JP2004307927A - Method for manufacturing sliding member, and sliding member - Google Patents

Method for manufacturing sliding member, and sliding member Download PDF

Info

Publication number
JP2004307927A
JP2004307927A JP2003102781A JP2003102781A JP2004307927A JP 2004307927 A JP2004307927 A JP 2004307927A JP 2003102781 A JP2003102781 A JP 2003102781A JP 2003102781 A JP2003102781 A JP 2003102781A JP 2004307927 A JP2004307927 A JP 2004307927A
Authority
JP
Japan
Prior art keywords
sliding member
base material
substrate
treatment
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102781A
Other languages
Japanese (ja)
Inventor
Takuo Yamaguchi
拓郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003102781A priority Critical patent/JP2004307927A/en
Publication of JP2004307927A publication Critical patent/JP2004307927A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Gears, Cams (AREA)
  • Pulleys (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a sliding member which makes a hard coating adequately adhere to a substrate in a fewer steps than before, even when the substrate has a complicated shape, and to provide the sliding member. <P>SOLUTION: The sliding member is manufactured by carburizing or carbonitriding a substrate under a reduced pressure, quenching it with an inert gas, removing oxides from a substrate surface with the use of a plasma ion, and forming the hard coating. The carburizing or carbonitriding is carried out so as to control the carbon concentration of the substrate to 0.9-1.3%, and the substrate is held at 820 to 920°C for 30 minutes and is then cooled. The sliding member is obtained by the above manufacturing method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、摺動部材の製造方法及び摺動部材に係り、更に詳細には、歯車やCVTなどの摺動部品に用いられ、硬質皮膜を有する摺動部材の製造方法及び摺動部材に関する。
【0002】
【従来の技術】
従来から、自動車の減速機用の歯車やCVTなどの摺動部品には、一般的に浸炭鋼又は浸炭窒化鋼が用いられている。
また、かかる摺動部品には、近年は小型高出力化が要求されており、更に今後は環境への対応からモーター駆動車が増大する見込みがあることなど、高負荷且つ高速摺動への対応が必要となっている。特に、摩耗やスカッフィング、フレーキングなどに対する摺動部材の強度向上が求められている。
【0003】
【発明が解決しようとする課題】
このような背景から、摺動部表面に硬質皮膜を被覆することが考えられており、具体的には歯車の耐ピッティング性向上を目的としてTiN被覆を施す対策が提案されている(例えば特許文献1参照。)。
【0004】
【特許文献1】
特願平10−167348号公報
【0005】
この技術では、硬質皮膜に十分な密着力を与えるために、被覆する母材表面にクリーニングを行うことが重要である。このため、円筒や平板などの単純な形状では、イオンボンバードなどの処理を行い、部品表面の不活性な酸化層を除去している。
しかし、歯車の歯元など、比較的複雑な形状の部材ではその効果が不十分となり、十分な密着力が得られないことがあった。
【0006】
この対策として、被覆工程などの際により多くのエネルギーを与えて十分な密着力を得る方法が提案されている(例えば特許文献2参照。)。
【0007】
【特許文献2】
特開平10−173524公報
【0008】
しかしながら、この方法では部材の温度が上がり過ぎて母材が軟化してしまうこと、例えば歯車では歯元の曲げ疲労強度などが低下するという問題点があった。
