JP2004308712A - Double row eccentric thrust bearing - Google Patents

Double row eccentric thrust bearing Download PDF

Info

Publication number
JP2004308712A
JP2004308712A JP2003100551A JP2003100551A JP2004308712A JP 2004308712 A JP2004308712 A JP 2004308712A JP 2003100551 A JP2003100551 A JP 2003100551A JP 2003100551 A JP2003100551 A JP 2003100551A JP 2004308712 A JP2004308712 A JP 2004308712A
Authority
JP
Japan
Prior art keywords
bearing
annular
radial
race
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003100551A
Other languages
Japanese (ja)
Other versions
JP4134790B2 (en
Inventor
Seiji Tada
誠二 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003100551A priority Critical patent/JP4134790B2/en
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to CN2008101710854A priority patent/CN101429972B/en
Priority to CN200810171084XA priority patent/CN101429971B/en
Priority to KR1020057018716A priority patent/KR20060015493A/en
Priority to CN2008101710835A priority patent/CN101429970B/en
Priority to EP04725799A priority patent/EP1610009A4/en
Priority to US10/551,700 priority patent/US7575378B2/en
Priority to EP09169400A priority patent/EP2119922A3/en
Priority to PCT/JP2004/004898 priority patent/WO2004090358A1/en
Publication of JP2004308712A publication Critical patent/JP2004308712A/en
Application granted granted Critical
Publication of JP4134790B2 publication Critical patent/JP4134790B2/en
Priority to US12/466,938 priority patent/US7976224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a bearing, and to reduce the weight thereof by appropriately setting width of races and a clearance between each of bearing members in relation to an eccentricity allowable range of the bearing, in regard to a double row eccentric thrust bearing capable of freely rotating in relation to each other. <P>SOLUTION: This double row eccentric thrust bearing has two concentric annular outside members 2 arranged opposite to each other and integrally joined with each other and an annular inside member 3 concentrically interposed between the two outside members, and a double-row of balls 8 pinched between the outside and the inside members. A relative movement possible range to be generated by a radial clearance between the outside member 2 and the inside member 3 is set to nearly correspond to a radial movement possible distance of the ball 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複列の偏心スラスト軸受に関するものである。
【0002】
【従来の技術】
従来の複列偏心スラスト軸受は、一枚の内側レースと、この内側部材の両面に対して対向する2枚の外側レースと、これらレース間に介在する2列の転動体からなるものが公用されている。この複列偏心スラスト軸受では、2枚の外側レースを備え、2列の転動体がそれぞれ互いに逆方向のアキシャル荷重を支持することにより、両方向のアキシャル荷重を支持できるようになっている。また、かかる公用された偏心スラスト軸受には、内側レースと外側レースが自由に相対回転可能なものもある。
【0003】
【発明が解決しようとする課題】
しかし、このような従来型の複列偏心スラスト軸受では、偏心するために設けられた内外部材間の隙間を、軸受の偏心可能範囲に対して適切に設定するという検討がなされていなかった。そのため、内外部材間の隙間やレース等が必要以上に大きくなり、軸受が必要以上に大型となっていた。このため、軸受の重量増やコスト高等を招来していた。
【0004】
本発明は、かかる事情に鑑みてなされたものであって、自由に相対回転可能な複列偏心スラスト軸受において、軸受の偏心可能範囲に対して各部材間の隙間をより適切とすることにより、小型化や軽量化が可能となる軸受を提供することを目的とする。
【0005】
【課題を解決するための手段】
かかる目的を達成するため、本発明では、互いに同心で対向し且つ一体的に接合された円環状の二つの外側部材と、この二つの外側部材相互間に同心で介在する円環状の内側部材と、を有し、前記二つの外側部材のそれぞれは、円環状の外側ケース部と、この外側ケース部に取り付けられた円環板状の外レース部を備えており、前記内側部材は、円環状の内側ケース部と、この内側ケース部から径方向に突出して延びる円環板状の内レース部を備えるとともに、前記内レース部の両面と、これらに対向する前記二つの外レース部との間に複数の転動体が挟持された複列偏心スラスト軸受において、前記外側部材と前記内側部材との間の径方向隙間により生ずる相対移動可能範囲が、前記転動体の径方向移動可能距離に略対応していることを特徴とする複列偏心スラスト軸受としている。
