JP2004307975A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2004307975A
JP2004307975A JP2003106129A JP2003106129A JP2004307975A JP 2004307975 A JP2004307975 A JP 2004307975A JP 2003106129 A JP2003106129 A JP 2003106129A JP 2003106129 A JP2003106129 A JP 2003106129A JP 2004307975 A JP2004307975 A JP 2004307975A
Authority
JP
Japan
Prior art keywords
alloy
sliding member
thermal spray
particles
spray coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106129A
Other languages
Japanese (ja)
Inventor
Akira Obara
亮 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2003106129A priority Critical patent/JP2004307975A/en
Publication of JP2004307975A publication Critical patent/JP2004307975A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding member, especially a piston ring, excellent in abrasion resistance, seize resistance, and peel resistance and having low aggressivity to a mate member. <P>SOLUTION: The sliding member has a thermal spray coating film on at least a sliding face. The coating film mainly comprises hard particles A consisting of at least one kind of hard particles having an average particle size of 5-45 μm and a composite powder B having chromium carbide particles with the average particle size of 5 μm or less and dispersedly precipitated in a matrix consisting of a Ni-Cr alloy or consisting of a Ni-Cr alloy and Ni. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は炭化クロム粒子とNi−Cr合金を含む溶射皮膜を有する摺動部材に関し、特に内燃機関、圧縮機等に使用するピストンリングに関する。
【0002】
【従来の技術】
内燃機関の高出力化等の高性能化に伴い、耐摩耗性や耐焼付性を有するピストンリングが要求され、鋳鉄製又は鋼製のピストンリング外周摺動面に硬質クロムめっき、ニッケル複合めっき、窒化、イオンプレーティング、溶射等の表面処理が施されるようになっている。
【0003】
例えば、Cr粉末とNi−Cr合金粉末を用い、不活性ガス雰囲気中で減圧プラズマ溶射することにより緻密で、耐摩耗性、耐焼付性及び耐剥離性に優れた溶射皮膜を形成できることが開示されている(例えば、特許文献1参照。)。また、プラズマ溶射ではなく高速酸素火炎(HVOF)溶射を用いることにより、より緻密な溶射皮膜を形成できることが開示されている(例えば、特許文献2参照。)。しかしながら、これらの溶射皮膜を有するピストンリングは、耐摩耗性、耐焼付性及び耐剥離性についてはかなり改善されたものの、相手攻撃性についてはまだ十分な特性が得られていない。
【0004】
使用条件が特に過酷なディーゼルエンジン用ピストンリングにおいては、Cr粉末とNi−Cr合金粉末を用いた溶射皮膜を有するピストンリングが開示されている(例えば、特許文献3参照。)。しかしながら、この溶射皮膜を有するピストンリングを使用すると、自己摩耗は少ないが相手材であるシリンダライナの上死点付近が大きく摩耗するという不具合が発生することがあり、改善が求められている。不具合が発生する理由としては、Ni−Cr合金が溶射により溶融して扁平状になり、20〜40μmの大きなNi−Cr合金のみからなる領域が生成し、皮膜組織が不均質になることが挙げられる。Ni−Cr合金は、Crと比べ硬度が低いため、Ni−Cr合金のみからなる領域が選択的に摩耗し、残った炭化クロムの多い領域が相手材を摩耗させることになる。溶射皮膜を有する摺動部材の相手攻撃性についてはまだ十分な特性が得られておらず、相手攻撃性を改善した溶射皮膜の開発が求められている。
【0005】
【特許文献1】
特開平3−172681号公報
【特許文献2】
特開平8−210504号公報
【特許文献3】
特開平3−172681号公報
【0006】
【発明が解決しようとする課題】
従って本発明の目的は、耐摩耗性、耐焼付性及び耐剥離性に優れ、かつ相手攻撃性の少ない摺動部材、特にピストンリングを提供することである。
【0007】
【課題を解決するための手段】
上記目的に鑑み鋭意研究の結果、本発明者は、平均粒子径が5〜45μmの少なくとも一種の硬質粒子と、平均粒子径が5μm以下の炭化クロム粒子がNi−Cr合金又はNi−Cr合金及びNiからなる基地中に分散して析出した複合粉末とを主成分とした溶射皮膜を少なくとも摺動面に形成することにより、耐摩耗性、耐焼付性及び耐剥離性に優れ、かつ相手攻撃性を改善した摺動部材が得られることを発見し、本発明に想到した。
【0008】
すなわち、本発明の摺動部材は、平均粒子径が5〜45μmの少なくとも一種の硬質粒子からなる硬質粒子Aと、平均粒子径が5μm以下の炭化クロム粒子がNi−Cr合金又はNi−Cr合金及びNiからなる基地中に分散して析出した複合粉末Bとを主成分とする溶射皮膜が、少なくとも摺動面に被覆されていることを特徴とする。
【0009】
摺動部材としてはピストンリング、ベーン、リフター等が挙げられるが、特に外周摺動面に溶射皮膜が形成されたピストンリングにおいて優れた効果が得られる。前記溶射皮膜のうち空孔を除いた部分の面積率を100%としたとき硬質粒子Aからなる領域の面積率が20〜80%であるのが好ましい。複合粉末Bは、急速凝固微粒化法によって形成されるのが好ましく、硬質粒子Aと複合粉末Bを主成分とする溶射皮膜は高速フレーム溶射法により形成されるのが好ましい。
【0010】
本発明の摺動部材は、摺動部材として適度な硬度を有する硬質粒子Aと、硬質粒子Aのバインダーとして平均粒子径が5μm以下の炭化クロム微細粒子がNi−Cr合金又はNi−Cr合金及びNiからなる基地中に分散して析出した複合粉末Bを用いる。このため、従来のNi−Cr合金粉末からなるバインダーを用いる場合のように皮膜中の低硬度のNi−Cr合金相が選択的に摩耗してしまい、表面にCr等の硬質粒子が残り、相手材を摩耗させてしまうという問題がない。このように本発明の摺動部材は摺動部材自身の耐摩耗性に優れるとともに相手材攻撃性が低いという利点を有する。
