JP2004307779A - Manufacturing method of polyester applicable to polyurethane - Google Patents

Manufacturing method of polyester applicable to polyurethane Download PDF

Info

Publication number
JP2004307779A
JP2004307779A JP2003132350A JP2003132350A JP2004307779A JP 2004307779 A JP2004307779 A JP 2004307779A JP 2003132350 A JP2003132350 A JP 2003132350A JP 2003132350 A JP2003132350 A JP 2003132350A JP 2004307779 A JP2004307779 A JP 2004307779A
Authority
JP
Japan
Prior art keywords
pet
polyester
polyhydric alcohol
acid
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003132350A
Other languages
Japanese (ja)
Inventor
Susumu Yoshimura
延 吉村
Shinichi Otsuka
伸一 大塚
Ryozo Tamada
亮三 玉田
Yasuhiro Iguchi
泰宏 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DJK KENKYUSHO KK
Kubota Corp
Original Assignee
DJK KENKYUSHO KK
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DJK KENKYUSHO KK, Kubota Corp filed Critical DJK KENKYUSHO KK
Priority to JP2003132350A priority Critical patent/JP2004307779A/en
Publication of JP2004307779A publication Critical patent/JP2004307779A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize cost reduction by carrying out in a very short time a decomposition reaction of an R-PET by a polyhydric alcohol which takes long hours by conventional methods. <P>SOLUTION: The method comprises melt-kneading the recycled polyethylene terephthalate together with the polyhydric alcohol and other necessary raw materials in an extruder, and subsequently causing the mixture to pass through the heated pipe having a specified bore and a specified length thereby degrading the recycled polyethylene terephthalate to an oligomer having a required molecular weight. The method serves also to stabilize qualities of the produced resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
本発明は環境問題の一助となるリサイクルされたポリエチレンテレフタレート(R−PETと略)の分解方法に関するものであり、分解生成物は各種の用途に有用なポリエステルの合成原料として使用する方法に関係する。
〔発明の属する技術分野〕
【0002】
R−PETをグリコールで分解し、不飽和ポリエステル樹脂、脂肪酸変性アルキッド樹脂等に応用されていることは周知である。
従来行なわれているこれら用途にむけられているR−PETは分解されたR−PETの分子量が3000以下望ましくは1500以下に迄低下させないと、次の必要原材料(主として多価カルボン酸またはその酸無水物)を追加してエステル化し、樹脂を合成したとしても生成した樹脂を溶剤またはモノマーに溶解した場合、高分子量の充分に分解されないR−PETまたは少量の残留のテレフタル酸(遊離状態)に起因する白濁を生じ、著しく商品価値を損ない、甚だしい場合には全く売り物にならない状態となる。
〔従来の技術〕
【0003】
従来R−PETを多価アルコール、主としてグリコールで分解するためには、R−PETと多価アルコールを同一反応釡に仕込み、昇温させてグリコールの沸点レベルで分解反応を行なっており、例外はない。
この方法によると多価アルコールの沸点以上には温度が上げられないために、その温度での分解は時間のみに依頼することになる。
つまり長時間を要し、短い場合は数時間で済む場合もあるが、ほとんどは10時間前後、またはそれ以上を要する場合が大部分である。特に油脂成分を用いない飽和ポリエステルの場合にそうである。
〔発明が解決しようとする課題〕
【0004】
即ち、従来のR−PETを分解して原料化し、これを用いてポリエステルを製造するには、時間を要する。
時間が必要と言うことは即ちコストアップに直結する。コストは一口に言えば(人×時間)に比例するからである。本発明は従来長時間を要していたR−PETの多価アルコールによる分解反応を頗る短時間で行なうことでコストの引き下げを実現したものである。
〔課題を解決するための手段〕
【0005】
R−PETと多価アルコールとの混合物を、極力速やかに必要分子量に迄分解する方法につき種々検討した結果、分解反応をパイプ中で流動させながら行なうことで目的を達成できることを見出し本発明を完成する事ができた。
R−PETと所望の多価アルコールの混合物は必要な分解触媒の併用下、パイプ中で多価アルコールの沸点よりも高温で支障なく行え、分解時間を極めて短縮する事が出来た。
〔発明の実施の形態〕
【0006】
本発明によれば使用するパイプの口径、加熱方法、長さ等の必要条件を調節することにより、自在に分解に必要な時間、分解されたR−PETの分子量をコントロールすることが出来、所望の分解生成物を反応釜に移して、必要な多塩基酸(またはその酸無水物)を加えエステル化を行なうことで目的とするポリエステルを得ることが出来る。
