JP2004304048A - Epitaxial wafer for light emitting diode - Google Patents

Epitaxial wafer for light emitting diode Download PDF

Info

Publication number
JP2004304048A
JP2004304048A JP2003097026A JP2003097026A JP2004304048A JP 2004304048 A JP2004304048 A JP 2004304048A JP 2003097026 A JP2003097026 A JP 2003097026A JP 2003097026 A JP2003097026 A JP 2003097026A JP 2004304048 A JP2004304048 A JP 2004304048A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
light
epitaxial wafer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097026A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
憲治 柴田
Toru Kurihara
徹 栗原
Yosuke Komori
洋介 小森
Manabu Kako
学 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003097026A priority Critical patent/JP2004304048A/en
Publication of JP2004304048A publication Critical patent/JP2004304048A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that an unintentional near infrared ray occurs, resulting in malfunction of peripheral sensors. <P>SOLUTION: The epitaxial wafer for a light emitting diode is provided with such a light emitting layer formed on a GaAs substrate that is made of at least of (Al<SB>X</SB>Ga<SB>1-X</SB>)<SB>1-Y</SB>In<SB>Y</SB>P(0≤X, Y≤1) compound semiconductor or Al<SB>X</SB>Ga<SB>1-X</SB>As(0≤X≤1) semiconductor and forms a p-n junction. A layer which is made of a material having a near infrared ray absorbing function is formed in an optical path for a light that is picked up from the light emitting layer to the outside. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発光ダイオード、特に650nm(赤色)から550nm(黄緑色)の発光波長を有するAlGaInP系発光ダイオードおよび860nm(赤外)から630nm(赤色)の発光波長を有するAlGaAs系発光ダイオード、ならびに当該発光ダイオード用エピタキシャルウエハに関する。
【0002】
【従来の技術】
最近、AlGaInP系エピタキシャルウエハを用いて製造される高輝度の赤色および黄色発光ダイオードの需要が大幅に伸びている。主な需要は、交通信号、自動車のテールランプ、フォグランプ、屋外表示板、フルカラーディスプレイなどである。
【0003】
AlGaInP系発光ダイオードにおいて、基板と活性層との間に、光取り出し効率を上げるための分布ブラッグ反射器を備えたものがある(例えば、特許文献1、2)。
【0004】
【特許文献1】
特開平7−176788号公報
【特許文献2】
特開2001−36132号公報
【0005】
図3は、従来の発光波長590nmのAlGaInP系発光ダイオード用エピタキシャルウエハの典型的な構造を示す。当該エピタキシャルウエハは、n型GaAs基板(SiドープGaAs(100)15度OFF[011])1上に、SeドープGaAs/SeドープAlInP15ペアからなる分布ブラッグ反射器(以下、「DBR」という)2、n型クラッド層(Seドープ(Al0.7Ga0.30.5In0.5P))3、活性層(アンドープ(Al0.3Ga0.70.5In0.5P))4、p型クラッド層(Znドープ(Al0.7Ga0.30.5In0.5P))5(本明細書においてはn型クラッド層3、活性層4およびp型クラッド層5を総称して「発光層」という)、電流拡散層(ZnドープGaP)6を積層し、基板1の裏面の全面にn型電極7、電流拡散層6上面の一部にp型電極8を形成した構造を有する。
【0006】
DBRは、活性層から発生した光のうち下向き(基板1方向)に進む光を上向き(光取り出し面方向)に反射させる機能を有する。このDBRによって、DBR無しの場合と比べて50%以上(場合によって100%程度)の輝度向上が実現できる。DBRは、活性層から発光する光の波長(DBRで反射される光の波長)の1/4波長分(光学的な距離)の膜厚を有し、屈折率が異なる2種類の半導体層を積層して得られる。
【0007】
AlGaInP系発光ダイオードでは、2種類の半導体層間の屈折率差を大きく取ることができ、高い反射率のDBRが得られるGaAs層とAlGa1−XAs(0≦X≦1)層、GaAs層と(AlGa1−X1−YInP(0≦X、Y≦1)層などの組合せが一般的に用いられている。
【0008】
【発明が解決しようとする課題】
しかしながら、従来のDBRを備えるAlGaInP系発光ダイオードでは、活性層から発生する発光光の他にDBR中のGaAs層で意図しない近赤外線発光(発光波長:約860nm)が発生し、その近赤外光線が活性層から発生した発光光に混ざり外部に放出されるので、当該発光ダイオードの使用環境によっては周辺のセンサー類(特に、赤外線を検知するセンサー)の誤動作を引き起こす可能性があるという課題がある。図4は、従来のDBRを備えるAlGaInP系発光ダイオードの発光スペクトル例を示し、当該スペクトルの右端(860nm付近)には上記近赤外線発光ピークが見られ、その強度はメイン発光ピーク(約590nm)の約1/10である。
【0009】
一方、DBRを備えないAlGaInP系発光ダイオードの場合でも、GaAs基板で活性層から発生した発光光が励起され、意図しない近赤外線発光(発光波長:約860nm)が発生するので、上記と同様の課題がある。
また、上記課題は従来の(DBRを備えるか又は備えない)GaAs基板を備えるAlGaAs系発光ダイオードにも共通する。
【0010】
【課題を解決するための手段】
本発明は、上記の課題に鑑みてなされたものであり、近赤外線発光の発生を抑制して周辺のセンサー類の誤動作を防止するため、GaAs基板上に、少なくとも、(AlGa1−X1−YInP(0≦X、Y≦1)系化合物半導体またはAlGa1−XAs(0≦X≦1)系半導体からなり、pn接合を形成する発光層を有する発光ダイオード用エピタキシャルウエハにおいて、発光層から外部に取り出される光の光路中に、近赤外線吸収機能を有する材料からなる層を形成するようにした発光ダイオードを提供するものである。
【0011】
本発明の発光ダイオード用エピタキシャルウエハは、さらに、前記GaAs基板と前記発光層との間に、2種類または2種類以上の化合物半導体層を積層してなる分布ブラッグ反射器を有するものに適用できる。
上記分布ブラッグ反射器は、AlGa1−XAs(0≦X≦0.4)層を含んでなる。
上記近赤外線吸収機能を有する材料は、青板ガラス、またはCu金属錯体を含む樹脂である。
本発明は、上記発光ダイオード用エピタキシャルウエハから構成される発光ダイオードにも適用できる。
【0012】
【発明の実施の形態】
【実施例】
以下、本発明の実施例を添付図面を参照しつつ説明する。
図1は、本発明の実施例にかかる590nm付近の発光波長を有する赤色発光ダイオードの断面構造を示す。当該発光ダイオードは、Siドープn型GaAs基板(GaAs(100)15度OFF[011])1上に、Seドープn型GaAs/Seドープn型AlInP15ペアからなるDBR2、Seドープn型(Al0.7Ga0.30.5In0.5Pクラッド層3、アンドープ(Al0.3Ga0.70.5In0.5P)活性層4、Znドープp型(Al0.7Ga0.30.5In0.5Pクラッド層5、Znドープp型GaP電流拡散層6、導電性のCu2+ドープ燐酸ガラス薄膜9を形成し、基板1の裏面の全面にn型電極7、電流拡散層6上面の一部にp型電極8を形成した構造を有する。
【0013】
