度数に合った頂点屈折力、乱視を矯正するための円柱屈折力、老視を補正するための加入屈折力、さらには斜位を矯正するためのプリズム屈折力などを付与する必要がある。このため、図7(b)に示すように、従来の累進多焦点レンズ100aにおいては、これら遠用部11、近用部12及び累進部13を構成するために連続的に変化する屈折力を与える累進屈折面14が物体側の屈折面3に形成され、眼球側の屈折面2は乱視矯正用のトーリック面15などとして用いられている。
【0005】
このような従来構造の累進多焦点レンズ100aに対し、本出願人は、累進多焦点レンズの遠用部11と近用部12の倍率の変動に起因する像の揺れや歪みを改善できる累進多焦点レンズを提供することを目的として、累進多焦点レンズの倍率に与える累進屈折面の配置に着目し、図7(c)に示すように、累進屈折面14を眼球側の屈折面2に形成したいわゆる内面累進多焦点レンズ100bを開発した。この発明に関しては特許文献1に記載されている。
【0006】
この特許文献1に記載されている内面累進多焦点レンズ100bは、遠用部と近用部における倍率の差を縮小でき、これに起因する像の揺れや歪みを大幅に低減できる。
【0007】
このような内面累進多焦点レンズ100bにおいては、眼球側の屈折面2に累進屈折面14を設けるので、眼球側の屈折面2に乱視矯正用のトーリック面15を合成することができる。眼球側の屈折面2が視力補正特性と乱視矯正特性を有する累進多焦点レンズ100bは、遠用部と近用部の倍率差を必要最小限に止めることができ、像の歪みや揺れが少なく、しかも、乱視を矯正することが可能であり、乱視を有するユーザーに対してもさらに快適な視野を提供することができる。
【0008】
眼球側の屈折面2に視力補正特性と乱視矯正特性とが付加された累進多焦点レンズ100bは、眼球側の屈折面が所望の視力補正特性を発揮することのみを目的として累進屈折面(以降においてはオリジナル累進屈折面)を求める第1の工程と、眼球側の屈折面が所望の乱視矯正特性を発揮することのみを目的としてトーリック面(以降においてはオリジナルトーリック面)を求める第2の工程と、累進多焦点レンズの眼球側の屈折面を、オリジナル累進屈折面及びオリジナルトーリック面から求める第3の工程とを有する設計方法を用いることにより設計することができる。
【0009】
上述した特許文献1では、第3の工程において、オリジナル累進屈折面とオリジナルトーリック面とを一体化する合成式が提案されている。
【0010】
特許文献1で提案された合成式を用いて眼球側の屈折面2に累進屈折面14とトーリック面15を合成した累進多焦点レンズ100bにおいては、従来の累進多焦点レンズ100aと同様に、主注視線16のほぼ全域にわたって乱視矯正を目的とした視力補正能力が害されることがなく、しかも非点収差が非常に安定して確保できることが認められる。
【0011】
【特許文献1】
WO97/19382
【0012】
【発明が解決しようとする課題】
しかしながら、トーリック面とは、ある子午面内では最大の屈折力を持ち、それに直角な子午面では最小の屈折力を持つ、互いに直交する断面での曲率半径を異にした表面と定義されるが、最大の屈折力を有する子午面及び最小の屈折力を有する子午面のそれぞれの断面形状は円弧であり、これらの間の曲面形状は、特に決められていない。即ち、トーリック面の面形状の種類は無限に存在するといえる。特許文献1で提案された合成式は、計算が比較的容易であるという利点があるものの、トーリック面の形状をx軸方向の曲率とy軸方向の曲率とがそれぞれ一定であるとみなして合成しているに過ぎない。
【0013】
従って、トーリック面の面形状を表す他の合成式を提供することにより、より優れた乱視矯正能力を有する累進屈折面とトーリック面との合成屈折面を提供できる可能性がある。
【0014】
本発明は、上記事情に鑑みてなされたもので、累進屈折面とトーリック面とを合成する新規な合成式を提供することにより、視力補正能力と乱視矯正能力とを同一の屈折面に備える新規な累進多焦点レンズを提供することを目的とする。
【0015】
また、本発明は、かかる累進多焦点レンズの設計方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の累進多焦点レンズは、乱視軸方向の断面と乱視軸方向と直交する方向の断面のそれぞれの円弧をレンズ面の高さを示すz座標で表し、それぞれの円弧のz座標間をサインカーブで補間する式を用いてトーリック面を表し、これと累進面とを合成する合成式(1)を用いて得られた合成屈折面を眼球側の屈折面又は物体側の屈折面に有するものである。
【0017】
このような累進多焦点レンズは、所望の視力補正特性を発揮することのみを目的として累進屈折面(以降においてはオリジナル累進屈折面)を求める第1の工程と、所望の乱視矯正特性を発揮することのみを目的としてトーリック面(以降においてはオリジナルトーリック面)を求める第2の工程と、z座標で表した円弧間をサインカーブで補間したオリジナルトーリック面とオリジナル累進屈折面とを合成する合成式(1)から合成屈折面を求める第3の工程とを有する設計方法を用いることにより設計することができる。
【0018】
従って、請求項1記載の発明は、異なる屈折力を備えた遠用部及び近用部と、これらの間で屈折力が累進的に変化する累進部とを備えた累進屈折面を眼球側の屈折面又は物体側の屈折面に有する視力補正用の累進多焦点レンズにおいて、前記眼球側の屈折面又は物体側の屈折面が、所望の視力補正特性を発揮することのみを目的として設定されたオリジナル累進屈折面と、所望の乱視矯正特性を発揮することのみを目的として設定されたオリジナルトーリック面とが合成された合成屈折面であり、物体側から眼球側に前記累進屈折面の中心を通る軸をz軸、前記オリジナルトーリック面の乱視軸方向をx軸、z軸とx軸とに直交する軸をy軸としたとき、前記オリジナル累進屈折面の近似曲率Cp、x軸方向の曲率Cx、y軸方向の曲率Cyを用いて、前記合成屈折面の任意の点P(x,y,z)における前記値zが、次の式(1)で表されることを特徴とする累進多焦点レンズを提供する。
【0019】
【数3】

Figure 2004309589
【0020】
請求項2記載の発明は、請求項1記載の累進多焦点レンズにおいて、前記合成屈折面が設けられた面と反対側の眼球側の屈折面又は物体側の屈折面が、球面又は回転対称非球面であることを特徴とする累進多焦点レンズを提供する。
【0021】
請求項3記載の発明は、異なる屈折力を備えた遠用部及び近用部と、これらの間で屈折力が累進的に変化する累進部とを備えた累進屈折面を眼球側の屈折面又は物体側の屈折面に有する視力補正用の累進多焦点レンズの設計方法において、
前記眼球側の屈折面又は物体側の屈折面が視力補正特性を発揮することのみを目的とするオリジナル累進屈折面を求める第1の工程と、前記眼球側の屈折面又は物体側の屈折面が所望の乱視矯正特性を発揮することのみを目的とするオリジナルトーリック面を求める第2の工程と、前記眼球側の屈折面又は物体側の屈折面として、所望の視力補正特性を発揮することのみを目的として設定されたオリジナル累進屈折面と、所望の乱視矯正特性を発揮することのみを目的として設定されたオリジナルトーリック面とが合成された合成屈折面を求める第3の工程とを有し、前記第3の工程が、物体側から眼球側に前記累進屈折面の中心を通る軸をz軸、前記オリジナルトーリック面の乱視軸方向をx軸、z軸とx軸とに直交する軸をy軸としたとき、前記オリジナル累進屈折面の近似曲率Cp、x軸方向の曲率Cx、y軸方向の曲率Cyを用い、前記合成屈折面の任意の点P(x,y,z)における前記値zを、次の式(1)から求めることを特徴とする累進多焦点レンズの設計方法を提供する。