【0011】
複合粉末Bは、Ni−Cr合金中に炭化クロム粒子を溶解させた溶融物から急速凝固微粒化法によって形成されるのが好ましい。急速凝固微粒化法により形成された複合粉末は炭化クロム粒子が微細となり、自己耐摩耗性を向上させるとともに相手材を摩耗させることが少ない。
【0012】
【発明の実施の形態】
[1] 溶射皮膜
本発明の摺動部材は、耐摩耗性を向上させる効果を有する硬質粒子Aと、相手攻撃性を低減するとともに硬質粒子Aのバインダーとしての効果を有する複合粉末Bとを主成分とする溶射皮膜を有する。
【0013】
(1) 硬質粒子A
本発明では耐摩耗性向上の観点から、溶射皮膜の成分として少なくとも一種の硬質粒子からなる硬質粒子Aを用いる。硬質粒子としては炭化物、窒化物、硼化物又は酸化物を用いることができる。炭化物としては炭化クロム(CrC、Cr、Cr、Cr23等)、炭化モリブデン(MoC)、炭化バナジウム(VC)、炭化タングステン(WC、WC等)、炭化チタン(TiC)等が挙げられる。中でも炭化クロム、炭化モリブデン、炭化タングステン及び炭化チタンが好ましい。炭化クロムにはCrC、Cr、Cr及びCr23があり、それぞれ炭化クロムに占めるCr量が異なり、それにより炭化クロムの特性が異なる。すなわち、炭化クロム中のCrの割合が高くなるに従い密度及び硬度が高くなる。炭化クロムを摺動材として使用する場合、耐摩耗性及び耐スカッフィング性を向上させるとともに、相手攻撃性が低いことが要求される。炭化クロムの中でもCrは摺動材として適度な硬度を有し耐摩耗性があり、かつ相手攻撃性が比較的低い。このため、溶射皮膜の成分としてCrを含有するのが特に好ましい。
【0014】
窒化物としては、窒化クロム(CrN、CrN等)、窒化バナジウム(VN)、窒化チタン(TiN)、窒化ジルコニウム(ZrN)等が挙げられ、窒化クロム又は窒化チタンが好ましい。硼化物としては、硼化クロム(CrB、CrB等)、硼化モリブデン(MoB、MoB、Mo等)、硼化タングステン(WB、W等)、硼化バナジウム(VB)、硼化チタン(TiB)、硼化ジルコニウム(ZrB)等が挙げられ、硼化クロムが好ましい。酸化物としては、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化チタン(チタニア)、酸化クロム(クロミア)等が好ましい。
【0015】
硬質粒子Aの平均粒子径は5〜45μmであり、10〜38μmであるのが好ましい。平均粒子径を5〜45μmの範囲に制御することにより溶射皮膜の耐摩耗性を向上させ、かつ相手材の摩耗を抑制することができる。平均粒子径が5μm未満では溶射皮膜の製膜が困難となる。平均粒子径が45μmを超えると硬質粒子が脱落しやすくなり、結果としてアブレシブ摩耗を起こして相手材を多く摩耗させてしまう。
【0016】
溶射皮膜のうち空孔を除いた部分の面積率を100%としたとき、硬質粒子Aからなる領域の面積率が20〜80%であるのが好ましい。面積率が20%未満であるとバインダー成分が多くなるため、溶射皮膜の耐摩耗性及び耐焼付性が不足する。また面積率が80%を超えると、硬質粒子の量が多過ぎ、溶射皮膜中に硬質粒子を保持することができなくなり、硬質粒子が脱落して相手材を多く摩耗させてしまう。2種以上の硬質粒子を用いる場合には各硬質粒子の面積率の合計が上記範囲になるのが好ましい。
【0017】
(2) 複合粉末B
複合粉末Bは、平均粒子径が5μm以下の炭化クロム粒子がNi−Cr合金又はNi−Cr合金及びNiからなる基地中に分散して析出した粉末である。炭化クロムの微細粒子がNi−Cr合金又はNi−Cr合金及びNiからなる基地中に分散しているため自己耐摩耗性に優れ、かつ相手攻撃性が低い。Ni−Cr合金又はNi−Cr合金及びNiは、母材及び炭化クロム粒子との結合性が良好なため、皮膜の密着性すなわち耐剥離性を向上させる。基地中に分散している炭化クロム粒子は特に限定されず、CrC、Cr、Cr及びCr23からなる群から選ばれた一種又は二種以上の混合物であってよい。炭化クロム粒子の平均粒子径は5μm以下であり、1〜3μmであるのが好ましい。炭化クロム粒子の平均粒子径が5μmを超えると炭化クロム粒子が砥粒として作用し相手材の摩耗が大きくなる。
【0018】
複合粉末Bに含まれる炭化クロム粒子の含有量は30〜80質量%が好ましく、40〜60質量%がより好ましい。30質量%より少ないとNi−Cr合金又はNi−Cr合金及びNiのみからなる領域が生じて選択的に摩耗してしまう。また、80質量%より多いとバインダーとしての機能が低下し、硬質粒子が脱落し、相手材を多く摩耗させてしまう。
【0019】
複合粉末Bは、炭化クロム粒子とNi−Cr合金又はNi−Cr合金及びNiが安定で強固に結合しているのが好ましい。炭化クロム粒子とNi−Cr合金(又はNi−Cr合金及びNi)の結合状態が安定で強固であれば、炭化クロム粒子によりNi−Cr合金同士による凝集又は溶融を阻害することができるが、結合状態が安定で強固でなければ、溶射によってNi−Cr合金同士又はNi同士が凝集又は溶融し粗大化するので、微細で均質な溶射皮膜を形成することが困難になる。
【0020】
[2] 溶射皮膜の形成方法
(1) 溶射粉末
溶射粉末は、平均粒子径が5〜45μmの硬質粒子Aと、平均粒子径が5μm以下の炭化クロム粒子がNi−Cr合金又はNi−Cr合金及びNiからなる基地中に分散して析出した複合粉末Bを所定の比率で混合することにより作製することができる。
【0021】
複合粉末Bの製造方法は、公知の方法を用いてよいが、特に急速凝固微粒化法によって溶融物から炭化クロムの微粒子を析出させる方法が好ましい。急速凝固微粒化法を用いることにより炭化クロム粒子とNi−Cr合金粒子(又はNi−Cr合金粒子及びNi粒子)が安定で強固に結合し、Ni−Cr合金又はNi−Cr合金及びNiからなる基地中に平均粒子径が5μm以下の炭化クロムの微粒子が分散して析出した複合粉末Bを得ることができる。高速フレーム溶射の場合、複合粉末Bの平均粒径は5〜45μmが好ましく、10〜38μmがより好ましい。
【0022】
急速凝固微粒化法は特に限定されず、水微粒化法、ガス微粒化法、アトマイズ法、回転円盤法等の公知の方法を用いることができるが、炭化クロムの粒子径を制御でき、凝固過程で炭化クロムの微粒子を基地中に均一に分散させることが可能な方法が好ましい。
【0023】
硬質粒子Aと複合粉末Bの配合比率(硬質粒子A/複合粉末B)は溶射方法により異なり特に限定されないが、通常質量比で10/90〜90/10であるのが好ましく、20/80〜80/20であるのがより好ましい。配合比率が10/90より低いと溶射皮膜中の硬質粒子Aの比率が低下し、溶射皮膜の耐摩耗性が低下する。配合比率が90/10より高いと硬質粒子Aが砥粒として作用するか、あるいは溶射皮膜中の複合粉末Bの比率が低下することにより溶射皮膜から硬質粒子が脱落しやすくなり、脱落した硬質粒子が摺動面上で遊離砥粒として作用して相手材を摩耗させる。
【0024】
(2) 前処理
ピストンリングに溶射皮膜を形成する場合、予めピストンリングに前処理を施してもよい。例えば、ピストンリングの母材に窒化処理等の表面処理を施してもよいし、溶射皮膜と母材の密着性の観点から母材に洗浄処理を施してもよい。溶射皮膜の剥離を防止する観点からは、溶射皮膜を形成する前に母材表面にショットブラスト等で10〜30μm程度の凹凸を形成するのが好ましい。これにより溶射材が母材の凸部に衝突した際に凸部が局部溶融を起こし、溶射材と母材が合金化しやすくなり皮膜の密着が強固となる。また、溶射直前に母材を約100℃に予熱した後、高速フレーム溶射装置によりフレームで母材の表面を洗浄するのも好ましい。これにより母材の表面が活性化し母材と皮膜が強固に密着する。