上記発光ダイオードの作製方法は、以下のとおりである。n型GaAs基板1上に、MOCVD法を用いて、Seドープn型GaAsバッファ層(図示せず)、Seドープn型GaAs層とSeドープn型AlInP層が交互に15ペア(合計30層)積層されるDBR2、Seドープn型(Al0.7Ga0.30.5In0.5Pクラッド層3、アンドープ(Al0.3Ga0.70.5In0.5P活性層4、Znドープp型(Al0.7Ga0.30.5In0.5Pクラッド層5、Znドープp型GaP電流拡散層6を、基板温度(成長温度)700℃で形成した。その後、MOCVD装置からエピタキシャルウエハを取り出し、塗布法を用いて電流拡散層6上面にCu2+ドープ燐酸ガラスからなる薄膜9を20nm形成した。次いで、このエピタキシャルウエハを加工して300μm角の発光ダイオードチップを作製した。さらに、チップ下面(基板裏面)の全面にn型電極7を形成し、チップ上面の一部に円形p型電極8を形成した。n型電極7は、金ゲルマニウム、ニッケル、金をそれぞれ60nm、10nm、500nmの厚さで順に蒸着し、p型電極8は、金亜鉛、ニッケル、金をそれぞれ60nm、10nm、1000nmの厚さで順に蒸着した。最後に、このチップをステム組した後、樹脂モールドを行って発光ダイオードを作製し、発光スペクトルを測定した。
【0014】
図2は上記要領で作製した発光ダイオードの発光スペクトルを示す。図4に示した従来の発光ダイオードの発光スペクトルと比較すると、図2の発光スペクトルでは、図4の発光スペクトルの右端(860nm付近)に見られた近赤外線発光ピークが消失しており、近赤外線(波長約860nm)の放出量が著しく低減したことが確認された。
【0015】
上記実施例においては、近赤外線吸収材料として、Cu2+ドープ燐酸ガラスを用いたが、近赤外線を吸収する機能を有する全ての材料が本発明に適用できる。他の適用可能な近赤外線吸収材料としては、青板ガラス、Cu金属錯体を含む樹脂などがある。
【0016】
また、上記実施例においては、近赤外線吸収材料からなる薄膜が電流拡散層6上に形成されているが、近赤外線が発生する領域(例えば、活性層4)よりも上方(光取り出し面方向)であれば何処に形成されてもよい。例えば、下述するようにGaAs基板から近赤外線が発生する場合、GaAs基板上方(光取り出し面方向)に形成することができる。
【0017】
また、上記実施例においては、DBR2中のGaAsから近赤外線が発生する場合を説明したが、近赤外線が発生するケースはこれ以外にも、GaAs基板1におけるフォトルミネッセンス発光、エピタキシャルウエハ構造中にエッチングストップ層として挿入されているGaAs薄膜から発生する場合がある。
【0018】
【発明の効果】
以上説明したように、本発明の発光ダイオード用エピタキシャルウエハによれば、GaAs基板上に、少なくとも、(AlGa1−X1−YInP(0≦X、Y≦1)系化合物半導体またはAlGa1−XAs(0≦X≦1)系半導体からなり、pn接合を形成する発光層を有する発光ダイオード用エピタキシャルウエハにおいて、発光層から外部に取り出される光の光路中に、近赤外線吸収機能を有する材料からなる層を形成するようにしたので、赤外線発光の発生を抑制して周辺のセンサー類の誤動作を防止することができる。
【図面の簡単な説明】
【図1】本発明に従う実施例のAlGaInP系発光ダイオードの断面図である。
【図2】上記実施例のAlGaInP系発光ダイオードの発光スペクトルを示す。
【図3】従来のAlGaInP系発光ダイオードの断面図である。
【図4】上記従来のAlGaInP系発光ダイオードの発光スペクトルを示す。
【符号の説明】
1:Siドープn型GaAs基板
2:DBR(分布ブラッグ反射器)
3:Seドープn型(Al0.7Ga0.30.5In0.5Pクラッド層
4:アンドープ(Al0.3Ga0.70.5In0.5P活性層
5:Znドープp型(Al0.7Ga0.30.5In0.5Pクラッド層
6:Znドープp型GaP電流拡散層
7:n型電極
8:p型電極
9:Cu2+ドープ燐酸ガラスからなる薄膜(近赤外線吸収膜)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light-emitting diode, particularly an AlGaInP-based light-emitting diode having an emission wavelength of 650 nm (red) to 550 nm (yellow-green) and an AlGaAs-based light-emitting diode having an emission wavelength of 860 nm (infrared) to 630 nm (red). The present invention relates to an epitaxial wafer for a light emitting diode.
[0002]
[Prior art]
Recently, demand for high-brightness red and yellow light-emitting diodes manufactured using an AlGaInP-based epitaxial wafer has been greatly increased. The main demand is for traffic signals, car tail lamps, fog lights, outdoor signage, full color displays, etc.
[0003]
Some AlGaInP-based light-emitting diodes include a distributed Bragg reflector between a substrate and an active layer for improving light extraction efficiency (for example, Patent Documents 1 and 2).
[0004]
[Patent Document 1]
JP-A-7-176788 [Patent Document 2]
JP-A-2001-36132
FIG. 3 shows a typical structure of a conventional epitaxial wafer for an AlGaInP-based light emitting diode having a light emission wavelength of 590 nm. The epitaxial wafer includes a distributed Bragg reflector (hereinafter, referred to as “DBR”) 2 composed of a Se-doped GaAs / Se-doped AlInP 15 pair on an n-type GaAs substrate (Si-doped GaAs (100) 15 ° OFF [011]) 1. , N-type cladding layer (Se-doped (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P)) 3, active layer (undoped (Al 0.3 Ga 0.7 ) 0.5 In 0. 5 P)) 4, p-type cladding layer (Zn-doped (Al 0.7 Ga 0.3) 0.5 in 0.5 P)) 5 ( in the present specification n-type cladding layer 3, active layer 4 and A p-type cladding layer 5 is collectively referred to as a “light-emitting layer”), and a current diffusion layer (Zn-doped GaP) 6 is laminated thereon. The structure in which the p-type electrode 8 is formed To.
[0006]
The DBR has a function of reflecting light traveling downward (toward the substrate 1) out of the light generated from the active layer upward (toward the light extraction surface). With this DBR, a luminance improvement of 50% or more (about 100% in some cases) can be realized as compared with the case without the DBR. The DBR has a film thickness of 1/4 wavelength (optical distance) of the wavelength of light emitted from the active layer (wavelength of light reflected by the DBR), and includes two types of semiconductor layers having different refractive indexes. Obtained by lamination.
[0007]