【0022】
【数4】
Figure 2004309589
【0023】
【発明の実施の形態】
以下、本発明の累進多焦点レンズ及びその設計方法の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
【0024】
本発明の累進多焦点レンズは、異なる屈折力を備えた遠用部及び近用部と、これらの間で屈折力が累進的に変化する累進部とを備えた累進屈折面を眼球側の屈折面又は物体側の屈折面に有する。
【0025】
図1(a)に示すように、本発明の累進多焦点レンズ1は、遠距離の物を見るための視野部分である遠用部11が上方に設けられ、近距離の物をみるために遠用部11と異なる屈折力を備えた視野部分が近用部12として遠用部11の下方に設けられている。そして、これら遠用部11と近用部12が、遠距離と近距離の中間距離の物を見るために連続的に変化する屈折力を備えた視野部分である累進部13によって滑らかに連絡されている。
【0026】
本発明の累進多焦点レンズでは、これらの遠用部11、近用部12及び累進部13を備える累進屈折面14を、図1(b)に示すように、物体側の屈折面3(凸面、外面ともいう)に設けた外面累進多焦点レンズ1aとしてもよい。あるいは、図1(c)に示すように、累進屈折面14を眼球側の屈折面2(凹面、内面ともいう)に設けた内面累進多焦点レンズ1bとしてもよい。
【0027】
内面累進多焦点レンズ1bは、外面に累進屈折面14を有する累進多焦点レンズ1aと比較して、遠用部11と近用部12における倍率の差を縮小でき、これに起因する像の揺れや歪みを大幅に低減できる。眼球側の屈折面2に累進屈折面の曲率を付与すると、主注視線16に沿った累進屈折面の曲率(曲率半径の逆数)は、遠用部11と比較し近用部12の方が小さくなる。また、遠用部11においては少なくとも一部の領域で累進屈折面の曲率が主注視線16から離れるに従って小さくなっており、また、近用部11においては少なくとも1部の領域で累進屈折面の曲率が主注視線16から離れるに従って大きくなる。
【0028】
さらに、累進屈折面14としては、主注視線16上において累進屈折面を構成する上での非点収差を最小限とすることが望ましく、そのためには、主注視線16の少なくとも1部の領域で、累進屈折面の曲率は直交する2方向の曲率が等しくなるようにすることが望ましい。
【0029】
本発明の累進多焦点レンズ1においては、物体側の屈折面3と眼球側の屈折面2のいずれか一方の屈折面が視力補正能力と乱視矯正能力の両方の能力を有する合成屈折面14+15で構成されている。図1(b)に示す外面累進多焦点レンズ1aの場合、物体側の屈折面3に設けられている合成屈折面14+15と反対側の眼球側の屈折面2は、球面又は回転対称非球面である。図1(c)に示す内面累進多焦点レンズ1bの場合、眼球側の屈折面2に設けられている合成屈折面14+15と反対側の物体側の屈折面3は、球面又は回転対称非球面である。眼球側の屈折面2に合成屈折面14+15を設けると、上述したように、乱視を矯正することが可能であると共に、遠用部11と近用部12の倍率差を必要最小限に止めることができ、像の歪みや揺れが少ないため、乱視を有するユーザーに対してもさらに快適な視野を提供することができる。
【0030】
このような一方の屈折面が視力補正能力と乱視矯正能力の両方の能力を有する累進多焦点レンズの設計は、所望の視力補正特性を発揮することのみを目的として設定された累進屈折面(以降においてはオリジナル累進屈折面)を求める第1の工程と、眼球側の屈折面2又は物体側の屈折面3が所望の乱視矯正特性を発揮することのみを目的として設定されたトーリック面(以降においてはオリジナルトーリック面)を求める第2の工程と、オリジナル累進屈折面及びオリジナルトーリック面から合成式を用いて合成屈折面を求める第3の工程とで行うことができる。
【0031】
第1の工程では、ユーザーの老視の程度や眼鏡の使い方などの状況に合わせたパラメータによってオリジナル累進屈折面を求め、その結果を座標あるいは曲率などとして記憶する。
【0032】
第2の工程では、乱視軸に沿った断面と乱視軸と直交する方向の断面がそれぞれ円弧である円弧間の補間方法として、これらの円弧を物体側から眼球側に累進屈折面の中心を通る光軸方向のz座標で表し、これらの円弧間のz座標をサインカーブで表す面形状を想定し、オリジナルトーリック面を求める。
【0033】
そして、第3の工程では、オリジナル累進屈折面とオリジナルトーリック面とが合成された合成屈折面を、次の合成式(1)で求める。
【0034】
【数5】
Figure 2004309589
【0035】
ここで、図1(b)、(c)及び(d)に示すように、眼鏡装用状態において、物体側から眼球側に累進屈折面の中心を通る軸をz軸、オリジナルトーリック面の乱視軸方向をx軸、z軸とx軸とに直交する軸をy軸としたとき、zは物体側又は眼球側の屈折面の垂直方向のz座標を示す。物体側の屈折面3に対しては物体側の屈折面3とz軸が交わる点を原点に、眼球側の屈折面2に対しては眼球側の屈折面2とz軸が交わる点を原点とする。
【0036】
曲率Cpは、オリジナル累進屈折面の任意の点P(x,y,z)における近似曲率であり、曲率Cxはx軸方向の曲率、曲率Cyはy軸方向の曲率である。近似曲率Cpとしては、例えば半径方向の平均曲率を採用することができ、オリジナル累進屈折面上の任意の点P(x,y,z)を含みz軸(レンズ中心または内側頂点(0,0,0)を通る)に垂直なxy平面において、点Pと回転対称にある点P’(−x,−y,−z)及び内側頂点(0,0,0)又は外側頂点(0,0,0)の3点を通る円の半径の逆数を用いる。
【0037】
次に、上記合成式(1)の算出手順について説明する。図2に示すような、0度,180度,360度の時、aとなり、90度,270度の時、bとなるようなサインカーブによる補間を考える。このときの式は
【0038】
【数6】
Figure 2004309589
【0039】
となる。この式を変形する。
【0040】
【数7】
Figure 2004309589
【0041】
この式をx、y座標に変換する。
【0042】
【数8】
Figure 2004309589
【0043】
であるので、次の式(2)が得られる。
【0044】
【数9】
Figure 2004309589
【0045】
トーリック面として、乱視軸に沿った断面と乱視軸と直交する方向の断面が円弧である円弧間の補間方法として、xy平面において点
【0046】
【数10】
Figure 2004309589
【0047】
のz座標z、および点
【0048】
【数11】
Figure 2004309589
【0049】
のz座標zをサインカーブで補間する。式(2)より
【0050】
【数12】
Figure 2004309589
【0051】
となる。
【0052】
また、xz平面およびyz平面での切り口はともに円弧である。円弧は次式で表される。