【0009】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、基材が複雑形状であるときでも、硬質皮膜を従来より少ない工程で十分に密着させ得る摺動部材の製造方法及び摺動部材を提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、減圧下での浸炭処理又は浸炭窒化処理、不活性ガスによる急冷処理、プラズマイオンを用いた酸化物除去処理を連続的に行うことにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0011】
【発明の実施の形態】
以下、本発明の摺動部材の製造方法について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示す。
【0012】
上述の如く、本発明は、基材を浸炭処理又は浸炭窒化処理し、冷却処理し、基材表面の酸化物を除去し、硬質皮膜を被覆して摺動部材を製造する。
ここで、上記浸炭処理工程又は浸炭窒化処理工程は、0.1〜10Pa程度の減圧下で行う。これより、熱処理工程で基材が酸化され難くなり、FeOやFeなどの発生が減少する。
また、歪の発生が減少するため仕上げ加工が省略できる。更に、イオンクリーニングも軽度ですむようになる。更にまた、複雑形状を有する歯車のような基材であっても、歯元などまで硬質皮膜を密着でき高い面疲労強度が得られる。
【0013】
また、かかる浸炭処理工程又は浸炭窒化処理工程では、基材表面の炭素濃度を0.9〜1.3%として行い、その後820〜920℃で少なくとも30分保持することが好適である。このときは、強靭なマルテンサイト基地中に、膜被覆時の熱にも分解し難い、硬く微細な炭化物や炭窒化物が分散した金属組織が形成され得る。そのため、本発明の摺動部材は被覆時や部材使用時の発熱に対して軟化や変形をし難く、ひいては硬質皮膜が高い密着性を有し得る。
例えば、ガス浸炭により上記炭素濃度で900〜1050℃程度で処理した後に、820〜920℃で30分保持してから、焼入れを行うことができる。なお、この保持時間は皮膜の素材などにより異なるが15分〜60分程度あればよい。
【0014】
更に、上記冷却処理工程では、基材を不活性ガスにより急冷する。これより、基材が良好に焼入れされる。また、歪の発生が抑制され得るので、基材が歯車のような複雑形状であっても修正作業を省略できる。更に、酸素と接触させずに冷却するので基材表面の酸化を防止できる。更にまた、油焼入れで行う脱脂洗浄工程を省略できる。
上記不活性ガスとしては、例えばアルゴン(Ar)、窒素(N)、ヘリウム(He)などを使用できる。また、上記急冷は、不活性ガスを複数の噴射器から基材へ均等に噴出して行うことが良く、ねじれや反りの生じ易い基材でも非酸化雰囲気から取り出しての修正加工が省略できる。
【0015】
更にまた、上記酸化物除去工程では、プラズマイオンを用いて基材表面の酸化物を除去する。これより、酸化物の除去が困難な複雑形状を有する基材でも表面が非酸化雰囲気に保持されるため、その後に行う被覆工程では優れた密着性を有する硬質皮膜が形成される。
【0016】
また、上記硬質皮膜被覆工程では、窒素(N)の存在下又はNとメタン(CH)の存在下で物理蒸着法を行うことが好適であり、更に被覆材として、鉄窒化物、鉄炭窒化物又はダイヤモンドライクカーボン(DLC)、及びこれらの任意の組合せに係るものを被覆することが好適である。この場合は、より低温又は低廉な母材を基材として用いても高い密着力が得られる。言い換えれば、被覆材が鉄窒化物や鉄炭窒化物のときは、他の被覆材よりも基材(鋼を母材のものなど)との熱膨張差が小さくなり、被覆時の熱により生じる内部応力が低減され、密着力が一層向上し易い。被覆材がDLCのときは、相手部材とのフリクション(摺動面のフリクション)が低減され、摺動部材使用時に硬質皮膜にかかる力を低減できるので、密着力が一層向上し易い。
【0017】
更に、上記硬質皮膜被覆工程は、150〜250℃で行うことが好適である。この場合は、焼き戻し工程を省略しても安定した組織が得られ、また処理中に過度の軟化をしないため、低コストと高強度が両立した摺動部材が得られる。なお、上記「硬質皮膜被覆工程」には、被覆処理及び被覆するための基材の表面処理(イオンクリーニングなど)が含まれる。
【0018】
次に、本発明の摺動部材は、上述した製造方法により得られる。即ち、減圧下での浸炭処理又は浸炭窒化処理、不活性ガスによる急冷処理、プラズマイオンを用いた酸化物除去処理を連続的に行うことにより得られるため、複雑形状であっても細部まで硬質皮膜を優れた密着性で被覆した摺動部材となる。代表的には、歯車、CVT用プーリー、カムシャフトなどが挙げられ、また歪が生じ難いことからベアリングレースにも好適である。
【0019】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0020】
(実施例1〜4、比較例1〜10)
下地の材料として、JIS SCM420Hを選び、以下に示す歯車形状に加工した。
<歯車諸元>
モジュール:2.5 mm
歯数 :30
歯幅 :13mm
外径 :78mm
厚さ :30mm
歯車は脱脂処理の後、図1に示す工程イ又はロにて、歯車を処理した。
【0021】
まず、実施例及び比較例の歯車について、図2に示すプラズマ浸炭処理を行った。歯車表面の炭素濃度は浸炭/拡散の時間比にて調整した。
その後、比較例の歯車については一部を60℃の油中に焼き入れ、170℃で2時間の焼き戻しを行った後、マイクロブラスト処理及び脱脂洗浄して硬質皮膜の被覆工程に供した。一方、実施例の歯車については950℃にてプラズマ浸炭及び拡散を複数回行って歯車表面を所定の炭素濃度とした後、別チャンバーに歯車を搬送し、アルゴンガスを用いて圧力3barにてノズルガス冷却を行った。
その後、ガスを排気し、歯車を別チャンバーの被覆工程に搬送した。