【0006】
この軸受は、内レース部及びこれに対向する二つの外レース部がいずれも円環状で円周方向に連続しているので、内側部材と外側部材との間で自由に相対回転が可能となっている。さらに、内側部材と外側部材の各ケース部やレース部が全て円環状であり且つそれらが同心で配置されているので、外側部材と内側部材との間の径方向隙間を全周に亘って一定距離設けることができる。よって、径方向の全方位について一定距離偏心する構成とすることができる。
【0007】
加えて、外側部材と内側部材との間の径方向隙間により生ずる相対移動可能範囲が、転動体の径方向移動可能距離に略対応している。よって、外側部材と内側部材の間の径方向隙間が略無くなるまで偏心させると、その偏心方向において、転動体もレース上に設けられた径方向隙間が無くなるまで移動する。よって、余分な隙間が無くなるか、又は余分な隙間を最小限とすることができ、結果として、軸受を小型化しながら偏心可能範囲を大きくすることができる。
【0008】
更に、前記複数の転動体は周方向に略均等間隔で配置されるとともに、この相対的位置関係を維持しつつ転動体を転動自在に保持する円環状の保持器を有し、この保持器と前記内側部材及び前記外側部材との間の径方向隙間により転動体の前記径方向移動可能距離が確保されている構成とするのが好ましい。このようにすると、軸受の支持点となる転動体が周方向に略均等に分配され、且つ保持器により転動体間の相対的位置関係が維持されるため、アキシャル荷重及びモーメント荷重をより安定的に支持できる。また、各転動体にかかる荷重を均等にすることができ、軸受全体としての負荷容量が増大する。また、保持器と前記内側部材及び前記外側部材との間の径方向隙間があるので、転動体が径方向に移動可能となる。さらに、この保持器により、各転動体をレース上の最適な位置に配置することが容易となる。即ち、転動体のレース上における位置を適切に調整するのは容易ではないが、軸受に軽予圧をかけた状態で径方向の全周について最大に偏心させることにより位置調整を容易に行うことができる。転動体の位置がずれている場合は、保持器が外側部材又は内側部材に当接して転動体と共にレース上を滑ることにより、転動体及びそれを収容する保持器の位置調整がなされる。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の第一実施形態の偏心スラスト軸受の分解斜視図であり、図2はこの軸受の断面図(軸心から下半分は記載省略)である。図1及び図2に示すように、この軸受1は、互いに対向し且つ一体的に接合された円環状の二つの外側部材2,2と、この二つの外側部材相互間に介在する円環状の内側部材3と、を有している。なお図2は、転動体である玉8が径方向のいずれにも動いていない中立の状態(以後、標準状態などという)における図である。
【0010】
この二つの外側部材2,2のそれぞれは、円環状の外側ケース部4と、この外側ケース部4の対向面側に装着された円環板状の外レース部5からなる。外側ケース部4と外レース部5は別部材となっており、外側ケース部4の対向面側に設けられた凹部4aに外レース部5が取り付けられている(図2参照)。また、二つの外側ケース部4,4は、その径方向外側の周縁部近傍において外側ねじ11により一体的に接合されている(図2参照。図1において記載省略。)。内側部材3は、円環状の2つの内側ケース部6,6と、この二つの内側ケース部6,6から径方向外側に突出してフランジ状に延びる円環板状の内レース部7を備える。内側ケース部6,6と内レース部7はそれぞれ別体となっており、内レース部7が二つの内側ケース部6,6によって挟まれつつ、三者が内側ねじ12で一体的に接合されている(図2参照。図1において記載省略。)。図2に示すように、内レース部7の軸方向中心は、軸受1の軸方向中心と一致しており、この中心を通り軸に垂直な平面に対して対称な構成の軸受1となっている。
【0011】
前記内レース部7の両面はいずれも軌道面となっており、この内レース部7の両面と、これに対向する二つの外レース部5,5との間に複数の転動体である玉8が挟持されている。よって、この軸受1は、複列構造の軸受となっている。玉8は一列あたり24個、合計で48個が使用されており、これらの玉8は各列においてそれぞれ周方向に略均等に配置されている。また、一列あたり一つ、合計二つのリング状保持器9,9が設けられており、このリング状保持器9に略等間隔に設けられたポケット孔9aに玉8が個々に転動自在に収容されている。このリング状保持器9により、各玉8は互いに周方向に略等間隔な位置関係が維持されている。このように、軸受1の支持点となる複数の玉8が周方向に略等間隔に配置されていることにより、アキシャル荷重及びモーメント荷重が安定的に支持される。なお、玉8の数は、一列あたり最低三個必要であるが、負荷容量や軸受寸法に応じて適宜設定すればよい。
【0012】
内外レース5,7はいずれも円環状の部材であるから周方向に連続した軌道面を形成する。よって玉8は公転が可能である。つまり、この軸受1は、外側部材2と内側部材3との間で自由に相対回転できる。なお、リング状保持器9は玉8に同調して動くこととなる。
【0013】
軸受1の軸方向最外面には、薄い円環板状のシールド13,13が設けられている。図2に示すように、これらのシールド13,13は、内側ケース部6の軸方向外側端部に固定されており、そこから外側ケース部4の軸方向外側面に沿って径方向外側に向かって延在している。このシールド13,13は、外側ケース部4の軸方向外側面とわずかな隙間を介して重なるように配置されているので、軸受1内への異物の侵入を抑制するとともに、軸受1内の潤滑剤(潤滑油やグリース等)が外部に漏れることを防止するシール機能を有する。なお、軸受1内への水分侵入を避ける等、シール効果を高めるため、軸受1内を密封するシールをさらに追加することもできる。
【0014】
転動体である玉8を除き、軸受1のすべての部材は径方向幅が全周に亘って一定の円環状であって、且つ標準状態においてすべて同心で配置されている。従って、標準状態において、内側部材3の径方向最外端面15と外側部材2,2との間には、径方向で距離Mの隙間が周方向の全周に亘って存在している。また、同じく標準状態において、外側部材2,2の径方向最内端面16と内側部材3との間には、径方向で距離Lの隙間が周方向の全周に亘って存在している。このように、軸受1は周方向の全周に亘って均等な隙間を有しているので、周方向全方位に対して一定距離偏心が可能となっている。これら外側部材2と内側部材3との間の径方向隙間によって、両者間の相対移動可能範囲が決定される。
【0015】
一方、外レース部5,5は、所定の径方向幅を有する円環板状の部材であって、この径方向幅は全周に亘って同一となっている。このように外レース部5,5は径方向に幅を有しており、且つ内側ケース部6はこの外レース部5,5の径方向幅以上の径方向幅をもって外レース部5,5と対向しているので、玉8は径方向に移動する余地を有している。この軸受1では、玉8はリング状保持器9に収容されているので、玉8は、このリング状保持器9の内周面又は外周面が内側部材3又は外側部材2と当接するまで径方向に移動可能となる。この軸受1では、標準状態において、リング状保持器9の外周面と外側部材2との間に径方向で距離Rの隙間が周方向の全周に亘って存在しており、且つ、リング状保持器9の内周面と内側部材3との間に径方向で同じく距離Rの隙間が周方向の全周に亘って存在している(図2参照)。この隙間距離Rにより、玉8及びリング状保持器9は、径方向全方位について、距離Rの幅で移動することができる。