【0025】
(3) 溶射方法
相手攻撃性を低減するとともに耐摩耗性を向上させる観点から、溶射により溶射粉末が粗大化することなく、硬質粒子A及び複合粉末Bの各原料サイズをほぼ維持した溶射皮膜を形成することが望ましい。そのためにはプラズマ溶射のように原料を溶融させる方法より比較的低温で溶射できる方法が好ましい。このような方法としては高速酸素火炎溶射(HVOF:High Velocity Oxygen Fuel)、高速空気火炎溶射(HVAF:High Velocity Air Fuel)等の高速フレーム溶射法が好ましく、なかでも高速酸素火炎溶射法が特に好ましい。フレーム速度は高速であるほどよく、1200 m/秒以上が好ましく、2000 m/秒以上がより好ましい。溶射粉末の粒子速度は200 m/秒以上が好ましく、500 m/秒以上がより好ましい。
【0026】
ピストンリングに溶射皮膜を形成する場合、インレイド型であってもフルフェイス型であってもよい。インレイド型の場合は、ピストンリングの外周に溝を削設し溶射材を埋設することにより溶射皮膜を形成する。フルフェイス型の場合は、ピストンリングの外周面上に溶射材を堆積することにより溶射皮膜を形成する。
【0027】
ピストンリングの外周面に形成する溶射皮膜の厚さは、通常50〜500μmであり、好ましくは100〜300μmである。50μm未満では耐摩耗性が不足し、500μmを超えると剥離しやすくなる。
【0028】
【実施例】
本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
【0029】
実施例1〜5
(1) 溶射粉末の作製
硬質粒子Aとして粒子径が5〜45μmのCr粉末を用い、複合粉末Bとして急速凝固微粒化法によって製造されたSulzer Metco社製のSulzer Metco 5241(組成:クロム炭化物−39Ni−7C、粉末粒子径:63μm以下)を用い、それぞれを表1に示す割合で混合し溶射粉末を作製した。
【0030】
【表1】

Figure 2004307975
【0031】
(2) 溶射皮膜の形成
テストピース(ピストンリング材)として球状黒鉛鋳鉄材(FCD600)を用い、縦5mm、横5mm及び厚さ20 mmの角柱状に加工した。さらにその一端面を10 mmRの湾曲面となるように研削加工し、溶射直前にテストピースを100℃に予熱し、溶射ガンの高速フレームにより表面に活性化処理を施した。
【0032】
溶射はSulzer Metco社製DJ1000HVOF溶射ガンを用い、フレーム速度1400 m/sec、粒子速度300 m/secの高速フレーム溶射(高速酸素火炎溶射)により行い、テストピースの湾曲面に厚さ約300μmの溶射皮膜を形成した。次いで溶射皮膜面に研削及びラッピングにより仕上げ加工を施した。溶射皮膜の空孔率は約4%であった。溶射皮膜のうち空孔を除いた部分の面積率を100%としたときの硬質粒子A(Cr粉末)からなる領域の面積率(%)及び複合粉末B(Sulzer Metco 5241粉末)からなる領域の面積率(%)を表2に示す。また、実施例2により得られたピストンリングの溶射皮膜組織の走査電子顕微鏡写真を図1に示す。図1からこの溶射皮膜は微細で緻密な組織を有し、複合粉末中で炭化クロム粒子が均一に分散していることがわかる。
【0033】
【表2】
Figure 2004307975
【0034】
(3) 摩耗試験
溶射皮膜を形成したテストピースの耐摩耗性と相手攻撃性を評価した。摩耗試験は、FC250の鋳鉄からなるφ80 mm×300 mmのドラム型のシリンダライナ材を相手材として図4に示す科研式摩耗試験機を用いて行った。試験機は、回転可能なドラム型シリンダライナ材7と、シリンダライナ材7の外周面に摺接するテストピース4を押圧するアーム2と、アーム2の一端に取り付けられた重錘3と、アーム2の他端に取り付けられたバランサ5と、テストピース4とバランサ5との間でアーム2を支えている支点1とからなる。シリンダライナ材7は駆動装置(図示せず)によって所定の速度で回転すると共に、ヒータ6を内蔵して所望の温度に調節し、テストピース4の湾曲面と摺接する。その際、シリンダライナ材7とテストピース4とが摺接する部位に潤滑油8を注油する。アーム2がテストピース4をシリンダライナ材7方向へ押圧する力(テストピース4とシリンダライナ材7との接触面圧となる)は、重錘3の質量を変えることにより変化させることができる。
【0035】
試験条件は、シリンダライナ材7の温度を80℃に設定し、腐食環境を作るため潤滑油8の代わりにpH2のHSOを1.5 cm/分で滴下し、重錘3を50 kg、速度を0.5 m/秒、及び時間を240分とした。結果を図3及び図4に示す。
【0036】
比較例1
溶射粉末として75wt%の実施例1と同じCr粉末と25wt%のNi−Cr合金粉末からなる混合粉末(粒度325メッシュアンダー)を用いた以外実施例1と同様にしてテストピースの湾曲面に厚さ約300μmの溶射皮膜を形成し、溶射皮膜面に研削及びラッピングにより仕上げ加工を施した。得られた溶射皮膜の空孔率は5%であり、溶射皮膜のうち空孔を除いた部分の面積率を100%としたとき、Cr粉末及びNi−Cr合金粉末の面積率はそれぞれ55%及び45%であった。溶射皮膜を形成したテストピースに対し、実施例と同様にして摩耗試験行った。結果を図3及び図4に示す。
【0037】
図3及び図4から明らかなように、実施例1〜5のテストピース(ピストンリング材)の摩耗量は比較例1のテストピースの摩耗量とほぼ同等であるのに対し、実施例1〜5のシリンダライナ材の摩耗量は比較例1のシリンダライナ材の摩耗量と比べ大幅に減少しており、相手攻撃性が低いことが確認された。
【0038】
【発明の効果】
以上の通り、外周摺動面に平均粒子径5〜45μmの少なくとも一種の硬質粒子と平均粒子径が5μm以下の炭化クロム粒子がNi−Cr合金又はNi−Cr合金及びNiとからなる基地中に分散して析出した複合粉末をブレンドし溶射したピストンリングは、耐摩耗性及び耐剥離性に優れ、かつ相手材であるシリンダライナ材に対する攻撃性が低い。
【図面の簡単な説明】
【図1】実施例1で得られた溶射皮膜組織の走査電子顕微鏡写真(×1000)である。
【図2】科研式摩耗試験機を示す概略図である。
【図3】実施例及び比較例で得られた試料の摩耗試験の結果(ピストンリング材摩耗量)を示すグラフである。
【図4】実施例及び比較例で得られた試料の摩耗試験の結果(ライナ材摩耗量)を示すグラフである。
【符号の説明】
1・・・支点
2・・・アーム
3・・・重錘
4・・・テストピース材
5・・・バランサ
6・・・ヒータ
7・・・ドラム型シリンダライナ材
8・・・潤滑油[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sliding member having a thermal spray coating containing chromium carbide particles and a Ni—Cr alloy, and more particularly to a piston ring used for an internal combustion engine, a compressor, and the like.