また、油変性アルキッド樹脂の製造の場合には天然油脂と多価アルコールとのエステル交換とR−PETの分解反応をパイプ中で同時に進行させる事も可能である。
【0007】
本発明に用いられるR−PETは、PETボトルより再生されたフレーク状のものが適当であるが、ペレット状態でも問題なく、また多少の水分の存在は問題ない。
【0008】
R−PETを分解するための多価アルコールには特に制限を加える必要はないが、得られるポリエステルの用途に応じて変更する事は自由である。多価アルコールには例えば以下の種類があげられる。
プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ブタンジオール1,3、ブタンジオール1,4、ネオペンチルグリコール、1,4シクロヘキサンジメタノール、2−メチルプロパンジオール1,3、3−メチルペンタンジオール1,5、ヘキサメチレングリコール、オクチレングリコール、水素化ビスフェノールA、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリット等である。
【0009】
多価アルコールとの併用により、分子量を2000以下に分解されたR−PETは所望の多塩基酸(またはその酸無水物)を加え、エステル化することにより目的とするポリエステルを得ることが出来る。それらの多塩基酸(または酸無水物)の例には次の種類が見られる。
コハク酸、アジピン酸、ピメリン酸、セバシン酸、ドデカン酸、無水フタル酸、イソフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、無水トリメリト酸
【0010】
多価アルコール分解されたR−PETと多塩基酸(または酸無水物)との使用割合は得られたポリエステルの用途により決められるのが一般的である。
【0011】
本発明により得られたポリエステルはその目的に応じて多価イソシアネートを併用する事により硬化される。
本発明に使用される多価イソシアネート化合物の例には以下のものをあげることが出来る。
2,4トリレンジイソシアネート、2,4トリレンジイソシアネートと2,6トリレンジイソシアネートとの混合物、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,4シクロヘキザンジイソシアネート、1,5−ナフタレンジイソシアネート、キシリレンジイソシアネート、水素添加キシリレンジイソシアネート、リジンジイソシアネート、トリフェニルメタン、トリイソシアネート、並びに以上の2量体、3量体等である。
【0012】
ポリエステルと多価イソシアネートとの併用、硬化は用途に応じ選択され、既存の方法が適用される。
【0013】
本発明による分解R−PETを用いたポリエステルを多価イソシアネートで硬化させたポリウレタンはその実用に当たって有機、無機の補強材、フィラー、着色剤、離型剤並びに各種溶剤を併用できることは無論である。
次に本発明の理解を助けるために、以下に実施例を示す。
〔実施例〕
【0014】
R−PET分解オリゴマーの合成
”よのペットリサイクル(株)”のフレーク状R−PETを86Kg、ネオペンチルグリコール75Kg、トリメチロールプロパン10Kg、分解触媒としてジブチル錫オキシド300gをあらかじめ混合し、シリンダー温度250℃〜280℃の押出機に投入し、混練溶融後、押出機に直結した直径50mm長さ10m、210℃に加熱したステンレス製パイプ中を約1時間で通過させた。
この間パイプ流動中にR−PETのグリコール分解が効率的に行なわれ、図−1に示した100リットルの210℃に加熱してあるステンレス製タンクに流入させた。R−PETが分解されたオリゴマーの分子量は680であった。これをオリゴマー(A)とした。
【0015】
ポリエステル(a)の合成
攪拌機、ガス導入管、温度計、冷却用コイル、分溜コンデンサーを付した、加熱計量可能な100リットルステンレス製反応装置に230℃のポリエステル(a)50Kgを仕込み、直ちにアジピン酸9Kgを加えた。窒素気流中210℃〜215℃でエステル化を3時間行ない、最後に20〜25Torrの減圧処理を30分施し、酸価3、ヒドロキシル価140〜145の淡黄褐色、室温で柔らかい固型のポリエステル(a)が得られた。
【0016】
〔比較例〕
実施例で使用した反応釜にR−PETを35Kg、ネオペンチルグリコール30Kgトリメチロールプロパン4Kg、ジブチル錫オキシド120gを仕込み温度210℃で分解反応を行なった。内容物はほぼ4時間で透明となったが室温に迄冷却した場合、白濁固化し、分子量は3000のレベルであったので、更に4時間分解反応を続け分子量1500〜1600の段階でアジピン酸12Kgを加えた。
実施例1と同様に反応を行ない、酸価13、ヒドロキシル価135〜140のポリエステル(b)が同様に淡黄褐色、柔らかい固型で得られた。
【0017】
〔溶解性テスト〕
ポリエステル(a)、ポリエステル(b)、それぞれを固形分70重量部の酢酸ブチル溶液とし、ローソク瓶に7分目程いれ密栓して室温で保管した所、ポリエステル(a)よりのサンプルは1ヶ月以上透明性を保って変化が無かったが、ポリエステル(b)よりのサンプルは3日後から僅かに白濁が認められるようになり、1週間後にはほぼ半透明状態の白濁となった。1ヶ月後は透明性のない白濁で商品価値の全く認められない状態であった。
【0018】
〔比較例2〕
比較例と同一配合、同一条件でR−PETの分解を20時間行ない、分子量740のオリゴマーを得、更に同じようにアジピン酸を加えてエステル化を行なって、酸価7.6、ヒドロキシル価135〜143のポリエステル(c)を製造した。
固形分70重量%、の酢酸ブチル溶液を、同じようにローソク瓶で保管テストを行なった所、1ヶ月後に僅かに白濁が認められる状態であった。
【0019】
実施例と比較例の差は実施例はパイプ中のR−PETの分解で分解反応中に多価アルコールの揮散は全くないのに反して反応釜中でのR−PETの分解はコンデンサーを通して、幾分多価ァルコールが散出したためとも考えられ、両者の間には本質的な差のあることが明らかである。
【0020】
〔ポリウレタン塗膜の形成〕
実施例1のポリエステル(a)酢酸ブチル溶液100重量部に23gのジフェニルメタンジイソシアネートを27gのウレタングレードのキシレンに溶解したイソシアネート溶液を加え、ボンデライト鋼板上に0.3mm厚さに塗装した後50℃、10Torrの減圧乾燥機に1夜放置し、更に70〜75℃で5時間加熱した。
得られた塗膜の鉛筆硬度はF〜H、180℃の折り曲げでも剥離やクラックの発生は認められなかった。
【0021】
〔光硬化性ウレタン塗料〕
ポリエステル樹脂(a)を70部含む酢酸ブチル溶液を100重量部に不飽和イソシアネートとして昭和電工(株)製商品名”MOI”であるイソシアネートエチルメタクリレート