【0016】
この軸受1では、前記距離Lは前記距離Rの2倍になっている。即ち、次の式
L=2R
が成立している。これは、転動体である玉8の移動距離が内外レース部5,7の相対移動距離の半分(1/2)となることに対応させたものである。また、前記距離Mは距離Lと略同一とするのが好ましく、さらには同一とするのがより好ましい。また、L≧2Rとなっていればよい。
【0017】
このように、軸受1においては、外側部材2と内側部材3との間の径方向隙間により生ずる相対移動可能範囲が、転動体である玉8の径方向移動可能距離に略対応している。従って、外側部材2と内側部材3との径方向隙間距離L(外側部材2,2の径方向最内端面16と内側部材3との間の径方向隙間距離)が無くなるまで両者を偏心させると、転動体である玉8は、その偏心方向おける前記隙間距離Rが無くなるまで移動することとなる。したがって、外側部材2,2の径方向最内端面16と内側部材3との間には余分な隙間が無く、且つ、玉8が径方向に移動するための内外レース5,7間にも余分な隙間が無い。その結果、軸受1を小型化しつつその偏心可能範囲を広くすることができる。
【0018】
玉8が径方向に移動するための内外レース5,7間に余分な隙間が無いということは、隙間距離Rを定める要素となる外レース部5及び内レース部7の径方向幅が最小限とされていることをも意味する。よって、内外レース部5,7が小さくなり、軸受1の小型化や軽量化、コストダウンが可能となる。なお、内レース部7の径方向幅は外レース部5の径方向幅よりも広くなっているが、これは内レース部7と内側ケース部6,6とを接合するために、内側ケース部6,6に挟まれる挟み代を設けたためであって、内レース部7の径方向幅が不必要に大きくなっているわけではない。
【0019】
さらに、この第一実施形態に係る軸受1では、距離Lは距離M(内側部材3の径方向最外端面15と外側部材2,2との間の径方向隙間距離)とを略同一としている。即ち、距離Mは距離R(転動体である玉8の移動可能距離)の略2倍となっている。よって、内側部材3の径方向最外端面15と外側部材2,2との間の径方向隙間も最小限となっている。したがって、外側部材2の外径を小さくすることができ、軸受1を小型化することができる。
【0020】
距離Lと距離Mを略同一としていることから、ある径方向において距離Lが無くなるまで内側部材3と外側部材2を相対移動即ち偏心させると、その径方向において距離Mも略無くなることとなる。隙間距離Lと隙間距離Mとの差が大きい場合は、これらのうち距離の小さい方の隙間によって軸受1の偏心可能範囲が制約されてしまうが、両者を略同一としたことにより、軸受1を小型化しながら軸受1の偏心可能範囲を最大限とすることができる。
【0021】
なお、シールド13,13は、軸受1の偏心可能範囲を制約しないように工夫されている。即ち、図2に示すように、標準状態においてシールド13,13の径方向外側末端から、外側ケース部4の外面に設けられ且つシールド13,13の面厚さと略同じ深さを有するシールド用段差14までの径方向距離Sは、距離Lよりも若干長くなっている。なお、標準状態においてシールド13,13と外側ケース部4の外面が重なった部分の径方向長さTは、距離Lよりも若干長くされており、軸受1の偏心可能範囲の全てにおいて軸受1の内部を隠蔽するようにされている。
【0022】
各玉8及びリング状保持器9を図2のような位置、即ち、標準状態において外レース部5の径方向中心位置に配置するには、予圧付加用ねじ等で内外部材間に軽予圧を与えた状態で軸受1を相対移動可能範囲の全体、即ち、全周に亘って偏心可能範囲の限界まで動かせばよい。このようにすると、リング状保持器9の外周面又は内周面が外側部材2又は内側部材3と適宜当接して、玉8及びリング状保持器9が内外レース部5,7上を適宜滑ることにより位置調整がなされる。その後規定のトルクで予圧付加用ねじを締結すればよい。このように、リング状保持器9により、玉8を外レース部5の径方向中心位置に配置することが極めて容易となる。
【0023】
転動体である玉8に偏荷重が作用した場合、一部の玉8がレースから浮く等して位置ズレを起こす恐れがあるが、リング状保持器9を設けておくことにより一部の玉8が移動して玉8の相対的位置関係が乱れることがない。一方、リング状保持器9の位置がずれてしまう場合がある。つまり、リング状保持器9は径方向位置がガイドされていないので、標準状態においてリング状保持器9の軸心が軸受1の軸心とずれてしまうことがありうる。このような位置ズレを抑制し、各玉8のPCDを維持するためには、予圧付加用ねじ等により内外部材間に予圧を与えて、転動体である各玉8と内外レース5,7間の滑りを抑えるようにしておくのがよい。また、リング状保持器9の位置がずれた場合は、前述のように軸受1を組み立てた状態のまま極めて簡便に位置修正が可能である。
【0024】
この軸受1の素材は特に限定しない。ただし、軸受1を軽量化する観点からは、外側ケース部4と内側ケース部6はアルミ合金等の軽金属や樹脂とし、内レース部7と外レース部5は軸受用鋼やステンレス合金、セラミック材料等とするのが好ましい。このようにすると、外側部材2及び内側部材3のうち、転動体である玉8との接点となる内外レース部5,7のみを、硬度が高く耐摩耗性や耐疲労性に優れた軸受用鋼等の材料とする一方で、外側ケース部4及び内側ケース部6をアルミ合金等の軽い材料として、軸受1を軽量化できる。なお通常、リング状保持器9は樹脂等で作製され、玉8は軸受用鋼等により作製される。シールド13はステンレス鋼あるいは樹脂等で作製することが可能である。
【0025】
図3は、本発明の第二実施形態に係る軸受20の断面図(軸心から下半分は記載を省略)である。この軸受20では、第一実施形態の軸受1と異なり、内側部材3が一体となっている。即ち、内レース部7と内側ケース部6とが一体とされている。このようにすると、部品点数が少なくなり、また軸受20の軸方向厚みを薄くできる点において好ましい。ただしこの場合、内レース部7を軸受用鋼等とすると内側部材3全体が軸受用鋼等となるため、軽量化の観点からは不利である。即ち、軽量化の観点からは、第一実施形態に係る軸受1のように、内レース部7と内側ケース部6は別体とするのが好ましい。
【0026】
図4は、本発明の第三実施形態に係る軸受30の断面図(軸心から下半分は記載を省略)である。この軸受30では、第二実施形態に係る軸受20と同様に内側部材3が一体となっているのに加えて、外側部材2が一体となっている。即ち、外側ケース部4と外レース部5とが一体とされている。このようにすると更に部品点数が少なくなり、また軸受の軸方向厚みを薄くできる点においてより好ましい。ただし、前述のように軽量化の観点からは不利である。即ち、軽量化の観点からより好ましいのは、第一実施形態に係る軸受1のように、内レース部7と内側ケース部6を別体とし且つ外側ケース部4と外レース部5を別体とするのがよい。
【0027】
なお、本発明にかかる軸受がアセンブル部材として軸受以外の他の外部装置に取り付けられて使用された場合に、この外部装置において例えばゴムやバネ等の反力を用いて軸受の偏心範囲を制約する手段があり、これにより制約される範囲が軸受の偏心可能範囲よりも狭い範囲であれば、軸受の各構成部品間で互いに干渉することがない。