[0002]
[Prior art]
With high performance such as high output of internal combustion engines, piston rings having wear resistance and seizure resistance are required, hard chrome plating, nickel composite plating, Surface treatment such as nitriding, ion plating, and thermal spraying is performed.
[0003]
For example, by using a Cr 3 C 2 powder and a Ni—Cr alloy powder and performing low-pressure plasma spraying in an inert gas atmosphere, a dense thermal spray coating excellent in wear resistance, seizure resistance and peeling resistance can be formed. Is disclosed (for example, refer to Patent Document 1). It is also disclosed that a denser sprayed coating can be formed by using high-speed oxygen flame (HVOF) spraying instead of plasma spraying (for example, see Patent Document 2). However, although piston rings having these thermal spray coatings have considerably improved in abrasion resistance, seizure resistance and peeling resistance, they have not yet obtained sufficient characteristics with respect to aggressiveness to a partner.
[0004]
For a piston ring for a diesel engine whose use conditions are particularly severe, a piston ring having a thermal spray coating using a Cr 3 C 2 powder and a Ni—Cr alloy powder is disclosed (for example, see Patent Document 3). However, when a piston ring having this sprayed coating is used, there is a problem that the self-wear is small, but the vicinity of the top dead center of the cylinder liner, which is a mating material, is largely worn. The reason for the inconvenience is that the Ni-Cr alloy is melted by thermal spraying and becomes flat, a region consisting only of a large Ni-Cr alloy of 20 to 40 µm is generated, and the coating structure becomes heterogeneous. Can be Since the Ni—Cr alloy has a lower hardness than Cr 3 C 2 , a region consisting of only the Ni—Cr alloy is selectively worn, and a region with a large amount of remaining chromium carbide wears the mating material. Sufficient properties of the sliding member having the sprayed coating have not yet been obtained for the counterpart aggression, and there is a need for the development of a sprayed coating having improved counterpart aggression.
[0005]
[Patent Document 1]
JP-A-3-172681 [Patent Document 2]
JP-A-8-210504 [Patent Document 3]
JP-A-3-172681
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a sliding member, particularly a piston ring, which is excellent in abrasion resistance, seizure resistance, and peeling resistance, and has little aggressiveness to a partner.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of the above objects, the present inventors have found that at least one type of hard particles having an average particle size of 5 to 45 μm and chromium carbide particles having an average particle size of 5 μm or less are Ni-Cr alloy or Ni-Cr alloy and By forming a thermal spray coating mainly composed of a composite powder dispersed and precipitated in a matrix composed of Ni on at least the sliding surface, it is excellent in abrasion resistance, seizure resistance, and peeling resistance, and aggression to a partner. The present inventors have found that a sliding member with improved is obtained, and reached the present invention.