【0053】
【数13】
Figure 2004309589
【0054】
ここでcは乱視軸方向(x軸)の円弧の半径Rの逆数で、乱視軸方向の曲率を示す。cは乱視軸と直交する方向(y軸)の円弧の半径Rの逆数で、乱視軸と直交する方向の曲率を示す。この式から、次のようになる。
【0055】
【数14】
Figure 2004309589
【0056】
それぞれを式(3)に代入すると、次の式(4)が得られる。
【0057】
【数15】
Figure 2004309589
【0058】
この式(4)で表される面形状がオリジナルトーリック面である。c、cにそれぞれcを合成すると、下記合成式(1)が得られる。
【0059】
【数16】
Figure 2004309589
【0060】
なお、オリジナル累進屈折面と前記オリジナルトーリック面の座標系が乱視軸の角度axだけずれている場合は、オリジナル累進屈折面の座標系において、以下の(px,py,pz)における近似曲率Cpを用いればよい。
【0061】
【数17】
Figure 2004309589
【0062】
上記合成式(1)は、特許文献1で提案された合成式と比較するとやや計算量が多くなる。また、眼球側の屈折面2をこの合成式(1)で表されるトーリック面と累進屈折面とを合成した合成屈折面14+15とした内面累進多焦点レンズ1bは、遠用部と近用部における倍率の差を縮小でき、これに起因する像の揺れや歪みを大幅に低減できる。
【0063】
なお、乱視矯正特性を備えたオリジナルトーリック面を構成するためのz座標の値に、視力補正特性を備えたオリジナル累進屈折面を構成するz座標の値を付加して乱視矯正特性を備えた累進屈折面を構成すると、従来の乱視矯正用の累進多焦点レンズと全く同等の視力の補正と乱視矯正能力は得にくい。
【0064】
また、物体側の屈折面又は眼球側の屈折面に累進屈折面を設けた累進多焦点レンズにおいても、基底270度方向のプリズムを付加することにより、薄型化することが可能である。
【0065】
このように、累進屈折面とトーリック面とを一体化させた累進多焦点レンズの合成屈折面の座標値を求めた後、この座標値に基づいて、数値制御研磨装置を用い、物体側の屈折面又は眼球側の屈折面のいずれかを球面又は回転対称非球面としたレンズ成形品の反対側の面を切削、研削、鏡面研磨等で合成屈折面を創成することにより、本発明の累進多焦点レンズを製造することができる。
【0066】
【実施例】
<実施例1>
本例の累進多焦点レンズは、物体側が球面であり、ベースカーブは4.00Dで一定である。トーリック面を合成する前のオリジナル累進屈折面は、眼球側へ設けられ、遠用部の平均面屈折力が4.00D、近用部の平均面屈折力が2.00D、加入度数が2.00Dに設定されている。オリジナルトーリック面は、乱視軸が90度で、球面屈折力Sが−2.00D、円柱屈折力Cが−2.00Dである。これらのオリジナル累進屈折面とオリジナルトーリック面とを合成式(1)を用いて合成屈折面を求めた。また、レンズ中心厚さtが3.0mm、レンズ径dが70.0mmとなっている。
【0067】
図3に、実施例1の累進多焦点レンズの眼球側のz座標値を示す。また、図4(a)に、従来の外面側に累進面を設け、内面側へトーリック面を設けた外面累進多焦点レンズの非点収差分布を示す。また、図4(b)に、同じ累進面とトーリック面を合成式(1)を用いて合成した合成屈折面を内面側に設けた累進多焦点レンズの非点収差分布を示す。
【0068】
図4から、内面に累進屈折面とトーリック面とを合成式(1)を用いて合成した合成屈折面を有する実施例1の累進多焦点レンズは、物体側に累進面を設け、眼球側にトーリック面を設けた外面累進多焦点レンズと同等の性能を有することが認められる。
<実施例2>
本例の累進多焦点レンズは、物体側が球面であり、ベースカーブは4.00Dで一定である。トーリック面を合成する前のオリジナル累進屈折面は、眼球側へ設けられ、遠用部の平均面屈折力が4.00D、近用部の平均面屈折力が0.50D、加入度数が3.50Dに設定されている。オリジナルトーリック面は、乱視軸が45度で、球面屈折力Sが0.00D、円柱屈折力Cが−6.00Dである。これらのオリジナル累進屈折面とオリジナルトーリック面とを合成式(1)を用いて合成屈折面を求めた。また、レンズ中心厚さtが3.0mm、レンズ径dが70.0mmとなっている。
【0069】
図5に、実施例2の累進多焦点レンズの眼球側のz座標値を示す。また、図6(a)に、従来の物体側に累進面を設け、眼球側へトーリック面を設けた外面累進多焦点レンズの非点収差分布を示す。また、図6(b)に、同じ累進面とトーリック面を合成式(1)を用いて合成した合成屈折面を眼球側に設けた累進多焦点レンズの非点収差分布を示す。
【0070】
図6から、眼球側に累進屈折面とトーリック面とを合成式(1)を用いて合成した合成屈折面を有する実施例2の累進多焦点レンズは、物体側に累進面を設け、眼球側にトーリック面を設けた外面累進多焦点レンズと同等の性能を有することが認められる。
【0071】
【発明の効果】
本発明の累進多焦点レンズは、累進屈折面とトーリック面とを合成した合成屈折面を有し、物体側又は眼球側のいずれか一方の屈折面に視力補正能力と乱視矯正能力を付与することができる。
【0072】
また、本発明の累進多焦点レンズの設計方法は、物体側又は眼球側のいずれか一方の屈折面に累進屈折面とトーリック面とを合成した合成屈折面を付与した累進多焦点レンズを設計することができる。
【図面の簡単な説明】
【図1】本発明の累進多焦点レンズの概略構成を示すもので、(a)は正面図、(b)は物体側の屈折面に合成屈折面を付与した断面図、(c)は眼球側の屈折面に合成屈折面を付与した断面図、(d)はx座標が乱視軸と一致することを示す平面図である。
【図2】z座標をサインカーブで分布させることを説明するグラフである。
【図3】実施例1の累進多焦点レンズの眼球側のz座標値を示す座標の分布図である。
【図4】(a)は、物体側に累進面、眼球側にトーリック面を設けた多焦点レンズの非点収差図、(b)は、眼球側に累進面とトーリック面を合成した実施例1の累進多焦点レンズの非点収差図である。
【図5】実施例2の累進多焦点レンズの眼球側のz座標値を示す座標の分布図である。
【図6】(a)は、物体側に累進面、眼球側にトーリック面を設けた多焦点レンズの非点収差図、(b)は、眼球側に累進面とトーリック面を合成した実施例2の累進多焦点レンズの非点収差図である。
【図7】従来の累進多焦点レンズの概略構成を示すもので、(a)は正面図、(b)は物体側の屈折面に累進屈折面を付与した例の断面図、(c)は眼球側の屈折面に累進屈折面を付与した例の断面図を示す。
【符号の説明】
1:累進多焦点レンズ、2:眼球側の屈折面、3:物体側の屈折面、11:遠用部、12:近用部、13:累進部、14:累進屈折面、15:トーリック面、16:主注視線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a progressive multifocal lens having an ability to correct visual acuity and an ability to correct astigmatism, and a design method thereof.