【0028】
なお、上記の実施形態では、外側部材2を径方向外側に配し、内側部材3を外側部材2の径方向内側に配する例を示したが、逆に、外側部材2を径方向内側に配し、内側部材3を外側部材2の径方向外側に配しても良い。この場合、内側部材3の円環状の内レース部7は、内側ケース部6から径方向内側に突出して設けられる。
【0029】
【発明の効果】
上述のように、本発明によれば、自由に相対回転可能な複列偏心スラスト軸受において、軸受の偏心可能範囲に対して各部材間の隙間をより適切とすることにより、小型化や軽量化が可能となる軸受を提供することができる。
【図面の簡単な説明】
【図1】本発明の第一実施形態に係る偏心スラスト軸受の分解斜視図である。
【図2】本発明の第一実施形態に係る偏心スラスト軸受の断面図である
【図3】本発明の第二実施形態に係る偏心スラスト軸受の断面図である。
【図4】本発明の第三実施形態に係る偏心スラスト軸受の断面図である。
【符号の説明】
1 軸受
2 外側部材
3 内側部材
4 外側ケース部
5 外レース部
6 内側ケース部
7 内レース部
8 玉
9 リング状保持器
13 シールド
15 内側部材の径方向最外端面
16 外側部材の径方向最内端面
20 軸受
30 軸受
M 内側部材の径方向最外端面と外側部材との間の径方向隙間距離
L 外側部材の径方向最内端面と内側部材との間の径方向隙間距離
R 玉の径方向移動可能距離
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a double-row eccentric thrust bearing.
[0002]
[Prior art]
Conventional double-row eccentric thrust bearings are generally composed of one inner race, two outer races opposed to both surfaces of the inner member, and two rows of rolling elements interposed between the races. ing. In this double row eccentric thrust bearing, two outer races are provided, and two rows of rolling elements respectively support axial loads in opposite directions, so that axial loads in both directions can be supported. Some of such used eccentric thrust bearings are capable of freely rotating the inner race and the outer race relative to each other.
[0003]
[Problems to be solved by the invention]
However, in such a conventional double-row eccentric thrust bearing, no study has been made to properly set the gap between the inner and outer members provided for eccentricity with respect to the eccentric range of the bearing. For this reason, the gap between the inner and outer members, the race, and the like become unnecessarily large, and the bearing becomes unnecessarily large. For this reason, the weight and cost of the bearing are increased.
[0004]
The present invention has been made in view of such circumstances, and in a double-row eccentric thrust bearing that can freely rotate relative to each other, by making the gap between the members more suitable for the eccentric range of the bearing, It is an object of the present invention to provide a bearing that can be reduced in size and weight.
[0005]
[Means for Solving the Problems]
In order to achieve the object, according to the present invention, there are provided two annular outer members which are concentrically opposed to each other and are integrally joined, and an annular inner member which is concentrically interposed between the two outer members. Each of the two outer members has an annular outer case portion and an annular plate-shaped outer race portion attached to the outer case portion, and the inner member has an annular shape. An inner case portion, and an annular race-shaped inner race portion protruding radially from the inner case portion, between the two outer race portions facing both surfaces of the inner race portion and the two outer race portions facing each other. In a double row eccentric thrust bearing in which a plurality of rolling elements are sandwiched, a relative movable range generated by a radial gap between the outer member and the inner member substantially corresponds to a radial movable distance of the rolling elements. Specially And a double row eccentric thrust bearing to.