[0008]
That is, the sliding member of the present invention comprises a hard particle A composed of at least one kind of hard particles having an average particle diameter of 5 to 45 μm and a chromium carbide particle having an average particle diameter of 5 μm or less formed of a Ni—Cr alloy or a Ni—Cr alloy. And a composite powder B dispersed and precipitated in a matrix composed of Ni and Ni, and at least the sliding surface is coated with a thermal spray coating.
[0009]
Examples of the sliding member include a piston ring, a vane, a lifter, and the like. Particularly, an excellent effect is obtained in a piston ring having a thermal spray coating formed on an outer peripheral sliding surface. It is preferable that the area ratio of the region composed of the hard particles A is 20 to 80% when the area ratio of the portion excluding the holes in the thermal spray coating is 100%. The composite powder B is preferably formed by a rapid solidification and atomization method, and the thermal spray coating containing the hard particles A and the composite powder B as main components is preferably formed by a high-speed flame spraying method.
[0010]
The sliding member of the present invention, a hard particle A having an appropriate hardness as the sliding member, and a fine particle of chromium carbide having an average particle diameter of 5 μm or less as a binder of the hard particle A are Ni-Cr alloy or Ni-Cr alloy and A composite powder B dispersed and precipitated in a matrix made of Ni is used. Therefore, would be Ni-Cr alloy phase low hardness selectively worn in the film as in the case of using a binder consisting of a conventional Ni-Cr alloy powder, hard particles such as Cr 3 C 2 on the surface There is no problem that the partner material is worn away. As described above, the sliding member of the present invention has an advantage that the sliding member itself has excellent wear resistance and has low aggressiveness to a mating material.
[0011]
The composite powder B is preferably formed by a rapid solidification and atomization method from a melt obtained by dissolving chromium carbide particles in a Ni—Cr alloy. The chromium carbide particles of the composite powder formed by the rapid solidification and atomization method become fine, and the self-wear resistance is improved and the mating material is hardly worn.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
[1] Thermal Sprayed Coating The sliding member of the present invention mainly comprises a hard particle A having an effect of improving abrasion resistance and a composite powder B having an effect as a binder of the hard particle A while reducing the aggressiveness of the partner. It has a thermal spray coating as a component.
[0013]
(1) Hard particles A
In the present invention, from the viewpoint of improving abrasion resistance, hard particles A composed of at least one kind of hard particles are used as a component of the thermal spray coating. As the hard particles, carbide, nitride, boride or oxide can be used. The carbides of chromium carbide (Cr 2 C, Cr 3 C 2, Cr 7 C 3, Cr 23 C 6 , etc.), molybdenum carbide (Mo 2 C), vanadium carbide (VC), tungsten carbide (W 2 C, WC, etc. ), Titanium carbide (TiC) and the like. Among them, chromium carbide, molybdenum carbide, tungsten carbide and titanium carbide are preferred. Chromium carbide includes Cr 2 C, Cr 3 C 2 , Cr 7 C 3 and Cr 23 C 6 , each of which has a different amount of Cr in chromium carbide, and thus has different characteristics of chromium carbide. That is, the density and hardness increase as the proportion of Cr in the chromium carbide increases. When chromium carbide is used as the sliding material, it is required that the wear resistance and the scuffing resistance be improved and the aggressiveness of the counterpart is low. Among the chromium carbides, Cr 3 C 2 has an appropriate hardness as a sliding material, has abrasion resistance, and has relatively low aggressiveness to a partner. For this reason, it is particularly preferable to contain Cr 3 C 2 as a component of the thermal spray coating.
[0014]
Examples of the nitride include chromium nitride (CrN, Cr 2 N, etc.), vanadium nitride (VN), titanium nitride (TiN), zirconium nitride (ZrN), and the like, and chromium nitride or titanium nitride is preferable. The boride, chromium boride (CrB, CrB 2, etc.), molybdenum boride (MoB, Mo 2 B, Mo 2 B 5 , etc.), tungsten boride (WB, W 2 B 5, etc.), boride vanadium ( VB 2 ), titanium boride (TiB 2 ), zirconium boride (ZrB 2 ), and the like, with chromium boride being preferred. As the oxide, aluminum oxide (alumina), zirconium oxide (zirconia), titanium oxide (titania), chromium oxide (chromia), and the like are preferable.
[0015]
The average particle size of the hard particles A is 5 to 45 μm, preferably 10 to 38 μm. By controlling the average particle diameter in the range of 5 to 45 μm, the wear resistance of the sprayed coating can be improved, and the wear of the mating material can be suppressed. If the average particle size is less than 5 μm, it becomes difficult to form a thermal spray coating. If the average particle size exceeds 45 μm, the hard particles tend to fall off, and as a result, abrasive wear occurs, causing much wear on the mating material.
[0016]
Assuming that the area ratio of the portion of the sprayed coating excluding the pores is 100%, the area ratio of the region composed of the hard particles A is preferably 20 to 80%. When the area ratio is less than 20%, the binder component increases, and the wear resistance and seizure resistance of the thermal sprayed coating are insufficient. On the other hand, if the area ratio exceeds 80%, the amount of the hard particles is too large, so that the hard particles cannot be retained in the thermal spray coating, and the hard particles fall off, causing much wear on the mating material. When two or more types of hard particles are used, it is preferable that the total area ratio of each hard particle falls within the above range.
[0017]
(2) Composite powder B
The composite powder B is a powder in which chromium carbide particles having an average particle diameter of 5 μm or less are dispersed and precipitated in a matrix composed of a Ni—Cr alloy or a Ni—Cr alloy and Ni. Since the fine particles of chromium carbide are dispersed in a matrix composed of a Ni—Cr alloy or a Ni—Cr alloy and Ni, the self-wear resistance is excellent and the aggressiveness to the partner is low. Since the Ni—Cr alloy or the Ni—Cr alloy and Ni have good bondability with the base material and the chromium carbide particles, the adhesion of the film, that is, the peeling resistance is improved. The chromium carbide particles dispersed in the matrix are not particularly limited, and may be one or a mixture of two or more selected from the group consisting of Cr 2 C, Cr 3 C 2 , Cr 7 C 3 and Cr 23 C 6. May be. The average particle size of the chromium carbide particles is 5 μm or less, and preferably 1 to 3 μm. If the average particle diameter of the chromium carbide particles exceeds 5 μm, the chromium carbide particles act as abrasive grains and the wear of the mating material increases.