Figure 2004307779
を25重量部、ジブチル錫ジラウレート0.1g、メチルパラベンゾキノン0.01gを加え70〜75℃で3時間保つと、赤外吸収の結果イソシアネート基は完全に消失したことが認められた。
次いでトリメチロールプロパントリアクリレート35重量部、チバ社のダロキュア#1173を3g加えて均一溶液としたのち、ボンデライト鋼板上に0.5mm厚さに塗装し50℃、10Torrの加熱減圧器に6時間放置した後、出力1KWの紫外線照射機下15cmを1分/mで通過させた。硬化は1回で起こり、表面硬度は2〜3Hであった。
〔発明の効果〕
本発明のR−PETの多価アルコール分解を加熱されたパイプ中で行なうことにより、従来の反応釜で実施した場合の1/5〜1/10の時間で実質上充分な分解オリゴマーが得られ、反応時間の短縮により、大幅なコスト切り下げと、生成樹脂の安定化を実現出来る。
【図面の簡単な説明】
【図1】R−PETの多価アルコール分解、並びにエステル化反応装置を示した平面図である。[0001]
The present invention relates to a method for decomposing recycled polyethylene terephthalate (R-PET), which contributes to environmental problems, and relates to a method for using a decomposition product as a raw material for synthesizing a polyester useful for various uses. .
[Technical field to which the invention belongs]
[0002]
It is well known that R-PET is decomposed with glycol and applied to unsaturated polyester resins, fatty acid-modified alkyd resins and the like.
R-PET which has been conventionally used for these uses, requires the molecular weight of decomposed R-PET to be 3000 or less, preferably 1500 or less, unless the following necessary raw materials (mainly polycarboxylic acid or its acid). Even if the resulting resin is dissolved in a solvent or a monomer, even if the resin is synthesized in a solvent or a monomer, it is converted into a high molecular weight R-PET which is not sufficiently decomposed or a small amount of residual terephthalic acid (in a free state). As a result, cloudiness is caused and the commercial value is significantly impaired. In severe cases, the product cannot be sold at all.
[Conventional technology]
[0003]
Conventionally, in order to decompose R-PET with a polyhydric alcohol, mainly glycol, R-PET and the polyhydric alcohol are charged into the same reaction vessel, and the temperature is raised to carry out the decomposition reaction at the glycol boiling point level. Absent.
According to this method, the temperature cannot be raised above the boiling point of the polyhydric alcohol, so that decomposition at that temperature is requested only by time.
In other words, it takes a long time, and if it is short, it may take only a few hours, but in most cases it takes around 10 hours or more. This is especially true in the case of a saturated polyester that does not use an oil component.
[Problems to be solved by the invention]
[0004]
That is, it takes time to decompose the conventional R-PET into a raw material and use it to produce a polyester.
Requiring time directly leads to increased costs. This is because the cost is directly proportional to (person × time). The present invention realizes cost reduction by performing a decomposition reaction of R-PET with a polyhydric alcohol in a very short time, which has conventionally required a long time.
[Means for solving the problem]
[0005]
As a result of various studies on a method for decomposing a mixture of R-PET and a polyhydric alcohol to a required molecular weight as quickly as possible, it was found that the object can be achieved by performing the decomposition reaction while flowing in a pipe, and the present invention was completed. I was able to do it.
The mixture of R-PET and the desired polyhydric alcohol could be used without any problem at a temperature higher than the boiling point of the polyhydric alcohol in the pipe under the combined use of the required decomposition catalyst, and the decomposition time could be extremely reduced.
[Embodiment of the invention]
[0006]
According to the present invention, it is possible to freely control the time required for decomposition, the molecular weight of decomposed R-PET by adjusting necessary conditions such as the diameter of the pipe used, the heating method, and the length. The desired polyester can be obtained by transferring the decomposition product of the above to a reaction vessel, adding a necessary polybasic acid (or an acid anhydride thereof), and performing esterification.
In the case of producing an oil-modified alkyd resin, the transesterification of natural fats and oils with a polyhydric alcohol and the decomposition reaction of R-PET can simultaneously proceed in a pipe.
[0007]