なお、本発明では浸炭及び急冷工程で油脂を使用していないため、脱脂洗浄は行わなかった。また、急冷工程後の焼き戻しは、次の被覆工程の予熱中に同時に行えるため、焼き戻し工程は行わなかった。
【0022】
硬質皮膜の被覆工程では、物理蒸着法のうちアークイオンプレーティング法又はスパッタリング法を用いて、以下に示す条件で処理した。
なお、表1に示すように、実施例ではFeN又はDLCで皮膜を形成し、比較例ではこれらの他、TiNやCrNで皮膜を形成した。また、比較例では皮膜なしの歯車も製造した。
【0023】
<アークイオンプレーティング成膜条件>
窒素ガス導入前真空度:1×10−3〜5×10−5Torr
スパッタクリーニング:Ar −600〜−700V,4min(間欠)
窒素ガス導入後圧力 :10〜40mTorr
成膜時カソード電流 :60〜100A
成膜時バイアス電圧 :−10〜−50V
成膜前温度 :100〜150℃
成膜パターン :10分成膜−10〜50分休止サイクル
【0024】
<スパッタリング成膜条件>
ガス導入前真空度 :1×10−3〜5×10−5Torr
スパッタクリーニング:Ar −600〜−700V,4min(間欠)
ガス導入後圧力 :10〜40mTorr
成膜時カソード電流 :60〜100A
成膜時バイアス電圧 :−10〜−50V
成膜前温度 :100〜150℃
成膜パターン :10分成膜−10〜50分休止サイクル
【0025】
(性能評価試験)
実施例、比較例とも一連の処理後に歯面を切断し、切断面にて硬質皮膜近傍の母材のビッカース硬度、EPMAによる炭素量の測定、及び炭化物のSEM観察と画像解析にて炭化物の量や形を調べた。
また、歯車の強度を動力循環式歯車試験にて調べた。なお、負荷繰り返し数1×10−8回にて剥離のない場合はOKストップとした。
【0026】
<歯車試験条件>
トルク :200Nm
回転数 :1000rpm
油温 :120℃
オイル :日産純正ベルトフルードNS−1
供給油量:1L/min
【0027】
表1に評価試験結果をまとめて示す。
【0028】
【表1】

Figure 2004307927
【0029】
実施例1〜4の製造方法で得られた歯車の母材の金属組織はマルテンサイト基地に径が3μm以下である微細な疑球状炭化物が析出しており、その量は面積率で3%〜7%であった。これらの微細な炭化物は、母材の靭性を損なうことなく、熱による母材の軟化抵抗性を向上させていると思われる。
また、実施例1〜4の歯車は、硬質皮膜を被覆しない歯車(比較例1)に比べて25倍以上の負荷繰り返し数に対しても剥離が生じなかった。
【0030】
一方、比較例2の歯車は、急冷前の保持温度(t)が高すぎて炭化物の析出が少なく、またマルテンサイトより軟質な残留オーステナイト相が多く見られるために被覆後の硬度が低く、早期に剥離が生じた。比較例3の歯車は、逆に保持温度が低すぎるために焼き入れにより十分な硬度を得ることができず早期に剥離が生じた。
比較例4と比較例5の歯車は、本発明の熱処理工程でないためにいずれもイオンクリーニングの効果が及びにくい歯元部分にて膜が剥離してしまった。比較例6と比較例7の歯車は、炭素量が本発明の好適範囲から外れるために、母材が軟化し易く又は割れが生じ易くなっており、いずれも早期に剥離した。比較例8の歯車は、被覆の温度が低すぎるために膜に十分な強度が与えられず剥離した。比較例9及び10の歯車は、膜材質がFeNでないために被覆温度180〜200℃では母材との密着力が十分に得られず剥離した。
【0031】
本発明によれば、熱処理から被覆までの一連の工程を非酸化雰囲気で行い得るため、皮膜と基材(母材)との密着性を阻害する酸化皮膜が部品に生じ難くなり、歯車など複雑な形状の摺動部材でも十分な密着力を得ることができる。特に、部品表面の炭素濃度を0.9〜1.3%とし、820〜920℃以下で保持した後、急冷処理した部品に、FeN膜又はダイアモンドライクカーボン膜を150〜250℃にて被覆すれば、基材の強度及び靭性を損なうことなく、優れた密着性を与えることができる。
【0032】
【発明の効果】
以上説明してきたように、本発明によれば、減圧下での浸炭処理又は浸炭窒化処理、不活性ガスによる急冷処理、プラズマイオンを用いた酸化物除去処理を連続的に行うこととしたため、基材が複雑形状であるときでも、硬質皮膜を従来より少ない工程で十分に密着させ得る摺動部材の製造方法及び摺動部材を提供することができる。
【図面の簡単な説明】
【図1】浸炭から硬質皮膜被覆までの工程を示すフロー図である。
【図2】プラズマ浸炭処理パターンの制御工程を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a sliding member and a sliding member, and more particularly, to a method for manufacturing a sliding member having a hard coating and used for a sliding component such as a gear or a CVT, and a sliding member.
[0002]
[Prior art]
BACKGROUND ART Conventionally, carburized steel or carbonitrided steel is generally used for sliding parts such as gears and CVTs for reduction gears of automobiles.