[0018]
The content of the chromium carbide particles contained in the composite powder B is preferably 30 to 80% by mass, and more preferably 40 to 60% by mass. If it is less than 30% by mass, a Ni-Cr alloy or a region consisting only of the Ni-Cr alloy and Ni is formed, and wear is caused selectively. On the other hand, if the content is more than 80% by mass, the function as a binder is reduced, the hard particles fall off, and the counterpart material is worn much.
[0019]
In the composite powder B, it is preferable that the chromium carbide particles and the Ni—Cr alloy or the Ni—Cr alloy and Ni are stably and strongly bonded. If the bonding state between the chromium carbide particles and the Ni—Cr alloy (or the Ni—Cr alloy and Ni) is stable and strong, the chromium carbide particles can inhibit aggregation or melting between the Ni—Cr alloys. If the state is not stable and strong, the thermal spraying causes the Ni-Cr alloys or Nis to aggregate or melt and coarsen, making it difficult to form a fine and uniform thermal spray coating.
[0020]
[2] Method of forming thermal spray coating (1) Thermal spray powder The thermal spray powder is composed of a hard particle A having an average particle diameter of 5 to 45 μm and chromium carbide particles having an average particle diameter of 5 μm or less, a Ni—Cr alloy or a Ni—Cr alloy. And a composite powder B dispersed and precipitated in a matrix composed of Ni and Ni at a predetermined ratio.
[0021]
As a method for producing the composite powder B, a known method may be used. In particular, a method in which fine particles of chromium carbide are precipitated from a melt by a rapid solidification and atomization method is preferable. Chromium carbide particles and Ni-Cr alloy particles (or Ni-Cr alloy particles and Ni particles) are stably and firmly bonded by using the rapid solidification atomization method, and are made of Ni-Cr alloy or Ni-Cr alloy and Ni. Composite powder B in which fine particles of chromium carbide having an average particle diameter of 5 μm or less are dispersed and precipitated in the matrix can be obtained. In the case of high-speed flame spraying, the average particle size of the composite powder B is preferably from 5 to 45 μm, more preferably from 10 to 38 μm.
[0022]
The rapid solidification atomization method is not particularly limited, and known methods such as a water atomization method, a gas atomization method, an atomizing method, and a rotating disk method can be used, but the particle diameter of chromium carbide can be controlled, and the solidification process can be performed. It is preferable to use a method capable of uniformly dispersing the fine particles of chromium carbide in the matrix.
[0023]
The mixing ratio of the hard particles A and the composite powder B (hard particles A / composite powder B) varies depending on the thermal spraying method and is not particularly limited, but it is usually preferably 10/90 to 90/10 in terms of mass ratio, and 20/80 to 90/80. More preferably, it is 80/20. If the compounding ratio is lower than 10/90, the ratio of the hard particles A in the thermal spray coating decreases, and the wear resistance of the thermal spray coating decreases. If the compounding ratio is higher than 90/10, the hard particles A act as abrasive grains, or the ratio of the composite powder B in the sprayed coating decreases, so that the hard particles easily fall off from the sprayed coating, and the dropped hard particles Act as loose abrasive grains on the sliding surface to wear the mating material.
[0024]
(2) Pretreatment When forming a thermal spray coating on the piston ring, the piston ring may be pretreated. For example, the base material of the piston ring may be subjected to a surface treatment such as nitriding treatment, or the base material may be subjected to a cleaning treatment from the viewpoint of the adhesion between the thermal spray coating and the base material. From the viewpoint of preventing peeling of the thermal spray coating, it is preferable to form irregularities of about 10 to 30 μm on the surface of the base material by shot blasting or the like before forming the thermal spray coating. Thereby, when the thermal spray material collides with the convex portion of the base material, the convex portion locally melts, so that the thermal spray material and the parent material are easily alloyed, and the adhesion of the film becomes strong. It is also preferable that the base material is preheated to about 100 ° C. immediately before thermal spraying, and then the surface of the base material is cleaned with a frame using a high-speed flame spraying apparatus. Thereby, the surface of the base material is activated, and the base material and the film are firmly adhered.
[0025]
(3) Thermal spraying method From the viewpoint of reducing the aggressiveness to the opponent and improving the wear resistance, a thermal sprayed coating in which each raw material size of the hard particles A and the composite powder B is substantially maintained without the thermal sprayed powder being coarsened by thermal spraying. It is desirable to form. For this purpose, a method capable of spraying at a relatively low temperature is preferable to a method of melting the raw material, such as plasma spraying. As such a method, a high-speed flame spraying method such as high-velocity oxygen flame spraying (HVOF: High Velocity Oxygen Fuel) or a high-speed air flame spraying (HVAF: High Velocity Air Fuel) is preferable, and a high-speed oxygen flame spraying method is particularly preferable. . The higher the frame speed, the better, preferably 1200 m / sec or more, more preferably 2000 m / sec or more. The particle speed of the sprayed powder is preferably 200 m / sec or more, more preferably 500 m / sec or more.
[0026]
When forming a thermal spray coating on the piston ring, it may be an inlaid type or a full face type. In the case of the inlaid type, a thermal spray coating is formed by cutting a groove on the outer periphery of the piston ring and embedding a thermal spray material. In the case of the full face type, a thermal spray coating is formed by depositing a thermal spray material on the outer peripheral surface of the piston ring.
[0027]
The thickness of the thermal spray coating formed on the outer peripheral surface of the piston ring is usually 50 to 500 μm, and preferably 100 to 300 μm. If it is less than 50 μm, the abrasion resistance will be insufficient, and if it exceeds 500 μm, it will be easy to peel off.
[0028]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
[0029]
Examples 1 to 5
(1) Preparation of Thermal Sprayed Powder Sulzer Metco 5241 (composition: Sulzer Metco, manufactured by Sulzer Metco Co.) manufactured by rapid solidification and atomization as a composite powder B using Cr 3 C 2 powder having a particle diameter of 5 to 45 μm as hard particles A Chromium carbide-39Ni-7C, powder particle diameter: 63 μm or less) were mixed at a ratio shown in Table 1 to prepare a thermal spray powder.