The R-PET used in the present invention is suitably in the form of flakes regenerated from a PET bottle, but there is no problem in the form of pellets, and there is no problem with the presence of some water.
[0008]
The polyhydric alcohol for decomposing R-PET does not need to be particularly limited, but can be freely changed according to the use of the obtained polyester. Examples of the polyhydric alcohol include the following types.
Propylene glycol, diethylene glycol, dipropylene glycol, butanediol 1,3, butanediol 1,4, neopentyl glycol, 1,4 cyclohexanedimethanol, 2-methylpropanediol 1,3,3-methylpentanediol 1,5, Hexamethylene glycol, octylene glycol, hydrogenated bisphenol A, glycerin, trimethylolpropane, trimethylolethane, pentaerythritol and the like.
[0009]
R-PET decomposed to a molecular weight of 2,000 or less by the combined use with a polyhydric alcohol can be added with a desired polybasic acid (or an acid anhydride thereof) and esterified to obtain a target polyester. Examples of those polybasic acids (or acid anhydrides) include the following types.
Succinic acid, adipic acid, pimelic acid, sebacic acid, dodecanoic acid, phthalic anhydride, isophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, trimellitic anhydride
The proportion of R-PET decomposed into polyhydric alcohol and polybasic acid (or acid anhydride) is generally determined by the use of the obtained polyester.
[0011]
The polyester obtained by the present invention is cured by using a polyvalent isocyanate in combination according to the purpose.
Examples of the polyvalent isocyanate compound used in the present invention include the following.
2,4 tolylene diisocyanate, a mixture of 2,4 tolylene diisocyanate and 2,6 tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 1,4 cyclohexane diisocyanate, 1,5-naphthalenediisocyanate, xylylene diisocyanate Isocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate, triphenylmethane, triisocyanate, and dimers and trimers of the above.
[0012]
The combination and curing of the polyester and the polyvalent isocyanate are selected according to the application, and an existing method is applied.
[0013]
It is a matter of course that the polyurethane obtained by curing the polyester using the decomposed R-PET according to the present invention with a polyvalent isocyanate can be used in combination with an organic or inorganic reinforcing material, a filler, a coloring agent, a release agent and various solvents.
Next, in order to facilitate understanding of the present invention, examples are shown below.
〔Example〕
[0014]
Synthesis of R-PET Decomposition Oligomers 86 kg of flake-form R-PET from Yoyo Pet Recycle Co., Ltd., 75 kg of neopentyl glycol, 10 kg of trimethylolpropane, 300 g of dibutyltin oxide as a decomposition catalyst were mixed in advance, and the cylinder temperature was set to 250. The mixture was charged into an extruder at a temperature of from 280 to 280 ° C, and after kneading and melting, the mixture was passed through a stainless steel pipe directly connected to the extruder and heated to 210 ° C with a diameter of 50 mm and a length of 10 m for about 1 hour.
During this time, R-PET glycol was efficiently decomposed during the flow of the pipe, and the R-PET was flowed into the stainless steel tank heated to 210 ° C. of 100 liters shown in FIG. The molecular weight of the oligomer from which R-PET was decomposed was 680. This was designated as oligomer (A).
[0015]
Polyester (a) synthesis A stirrer, a gas inlet tube, a thermometer, a cooling coil, a distillation condenser, and a heatable and weighable 100 liter stainless steel reactor were charged with 50 kg of polyester (a) at 230 ° C., and immediately adipin 9 kg of acid was added. Esterification is carried out at 210 ° C. to 215 ° C. for 3 hours in a nitrogen stream, and finally a reduced pressure treatment of 20 to 25 Torr is carried out for 30 minutes to give a light yellow-brown polyester having an acid value of 3, hydroxyl value of 140 to 145, and a soft solid at room temperature. (A) was obtained.
[0016]
(Comparative example)