In the AlGaInP-based light-emitting diode, a large difference in refractive index between two types of semiconductor layers can be obtained, and a GaAs layer and an Al X Ga 1-X As (0 ≦ X ≦ 1) layer, from which a DBR with a high reflectivity is obtained, layer and (Al X Ga 1-X) 1-Y in Y P (0 ≦ X, Y ≦ 1) is a combination of such layers is generally used.
[0008]
[Problems to be solved by the invention]
However, in a conventional AlGaInP-based light-emitting diode having a DBR, in addition to the light emitted from the active layer, unintended near-infrared light emission (emission wavelength: about 860 nm) is generated in the GaAs layer in the DBR. Is mixed with the emitted light generated from the active layer and emitted to the outside. Therefore, there is a problem that, depending on the use environment of the light emitting diode, there is a possibility that peripheral sensors (particularly, sensors detecting infrared rays) may malfunction. . FIG. 4 shows an example of the emission spectrum of an AlGaInP-based light-emitting diode having a conventional DBR. The near-infrared emission peak is seen at the right end (around 860 nm) of the spectrum, and the intensity is the intensity of the main emission peak (about 590 nm). It is about 1/10.
[0009]
On the other hand, even in the case of an AlGaInP-based light-emitting diode without a DBR, light emitted from the active layer is excited on the GaAs substrate, and unintended near-infrared light emission (emission wavelength: about 860 nm) is generated. There is.
In addition, the above problem is common to AlGaAs-based light-emitting diodes having a conventional GaAs substrate (with or without DBR).
[0010]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and in order to suppress the generation of near-infrared light emission and prevent malfunctions of peripheral sensors, at least (Al X Ga 1-X) is formed on a GaAs substrate. A light emitting diode comprising a 1-Y In Y P (0 ≦ X, Y ≦ 1) based compound semiconductor or an Al X Ga 1-X As (0 ≦ X ≦ 1) based semiconductor and having a light emitting layer forming a pn junction. An object of the present invention is to provide a light-emitting diode in which a layer made of a material having a near-infrared absorption function is formed in the optical path of light extracted from the light-emitting layer to the outside in the epitaxial wafer.
[0011]
The epitaxial wafer for a light emitting diode of the present invention can be further applied to a wafer having a distributed Bragg reflector formed by laminating two or more compound semiconductor layers between the GaAs substrate and the light emitting layer.
Said distributed Bragg reflector comprises Al X Ga 1-X As ( 0 ≦ X ≦ 0.4) layer.
The material having the near-infrared absorption function is a soda lime glass or a resin containing a Cu metal complex.
The present invention can also be applied to a light emitting diode composed of the above-described epitaxial wafer for light emitting diode.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a cross-sectional structure of a red light emitting diode having an emission wavelength around 590 nm according to an embodiment of the present invention. The light-emitting diode has a DBR 2 composed of a pair of Se-doped n-type GaAs / Se-doped n-type AlInP 15 on a Si-doped n-type GaAs substrate (GaAs (100) 15 ° OFF [011]) 1 and a Se-doped n-type (Al 0 .7 Ga 0.3) 0.5 In 0.5 P cladding layer 3, an undoped (Al 0.3 Ga 0.7) 0.5 In 0.5 P) active layer 4, Zn-doped p-type (Al 0 .7 Ga 0.3) 0.5 in 0.5 P cladding layer 5, Zn-doped p-type GaP current spreading layer 6, to form a conductive Cu @ 2 + doped phosphate glass film 9, n in the entire back surface of the substrate 1 It has a structure in which a p-type electrode 8 is formed on a part of the upper surface of the mold electrode 7 and the current diffusion layer 6.
[0013]
The method for manufacturing the light emitting diode is as follows. On the n-type GaAs substrate 1, 15 pairs of Se-doped n-type GaAs buffer layers (not shown) and 15 pairs of Se-doped n-type GaAs layers and Se-doped n-type AlInP layers are alternately formed by MOCVD (30 layers in total). DBR2 are stacked, Se-doped n-type (Al 0.7 Ga 0.3) 0.5 In 0.5 P cladding layer 3, an undoped (Al 0.3 Ga 0.7) 0.5 In 0.5 P The active layer 4, the Zn-doped p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 5, and the Zn-doped p-type GaP current diffusion layer 6 were heated at a substrate temperature (growth temperature) of 700 ° C. Formed. Thereafter, the epitaxial wafer was taken out from the MOCVD apparatus, and a thin film 9 made of Cu 2+ -doped phosphate glass was formed on the current diffusion layer 6 by a coating method to a thickness of 20 nm. Next, the epitaxial wafer was processed to produce a 300 μm square light emitting diode chip. Further, an n-type electrode 7 was formed on the entire surface of the chip lower surface (substrate back surface), and a circular p-type electrode 8 was formed on a part of the chip upper surface. The n-type electrode 7 deposits gold germanium, nickel and gold in a thickness of 60 nm, 10 nm and 500 nm, respectively, and the p-type electrode 8 deposits gold zinc, nickel and gold in a thickness of 60 nm, 10 nm and 1000 nm, respectively. They were deposited in order. Finally, after assembling this chip into a stem, a resin mold was performed to produce a light emitting diode, and an emission spectrum was measured.
[0014]
FIG. 2 shows an emission spectrum of the light emitting diode manufactured as described above. Compared with the emission spectrum of the conventional light emitting diode shown in FIG. 4, in the emission spectrum of FIG. 2, the near-infrared emission peak seen at the right end (around 860 nm) of the emission spectrum of FIG. (Wavelength: about 860 nm) was confirmed to be significantly reduced.
[0015]
In the above embodiment, Cu 2+ -doped phosphate glass was used as the near-infrared ray absorbing material, but any material having a function of absorbing near-infrared ray can be applied to the present invention. Other applicable near-infrared absorbing materials include blue plate glass, resin containing Cu metal complex, and the like.
[0016]
In the above embodiment, a thin film made of a near-infrared absorbing material is formed on the current diffusion layer 6, but above a region where near-infrared rays are generated (for example, the active layer 4) (in a light extraction surface direction). If so, it may be formed anywhere. For example, when near-infrared rays are generated from a GaAs substrate as described below, it can be formed above the GaAs substrate (in the direction of the light extraction surface).
[0017]
Further, in the above embodiment, the case where near infrared rays are generated from GaAs in the DBR 2 has been described. It may occur from a GaAs thin film inserted as a stop layer.
[0018]
【The invention's effect】
As described above, according to the epitaxial wafer for a light emitting diode of the present invention, at least (Al X Ga 1 -X ) 1 -Y In Y P (0 ≦ X, Y ≦ 1) -based compound is formed on the GaAs substrate. In an epitaxial wafer for a light emitting diode comprising a semiconductor or an Al X Ga 1-X As (0 ≦ X ≦ 1) based semiconductor and having a light emitting layer forming a pn junction, an optical path of light extracted from the light emitting layer to the outside is: Since the layer made of a material having a near-infrared absorption function is formed, it is possible to suppress the generation of infrared light emission and prevent malfunction of peripheral sensors.
[Brief description of the drawings]
FIG. 1 is a sectional view of an AlGaInP-based light-emitting diode according to an embodiment of the present invention.
FIG. 2 shows an emission spectrum of the AlGaInP-based light emitting diode of the above embodiment.
FIG. 3 is a cross-sectional view of a conventional AlGaInP-based light emitting diode.
FIG. 4 shows an emission spectrum of the conventional AlGaInP-based light emitting diode.
[Explanation of symbols]
1: Si-doped n-type GaAs substrate 2: DBR (distributed Bragg reflector)
3: Se-doped n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 4: Undoped (Al 0.3 Ga 0.7 ) 0.5 In 0.5 P active layer 5 : Zn-doped p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 6: Zn-doped p-type GaP current diffusion layer 7: n-type electrode 8: p-type electrode 9: Cu 2+ -doped Phosphate glass thin film (near infrared absorption film)

Claims (5)

GaAs基板上に、少なくとも、(AlGa1−X1−YInP(0≦X、Y≦1)系化合物半導体またはAlGa1−XAs(0≦X≦1)系半導体からなり、pn接合を形成する発光層を有する発光ダイオード用エピタキシャルウエハにおいて、発光層から外部に取り出される光の光路中に、近赤外線吸収機能を有する材料からなる層を形成したことを特徴とする発光ダイオード用エピタキシャルウエハ。On a GaAs substrate, at least (Al X Ga 1-X ) 1-Y In Y P (0 ≦ X, Y ≦ 1) -based compound semiconductor or Al X Ga 1-X As (0 ≦ X ≦ 1) -based semiconductor A light emitting diode epitaxial wafer having a light emitting layer forming a pn junction, wherein a layer made of a material having a near-infrared absorption function is formed in an optical path of light extracted from the light emitting layer to the outside. Epitaxial wafer for light emitting diode. さらに、前記GaAs基板と前記発光層との間に、2種類または2種類以上の化合物半導体層を積層してなる分布ブラッグ反射器を有する請求項1に記載の発光ダイオード用エピタキシャルウエハ。The epitaxial wafer for a light emitting diode according to claim 1, further comprising a distributed Bragg reflector formed by laminating two or more compound semiconductor layers between the GaAs substrate and the light emitting layer. 前記分布ブラッグ反射器は、AlGa1−XAs(0≦X≦0.4)層を含む請求項1または2に記載の発光ダイオード用エピタキシャルウエハ。The epitaxial wafer for a light emitting diode according to claim 1 , wherein the distributed Bragg reflector includes an Al x Ga 1-x As (0 ≦ X ≦ 0.4) layer. 前記近赤外線吸収機能を有する材料は、青板ガラス、またはCu金属錯体を含む樹脂である請求項1〜3のいずれかに記載の発光ダイオード用エピタキシャルウエハ。The epitaxial wafer for a light-emitting diode according to any one of claims 1 to 3, wherein the material having the near-infrared absorption function is a soda lime glass or a resin containing a Cu metal complex. 請求項1〜4のいずれかに記載の前記発光ダイオード用エピタキシャルウエハから構成される発光ダイオード。A light emitting diode comprising the epitaxial wafer for a light emitting diode according to claim 1.
JP2003097026A 2003-03-31 2003-03-31 Epitaxial wafer for light emitting diode Pending JP2004304048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097026A JP2004304048A (en) 2003-03-31 2003-03-31 Epitaxial wafer for light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097026A JP2004304048A (en) 2003-03-31 2003-03-31 Epitaxial wafer for light emitting diode

Publications (1)

Publication Number Publication Date
JP2004304048A true JP2004304048A (en) 2004-10-28

Family

ID=33408925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097026A Pending JP2004304048A (en) 2003-03-31 2003-03-31 Epitaxial wafer for light emitting diode

Country Status (1)

Country Link
JP (1) JP2004304048A (en)

Similar Documents

Publication Publication Date Title
KR100503907B1 (en) Semiconductor light emitting element
JP4899825B2 (en) Semiconductor light emitting device, light emitting device
KR102153649B1 (en) A light emitting diode component
US20070290216A1 (en) Semiconductor light emitting element, manufacturing method therefor, and compound semiconductor light emitting diode
JP2002222989A (en) Semiconductor light-emitting device
US11908978B2 (en) Solid-state transducer devices with selective wavelength reflectors and associated systems and methods
KR20100059854A (en) Radiation-emitting semiconductor body
TWI495152B (en) Light emitting diode and method for producing the same
JP7432024B2 (en) infrared light emitting diode
JP4564234B2 (en) Semiconductor light emitting device
JP2010263085A (en) Light-emitting element
JP2004311973A (en) Light emitting device and lighting device
US9112089B2 (en) Semiconductor chip, display comprising a plurality of semiconductor chips and methods for the production thereof
JP2009059851A (en) Semiconductor light emitting diode
JP2006040998A (en) Semiconductor light emitting device and epitaxial wafer therefor
US11876154B2 (en) Light emitting diode device and method for manufacturing the same
US11367810B2 (en) Light-altering particle arrangements for light-emitting devices
CN101452976B (en) High-brightness LED construction
JP2004241462A (en) Light emitting element and epitaxial wafer therefor
JP2002016282A (en) Nitride semiconductor element
JP2006270073A (en) Light-emitting diode and method of manufacturing it
JP2004304048A (en) Epitaxial wafer for light emitting diode
WO2010092741A1 (en) Light-emitting diode, and light-emitting diode lamp
TWI613838B (en) Light-emitting device
US20240063344A1 (en) Metallic layer for dimming light-emitting diode chips