[0030]
[Table 1]
Figure 2004307975
[0031]
(2) Formation of Thermal Spray Coating A spheroidal graphite cast iron material (FCD600) was used as a test piece (piston ring material) and processed into a prism having a length of 5 mm, a width of 5 mm, and a thickness of 20 mm. Further, one end face of the test piece was ground so as to have a curved surface of 10 mmR, the test piece was preheated to 100 ° C. immediately before thermal spraying, and the surface was activated by a high-speed frame of a thermal spray gun.
[0032]
The spraying is performed by a high-speed flame spraying (high-speed oxygen flame spraying) with a frame speed of 1400 m / sec and a particle speed of 300 m / sec using a DJ1000HVOF spraying gun manufactured by Sulzer Metco. A film was formed. Next, the surface of the sprayed coating was subjected to finishing by grinding and lapping. The porosity of the thermal spray coating was about 4%. The area ratio (%) of the region composed of the hard particles A (Cr 3 C 2 powder) and the composite powder B (Sulzer Metco 5241 powder) when the area ratio of the portion of the sprayed coating excluding the pores is 100%. Table 2 shows the area ratio (%) of the region. FIG. 1 shows a scanning electron micrograph of the structure of the sprayed coating of the piston ring obtained in Example 2. FIG. 1 shows that the thermal spray coating has a fine and dense structure, and the chromium carbide particles are uniformly dispersed in the composite powder.
[0033]
[Table 2]
Figure 2004307975
[0034]
(3) Abrasion test Abrasion resistance and counterpart aggression of the test piece on which the sprayed coating was formed were evaluated. The abrasion test was performed using a Kaken type abrasion tester shown in FIG. 4 with a drum type cylinder liner material of φ80 mm × 300 mm made of FC250 cast iron as a mating material. The tester includes a rotatable drum-type cylinder liner member 7, an arm 2 pressing a test piece 4 slidably contacting the outer peripheral surface of the cylinder liner member 7, a weight 3 attached to one end of the arm 2, And a fulcrum 1 supporting the arm 2 between the test piece 4 and the balancer 5. The cylinder liner member 7 is rotated at a predetermined speed by a driving device (not shown), and has a built-in heater 6 to adjust the temperature to a desired temperature, and comes into sliding contact with the curved surface of the test piece 4. At this time, lubricating oil 8 is applied to a portion where the cylinder liner material 7 and the test piece 4 are in sliding contact. The force by which the arm 2 presses the test piece 4 in the direction of the cylinder liner material 7 (ie, the contact surface pressure between the test piece 4 and the cylinder liner material 7) can be changed by changing the mass of the weight 3.
[0035]
The test conditions were as follows: the temperature of the cylinder liner material 7 was set to 80 ° C., and instead of the lubricating oil 8, H 2 SO 4 of pH 2 was dropped at 1.5 cm 3 / min to create a corrosive environment, and the weight 3 was dropped. 50 kg, speed 0.5 m / sec, and time 240 minutes. The results are shown in FIGS.
[0036]
Comparative Example 1
Curvature of the same Cr 3 C 2 powder and 25 wt% of Ni-Cr mixed powder composed of an alloy powder (particle size 325 mesh under) the test piece in the same manner as in Example 1 except for using Example 1 of 75 wt% as a spray powder A sprayed film having a thickness of about 300 μm was formed on the surface, and the sprayed film surface was finished by grinding and lapping. The porosity of the obtained thermal spray coating is 5%, and the area ratio of the Cr 3 C 2 powder and the Ni—Cr alloy powder is 100% when the area ratio of the portion of the thermal spray coating excluding the porosity is 100%. They were 55% and 45%, respectively. The test piece on which the thermal spray coating was formed was subjected to an abrasion test in the same manner as in the example. The results are shown in FIGS.
[0037]
As is clear from FIGS. 3 and 4, the wear amount of the test pieces (piston ring material) of Examples 1 to 5 is almost equal to the wear amount of the test piece of Comparative Example 1, whereas The wear amount of the cylinder liner material of No. 5 was significantly reduced as compared with the wear amount of the cylinder liner material of Comparative Example 1, and it was confirmed that the opponent aggressiveness was low.
[0038]
【The invention's effect】
As described above, at least one type of hard particles having an average particle diameter of 5 to 45 μm and chromium carbide particles having an average particle diameter of 5 μm or less are formed on the outer peripheral sliding surface in a matrix including Ni—Cr alloy or Ni—Cr alloy and Ni. The piston ring obtained by blending and dispersing the dispersed and precipitated composite powder is excellent in wear resistance and peeling resistance, and has low aggressiveness against a cylinder liner material as a mating material.
[Brief description of the drawings]
FIG. 1 is a scanning electron micrograph (× 1000) of a sprayed coating structure obtained in Example 1.
FIG. 2 is a schematic view showing a Kaken abrasion tester.
FIG. 3 is a graph showing a result of a wear test (amount of piston ring material abrasion) of the samples obtained in Examples and Comparative Examples.
FIG. 4 is a graph showing the results of wear tests (liner material wear) of the samples obtained in Examples and Comparative Examples.