35 kg of R-PET, 30 kg of neopentyl glycol, 4 kg of trimethylolpropane, and 120 g of dibutyltin oxide were charged into the reactor used in the examples, and a decomposition reaction was carried out at a temperature of 210 ° C. The contents became transparent in about 4 hours, but when cooled to room temperature, the contents solidified and became cloudy, and the molecular weight was at the level of 3000. Therefore, the decomposition reaction was further continued for 4 hours and 12 kg of adipic acid was obtained at a molecular weight of 1500 to 1600. Was added.
The reaction was carried out in the same manner as in Example 1, and a polyester (b) having an acid value of 13 and a hydroxyl value of 135 to 140 was similarly obtained in a pale yellow-brown, soft solid form.
[0017]
(Solubility test)
Polyester (a) and polyester (b) were each made into a butyl acetate solution having a solid content of 70 parts by weight, placed in a candle bottle for about 7 minutes, sealed and stored at room temperature. The sample from polyester (a) was 1 month Although there was no change while maintaining the transparency, the sample of polyester (b) became slightly turbid after 3 days, and became almost translucent after 1 week. One month later, the product was not transparent and had no commercial value at all.
[0018]
[Comparative Example 2]
R-PET was decomposed for 20 hours under the same composition and under the same conditions as in the comparative example to obtain an oligomer having a molecular weight of 740. Further, adipic acid was similarly added to carry out esterification to obtain an acid value of 7.6 and a hydroxyl value of 135. ~ 143 polyester (c) was prepared.
A butyl acetate solution having a solid content of 70% by weight was similarly subjected to a storage test in a candle bottle. As a result, after one month, a slight turbidity was observed.
[0019]
The difference between the example and the comparative example is that the example is the decomposition of R-PET in the pipe, whereas the polyhydric alcohol does not volatilize during the decomposition reaction at all, whereas the decomposition of R-PET in the reactor is through a condenser. This is probably due to the spread of multivalent alcohol, and it is clear that there is an essential difference between the two.
[0020]
[Formation of polyurethane coating film]
An isocyanate solution obtained by dissolving 23 g of diphenylmethane diisocyanate in 27 g of urethane-grade xylene was added to 100 parts by weight of the butyl acetate solution of the polyester (a) in Example 1, and the mixture was coated on a bonderite steel sheet to a thickness of 0.3 mm and then heated to 50 ° C. It was left in a 10 Torr vacuum dryer overnight, and further heated at 70 to 75 ° C. for 5 hours.
The resulting coating film had a pencil hardness of F to H and no peeling or cracking was observed even when bent at 180 ° C.
[0021]
(Photocurable urethane paint)
100 parts by weight of a butyl acetate solution containing 70 parts of a polyester resin (a) as an unsaturated isocyanate, isocyanate ethyl methacrylate, trade name "MOI" manufactured by Showa Denko KK
Figure 2004307779
, 25 g of dibutyltin dilaurate and 0.01 g of methyl parabenzoquinone were added, and the mixture was kept at 70 to 75 ° C for 3 hours. As a result of infrared absorption, it was confirmed that the isocyanate groups had completely disappeared.
Next, 35 parts by weight of trimethylolpropane triacrylate and 3 g of Darocure # 1173 from Ciba were added to make a uniform solution, which was then coated on a bonderite steel sheet to a thickness of 0.5 mm, and left standing at 50 ° C. in a 10 Torr heating / reducing device for 6 hours. After that, the light was passed at a rate of 1 minute / m through 15 cm under an ultraviolet irradiation machine having an output of 1 KW. Curing occurred once and the surface hardness was 2-3H.
〔The invention's effect〕
By performing the polyhydric alcohol decomposition of the R-PET of the present invention in a heated pipe, substantially sufficient decomposed oligomers can be obtained in 1/5 to 1/10 of the time in a conventional reactor. By shortening the reaction time, it is possible to significantly reduce costs and stabilize the produced resin.
[Brief description of the drawings]
FIG. 1 is a plan view showing an apparatus for decomposing R-PET with polyhydric alcohol and for esterification.