In addition, in recent years, such sliding parts have been required to have a small size and a high output, and in the future, are expected to increase the number of motor-driven vehicles due to environmental requirements. Is needed. In particular, there is a demand for improved strength of sliding members against abrasion, scuffing, flaking, and the like.
[0003]
[Problems to be solved by the invention]
From such a background, it has been considered to coat the sliding portion surface with a hard coating, and specifically, a measure for applying TiN coating for the purpose of improving the pitting resistance of gears has been proposed (for example, Patent Reference 1).
[0004]
[Patent Document 1]
Japanese Patent Application No. 10-167348 [0005]
In this technique, it is important to clean the surface of the base material to be coated in order to give a sufficient adhesion to the hard coating. For this reason, in the case of a simple shape such as a cylinder or a flat plate, a treatment such as ion bombardment is performed to remove an inactive oxide layer on the component surface.
However, with a member having a relatively complicated shape such as a tooth root of a gear, the effect is insufficient, and a sufficient adhesion may not be obtained.
[0006]
As a countermeasure, a method has been proposed in which more energy is applied to a coating process or the like to obtain a sufficient adhesion (for example, see Patent Document 2).
[0007]
[Patent Document 2]
JP-A-10-173524
However, this method has a problem that the temperature of the member is too high and the base material is softened. For example, in the case of a gear, there is a problem that the bending fatigue strength of the tooth base is reduced.
[0009]
The present invention has been made in view of such problems of the related art, and aims to sufficiently adhere a hard coating with fewer steps than before even when the substrate has a complicated shape. An object of the present invention is to provide a method for manufacturing a sliding member to be obtained and a sliding member.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor continuously performs carburizing treatment or carbonitriding treatment under reduced pressure, quenching treatment with an inert gas, and oxide removal treatment using plasma ions. As a result, they have found that the above problems can be solved, and have completed the present invention.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the manufacturing method of the sliding member of the present invention will be described in detail. In addition, in this specification, "%" shows a mass percentage unless otherwise specified.