[0006]
In this bearing, the inner race portion and the two outer race portions facing the inner race portion are both annular and continuous in the circumferential direction, so that the inner member and the outer member can freely rotate relative to each other. ing. Further, since all the case portions and the race portions of the inner member and the outer member are all annular and are arranged concentrically, the radial gap between the outer member and the inner member is constant over the entire circumference. A distance can be provided. Therefore, it is possible to adopt a configuration in which the eccentricity is constant for a fixed distance in all the radial directions.
[0007]
In addition, the relative movable range caused by the radial gap between the outer member and the inner member substantially corresponds to the radial movable distance of the rolling element. Therefore, when the eccentricity is achieved until the radial gap between the outer member and the inner member substantially disappears, the rolling element also moves in the eccentric direction until the radial gap provided on the race disappears. Therefore, the extra gap can be eliminated or the extra gap can be minimized, and as a result, the eccentric range can be increased while the bearing is downsized.
[0008]
Further, the plurality of rolling elements are arranged at substantially equal intervals in the circumferential direction, and further include an annular retainer that rotatably holds the rolling elements while maintaining the relative positional relationship. It is preferable that the radially movable distance of the rolling element is ensured by a radial gap between the inner member and the outer member. With this configuration, the rolling elements that serve as support points for the bearings are substantially evenly distributed in the circumferential direction, and the relative positional relationship between the rolling elements is maintained by the retainer, so that the axial load and the moment load can be more stably reduced. Can be supported. Further, the load applied to each rolling element can be equalized, and the load capacity of the entire bearing increases. Further, since there is a radial gap between the retainer and the inner member and the outer member, the rolling elements can move in the radial direction. Further, the retainer makes it easy to arrange each rolling element at an optimal position on the race. In other words, it is not easy to properly adjust the position of the rolling element on the race, but it is easy to adjust the position by eccentrically maximizing the entire circumference in the radial direction with a light preload applied to the bearing. it can. When the position of the rolling element is deviated, the retainer abuts on the outer member or the inner member and slides on the race together with the rolling element, whereby the position of the rolling element and the retainer accommodating the rolling element are adjusted.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view of an eccentric thrust bearing according to a first embodiment of the present invention, and FIG. 2 is a sectional view of the bearing (the lower half from the axis is omitted). As shown in FIGS. 1 and 2, the bearing 1 includes two annular outer members 2 and 2 opposed to each other and integrally joined, and an annular annular member interposed between the two outer members. And an inner member 3. FIG. 2 is a diagram in a neutral state (hereinafter, referred to as a standard state) in which the ball 8 as a rolling element does not move in any of the radial directions.
[0010]
Each of the two outer members 2 includes an annular outer case portion 4 and an annular plate-shaped outer race portion 5 mounted on the facing surface side of the outer case portion 4. The outer case part 4 and the outer race part 5 are separate members, and the outer race part 5 is attached to a concave part 4a provided on the facing surface side of the outer case part 4 (see FIG. 2). Further, the two outer case portions 4 and 4 are integrally joined by an outer screw 11 in the vicinity of a radially outer peripheral portion (see FIG. 2; not shown in FIG. 1). The inner member 3 includes two annular inner case portions 6 and 6 and an annular plate-shaped inner race portion 7 protruding radially outward from the two inner case portions 6 and 6 and extending in a flange shape. The inner case parts 6, 6 and the inner race part 7 are separate bodies, and the three parts are integrally joined by the inner screw 12 while the inner race part 7 is sandwiched by the two inner case parts 6, 6. (Refer to FIG. 2; description is omitted in FIG. 1.) As shown in FIG. 2, the axial center of the inner race portion 7 coincides with the axial center of the bearing 1, and the bearing 1 has a configuration symmetrical with respect to a plane passing through the center and perpendicular to the axis. I have.
[0011]
Both surfaces of the inner race portion 7 are track surfaces, and a plurality of rolling elements such as balls 8 are provided between both surfaces of the inner race portion 7 and two outer race portions 5 and 5 opposed thereto. Is pinched. Therefore, the bearing 1 is a double-row bearing. Twenty-four balls 8 are used per row, for a total of 48 balls, and these balls 8 are arranged substantially evenly in the circumferential direction in each row. Further, a total of two ring-shaped retainers 9, 9 are provided, one for each row, and the balls 8 are individually rollable in pocket holes 9a provided at substantially equal intervals in the ring-shaped retainer 9. Is contained. Due to the ring-shaped retainer 9, the balls 8 maintain a positional relationship at substantially equal intervals in the circumferential direction. Thus, the axial load and the moment load are stably supported by the plurality of balls 8 serving as the support points of the bearing 1 being arranged at substantially equal intervals in the circumferential direction. The number of balls 8 is required to be at least three per row, but may be set as appropriate according to the load capacity and the bearing dimensions.
[0012]
Since the inner and outer races 5 and 7 are both annular members, they form a continuous raceway surface in the circumferential direction. Therefore, the ball 8 can revolve. That is, the bearing 1 can freely rotate relatively between the outer member 2 and the inner member 3. Note that the ring-shaped retainer 9 moves in synchronization with the ball 8.
[0013]
On the outermost surface in the axial direction of the bearing 1, thin annular plate-shaped shields 13 are provided. As shown in FIG. 2, these shields 13, 13 are fixed to the axially outer end of the inner case part 6, from which they extend radially outward along the axially outer surface of the outer case part 4. Extending. Since the shields 13 and 13 are arranged so as to overlap with the axially outer surface of the outer case portion 4 with a slight gap therebetween, it is possible to suppress the entry of foreign matter into the bearing 1 and to lubricate the bearing 1. It has a sealing function to prevent agents (lubricating oil, grease, etc.) from leaking to the outside. Note that a seal for sealing the inside of the bearing 1 can be further added in order to enhance the sealing effect, for example, to prevent moisture from entering the inside of the bearing 1.