Claims (2)

リサイクルされたポリエチレン−テレフタレートを所望の多価アルコールと併用し、混練後必要な口径と長さを有するパイプ中を加熱溶解させ、流動させながらポリエチレンテレフタレートの分子量(数平均分子量)を2000以下とし、更に所望の装置内で必要とされる物性を実現させるための多塩基酸(またはその酸無水物)を追加、エステル化をおこなわせることを特徴とするポリエステルの製造方法。Recycled polyethylene-terephthalate is used in combination with a desired polyhydric alcohol, and after kneading, the mixture is heated and melted in a pipe having a required diameter and length, and the molecular weight (number average molecular weight) of polyethylene terephthalate is reduced to 2000 or less while flowing. A method for producing a polyester, further comprising adding a polybasic acid (or an acid anhydride thereof) for realizing physical properties required in a desired apparatus and performing esterification. ポリエステルがポリウレタンの原料として使用することよりなる請求項1記載の方法。The method according to claim 1, wherein the polyester is used as a raw material for polyurethane.
JP2003132350A 2003-04-04 2003-04-04 Manufacturing method of polyester applicable to polyurethane Pending JP2004307779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132350A JP2004307779A (en) 2003-04-04 2003-04-04 Manufacturing method of polyester applicable to polyurethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132350A JP2004307779A (en) 2003-04-04 2003-04-04 Manufacturing method of polyester applicable to polyurethane