[0012]
As described above, in the present invention, a sliding member is manufactured by subjecting a substrate to a carburizing treatment or a carbonitriding treatment, performing a cooling treatment, removing an oxide on the surface of the substrate, and coating a hard coating.
Here, the carburizing step or the carbonitriding step is performed under reduced pressure of about 0.1 to 10 Pa. This makes it difficult for the base material to be oxidized in the heat treatment step, and reduces the generation of FeO, Fe 2 O 3, and the like.
In addition, since the occurrence of distortion is reduced, finishing can be omitted. In addition, the ion cleaning is also light. Furthermore, even for a base material such as a gear having a complicated shape, a hard coating can be adhered to the tooth root and the like, and a high surface fatigue strength can be obtained.
[0013]
In the carburizing treatment step or the carbonitriding treatment step, the carbon concentration on the surface of the base material is preferably set to 0.9 to 1.3%, and thereafter, it is preferable to hold at 820 to 920 ° C. for at least 30 minutes. In this case, a hard metal structure in which hard and fine carbides and carbonitrides are dispersed, which is hardly decomposed even by the heat at the time of coating the film, may be formed in the tough martensite matrix. Therefore, the sliding member of the present invention is hardly softened or deformed by heat generated during coating or use of the member, and the hard film can have high adhesion.
For example, after treatment at the above carbon concentration of about 900 to 1050 ° C. by gas carburization, quenching can be performed after holding at 820 to 920 ° C. for 30 minutes. The holding time varies depending on the material of the film and the like, but may be about 15 to 60 minutes.
[0014]
Further, in the cooling step, the base material is rapidly cooled by an inert gas. Thereby, the substrate is satisfactorily quenched. In addition, since the occurrence of distortion can be suppressed, the correcting operation can be omitted even if the base material has a complicated shape such as a gear. Further, since the substrate is cooled without being brought into contact with oxygen, oxidation of the substrate surface can be prevented. Furthermore, the degreasing and washing step performed by oil quenching can be omitted.
As the inert gas, for example, argon (Ar), nitrogen (N 2 ), helium (He) and the like can be used. In addition, the rapid cooling is preferably performed by injecting an inert gas evenly from a plurality of injectors to the base material, so that even a base material that is likely to be twisted or warped can be removed from the non-oxidizing atmosphere and the correction processing can be omitted.
[0015]
Furthermore, in the oxide removing step, the oxide on the surface of the base material is removed using plasma ions. Accordingly, even in a substrate having a complicated shape in which oxide removal is difficult, the surface is kept in a non-oxidizing atmosphere, so that a hard film having excellent adhesion is formed in a subsequent coating step.
[0016]
In the hard film coating step, the physical vapor deposition method is preferably performed in the presence of nitrogen (N 2 ) or in the presence of N 2 and methane (CH 4 ). It is preferred to coat iron carbonitride or diamond-like carbon (DLC), and any combination thereof. In this case, high adhesion can be obtained even when a lower temperature or inexpensive base material is used as the base material. In other words, when the coating material is iron nitride or iron carbonitride, the difference in thermal expansion between the coating material and the base material (steel base material, etc.) is smaller than that of the other coating materials, and is caused by heat during coating. The internal stress is reduced, and the adhesion is further improved. When the coating material is DLC, the friction with the mating member (friction of the sliding surface) is reduced, and the force applied to the hard film when the sliding member is used can be reduced, so that the adhesion can be further improved.
[0017]
Further, the hard coating step is preferably performed at 150 to 250 ° C. In this case, a stable structure can be obtained even if the tempering step is omitted, and a sliding member that achieves both low cost and high strength can be obtained because excessive softening does not occur during processing. The “hard film coating step” includes a coating process and a surface treatment (such as ion cleaning) of the substrate to be coated.
[0018]
Next, the sliding member of the present invention is obtained by the above-described manufacturing method. That is, it is obtained by continuously performing a carburizing treatment or a carbonitriding treatment under reduced pressure, a quenching treatment with an inert gas, and an oxide removal treatment using plasma ions. With excellent adhesion. Typically, gears, pulleys for CVT, camshafts, and the like can be mentioned, and they are also suitable for bearing races because they hardly cause distortion.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0020]
(Examples 1 to 4, Comparative Examples 1 to 10)
JIS SCM420H was selected as a base material and processed into the following gear shape.
<Gear specifications>
Module: 2.5 mm
Number of teeth: 30
Tooth width: 13mm
Outer diameter: 78mm
Thickness: 30mm
After degreasing the gears, the gears were processed in step a or b shown in FIG.
[0021]
First, the gears of the example and the comparative example were subjected to the plasma carburizing treatment shown in FIG. The carbon concentration on the gear surface was adjusted by the time ratio of carburizing / diffusion.
Thereafter, a part of the gear of the comparative example was quenched in oil at 60 ° C., tempered at 170 ° C. for 2 hours, and then subjected to a microblast treatment and a degreasing cleaning to be subjected to a hard coating process. On the other hand, for the gear of the example, after plasma carburizing and diffusion were performed a plurality of times at 950 ° C. to make the gear surface have a predetermined carbon concentration, the gear was conveyed to another chamber, and nozzle gas was supplied at a pressure of 3 bar using argon gas. Cooling was performed.
Thereafter, the gas was exhausted, and the gears were transported to a coating process in another chamber.
In the present invention, since no fat was used in the carburizing and quenching steps, degreasing and washing were not performed. Further, the tempering after the quenching step can be performed at the same time during the preheating in the next coating step, so that the tempering step was not performed.
[0022]
In the step of coating the hard coating, treatment was performed under the following conditions using an arc ion plating method or a sputtering method among physical vapor deposition methods.
In addition, as shown in Table 1, in Example, the film was formed of FeN or DLC, and in Comparative Example, a film was formed of TiN or CrN in addition to these. In Comparative Examples, gears without a film were also manufactured.
[0023]
<Arc ion plating film formation conditions>
Vacuum before introducing nitrogen gas: 1 × 10 −3 to 5 × 10 −5 Torr
Sputter cleaning: Ar -600 to -700 V, 4 min (intermittent)
Pressure after introduction of nitrogen gas: 10 to 40 mTorr
Cathode current during film formation: 60-100A
Bias voltage during film formation: -10 to -50 V
Temperature before film formation: 100 to 150 ° C
Film formation pattern: film formation for 10 minutes-pause cycle for 10 to 50 minutes
<Sputter deposition conditions>
Vacuum degree before gas introduction: 1 × 10 −3 to 5 × 10 −5 Torr
Sputter cleaning: Ar -600 to -700 V, 4 min (intermittent)
Pressure after gas introduction: 10 to 40 mTorr
Cathode current during film formation: 60-100A
Bias voltage during film formation: -10 to -50 V
Temperature before film formation: 100 to 150 ° C
Film formation pattern: film formation for 10 minutes -10 to 50 minutes pause cycle
(Performance evaluation test)
In each of Examples and Comparative Examples, the tooth surface was cut after a series of treatments, and the Vickers hardness of the base material near the hard coating on the cut surface, the amount of carbon measured by EPMA, and the amount of carbide by SEM observation and image analysis of the carbide And shape.
Further, the strength of the gear was examined by a power circulation type gear test. When there was no peeling after 1 × 10 −8 load repetitions, OK stop was set.
[0026]
<Gear test conditions>
Torque: 200 Nm
Rotation speed: 1000 rpm
Oil temperature: 120 ° C
Oil: Nissan genuine belt fluid NS-1
Supply oil amount: 1 L / min
[0027]
Table 1 summarizes the evaluation test results.
[0028]
[Table 1]
Figure 2004307927
[0029]
In the metallographic structure of the base material of the gears obtained by the production methods of Examples 1 to 4, fine pseudospherical carbides having a diameter of 3 μm or less are precipitated on the martensite base, and the amount thereof is 3% to 3% in area ratio. 7%. It is considered that these fine carbides improve the softening resistance of the base material due to heat without impairing the toughness of the base material.
In addition, the gears of Examples 1 to 4 did not peel off even at 25 times or more the number of load repetitions as compared with the gear without the hard coating (Comparative Example 1).
[0030]
On the other hand, in the gear of Comparative Example 2, the holding temperature (t) before quenching was too high and the precipitation of carbide was small, and the hardness after coating was low because a lot of retained austenite phase softer than martensite was observed. Peeled off. On the contrary, the gear of Comparative Example 3 was not able to obtain sufficient hardness by quenching because the holding temperature was too low, and peeling occurred early.
Since the gears of Comparative Example 4 and Comparative Example 5 were not subjected to the heat treatment step of the present invention, the film was peeled off at the tooth root portion where the effect of ion cleaning was difficult to obtain. In the gears of Comparative Example 6 and Comparative Example 7, since the carbon content was outside the preferred range of the present invention, the base material was easily softened or cracked, and all of them were separated at an early stage. The gear of Comparative Example 8 peeled off because the film was not sufficiently strong because the coating temperature was too low. Since the film material was not FeN, the gears of Comparative Examples 9 and 10 did not have sufficient adhesion to the base material at a coating temperature of 180 to 200 ° C. and thus peeled off.
[0031]
According to the present invention, since a series of steps from heat treatment to coating can be performed in a non-oxidizing atmosphere, an oxide film that inhibits the adhesion between the film and the base material (base material) is less likely to be formed on parts, and gears such as gears are complicated. Sufficient adhesion can be obtained even with a sliding member having a simple shape. In particular, after keeping the carbon concentration on the surface of the component at 0.9 to 1.3% and keeping the temperature at 820 to 920 ° C or lower, the quenched component is coated with a FeN film or a diamond-like carbon film at 150 to 250 ° C. Thus, excellent adhesion can be provided without impairing the strength and toughness of the substrate.
[0032]
【The invention's effect】
As described above, according to the present invention, carburizing treatment or carbonitriding treatment under reduced pressure, quenching treatment with an inert gas, and oxide removal treatment using plasma ions are continuously performed. Even when the material has a complicated shape, it is possible to provide a method for manufacturing a sliding member and a sliding member capable of sufficiently adhering a hard coating in a smaller number of steps than before.
[Brief description of the drawings]
FIG. 1 is a flowchart showing steps from carburizing to hard coating.
FIG. 2 is a graph showing a control process of a plasma carburizing pattern.

Claims (5)

基材を浸炭処理又は浸炭窒化処理し、冷却処理し、基材表面の酸化物を除去し、硬質皮膜を被覆して摺動部材を製造するに当たり、
上記浸炭処理工程又は浸炭窒化処理工程を減圧下で行い、上記冷却処理工程で不活性ガスによる急冷を行い、上記酸化物除去工程でプラズマイオンを用いることを特徴とする摺動部材の製造方法。
In producing a sliding member by performing a carburizing treatment or a carbonitriding treatment on a base material, performing a cooling treatment, removing an oxide on the base material surface, and coating a hard coating.
A method for producing a sliding member, comprising: performing the carburizing step or the carbonitriding step under reduced pressure; performing a quenching with an inert gas in the cooling step; and using plasma ions in the oxide removing step.
上記浸炭処理工程又は浸炭窒化処理工程を、基材表面の炭素濃度を0.9〜1.3%として行い、その後820〜920℃で少なくとも30分保持した後、上記冷却処理工程を行うことを特徴とする請求項1に記載の摺動部材の製造方法。The above-mentioned carburizing step or carbonitriding step is performed by setting the carbon concentration on the surface of the base material to 0.9 to 1.3%, and thereafter, after holding at 820 to 920 ° C. for at least 30 minutes, performing the cooling step. The method for manufacturing a sliding member according to claim 1, wherein: 上記硬質皮膜被覆工程が、窒素又は窒素とメタンの存在下で、物理蒸着法により、鉄窒化物、鉄炭窒化物及びダイヤモンドライクカーボンから成る群より選ばれた少なくとも1種のものを被覆することを特徴とする請求項1又は2に記載の摺動部材の製造方法。The hard coating step is to coat at least one selected from the group consisting of iron nitride, iron carbonitride and diamond-like carbon by physical vapor deposition in the presence of nitrogen or nitrogen and methane. The method for manufacturing a sliding member according to claim 1, wherein: 上記硬質皮膜被覆工程を150〜250℃で行うことを特徴とする請求項1〜3のいずれか1つの項に記載の摺動部材の製造方法The method for producing a sliding member according to any one of claims 1 to 3, wherein the hard coating step is performed at 150 to 250 ° C. 請求項1〜4のいずれか1つの項に記載の摺動部材の製造方法により得られたことを特徴とする摺動部材。A sliding member obtained by the method for manufacturing a sliding member according to claim 1.
JP2003102781A 2003-04-07 2003-04-07 Method for manufacturing sliding member, and sliding member Pending JP2004307927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102781A JP2004307927A (en) 2003-04-07 2003-04-07 Method for manufacturing sliding member, and sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102781A JP2004307927A (en) 2003-04-07 2003-04-07 Method for manufacturing sliding member, and sliding member

Publications (1)

Publication Number Publication Date
JP2004307927A true JP2004307927A (en) 2004-11-04

Family

ID=33466113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102781A Pending JP2004307927A (en) 2003-04-07 2003-04-07 Method for manufacturing sliding member, and sliding member

Country Status (1)

Country Link
JP (1) JP2004307927A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257942A (en) * 2005-03-16 2006-09-28 Kawasaki Heavy Ind Ltd Titanium alloy made tappet and its manufacturing method, and jig used for manufacturing
JP2011117027A (en) * 2009-12-02 2011-06-16 Parker Netsu Shori Kogyo Kk Method for carburizing workpiece having edge part
CN103591265A (en) * 2013-11-29 2014-02-19 重庆清平机械厂 Wind power output gear shaft spline seepage-proofing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257942A (en) * 2005-03-16 2006-09-28 Kawasaki Heavy Ind Ltd Titanium alloy made tappet and its manufacturing method, and jig used for manufacturing
JP4541941B2 (en) * 2005-03-16 2010-09-08 川崎重工業株式会社 Parts such as titanium alloy tappets and manufacturing method thereof
JP2011117027A (en) * 2009-12-02 2011-06-16 Parker Netsu Shori Kogyo Kk Method for carburizing workpiece having edge part
CN103591265A (en) * 2013-11-29 2014-02-19 重庆清平机械厂 Wind power output gear shaft spline seepage-proofing method

Similar Documents

Publication Publication Date Title
US8092922B2 (en) Layered coating and method for forming the same
EP2679701B1 (en) Manufacturing method of a nitrided steel member
JP2007523999A (en) Method for carburizing steel components
JP2002097914A (en) Engine valve made of titanium alloy and method of manufacturing it
JP2002286115A (en) Highly strength gear and its producing method
CN113774315B (en) Aviation heavy-duty gear and preparation method thereof
CN101648334A (en) Manufacturing technique of austenitic stainless steel cold-rolled plate with good surface performance
JPH0598422A (en) Continuous treatment for ion nitriding-ceramic coating
JPH10130817A (en) Coating material and its production
JP2004307927A (en) Method for manufacturing sliding member, and sliding member
JP2991759B2 (en) Manufacturing method of nitriding steel
JP2010222648A (en) Production method of carbon steel material and carbon steel material
JP2001192861A (en) Surface treating method and surface treating device
JP2000008121A (en) Production of high facial pressure resistant parts and high facial resistant parts
JP4505246B2 (en) Formation method of hardened surface of corrosion resistant and wear resistant austenitic stainless steel
JP5548920B2 (en) Method for carburizing a workpiece having an edge
JP5674180B2 (en) Method for surface modification of stainless steel materials
EP3502302A1 (en) Nitriding process for carburizing ferrium steels
JP4554254B2 (en) Roller chain and silent chain
JPH09302454A (en) Pre-treatment of carburizing quenched material and manufacture thereof
JP4631472B2 (en) Manufacturing method of covering member
Sanchette et al. Single cycle plasma nitriding and hard coating deposition in a cathodic arc evaporation device
JP5746832B2 (en) Stainless steel screws
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JPH01212748A (en) Rapid carburizing treatment for steel