[0002]
[Prior art]
A progressive multifocal lens is a lens having two visual field portions having different refractive powers and a visual field portion in which the refractive power changes progressively between them, and these visual field portions have no boundary and are excellent in appearance, Further, a single lens can provide a field of view with different refractive power. For this reason, it is often used as a spectacle lens having a function of correcting visual acuity such as presbyopia.
[0003]
FIG. 7A shows a general structure of a conventional progressive multifocal lens often used as an eyeglass lens. In this progressive multifocal lens 100, a far vision portion 11 which is a field portion for viewing a distant object is provided above, and a visual field having a different refractive power from the distance vision portion 11 for looking at a short distance object. The portion is provided as a near portion 12 below the far portion 11. The distance portion 11 and the near portion 12 are smoothly connected by a progressive portion 13 which is a visual field portion having a continuously changing refractive power to view an object at an intermediate distance between a long distance and a short distance. ing.
[0004]
In a single-plate lens used for spectacles, as shown in FIG. 7B, the spectacle lens is required by two refraction surfaces, that is, an eyeball-side refraction surface 2 and a gazing object-side refraction surface 3. All performances, e.g., vertex power for user power, cylindrical power for correcting astigmatism, addition power for correcting presbyopia, and prism power for correcting oblique position. Must be given. For this reason, as shown in FIG. 7B, in the conventional progressive multifocal lens 100a, the refractive power which continuously changes in order to configure the distance portion 11, the near portion 12, and the progressive portion 13 has a refractive power. The progressive refracting surface 14 to be provided is formed on the refracting surface 3 on the object side, and the refracting surface 2 on the eyeball side is used as a toric surface 15 for correcting astigmatism.
[0005]
In contrast to the progressive multifocal lens 100a having such a conventional structure, the present applicant has proposed a progressive multifocal lens capable of improving image fluctuation and distortion caused by a change in magnification of the distance portion 11 and the near portion 12 of the progressive multifocal lens. For the purpose of providing a focusing lens, attention is paid to the arrangement of the progressive refracting surface which gives the magnification of the progressive multifocal lens, and a progressive refracting surface 14 is formed on the refracting surface 2 on the eyeball side as shown in FIG. The so-called inner surface progressive multifocal lens 100b was developed. This invention is described in Patent Document 1.
[0006]
The inner surface progressive power multifocal lens 100b described in Patent Literature 1 can reduce the difference in magnification between the distance portion and the near portion, and can significantly reduce image shaking and distortion due to the difference.
[0007]
In such an inner surface progressive multifocal lens 100b, since the progressive refracting surface 14 is provided on the refracting surface 2 on the eyeball side, a toric surface 15 for correcting astigmatism can be combined with the refracting surface 2 on the eyeball side. The progressive multifocal lens 100b in which the refracting surface 2 on the eyeball side has a visual acuity correction characteristic and an astigmatism correction characteristic can reduce the magnification difference between the distance portion and the near portion to a necessary minimum, and reduces image distortion and shaking. In addition, astigmatism can be corrected, and a more comfortable visual field can be provided to a user having astigmatism.
[0008]
The progressive multifocal lens 100b in which the visual acuity correction characteristic and the astigmatism correction characteristic are added to the refraction surface 2 on the eyeball side is a progressive refraction surface (hereinafter referred to as a refraction surface) only for the refraction surface on the eyeball side to exhibit a desired vision correction characteristic. A first step for obtaining an original progressive refractive surface) and a second step for obtaining a toric surface (hereinafter referred to as an original toric surface) solely for the purpose of the eyeball-side refractive surface exhibiting desired astigmatic correction characteristics. And a third method for determining the refracting surface on the eyeball side of the progressive multifocal lens from the original progressive refracting surface and the original toric surface.
[0009]
In the above-mentioned Patent Document 1, in the third step, a synthetic formula for integrating an original progressive refractive surface and an original toric surface is proposed.
[0010]
In the progressive multifocal lens 100b in which the progressive refracting surface 14 and the toric surface 15 are combined with the refracting surface 2 on the eyeball side using the combining formula proposed in Patent Document 1, similar to the conventional progressive multifocal lens 100a, It is recognized that the visual acuity correcting ability for correcting astigmatism is not impaired over almost the entire area of the gaze line 16 and that astigmatism can be secured very stably.
[0011]
[Patent Document 1]
WO97 / 19382
[0012]
[Problems to be solved by the invention]
However, a toric surface is defined as a surface that has a maximum refractive power in a certain meridional plane and a minimum refractive power in a perpendicular meridian plane and has different radii of curvature in cross sections orthogonal to each other. The cross-sectional shape of each of the meridional plane having the maximum refractive power and the meridional plane having the minimum refractive power is an arc, and the curved shape between them is not particularly defined. That is, it can be said that there are infinite types of surface shapes of the toric surface. Although the synthesis formula proposed in Patent Document 1 has an advantage that calculation is relatively easy, synthesis is performed by regarding the shape of the toric surface assuming that the curvature in the x-axis direction and the curvature in the y-axis direction are constant. It is just doing.
[0013]
Therefore, there is a possibility that it is possible to provide a combined refractive surface of a progressive refractive surface and a toric surface having more excellent astigmatism correcting ability by providing another combined expression representing the surface shape of the toric surface.
[0014]
The present invention has been made in view of the above circumstances, and by providing a new combining formula for combining a progressive refraction surface and a toric surface, a new refraction surface having vision correction capability and astigmatism correction capability on the same refraction surface. It is an object of the present invention to provide a progressive multi-focal lens.
[0015]
Another object of the present invention is to provide a method of designing such a progressive multifocal lens.