[0014]
Except for the ball 8 which is a rolling element, all members of the bearing 1 have a constant annular width over the entire circumference in the radial direction, and are all arranged concentrically in a standard state. Therefore, in the standard state, a gap of a distance M in the radial direction exists between the radially outermost end face 15 of the inner member 3 and the outer members 2 and 2 over the entire circumference in the circumferential direction. Similarly, in the standard state, a gap of a distance L in the radial direction exists between the radially innermost end face 16 of the outer members 2 and 2 and the inner member 3 over the entire circumference in the circumferential direction. Thus, since the bearing 1 has a uniform gap over the entire circumference in the circumferential direction, the bearing 1 can be decentered by a certain distance in all circumferential directions. The relative movable range between the outer member 2 and the inner member 3 is determined by the radial gap between the two members.
[0015]
On the other hand, the outer race portions 5 and 5 are annular plate-shaped members having a predetermined radial width, and the radial width is the same over the entire circumference. As described above, the outer race portions 5 and 5 have a width in the radial direction, and the inner case portion 6 has a radial width equal to or greater than the radial width of the outer race portions 5 and 5. Since they face each other, the balls 8 have room to move in the radial direction. In the bearing 1, the ball 8 is housed in the ring-shaped retainer 9, so that the ball 8 has a diameter until the inner peripheral surface or the outer peripheral surface of the ring-shaped retainer 9 contacts the inner member 3 or the outer member 2. It is possible to move in the direction. In this bearing 1, in the standard state, a gap having a radial distance R exists between the outer peripheral surface of the ring-shaped retainer 9 and the outer member 2 over the entire circumference in the circumferential direction. A gap of the same distance R in the radial direction exists between the inner circumferential surface of the retainer 9 and the inner member 3 over the entire circumference in the circumferential direction (see FIG. 2). Due to the gap distance R, the ball 8 and the ring-shaped retainer 9 can move in the radial direction with a width of the distance R in all directions.
[0016]
In this bearing 1, the distance L is twice the distance R. That is, the following equation L = 2R
Holds. This corresponds to the fact that the moving distance of the ball 8, which is a rolling element, is half (1/2) of the relative moving distance of the inner and outer race parts 5, 7. Further, the distance M is preferably substantially the same as the distance L, and more preferably the same. Further, it is only necessary that L ≧ 2R.
[0017]
As described above, in the bearing 1, the relative movable range generated by the radial gap between the outer member 2 and the inner member 3 substantially corresponds to the radial movable distance of the ball 8 as a rolling element. Therefore, if the radial gap distance L between the outer member 2 and the inner member 3 (the radial gap distance between the radial innermost end face 16 of the outer members 2 and 2 and the inner member 3) is eliminated, the two members are eccentric. The ball 8, which is a rolling element, moves until the gap distance R in the eccentric direction disappears. Therefore, there is no extra gap between the radially innermost end face 16 of the outer members 2 and 2 and the inner member 3, and there is no extra space between the inner and outer races 5 and 7 for the ball 8 to move in the radial direction. There is no gap. As a result, the eccentric range can be widened while the bearing 1 is downsized.
[0018]
The fact that there is no extra gap between the inner and outer races 5 and 7 for the ball 8 to move in the radial direction means that the radial width of the outer race part 5 and the inner race part 7 which is an element that determines the gap distance R is minimized. It also means that it is. Therefore, the inner and outer race portions 5 and 7 become smaller, and the bearing 1 can be reduced in size, weight, and cost. Although the radial width of the inner race portion 7 is wider than the radial width of the outer race portion 5, this is because the inner race portion 7 and the inner case portions 6, 6 are joined together. This is because the clip margin is provided between the inner race portions 6 and 6, and the radial width of the inner race portion 7 is not unnecessarily increased.
[0019]
Further, in the bearing 1 according to the first embodiment, the distance L is substantially equal to the distance M (the radial gap distance between the radially outermost end surface 15 of the inner member 3 and the outer members 2, 2). . That is, the distance M is approximately twice the distance R (the movable distance of the ball 8 as a rolling element). Therefore, the radial gap between the radially outermost end surface 15 of the inner member 3 and the outer members 2 is also minimized. Therefore, the outer diameter of the outer member 2 can be reduced, and the size of the bearing 1 can be reduced.
[0020]
Since the distance L and the distance M are substantially the same, if the inner member 3 and the outer member 2 are relatively moved or eccentric until the distance L is eliminated in a certain radial direction, the distance M is also substantially eliminated in the radial direction. When the difference between the gap distance L and the gap distance M is large, the eccentric range of the bearing 1 is restricted by the smaller one of these gaps. It is possible to maximize the eccentric range of the bearing 1 while miniaturizing it.
[0021]
The shields 13 are designed so as not to restrict the eccentric range of the bearing 1. That is, as shown in FIG. 2, a shield step provided in the standard state from the radially outer end of the shields 13 and 13 to the outer surface of the outer case portion 4 and having substantially the same depth as the surface thickness of the shields 13 and 13. The radial distance S to 14 is slightly longer than the distance L. In the standard state, the radial length T of the portion where the outer surfaces of the shields 13 and 13 and the outer case portion 4 overlap each other is slightly longer than the distance L, and the bearing 1 has the entire eccentric range. It is designed to hide the inside.