Publications (1)

Publication Number Publication Date
JP2004307779A true JP2004307779A (en) 2004-11-04

Family

ID=33474775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132350A Pending JP2004307779A (en) 2003-04-04 2003-04-04 Manufacturing method of polyester applicable to polyurethane

Country Status (1)

Country Link
JP (1) JP2004307779A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951811A (en) * 2010-07-28 2014-07-30 太阳控股株式会社 Phenol resin and epoxy resin and manufacturing method for same
KR20190098967A (en) * 2016-12-23 2019-08-23 바스프 에스이 Thermoplastic Polyurethane with High Tear Propagation Strength
KR20210018330A (en) * 2018-06-01 2021-02-17 엘란타스 피디쥐, 인코포레이티드. Continuous method for the preparation of polyol-modified polyalkenylene terephthalate
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2022-10-12 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951811A (en) * 2010-07-28 2014-07-30 太阳控股株式会社 Phenol resin and epoxy resin and manufacturing method for same
KR20190098967A (en) * 2016-12-23 2019-08-23 바스프 에스이 Thermoplastic Polyurethane with High Tear Propagation Strength
JP2020514428A (en) * 2016-12-23 2020-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Thermoplastic polyurethane with high tear propagation strength
KR102554144B1 (en) 2016-12-23 2023-07-10 바스프 에스이 Thermoplastic polyurethane with high tear propagation strength
KR20210018330A (en) * 2018-06-01 2021-02-17 엘란타스 피디쥐, 인코포레이티드. Continuous method for the preparation of polyol-modified polyalkenylene terephthalate
JP2021525822A (en) * 2018-06-01 2021-09-27 エランタス ピー・ディー・ジー インコーポレイテッドElantas Pdg, Inc. Continuous process for producing polyol-modified polyalkenylene terephthalate
JP7252979B2 (en) 2018-06-01 2023-04-05 エランタス ピー・ディー・ジー インコーポレイテッド Continuous process for producing polyol-modified polyalkenylene terephthalate
KR102529084B1 (en) 2018-06-01 2023-05-03 엘란타스 피디쥐, 인코포레이티드. Continuous process for the preparation of polyol modified polyalkenylene terephthalates
US11787902B2 (en) 2018-06-01 2023-10-17 Elantas Pdg Inc. Continous process for producing polyol modified polyalkenylene terephthalate
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2022-10-12 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks

Similar Documents

Publication Publication Date Title
JP3327607B2 (en) Composition for aqueous coating from polyethylene terephthalate
JP3891594B2 (en) Aqueous coating composition from polyethylene terephthalate
AU2010214098B2 (en) Compositions for multilayer coating and resins therefore
JP2925207B2 (en) Process for producing aqueous, oxidatively drying alkyd resins and aqueous paints and paint formulations consisting or comprising them
JPH0135849B2 (en)
CN101861341A (en) The thermoset composition of the low VOC of the polyester acrylic resin that gel coating is used
KR20020020203A (en) Method for Preparing Polyester Resins
JPS5949260B2 (en) Polyester resin composition for powder coatings
CA2354212A1 (en) Polyhydroxyl-compositions derived from castor oil with enhanced reactivity suitable for polyurethane-synthesis
JP3004897B2 (en) Method of forming matte surface
TW201821500A (en) (meth)acrylated compounds based on recycled PET
CN1684994A (en) Gel coat composition
JP2004307779A (en) Manufacturing method of polyester applicable to polyurethane
FR2903412A1 (en) URETHANE PRE-POLYMER - UNSATURATED POLYESTER AND APPLICATIONS THEREOF
CN103649136B (en) For preventing the plastic bottle inner surface coating of the degraded caused by VOC
CN1675276A (en) Urethane acrylate gel coat resin and method of making
JPH069923A (en) Nonaqueous coating composition from polyethylene terephthalate
WO2013058837A1 (en) Ultraviolet cured polyesters from sustainable materials
JP2003048927A (en) Energy ray-curable resin composition
CN114230725B (en) Modified polyester film based on ultraviolet light hardening and preparation method thereof
JP2004307780A (en) Decomposing method of recycled polyethylene terephthalate applicable to manufacture of polyester
JPS5817237B2 (en) Photocurable coating composition
EP2352798B1 (en) Radiation curable coating compositions comprising a lactide reaction product
JP2006083273A (en) Allophanate group-containing (meth)acrylate resin composition
JPWO2011129390A1 (en) Method for producing polyester and modified product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007