[0016]
[Means for Solving the Problems]
In the progressive multifocal lens of the present invention, the respective arcs of the cross section in the astigmatic axis direction and the cross section in the direction orthogonal to the astigmatic axis direction are represented by z-coordinates indicating the height of the lens surface, and the z-coordinate between the respective arcs is signified. Representing a toric surface using an equation that interpolates with a curve, and having a combined refraction surface obtained using the combination formula (1) that combines this and a progressive surface on the eyeball-side refraction surface or the object-side refraction surface It is.
[0017]
Such a progressive multifocal lens exhibits a first step of obtaining a progressive refraction surface (hereinafter, an original progressive refraction surface) solely for exhibiting desired visual acuity correction characteristics, and exhibits desired astigmatic correction characteristics. A second step of obtaining a toric surface (hereinafter referred to as an original toric surface) for the sole purpose, and a combining formula for combining an original toric surface and an original progressive refraction surface interpolated by a sine curve between arcs represented by the z-coordinate. It can be designed by using a design method having a third step of obtaining a combined refractive surface from (1).
[0018]
Therefore, the invention according to claim 1 provides a progressive refracting surface on the eyeball side including a distance portion and a near portion having different refractive powers, and a progressive portion in which the refractive power changes progressively therebetween. In a progressive power multifocal lens for vision correction having a refraction surface or an object-side refraction surface, the eyeball-side refraction surface or the object-side refraction surface is set only for the purpose of exhibiting desired vision correction characteristics. An original progressive surface and a synthetic refractive surface obtained by combining an original toric surface set only to exhibit desired astigmatic correction characteristics, and passes through the center of the progressive surface from the object side to the eyeball side. When the axis is the z-axis, the astigmatic axis direction of the original toric surface is the x-axis, and the axis orthogonal to the z-axis and the x-axis is the y-axis, the approximate curvature Cp of the original progressive refractive surface and the curvature Cx in the x-axis direction , The curvature Cy in the y-axis direction Used, any point P of the combined refracting surface (x p, y p, z p) the value z p in is, provide a progressive multifocal lens which is characterized by being represented by the following formula (1) I do.
[0019]
[Equation 3]
Figure 2004309589
[0020]
According to a second aspect of the present invention, in the progressive multifocal lens according to the first aspect, the refracting surface on the eyeball side or the refracting surface on the object side opposite to the surface provided with the synthetic refracting surface is spherical or non-rotationally symmetric. A progressive multifocal lens characterized by being spherical.
[0021]
According to a third aspect of the present invention, a progressive refracting surface having a distance portion and a near portion having different refractive powers and a progressive portion having a refracting power progressively changing between them is a refracting surface on the eyeball side. Or in a method of designing a progressive multifocal lens for vision correction having a refracting surface on the object side,
The first step of obtaining an original progressive refraction surface only for the purpose of the eyeball-side refraction surface or the object-side refraction surface to exhibit visual acuity correction characteristics, and the eyeball-side refraction surface or the object-side refraction surface is The second step of obtaining the original toric surface only for exhibiting the desired astigmatic correction characteristics, and as the refractive surface on the eyeball side or the refractive surface on the object side, only exhibiting the desired visual acuity correction characteristics. An original progressive refraction surface set for the purpose, and a third step of obtaining a combined refraction surface combined with the original toric surface set only for the purpose of exhibiting the desired astigmatic correction characteristics, In the third step, the axis passing through the center of the progressive refraction surface from the object side to the eyeball side is the z axis, the astigmatic axis direction of the original toric surface is the x axis, and the axis orthogonal to the z axis and the x axis is the y axis. And , Approximate curvature Cp of said original progressive refractive surface, x-axis direction curvature Cx, using curvature Cy in the y-axis direction, an arbitrary point P of the combined refracting surface (x p, y p, z p) the value of z A method of designing a progressive multifocal lens, wherein p is obtained from the following equation (1):
[0022]
(Equation 4)
Figure 2004309589
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a progressive multifocal lens and a design method thereof according to the present invention will be described, but the present invention is not limited to the following embodiments.
[0024]
The progressive multifocal lens of the present invention refracts a progressive refracting surface having a distance portion and a near portion having different refractive powers, and a progressive portion having a refracting power progressively changed between them, on the eyeball side. It is provided on the surface or the refracting surface on the object side.
[0025]
As shown in FIG. 1 (a), the progressive multifocal lens 1 of the present invention is provided with a far vision portion 11, which is a visual field portion for viewing a distant object, at an upper portion. A field portion having a refractive power different from that of the distance portion 11 is provided below the distance portion 11 as a near portion 12. The distance portion 11 and the near portion 12 are smoothly connected by a progressive portion 13 which is a visual field portion having a continuously changing refractive power to view an object at an intermediate distance between a long distance and a short distance. ing.
[0026]
In the progressive multifocal lens of the present invention, the progressive refracting surface 14 including the distance portion 11, the near portion 12, and the progressive portion 13 is connected to the object-side refracting surface 3 (convex surface) as shown in FIG. , Outer surface). Alternatively, as shown in FIG. 1C, an inner surface progressive multifocal lens 1b in which the progressive surface 14 is provided on the eyeball side refractive surface 2 (also referred to as a concave surface or an inner surface) may be used.
[0027]
The inner surface progressive multifocal lens 1b can reduce the difference in magnification between the distance portion 11 and the near portion 12 as compared with the progressive multifocal lens 1a having the progressive refraction surface 14 on the outer surface, and image fluctuation caused by this can be reduced. And distortion can be greatly reduced. When the curvature of the progressive refraction surface is given to the refraction surface 2 on the eyeball side, the curvature (the reciprocal of the radius of curvature) of the progressive refraction surface along the main gazing line 16 is smaller in the near portion 12 than in the far portion 11. Become smaller. Further, in the distance portion 11, the curvature of the progressive refraction surface decreases in at least a part of the region as the distance from the main gazing line 16 increases, and in the near portion 11, the curvature of the progressive refraction surface in at least one portion of the region. The curvature increases as the distance from the main gazing line 16 increases.
[0028]
Further, as the progressive refracting surface 14, it is desirable to minimize astigmatism in forming the progressive refracting surface on the main gazing line 16; It is desirable that the curvature of the progressive refraction surface be equal in two orthogonal directions.
[0029]
In the progressive multifocal lens 1 of the present invention, one of the refracting surface 3 on the object side and the refracting surface 2 on the eyeball side is a combined refracting surface 14 + 15 having both the ability to correct visual acuity and the ability to correct astigmatism. It is configured. In the case of the outer surface progressive multifocal lens 1a shown in FIG. 1B, the refracting surface 2 on the eyeball side opposite to the combined refracting surface 14 + 15 provided on the refracting surface 3 on the object side is a spherical surface or a rotationally symmetric aspheric surface. is there. In the case of the inner surface progressive multifocal lens 1b shown in FIG. 1C, the refracting surface 3 on the object side opposite to the combined refracting surface 14 + 15 provided on the refracting surface 2 on the eyeball side is a spherical surface or a rotationally symmetric aspheric surface. is there. By providing the combined refracting surface 14 + 15 on the refracting surface 2 on the eyeball side, astigmatism can be corrected as described above, and the magnification difference between the distance portion 11 and the near portion 12 can be minimized. Since the image distortion and shaking are small, it is possible to provide a more comfortable field of view even to a user having astigmatism.
[0030]
The design of a progressive multifocal lens in which one of the refractive surfaces has both the ability to correct visual acuity and the ability to correct astigmatism is based on a progressive refractive surface (hereinafter referred to as a progressive refractive surface) that is set only to exhibit desired vision correction characteristics. In the first step, a toric surface (hereinafter referred to as an original progressive refraction surface) and a toric surface (hereinafter referred to as a toric surface) set only for the purpose that the refraction surface 2 on the eyeball side or the refraction surface 3 on the object side exhibits desired astigmatism correction characteristics. Can be performed in a second step of obtaining an original toric surface) and a third step of obtaining a combined refraction surface from the original progressive refraction surface and the original toric surface using a combination expression.
[0031]
In the first step, an original progressive refraction surface is obtained by parameters according to the situation such as the degree of presbyopia of the user and how to use glasses, and the result is stored as coordinates or curvature.
[0032]
In the second step, as a method of interpolating between arcs whose cross sections along the axis of astigmatism and the cross section in the direction orthogonal to the axis of astigmatism are arcs, these arcs pass through the center of the progressive refraction surface from the object side to the eyeball side. An original toric surface is obtained by assuming a surface shape that is represented by z coordinates in the optical axis direction and the z coordinate between these arcs is represented by a sine curve.
[0033]
Then, in the third step, a combined refraction surface in which the original progressive refraction surface and the original toric surface are combined is determined by the following combination expression (1).
[0034]
(Equation 5)
Figure 2004309589
[0035]
Here, as shown in FIGS. 1 (b), 1 (c) and 1 (d), in the spectacle wearing state, the axis passing through the center of the progressive refraction surface from the object side to the eyeball side is the z axis, and the astigmatic axis of the original toric surface. when an axis perpendicular to the direction x-axis, in the z-axis and x-axis and y-axis, z p denotes a vertical z-coordinate of the refractive surface on the object side or the eyeball side. For the refracting surface 3 on the object side, the origin is the point where the refracting surface 3 on the object side intersects with the z-axis, and for the refracting surface 2 on the eyeball side, the origin is the point where the refracting surface 2 on the eyeball side intersects the z-axis. And
[0036]
Curvature Cp is any point of the original progressive refractive surface P (x p, y p, z p) are approximate curvature at, the curvature Cx of curvature in the x-axis direction, the curvature Cy is the curvature in the y-axis direction. As the approximate curvature Cp, for example, an average curvature in the radial direction can be adopted, and the z-axis (the center of the lens or the inner vertex (including the center of the lens or the inside vertex) including any point P (x p , y p , z p ) on the original progressive refractive surface is included. in xy plane perpendicular to the passing 0,0,0)), P point which is rotationally symmetrical with the point P '(- x p, -y p, -z p) and an inner vertex (0, 0, 0) or The reciprocal of the radius of the circle passing through the three points at the outer vertex (0,0,0) is used.
[0037]
Next, the calculation procedure of the above-described synthesis formula (1) will be described. As shown in FIG. 2, interpolation using a sine curve such that a becomes 0 at 0, 180, and 360 degrees and b becomes 90 at 90 and 270 degrees. The equation at this time is:
(Equation 6)
Figure 2004309589
[0039]
It becomes. Transform this equation.
[0040]
(Equation 7)
Figure 2004309589
[0041]
This equation is converted into x and y coordinates.
[0042]
(Equation 8)
Figure 2004309589
[0043]
Therefore, the following equation (2) is obtained.
[0044]
(Equation 9)
Figure 2004309589
[0045]
As an interpolation method between arcs having a cross section along the axis of astigmatism and a cross section orthogonal to the axis of astigmatism as a toric surface, a point on the xy plane is obtained.
(Equation 10)
Figure 2004309589
[0047]
The z coordinate z x of the point and the point
(Equation 11)
Figure 2004309589
[0049]
Interpolating the z coordinate z y Sign curve. From equation (2)
(Equation 12)
Figure 2004309589
[0051]
It becomes.
[0052]
Also, the cuts on the xz plane and the yz plane are both arcs. The arc is represented by the following equation.
[0053]
(Equation 13)
Figure 2004309589
[0054]
Here, c x is the reciprocal of the radius R x of the arc in the astigmatic axis direction (x axis), and indicates the curvature in the astigmatic axis direction. cy is the reciprocal of the radius Ry of the arc in the direction (y-axis) orthogonal to the astigmatic axis, and indicates the curvature in the direction orthogonal to the astigmatic axis. From this equation:
[0055]
[Equation 14]
Figure 2004309589
[0056]
By substituting each into equation (3), the following equation (4) is obtained.
[0057]
(Equation 15)
Figure 2004309589
[0058]
The surface shape represented by Expression (4) is the original toric surface. c x, when synthesizing a c p respectively c y, the following synthesis equation (1) is obtained.
[0059]
(Equation 16)
Figure 2004309589
[0060]
When the coordinate system of the original progressive refractive surface and the original toric surface are shifted by the angle ax of the astigmatic axis, the approximate curvature Cp in the following (px, py, pz) is calculated in the coordinate system of the original progressive refractive surface. It may be used.
[0061]
[Equation 17]
Figure 2004309589
[0062]
The synthesis formula (1) requires a relatively large amount of calculation as compared with the synthesis formula proposed in Patent Document 1. Further, the inner surface progressive multifocal lens 1b, in which the refracting surface 2 on the eyeball side is a combined refracting surface 14 + 15 obtained by combining the toric surface and the progressive refracting surface represented by the combining formula (1), has a distance portion and a near portion. Can be reduced, and image shaking and distortion due to this can be greatly reduced.
[0063]
In addition, by adding the z-coordinate value forming the original progressive refractive surface having the visual acuity correction characteristic to the z-coordinate value for forming the original toric surface having the astigmatism correction characteristic, the progressive having the astigmatism correction characteristic is added. When the refracting surface is formed, it is difficult to obtain the same correction of visual acuity and the ability to correct astigmatism completely equivalent to those of the conventional progressive power multifocal lens for correcting astigmatism.
[0064]
Also, in a progressive multifocal lens in which a progressive refracting surface is provided on the refracting surface on the object side or the refracting surface on the eyeball side, it is possible to reduce the thickness by adding a prism in the direction of 270 degrees at the base.
[0065]
After calculating the coordinate value of the combined refractive surface of the progressive multifocal lens in which the progressive refraction surface and the toric surface are integrated as described above, based on the coordinate value, a numerically controlled polishing device is used to refract the object side. By forming a synthetic refraction surface by cutting, grinding, mirror polishing or the like on the opposite surface of a lens molded product in which either the surface or the refracting surface on the eyeball side is spherical or a rotationally symmetric aspheric surface, the progressive power of the present invention is Focus lenses can be manufactured.
[0066]
【Example】
<Example 1>
The progressive multifocal lens of this example has a spherical surface on the object side, and has a constant base curve of 4.00D. The original progressive refraction surface before combining the toric surface is provided on the eyeball side, the average surface refractive power of the distance portion is 4.00D, the average surface refractive power of the near portion is 2.00D, and the addition power is 2. 00D is set. The original toric surface has an astigmatic axis of 90 degrees, a spherical refractive power S of -2.00D, and a cylindrical refractive power C of -2.00D. These original progressive surfaces and original toric surfaces were used to determine a combined refractive surface using the combining formula (1). The lens center thickness t is 3.0 mm and the lens diameter d is 70.0 mm.
[0067]
FIG. 3 shows z coordinate values on the eyeball side of the progressive multifocal lens of the first embodiment. FIG. 4A shows the astigmatism distribution of an external progressive multifocal lens in which a conventional progressive surface is provided on the outer surface side and a toric surface is provided on the inner surface side. FIG. 4B shows an astigmatism distribution of a progressive multifocal lens provided on the inner side with a combined refraction surface obtained by combining the same progressive surface and toric surface using the combination formula (1).
[0068]
From FIG. 4, the progressive multifocal lens of Example 1 having a combined refraction surface obtained by combining a progressive refraction surface and a toric surface on the inner surface using the combination formula (1) has a progressive surface provided on the object side and a progressive surface provided on the eyeball side. It is recognized that it has the same performance as the outer surface progressive multifocal lens provided with the toric surface.
<Example 2>
The progressive multifocal lens of this example has a spherical surface on the object side, and has a constant base curve of 4.00D. The original progressive refraction surface before the synthesis of the toric surface is provided on the eyeball side, the average surface refractive power of the distance portion is 4.00D, the average surface refractive power of the near portion is 0.50D, and the addition power is 3. It is set to 50D. The original toric surface has an astigmatic axis of 45 degrees, a spherical refractive power S of 0.00D, and a cylindrical refractive power C of -6.00D. These original progressive surfaces and original toric surfaces were used to determine a combined refractive surface using the combining formula (1). The lens center thickness t is 3.0 mm and the lens diameter d is 70.0 mm.
[0069]
FIG. 5 shows z coordinate values on the eyeball side of the progressive multifocal lens of the second embodiment. FIG. 6A shows the astigmatism distribution of a conventional progressive multifocal lens having a progressive surface on the object side and a toric surface on the eyeball side. FIG. 6B shows an astigmatism distribution of a progressive multifocal lens provided on the eyeball side with a combined refraction surface obtained by combining the same progressive surface and toric surface using the combination formula (1).
[0070]
As shown in FIG. 6, the progressive multifocal lens of Embodiment 2 having a combined refractive surface obtained by combining a progressive refracting surface and a toric surface on the eyeball side using the combining formula (1) is provided with a progressive surface on the object side, It is recognized that the lens has the same performance as an external progressive multifocal lens provided with a toric surface.
[0071]
【The invention's effect】
The progressive multifocal lens of the present invention has a combined refraction surface obtained by combining a progressive refraction surface and a toric surface, and imparts a visual acuity correcting ability and an astigmatic correction ability to one of the refracting surfaces on the object side or the eyeball side. Can be.
[0072]
In addition, the progressive multifocal lens designing method of the present invention designs a progressive multifocal lens in which a combined refractive surface obtained by combining a progressive refractive surface and a toric surface is provided on one of the object-side and eyeball-side refractive surfaces. be able to.
[Brief description of the drawings]
1A and 1B schematically show the configuration of a progressive multifocal lens according to the present invention, wherein FIG. 1A is a front view, FIG. 1B is a cross-sectional view in which a synthetic refraction surface is added to an object-side refraction surface, and FIG. FIG. 10D is a cross-sectional view in which a synthetic refraction surface is provided on the side refraction surface, and FIG. 10D is a plan view showing that the x coordinate coincides with the astigmatic axis.
FIG. 2 is a graph illustrating that a z coordinate is distributed by a sine curve.
FIG. 3 is a distribution diagram of coordinates indicating z coordinate values on the eyeball side of the progressive power lens according to the first exemplary embodiment.
4A is an astigmatism diagram of a multifocal lens having a progressive surface on the object side and a toric surface on the eyeball side, and FIG. 4B is an embodiment in which a progressive surface and a toric surface are combined on the eyeball side; FIG. 2 is an astigmatism diagram of No. 1 progressive multifocal lens.
FIG. 5 is a coordinate distribution diagram showing z-coordinate values on the eyeball side of a progressive multifocal lens according to a second embodiment.
6A is an astigmatism diagram of a multifocal lens having a progressive surface on the object side and a toric surface on the eyeball side, and FIG. 6B is an embodiment in which a progressive surface and a toric surface are combined on the eyeball side; FIG. 3 is an astigmatism diagram of a progressive multifocal lens No. 2;
7A and 7B show a schematic configuration of a conventional progressive multifocal lens, wherein FIG. 7A is a front view, FIG. 7B is a cross-sectional view of an example in which a progressive refraction surface is added to an object-side refraction surface, and FIG. FIG. 3 shows a cross-sectional view of an example in which a progressive refraction surface is provided on the refraction surface on the eyeball side.
[Explanation of symbols]
1: progressive multifocal lens, 2: refracting surface on the eyeball side, 3: refracting surface on the object side, 11: distance portion, 12: near portion, 13: progressive portion, 14: progressive refraction surface, 15: toric surface , 16: Main gaze

Claims (3)

異なる屈折力を備えた遠用部及び近用部と、これらの間で屈折力が累進的に変化する累進部とを備えた累進屈折面を眼球側の屈折面又は物体側の屈折面に有する視力補正用の累進多焦点レンズにおいて、
前記眼球側の屈折面又は物体側の屈折面が、所望の視力補正特性を発揮することのみを目的として設定されたオリジナル累進屈折面と、所望の乱視矯正特性を発揮することのみを目的として設定されたオリジナルトーリック面とが合成された合成屈折面であり、
物体側から眼球側に前記累進屈折面の中心を通る軸をz軸、前記オリジナルトーリック面の乱視軸方向をx軸、z軸とx軸とに直交する軸をy軸としたとき、前記オリジナル累進屈折面の近似曲率Cp、x軸方向の曲率Cx、y軸方向の曲率Cyを用いて、前記合成屈折面の任意の点P(x,y,z)における前記値zが、次の式(1)で表されることを特徴とする累進多焦点レンズ。
Figure 2004309589
Having a progressive refractive surface with a distance portion and a near portion having different refractive powers, and a progressive portion in which the refractive power changes progressively between them on the refracting surface on the eyeball side or the refracting surface on the object side. In progressive multifocal lenses for vision correction,
The refracting surface on the eyeball side or the refracting surface on the object side is an original progressive refractive surface set only for exhibiting desired visual acuity correction characteristics, and set only for exhibiting desired astigmatic correction characteristics. Is a combined refraction surface combined with the original toric surface,
When the axis passing through the center of the progressive refraction surface from the object side to the eyeball side is the z-axis, the astigmatic axis direction of the original toric surface is the x-axis, and the axis orthogonal to the z-axis and the x-axis is the y-axis, the original approximate curvature Cp of the progressive refractive surface, the curvature of the x-axis direction Cx, with curvature Cy in the y-axis direction, an arbitrary point P of the combined refracting surface (x p, y p, z p) is the value z p in And a progressive multifocal lens represented by the following formula (1).