[0022]
In order to arrange each ball 8 and the ring-shaped retainer 9 at the position as shown in FIG. In this state, the bearing 1 may be moved to the entire relative movable range, that is, to the limit of the eccentric range over the entire circumference. In this case, the outer peripheral surface or the inner peripheral surface of the ring-shaped retainer 9 appropriately contacts the outer member 2 or the inner member 3, and the ball 8 and the ring-shaped retainer 9 slide on the inner and outer race portions 5, 7 as appropriate. Thus, the position is adjusted. Thereafter, the preload applying screw may be tightened with a specified torque. Thus, the ring-shaped retainer 9 makes it extremely easy to arrange the ball 8 at the radial center position of the outer race portion 5.
[0023]
When an eccentric load is applied to the ball 8 as a rolling element, there is a risk that some of the balls 8 may float from the race and cause a positional shift. However, by providing the ring-shaped retainer 9, some of the balls 8 are provided. The relative position of the ball 8 is not disturbed by the movement of the ball 8. On the other hand, the position of the ring-shaped retainer 9 may be shifted. That is, since the radial position of the ring-shaped retainer 9 is not guided, the axis of the ring-shaped retainer 9 may be shifted from the axis of the bearing 1 in the standard state. In order to suppress such displacement and maintain the PCD of each ball 8, a preload is applied between the inner and outer members by a preloading screw or the like, so that each ball 8 which is a rolling element and the inner and outer races 5 and 7 are provided. It is better to keep the skid from slipping. Further, when the position of the ring-shaped retainer 9 is shifted, the position can be corrected extremely easily while the bearing 1 is assembled as described above.
[0024]
The material of the bearing 1 is not particularly limited. However, from the viewpoint of reducing the weight of the bearing 1, the outer case part 4 and the inner case part 6 are made of light metal such as aluminum alloy or resin, and the inner race part 7 and the outer race part 5 are made of bearing steel, stainless alloy, ceramic material. And so on. In this way, of the outer member 2 and the inner member 3, only the inner and outer race portions 5, 7 serving as contact points with the balls 8, which are rolling elements, are used for bearings having high hardness and excellent wear resistance and fatigue resistance. While using a material such as steel, the outer case 4 and the inner case 6 are made of a light material such as an aluminum alloy, so that the weight of the bearing 1 can be reduced. Usually, the ring-shaped retainer 9 is made of resin or the like, and the ball 8 is made of bearing steel or the like. The shield 13 can be made of stainless steel or resin.
[0025]
FIG. 3 is a sectional view of the bearing 20 according to the second embodiment of the present invention (the lower half from the axis is omitted). In the bearing 20, unlike the bearing 1 of the first embodiment, the inner member 3 is integrated. That is, the inner race part 7 and the inner case part 6 are integrated. This is preferable in that the number of components is reduced and the axial thickness of the bearing 20 can be reduced. However, in this case, if the inner race portion 7 is made of bearing steel or the like, the entire inner member 3 is made of bearing steel or the like, which is disadvantageous in terms of weight reduction. That is, from the viewpoint of weight reduction, as in the bearing 1 according to the first embodiment, it is preferable that the inner race portion 7 and the inner case portion 6 are formed separately.
[0026]
FIG. 4 is a sectional view of a bearing 30 according to a third embodiment of the present invention (the lower half from the axis is omitted). In the bearing 30, the inner member 3 is integrated as in the bearing 20 according to the second embodiment, and the outer member 2 is integrated. That is, the outer case part 4 and the outer race part 5 are integrated. This is more preferable in that the number of parts can be further reduced and the axial thickness of the bearing can be reduced. However, it is disadvantageous from the viewpoint of weight reduction as described above. That is, it is more preferable from the viewpoint of weight reduction that the inner race portion 7 and the inner case portion 6 are separated and the outer case portion 4 and the outer race portion 5 are separated as in the bearing 1 according to the first embodiment. It is better to do.
[0027]
When the bearing according to the present invention is used by being attached to an external device other than the bearing as an assembling member, the eccentric range of the bearing is restricted by using a reaction force of, for example, rubber or a spring in the external device. As long as the means is provided and the range restricted by this is smaller than the eccentric range of the bearing, the components of the bearing do not interfere with each other.
[0028]
In the above-described embodiment, an example in which the outer member 2 is arranged radially outward and the inner member 3 is arranged radially inward of the outer member 2 has been described. Conversely, the outer member 2 is arranged radially inward. The inner member 3 may be arranged radially outside the outer member 2. In this case, the annular inner race portion 7 of the inner member 3 is provided so as to protrude radially inward from the inner case portion 6.
[0029]
【The invention's effect】
As described above, according to the present invention, in a double-row eccentric thrust bearing that can freely rotate relative to each other, the gap between each member is made more appropriate with respect to the eccentric range of the bearing, thereby reducing the size and weight. Can be provided.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of an eccentric thrust bearing according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of an eccentric thrust bearing according to a first embodiment of the present invention. FIG. 3 is a cross-sectional view of an eccentric thrust bearing according to a second embodiment of the present invention.
FIG. 4 is a sectional view of an eccentric thrust bearing according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bearing 2 Outer member 3 Inner member 4 Outer case part 5 Outer race part 6 Inner case part 7 Inner race part 8 Ball 9 Ring-shaped retainer 13 Shield 15 Radial outermost end face 16 of inner member 16 Radial innermost of outer member End surface 20 Bearing 30 Bearing M Radial gap distance L between the radially outermost end surface of the inner member and the outer member L Radial gap distance R between the radially innermost end surface of the outer member and the inner member R Ball direction Moveable distance

Claims (2)

互いに同心で対向し且つ一体的に接合された円環状の二つの外側部材と、
この二つの外側部材相互間に同心で介在する円環状の内側部材と、
を有し、
前記二つの外側部材のそれぞれは、円環状の外側ケース部と、この外側ケース部に取り付けられた円環板状の外レース部を備えており、
前記内側部材は、円環状の内側ケース部と、この内側ケース部から径方向に突出して延びる円環板状の内レース部を備えるとともに、
前記内レース部の両面と、これらに対向する前記二つの外レース部との間に複数の転動体が挟持された複列偏心スラスト軸受において、
前記外側部材と前記内側部材との間の径方向隙間により生ずる相対移動可能範囲が、前記転動体の径方向移動可能距離に略対応していることを特徴とする複列偏心スラスト軸受。
Two annular outer members concentrically facing each other and integrally joined;
An annular inner member concentrically interposed between the two outer members,
Has,
Each of the two outer members includes an annular outer case portion, and an annular plate-shaped outer race portion attached to the outer case portion,
The inner member includes an annular inner case portion, and an annular plate-shaped inner race portion extending radially from the inner case portion and extending therefrom.