[Explanation of symbols]
Reference Signs List 1 fulcrum 2 arm 3 weight 4 test piece material 5 balancer 6 heater 7 drum cylinder liner material 8 lubricating oil

Claims (6)

平均粒子径が5〜45μmの少なくとも一種の硬質粒子からなる硬質粒子Aと、平均粒子径が5μm以下の炭化クロム粒子がNi−Cr合金又はNi−Cr合金及びNiからなる基地中に分散して析出した複合粉末Bとを主成分とする溶射皮膜が、少なくとも摺動面に被覆されていることを特徴とする摺動部材。Hard particles A having an average particle diameter of at least one kind of hard particles having a particle diameter of 5 to 45 μm, and chromium carbide particles having an average particle diameter of 5 μm or less are dispersed in a matrix made of a Ni—Cr alloy or a Ni—Cr alloy and Ni. A sliding member, characterized in that at least the sliding surface is coated with a thermal spray coating containing the precipitated composite powder B as a main component. 請求項1に記載の摺動部材において、前記溶射皮膜のうち空孔を除いた部分の面積率を100%としたとき、前記硬質粒子Aからなる領域の面積率が20〜80%であることを特徴とする摺動部材。2. The sliding member according to claim 1, wherein an area ratio of a region formed of the hard particles A is 20% to 80% when an area ratio of a portion of the thermal sprayed coating excluding holes is 100%. A sliding member characterized by the above-mentioned. 請求項1又は2に記載の摺動部材において、前記複合粉末Bが急速凝固微粒化法によって形成されたことを特徴とする摺動部材。The sliding member according to claim 1, wherein the composite powder B is formed by a rapid solidification and atomization method. 請求項1〜3のいずれかに記載の摺動部材において、前記溶射皮膜が高速フレーム溶射法によって形成されたことを特徴とする摺動部材。The sliding member according to any one of claims 1 to 3, wherein the thermal spray coating is formed by a high-speed flame spraying method. 請求項1〜4のいずれかに記載の摺動部材において、前記硬質粒子Aが炭化クロム粒子であることを特徴とする摺動部材。The sliding member according to any one of claims 1 to 4, wherein the hard particles (A) are chromium carbide particles. 請求項1〜5のいずれかに記載の摺動部材において、前記溶射皮膜が少なくとも外周摺動面に形成されたピストンリングであることを特徴とする摺動部材。The sliding member according to any one of claims 1 to 5, wherein the thermal spray coating is a piston ring formed on at least an outer peripheral sliding surface.
JP2003106129A 2003-04-10 2003-04-10 Sliding member Pending JP2004307975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106129A JP2004307975A (en) 2003-04-10 2003-04-10 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106129A JP2004307975A (en) 2003-04-10 2003-04-10 Sliding member

Publications (1)

Publication Number Publication Date
JP2004307975A true JP2004307975A (en) 2004-11-04

Family

ID=33468408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106129A Pending JP2004307975A (en) 2003-04-10 2003-04-10 Sliding member

Country Status (1)

Country Link
JP (1) JP2004307975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161132A (en) * 2004-12-09 2006-06-22 Sumitomo Metal Mining Co Ltd Ni-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD
JP2006161131A (en) * 2004-12-09 2006-06-22 Sumitomo Metal Mining Co Ltd Co-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD
WO2006117177A1 (en) * 2005-05-03 2006-11-09 Alfred Flamang Method for coating wear-prone components and coated components
JP2012046798A (en) * 2010-08-27 2012-03-08 Mazda Motor Corp Sprayed coating
WO2018110390A1 (en) * 2016-12-13 2018-06-21 三菱重工業株式会社 Wear measurement system, combustion chamber component and wear measurement method
CN110195205A (en) * 2019-07-12 2019-09-03 中国矿业大学徐海学院 A kind of preparation method of material surface anticorrosion antiwear alloy coat

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161132A (en) * 2004-12-09 2006-06-22 Sumitomo Metal Mining Co Ltd Ni-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD
JP2006161131A (en) * 2004-12-09 2006-06-22 Sumitomo Metal Mining Co Ltd Co-BASED SELF-FLUXING ALLOY POWDER FOR THERMAL SPRAYING AND ITS PRODUCTION METHOD
JP4652792B2 (en) * 2004-12-09 2011-03-16 住友金属鉱山株式会社 Co-based self-fluxing alloy powder for thermal spraying
WO2006117177A1 (en) * 2005-05-03 2006-11-09 Alfred Flamang Method for coating wear-prone components and coated components
JP2012046798A (en) * 2010-08-27 2012-03-08 Mazda Motor Corp Sprayed coating
WO2018110390A1 (en) * 2016-12-13 2018-06-21 三菱重工業株式会社 Wear measurement system, combustion chamber component and wear measurement method
CN110023710A (en) * 2016-12-13 2019-07-16 三菱重工业株式会社 Wear measurement system, combustion chamber components and wear measuring method
CN110195205A (en) * 2019-07-12 2019-09-03 中国矿业大学徐海学院 A kind of preparation method of material surface anticorrosion antiwear alloy coat

Similar Documents

Publication Publication Date Title
DK1564309T3 (en) Piston ring and thermal spray coating for use therein, and method of making them
US9291264B2 (en) Coatings and powders, methods of making same, and uses thereof
CN101031668B (en) Bearing materials and method for the production thereof
JP5689735B2 (en) piston ring
JP2000505178A (en) Cylinder elements such as cylinder liners, pistons, piston skirts or piston rings in diesel type internal combustion engines and piston rings for such engines
KR20150085047A (en) Piston ring sprayed coating, piston ring, and method for producing piston ring sprayed coating
JP2003064463A (en) Wear-resistant sprayed coating film on sliding member
JP5514187B2 (en) piston ring
JP4394349B2 (en) Wear-resistant layer for piston rings containing tungsten carbide and chromium carbide
JP2007314839A (en) Spray deposit film for piston ring, and the piston ring
JP2004307975A (en) Sliding member
JP2005155711A (en) Spray piston ring and its manufacturing method
JP6411875B2 (en) Piston ring and manufacturing method thereof
JPS5932654B2 (en) piston ring
JP4281368B2 (en) Abrasion resistant spray coating
JP3547583B2 (en) Cylinder liner
JP2003336742A (en) Piston ring and its manufacturing method
JP2825884B2 (en) Piston ring and method of manufacturing the same
JP4247882B2 (en) Abrasion resistant spray coating
CN1705765A (en) Piston ring and thermal sprayed coating for use therein, and method for manufacture thereof
JP4176064B2 (en) Piston ring and manufacturing method thereof
WO2023113035A1 (en) Thermal spray coating film, sliding member and piston ring
JPH06221438A (en) Flame sprayed piston ring
JP2000054104A (en) Wear resistant sliding member
JP2018165402A (en) Piston ring and manufacturing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Effective date: 20070214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070620

Free format text: JAPANESE INTERMEDIATE CODE: A02