Figure 2004309589
請求項1記載の累進多焦点レンズにおいて、
前記合成屈折面が設けられた面と反対側の眼球側の屈折面又は物体側の屈折面が、球面又は回転対称非球面であることを特徴とする累進多焦点レンズ。
The progressive multifocal lens according to claim 1,
A progressive multifocal lens, wherein the refracting surface on the eyeball side or the refracting surface on the object side opposite to the surface provided with the combined refracting surface is a spherical surface or a rotationally symmetric aspherical surface.
異なる屈折力を備えた遠用部及び近用部と、これらの間で屈折力が累進的に変化する累進部とを備えた累進屈折面を眼球側の屈折面又は物体側の屈折面に有する視力補正用の累進多焦点レンズの設計方法において、
前記眼球側の屈折面又は物体側の屈折面が視力補正特性を発揮することのみを目的とするオリジナル累進屈折面を求める第1の工程と、
前記眼球側の屈折面又は物体側の屈折面が所望の乱視矯正特性を発揮することのみを目的とするオリジナルトーリック面を求める第2の工程と、
前記眼球側の屈折面又は物体側の屈折面として、所望の視力補正特性を発揮することのみを目的として設定されたオリジナル累進屈折面と、所望の乱視矯正特性を発揮することのみを目的として設定されたオリジナルトーリック面とが合成された合成屈折面を求める第3の工程と
を有し、
前記第3の工程が、物体側から眼球側に前記累進屈折面の中心を通る軸をz軸、前記オリジナルトーリック面の乱視軸方向をx軸、z軸とx軸とに直交する軸をy軸としたとき、前記オリジナル累進屈折面の近似曲率Cp、x軸方向の曲率Cx、y軸方向の曲率Cyを用い、前記合成屈折面の任意の点P(x,y,z)における前記値zを、次の式(1)から求めることを特徴とする累進多焦点レンズの設計方法。
Figure 2004309589
Having a progressive refractive surface with a distance portion and a near portion having different refractive powers, and a progressive portion in which the refractive power changes progressively between them on the refracting surface on the eyeball side or the refracting surface on the object side. In a method of designing a progressive multifocal lens for vision correction,
A first step of obtaining an original progressive refraction surface only for the purpose of the eyeball-side refraction surface or the object-side refraction surface to exhibit visual acuity correction characteristics,
A second step of obtaining an original toric surface only for the purpose of the eyeball-side refraction surface or the object-side refraction surface to exhibit desired astigmatic correction characteristics,
As the refraction surface on the eyeball side or the refraction surface on the object side, an original progressive refraction surface set only for exhibiting desired visual acuity correction characteristics, and set only for exhibiting desired astigmatism correction characteristics A third step of obtaining a combined refraction surface combined with the original toric surface that has been combined,
In the third step, the axis passing from the object side to the eyeball side passing through the center of the progressive refraction surface is the z-axis, the astigmatic axis direction of the original toric surface is the x-axis, and the axis orthogonal to the z-axis and the x-axis is y. when an axis, the original progressive approximation curvature Cp of the refractive surface, the curvature of the x-axis direction Cx, using curvature Cy in the y-axis direction, an arbitrary point P of the combined refracting surface (x p, y p, z p) Wherein the value z p is obtained from the following equation (1).
Figure 2004309589
JP2003099624A 2003-04-02 2003-04-02 Progressive power lens and its design method Withdrawn JP2004309589A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003099624A JP2004309589A (en) 2003-04-02 2003-04-02 Progressive power lens and its design method
EP04725195A EP1610168A4 (en) 2003-04-02 2004-04-01 Progressive multifocal lens and method of designing the same
PCT/JP2004/004802 WO2004090615A1 (en) 2003-04-02 2004-04-01 Progressive multifocal lens and method of designing the same
US10/509,601 US7125118B2 (en) 2003-04-02 2004-04-01 Progressive multifocal lens and method of designing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099624A JP2004309589A (en) 2003-04-02 2003-04-02 Progressive power lens and its design method

Publications (1)

Publication Number Publication Date
JP2004309589A true JP2004309589A (en) 2004-11-04

Family

ID=33464016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099624A Withdrawn JP2004309589A (en) 2003-04-02 2003-04-02 Progressive power lens and its design method

Country Status (1)

Country Link
JP (1) JP2004309589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359721B1 (en) 2006-12-22 2014-02-05 에씰로아 인터내셔날/콩파니에 제네랄 도프티크 Improved Single Vision Spectacle Lens
JP2018077401A (en) * 2016-11-10 2018-05-17 伊藤光学工業株式会社 Design method of progressive refractive power lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359721B1 (en) 2006-12-22 2014-02-05 에씰로아 인터내셔날/콩파니에 제네랄 도프티크 Improved Single Vision Spectacle Lens
JP2018077401A (en) * 2016-11-10 2018-05-17 伊藤光学工業株式会社 Design method of progressive refractive power lens

Similar Documents

Publication Publication Date Title
JP3852116B2 (en) Progressive multifocal lens and spectacle lens
JP3800629B2 (en) Multifocal lens for spectacles and spectacle lens
KR100940699B1 (en) Progressive-power lens
JP4408112B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP4192899B2 (en) Eyeglass lens design method
JP4437482B2 (en) Double-sided aspherical progressive-power lens and design method thereof
WO2004074907A1 (en) Progressive refractive power lens
JP3617004B2 (en) Double-sided aspherical progressive-power lens
JP2008058576A (en) Spectacle lens design method
EP1004918A1 (en) Progressive refractive power lens
JP3757682B2 (en) Progressive power lens design method
JP4380887B2 (en) Progressive multifocal lens
WO2004090615A1 (en) Progressive multifocal lens and method of designing the same
JP2002372689A (en) Progressive power lens and eyeglass lens
JP2004109813A (en) Progressive multifocal lens and method for designing the same
JP4996006B2 (en) Progressive power spectacle lens
JP2004309589A (en) Progressive power lens and its design method
JP2002323681A (en) Method of manufacturing progressive multifocal lens
JP3236263B2 (en) Aspherical spectacle lens design method
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JP2004309588A (en) Progressive power lens and its design method
JP4404317B2 (en) Double-sided aspherical progressive-power lens and design method thereof
WO2013132752A1 (en) Lens set, lens design method, and lens manufacturing method
KR100705120B1 (en) Progressive refractive power lens and production method therefor
JP2010513985A5 (en)

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040823