In a double-row eccentric thrust bearing in which a plurality of rolling elements are sandwiched between both surfaces of the inner race portion and the two outer race portions facing each other,
A double-row eccentric thrust bearing, wherein a relative movable range generated by a radial gap between the outer member and the inner member substantially corresponds to a radial movable distance of the rolling element.
前記複数の転動体は周方向に略均等間隔で配置されるとともに、この相対的位置関係を維持しつつ転動体を転動自在に保持する円環状の保持器を有し、この保持器と前記内側部材及び前記外側部材との間の径方向隙間により、転動体の前記径方向移動可能距離が確保されていることを特徴とする請求項1に記載の複列偏心スラスト軸受。The plurality of rolling elements are arranged at substantially equal intervals in the circumferential direction, and have an annular retainer that holds the rolling elements so as to freely roll while maintaining this relative positional relationship. 2. The double-row eccentric thrust bearing according to claim 1, wherein the radially movable distance of the rolling element is secured by a radial gap between the inner member and the outer member. 3.
JP2003100551A 2003-04-03 2003-04-03 Double row eccentric thrust bearing Expired - Fee Related JP4134790B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2003100551A JP4134790B2 (en) 2003-04-03 2003-04-03 Double row eccentric thrust bearing
PCT/JP2004/004898 WO2004090358A1 (en) 2003-04-03 2004-04-05 Offset thrust bearing
KR1020057018716A KR20060015493A (en) 2003-04-03 2004-04-05 Offset thrust bearing
CN2008101710835A CN101429970B (en) 2003-04-03 2004-04-05 Offset thrust bearing
EP04725799A EP1610009A4 (en) 2003-04-03 2004-04-05 Offset thrust bearing
US10/551,700 US7575378B2 (en) 2003-04-03 2004-04-05 Offset thrust bearing
CN2008101710854A CN101429972B (en) 2003-04-03 2004-04-05 Offset thrust bearing
CN200810171084XA CN101429971B (en) 2003-04-03 2004-04-05 Offset thrust bearing
EP09169400A EP2119922A3 (en) 2003-04-03 2004-04-05 Eccentric thrust bearing assembly
US12/466,938 US7976224B2 (en) 2003-04-03 2009-05-15 Eccentric thrust bearing assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100551A JP4134790B2 (en) 2003-04-03 2003-04-03 Double row eccentric thrust bearing

Publications (2)

Publication Number Publication Date
JP2004308712A true JP2004308712A (en) 2004-11-04
JP4134790B2 JP4134790B2 (en) 2008-08-20

Family

ID=33464654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100551A Expired - Fee Related JP4134790B2 (en) 2003-04-03 2003-04-03 Double row eccentric thrust bearing

Country Status (1)

Country Link
JP (1) JP4134790B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683891B1 (en) * 2018-12-07 2020-06-16 Schaeffler Technologies AG & Co. KG Stacked thrust bearing arrangement
CN111322309A (en) * 2020-04-03 2020-06-23 海宁奇晟轴承有限公司 Eccentric bearing with continuously adjustable eccentric amount

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683891B1 (en) * 2018-12-07 2020-06-16 Schaeffler Technologies AG & Co. KG Stacked thrust bearing arrangement
CN111322309A (en) * 2020-04-03 2020-06-23 海宁奇晟轴承有限公司 Eccentric bearing with continuously adjustable eccentric amount

Also Published As

Publication number Publication date
JP4134790B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
WO2011055630A1 (en) Camshaft apparatus
JP2008025608A (en) Cage for roller bearing
JP4929605B2 (en) Rolling bearing and camshaft device
JP2008014411A (en) Rolling bearing lubricating structure
JP2006266277A (en) Self-aligning roller bearing with cage
US7976224B2 (en) Eccentric thrust bearing assembly
JP2007120591A (en) Cam follower and roller follower
JP4530666B2 (en) Thrust bearing assembly
JP2009074679A (en) Self-aligning roller bearing
JP2004308712A (en) Double row eccentric thrust bearing
JP4411979B2 (en) Bearing device
JP2000320558A (en) Synthetic resin made retainer for roller bearing
JP2009127808A (en) Shaft device with bearing
JP3757309B2 (en) Pinion shaft support bearing unit
JP2004036825A (en) Four-point contact ball bearing
JP4178316B2 (en) Double row eccentric thrust bearing
JP2008116034A (en) Roller bearing
JP4134791B2 (en) Double row eccentric thrust bearing
JP2008232311A (en) Roller bearing
JPH102326A (en) Composite bearing
JP2009174669A (en) Self-alignment roller bearing
JP2004308720A (en) Eccentric thrust bearing
JP2013061040A (en) Self-aligning rolling bearing
KR20180061678A (en) A cage for ball bearing and a ball bearing with the cage
JP2008032069A (en) Split roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees