JP2004303664A - Carbide electrode catalyst - Google Patents

Carbide electrode catalyst Download PDF

Info

Publication number
JP2004303664A
JP2004303664A JP2003097408A JP2003097408A JP2004303664A JP 2004303664 A JP2004303664 A JP 2004303664A JP 2003097408 A JP2003097408 A JP 2003097408A JP 2003097408 A JP2003097408 A JP 2003097408A JP 2004303664 A JP2004303664 A JP 2004303664A
Authority
JP
Japan
Prior art keywords
carbide
transition metal
electrode catalyst
metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003097408A
Other languages
Japanese (ja)
Other versions
JP4463490B2 (en
Inventor
Kenichiro Ota
健一郎 太田
Nobuyuki Kamiya
信行 神谷
Shigenori Mitsushima
重徳 光島
Akimitsu Ishihara
顕光 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003097408A priority Critical patent/JP4463490B2/en
Publication of JP2004303664A publication Critical patent/JP2004303664A/en
Application granted granted Critical
Publication of JP4463490B2 publication Critical patent/JP4463490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To keep a catalyst capability of a transition metal carbide and enhance corrosion resistance since the scope of application as an electrode catalyst is limited to the case where electrode potential is low according to a report that, in a state of high electrode potential of 0.4 V or higher in an acidic electrolyte, the transition metal carbide causes active dissolution and cannot be stably present. <P>SOLUTION: The carbide electrode catalyst is prepared by adding at least one kind of metal different from a transition metal in the transition metal carbide to the transition metal carbide, at least one kind of metal is preferentially oxidized than the transition metal in the acidic electrolyte, and forms an oxide film having thickness not obstructing the catalytic activity of the transition metal carbide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水電解、有機電解、燃料電池用などの電気化学システム用の電極触媒に関する。
【0002】
【従来の技術】
貴金属、特に、白金は高い電位で安定であり、各種の反応に対して触媒能が高いため、各種電気化学システムの電極触媒として用いられている。しかしながら、白金の価格が高いことや資源量が限られていること、燃料電池用の電極触媒としては更に高活性の電極触媒が要求されることから、白金触媒の代替材料が望まれている。
【0003】
遷移金属炭化物は白金とその電子構造が類似しているものがあり、白金触媒の代替材料として注目されてきた(例えば、非特許文献1,2、特許文献1)。その高い電気伝導性も電極触媒としての利点であり、電極触媒としての利用が試みられている。
【0004】
【非特許文献1】
R. J. Colton et al., Chem. Phys. Lett., 34−2, 337 (1975)
【非特許文献2】
L.H. Bennett et al., Science, 184, 563 (1974)
【特許文献1】
特公昭63−10084号公報
【0005】
【発明が解決しようとする課題】
しかし、酸性電解質中で0.4V以上の電極電位が高い状態では、遷移金属炭化物は活性溶解し、安定に存在することができないことが報告されており(米山宏ら、電気化学、41,719(1973))、電極触媒としての適用範囲は電極電位が低い場合に限定されており、遷移金属炭化物の触媒能を維持して耐食性を向上する必要があった。
【0006】
【課題を解決するための手段】
本発明者らは、遷移金属炭化物に該遷移金属と異なる少なくとも1種の金属を添加し、その添加金属の種類と添加量のバランスをとることによって酸性電解液中で使用される遷移金属炭化物電極触媒の耐食性の著しい向上を図ることができることを見出し、これにより、可逆水素電極電位に対して0.4V以上の電位で使用しても溶解しない耐食性を有する炭化物電極触媒が得られることを見出した。
【0007】
すなわち、本発明は、(1)遷移金属炭化物に該遷移金属と異なる少なくとも1種の金属を添加した炭化物電極触媒であって、該少なくとも1種の金属は酸性電解液中で該遷移金属よりも優先的に酸化されて、遷移金属炭化物の触媒活性を阻害しない程度の厚さの酸化皮膜を形成する金属であり、可逆水素電極電位に対して0.4V以上の電位で使用されることを特徴とする炭化物電極触媒、である。
【0008】
また、本発明は、(2)電子伝導性粉末である触媒担体上に微粒子として分散させたことを特徴とする上記(1)の炭化物電極触媒、である。
【0009】
また、本発明は、(3)酸性電解質を用いる燃料電池用電極触媒として用いられることを特徴とする上記(1)又は(2)の炭化物担持電極触媒、である。
【0010】
また、本発明は、(4)遷移金属炭化物電極触媒をスパッタ法にて製造する際に、該遷移金属と異なる少なくとも1種の金属を同時スパッタすることを特徴とする上記(1)ないし(3)のいずれかの炭化物電極触媒の製造方法、である。
【0011】
また、本発明は、(5)遷移金属炭化物電極触媒を溶液からの還元析出法で製造する際に、該溶液に該遷移金属と異なる少なくとも1種の金属原料を仕込んで同時析出させることを特徴とする上記(1)ないし(3)のいずれかの炭化物電極触媒の製造方法、である。
【0012】
【作用】
本発明の炭化物電極触媒は、電極作成時は空気中でわずかに酸化されている程度であり、表面に耐食性の高い酸化皮膜はできていないが、酸性電解質中で、高い電位にした場合に、電極最表面の炭化物が速やかに溶解し、炭化物電極触媒に添加した金属がいわゆる弁金属として作用する薄い酸化皮膜を形成し、炭化物の溶解から保護すると考えられる。よって、可逆水素電極電位に対して0.4V以上1.5V程度までの電位で使用しても十分な耐食性がもたらされる。
【0013】
弁金属は電極電位が高い状態で、遷移金属炭化物の粒子や膜の表面に炭化物の腐食性溶液に対して安定な酸化物皮膜を形成する性質を持っている。したがって、活性溶解する遷移金属炭化物に弁金属を酸化物皮膜形成元素として適量添加することにより、耐食性を著しく向上させることができる。
【0014】
さらに、弁金属の添加量を制御することにより、炭化物電極の反応活性点の減少を抑えることができる。弁金属の酸化皮膜が薄いと活性点が溶解してしまい触媒能がなくなる。逆に、酸化皮膜が厚いと活性点を覆ってしまい、単なる弁金属の酸化物電極となってしまい、触媒能がなくなる。言い換えると、活性点が溶解しないように薄く被覆させるが、完全に覆ってしまうほど厚くないように制御する必要がある。酸化皮膜を厚く被覆すると反応活性点は減少してしまう。
【0015】
【発明の実施の形態】
本発明において、遷移金属炭化物は、その遷移金属がタングステン、モリブデン、ニッケル、銅、コバルト、ジルコニウム、バナジウム、ニオブ、クロム、マンガン、鉄、のうちの1種類以上の遷移金属、例えば、WC,WC,NiC,CuC,CoC,VC,MnC,ZrC,NbC,CrC,MoCなどやW0.3Co0.20.5などである。
【0016】
酸性電解液中で該遷移金属よりも優先的に酸化されて、遷移金属炭化物の触媒活性を阻害しない程度の厚さの酸化皮膜を形成する金属(以下、弁金属という)としては、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、ビスマス、アンチモンなどが挙げられる。
【0017】
遷移金属炭化物に該遷移金属と異なる金属、すなわち弁金属を添加する方法としては、例えば、基板上に遷移金属炭化物と同時に弁金属をスパッタして薄膜を形成してもよいし、溶液から遷移金属炭化物微粒子を生成する際に元の原材料に弁金属原料を仕込んでもよい。要するに、遷移金属炭化物に原子レベルで弁金属が混合されていればよい。
【0018】
形成される弁金属の酸化物皮膜の厚さが薄すぎると耐食性が得られず、厚すぎると弁金属の単なる酸化物電極になってしまい、遷移金属炭化物の触媒能が発現しなくなる。したがって、弁金属の酸化物皮膜の形成方法、遷移金属炭化物、弁金属の種類などに応じて形成する膜厚みを適切な範囲に調整すべく、弁金属の種類と添加量のバランスをとる必要がある。例えば、タングステン炭化物に弁金属としてタンタルを添加する場合には、原子比率でW:Ta=3:1程度が望ましい。
【0019】
触媒担体としてカーボンブラックなどの炭素を用いて燃料電池へ使用する場合は、弁金属を添加した遷移金属炭化物微粒子として炭素に高分散させることにより、触媒量を減少させることができる。
【0020】
【実施例】
実施例1
遷移金属としてタングステンを用いた炭化物電極触媒をスパッタ法にて、直径5mmのグラッシーカーボン上に製作した。スパッタ時のヘリウム圧は1x10−5 Pa以下とした。弁金属としてタンタルを用いた。スパッタターゲットとして炭化タングステンを用い、ターゲット上に金属タンタル片を乗せてスパッタすることにより、タンタル添加量を制御した。水晶振動式膜厚計を用いて、スパッタ量を計測し、厚さがおよそ1μmのタンタル添加炭化タングステン電極を作製した。タングステンとタンタルの組成比は、EPMAにより同定した。
【0021】
比較例1
実施例1と同様に、遷移金属としてタングステンを用いた炭化物電極触媒をスパッタ法にて、グラッシーカーボン上に製作した。タンタルは添加しなかった。
【0022】
このようにして作製した実施例1及び比較例1の電極の触媒能を酸素還元反応に対して評価した。作製した電極を、固体酸性電解質膜上、30℃、窒素雰囲気及び酸素雰囲気において高電位に設定した。このときタンタルの酸化物皮膜が生成する。その後、5mV/sの電位走査速度で分極し、電流−電位曲線で評価した。
【0023】
図1に、比較例1の炭化タングステン及び実施例1のタンタル添加炭化タングステンの窒素雰囲気における電流−電位曲線を比較した。比較例1の炭化タングステン電極の自然電位は0.45Vと低く、それ以上の電位ではアノード電流が観察され、活性溶解することを示している。それに対して、実施例1のタンタル添加炭化タングステンの自然電位は0.85V付近まで上昇し、それ以下の電位では酸化電流が観察されないことから、耐食性が向上したことがわかる。
【0024】
図2に、タンタル添加炭化タングステン電極の酸素還元反応の触媒能を評価した。酸素雰囲気において、窒素雰囲気と比較して、大きな還元電流が観察され、これは酸素還元反応に対して触媒活性があることを示している。
【0025】
【発明の効果】
以上の説明で明らかなように、本発明は、これまでに得られていない、高い電極電位において高い耐食性を持ち、かつ触媒能を有する炭化物電極触媒を実現したものである。
【図面の簡単な説明】
【図1】図1は、比較例1及び実施例1の電極触媒の窒素雰囲気における電流−電位曲線を示すグラフである。
【図2】図2は、実施例1の電極触媒の酸素還元反応における触媒能を評価したグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode catalyst for an electrochemical system such as for water electrolysis, organic electrolysis, and fuel cells.
[0002]
[Prior art]
Noble metals, particularly platinum, are stable at high potentials and have high catalytic activity for various reactions, and are therefore used as electrode catalysts in various electrochemical systems. However, since the price of platinum is high, the amount of resources is limited, and a more active electrode catalyst is required as an electrode catalyst for a fuel cell, an alternative material to the platinum catalyst is desired.
[0003]
Some transition metal carbides have a similar electronic structure to platinum, and have attracted attention as an alternative to platinum catalysts (for example, Non-Patent Documents 1 and 2 and Patent Document 1). The high electrical conductivity is also an advantage as an electrode catalyst, and attempts have been made to use it as an electrode catalyst.
[0004]
[Non-patent document 1]
R. J. See Colton et al. Chem., Chem. Phys. Lett. , 34-2, 337 (1975)
[Non-patent document 2]
L. H. Bennett et al. , Science, 184, 563 (1974).
[Patent Document 1]
JP-B-63-10084
[Problems to be solved by the invention]
However, it has been reported that when an electrode potential of 0.4 V or more is high in an acidic electrolyte, transition metal carbides are actively dissolved and cannot exist stably (Hiroshi Yoneyama et al., Electrochemistry, 41, 719). (1973)) The application range as an electrode catalyst is limited to the case where the electrode potential is low, and it is necessary to improve the corrosion resistance by maintaining the catalytic ability of the transition metal carbide.
[0006]
[Means for Solving the Problems]
The present inventors have added at least one metal different from the transition metal to the transition metal carbide, and balanced the type and the amount of the added metal to form a transition metal carbide electrode used in the acidic electrolyte. It has been found that the corrosion resistance of the catalyst can be remarkably improved, whereby a carbide electrode catalyst having corrosion resistance that does not dissolve even when used at a potential of 0.4 V or more with respect to the reversible hydrogen electrode potential has been found. .
[0007]
That is, the present invention is (1) a carbide electrode catalyst obtained by adding at least one metal different from the transition metal to the transition metal carbide, wherein the at least one metal is more than the transition metal in the acidic electrolyte. A metal that is preferentially oxidized to form an oxide film with a thickness that does not impair the catalytic activity of the transition metal carbide, and is used at a potential of 0.4 V or more with respect to the reversible hydrogen electrode potential. Carbide electrode catalyst.
[0008]
The present invention also provides (2) the carbide electrode catalyst according to the above (1), which is dispersed as fine particles on a catalyst carrier which is an electron conductive powder.
[0009]
Further, the present invention is (3) the carbide-supporting electrode catalyst according to the above (1) or (2), which is used as an electrode catalyst for a fuel cell using an acidic electrolyte.
[0010]
In the present invention, (4) at least one metal different from the transition metal is simultaneously sputtered when the transition metal carbide electrode catalyst is produced by a sputtering method. )) The method for producing a carbide electrode catalyst according to any one of
[0011]
Further, the present invention is characterized in that (5) when producing a transition metal carbide electrocatalyst by a reductive precipitation method from a solution, at least one metal raw material different from the transition metal is charged into the solution and co-precipitated. The method for producing a carbide electrode catalyst according to any one of the above (1) to (3).
[0012]
[Action]
The carbide electrode catalyst of the present invention is only slightly oxidized in air at the time of electrode preparation, and an oxide film with high corrosion resistance is not formed on the surface, but in an acidic electrolyte, when a high potential is applied, It is considered that the carbide on the outermost surface of the electrode is quickly dissolved, and the metal added to the carbide electrode catalyst forms a thin oxide film acting as a so-called valve metal, thereby protecting the carbide from being dissolved. Therefore, sufficient corrosion resistance can be obtained even when used at a potential of 0.4 V to 1.5 V with respect to the reversible hydrogen electrode potential.
[0013]
The valve metal has a property of forming a stable oxide film against the corrosive solution of the carbide on the surface of the transition metal carbide particles or the film in a state where the electrode potential is high. Therefore, by adding an appropriate amount of a valve metal as an oxide film-forming element to a transition metal carbide that actively dissolves, the corrosion resistance can be significantly improved.
[0014]
Further, by controlling the amount of addition of the valve metal, it is possible to suppress a decrease in the reactive sites of the carbide electrode. When the oxide film of the valve metal is thin, the active sites are dissolved and the catalytic ability is lost. Conversely, if the oxide film is thick, it will cover the active sites, and it will simply be a valve metal oxide electrode, losing catalytic ability. In other words, the active site is coated thinly so as not to dissolve, but it is necessary to control so that the active site is not thick enough to completely cover the active site. When the oxide film is thickly coated, the number of active sites decreases.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the transition metal carbide is such that the transition metal is at least one of tungsten, molybdenum, nickel, copper, cobalt, zirconium, vanadium, niobium, chromium, manganese, and iron, for example, WC, W 2 C, NiC, CuC, CoC , VC, MnC, ZrC, NbC, CrC, MoC and the like such or W 0.3 Co 0.2 C 0.5.
[0016]
Tantalum, niobium, and niobium are metals that are oxidized preferentially in the acidic electrolyte over the transition metal to form an oxide film having a thickness that does not impair the catalytic activity of the transition metal carbide. , Titanium, hafnium, zirconium, zinc, bismuth, antimony and the like.
[0017]
As a method of adding a metal different from the transition metal to the transition metal carbide, that is, a valve metal, for example, a valve metal may be sputtered simultaneously with the transition metal carbide on the substrate to form a thin film, or the transition metal may be formed from a solution. The valve metal raw material may be charged to the original raw material when producing the carbide fine particles. In short, it is only necessary that the transition metal carbide be mixed with the valve metal at the atomic level.
[0018]
If the thickness of the formed oxide film of the valve metal is too small, corrosion resistance cannot be obtained. If the thickness is too large, it becomes a simple oxide electrode of the valve metal, and the catalytic ability of the transition metal carbide is not exhibited. Therefore, in order to adjust the thickness of the film formed according to the method of forming the oxide film of the valve metal, the transition metal carbide, the type of the valve metal, etc. to an appropriate range, it is necessary to balance the type of the valve metal and the amount of addition. is there. For example, when adding tantalum as a valve metal to tungsten carbide, it is desirable that the atomic ratio be about W: Ta = 3: 1.
[0019]
When using carbon such as carbon black as the catalyst carrier in a fuel cell, the amount of catalyst can be reduced by highly dispersing the carbon in the form of transition metal carbide fine particles added with a valve metal.
[0020]
【Example】
Example 1
A carbide electrode catalyst using tungsten as a transition metal was produced on glassy carbon having a diameter of 5 mm by a sputtering method. Helium pressure at the time of sputtering was set to 1 × 10 −5 Pa or less. Tantalum was used as a valve metal. Tungsten carbide was used as a sputtering target, and a tantalum metal piece was placed on the target to perform sputtering, thereby controlling the amount of tantalum added. The amount of sputtering was measured using a quartz-crystal vibrating film thickness meter, and a tantalum-doped tungsten carbide electrode having a thickness of about 1 μm was produced. The composition ratio between tungsten and tantalum was identified by EPMA.
[0021]
Comparative Example 1
In the same manner as in Example 1, a carbide electrode catalyst using tungsten as a transition metal was produced on glassy carbon by a sputtering method. No tantalum was added.
[0022]
The catalytic ability of the electrodes thus produced in Example 1 and Comparative Example 1 was evaluated for the oxygen reduction reaction. The prepared electrode was set to a high potential on a solid acidic electrolyte membrane at 30 ° C. in a nitrogen atmosphere and an oxygen atmosphere. At this time, a tantalum oxide film is formed. Thereafter, polarization was performed at a potential scanning speed of 5 mV / s, and evaluation was performed using a current-potential curve.
[0023]
FIG. 1 compares current-potential curves of the tungsten carbide of Comparative Example 1 and the tantalum-doped tungsten carbide of Example 1 in a nitrogen atmosphere. The natural potential of the tungsten carbide electrode of Comparative Example 1 was as low as 0.45 V, and at a potential higher than that, an anodic current was observed, indicating active dissolution. On the other hand, the natural potential of the tantalum-doped tungsten carbide of Example 1 rose to around 0.85 V, and no oxidation current was observed at a potential lower than that, indicating that the corrosion resistance was improved.
[0024]
In FIG. 2, the catalytic ability of the tantalum-doped tungsten carbide electrode for the oxygen reduction reaction was evaluated. In the oxygen atmosphere, a large reduction current was observed as compared with the nitrogen atmosphere, which indicates that there is catalytic activity for the oxygen reduction reaction.
[0025]
【The invention's effect】
As is clear from the above description, the present invention has realized a carbide electrocatalyst having high corrosion resistance at a high electrode potential and having catalytic ability, which has not been obtained so far.
[Brief description of the drawings]
FIG. 1 is a graph showing current-potential curves of the electrode catalysts of Comparative Example 1 and Example 1 in a nitrogen atmosphere.
FIG. 2 is a graph showing an evaluation of the catalytic ability of the electrode catalyst of Example 1 in an oxygen reduction reaction.

Claims (5)

遷移金属炭化物に該遷移金属と異なる少なくとも1種の金属を添加した炭化物電極触媒であって、該少なくとも1種の金属は酸性電解液中で該遷移金属よりも優先的に酸化されて、遷移金属炭化物の触媒活性を阻害しない程度の厚さの酸化皮膜を形成する金属であり、可逆水素電極電位に対して0.4V以上の電位で使用されることを特徴とする炭化物電極触媒。A carbide electrocatalyst obtained by adding at least one metal different from the transition metal to a transition metal carbide, wherein the at least one metal is preferentially oxidized in the acidic electrolyte over the transition metal, and A carbide electrode catalyst, which is a metal that forms an oxide film having a thickness that does not impair the catalytic activity of the carbide, and is used at a potential of 0.4 V or more with respect to the reversible hydrogen electrode potential. 電子伝導性粉末である触媒担体上に微粒子として分散させたことを特徴とする請求項1記載の炭化物電極触媒。2. The carbide electrode catalyst according to claim 1, wherein the fine particles are dispersed as fine particles on a catalyst carrier which is an electron conductive powder. 酸性電解質を用いる燃料電池用電極触媒として用いられることを特徴とする請求項1又は2記載の炭化物電極触媒。The carbide electrode catalyst according to claim 1 or 2, wherein the carbide electrode catalyst is used as an electrode catalyst for a fuel cell using an acidic electrolyte. 遷移金属炭化物電極触媒をスパッタ法にて製造する際に、該遷移金属と異なる少なくとも1種の金属を同時スパッタすることを特徴とする請求項1ないし3のいずれかに記載の炭化物電極触媒の製造方法。The method for producing a carbide electrode catalyst according to any one of claims 1 to 3, wherein when producing the transition metal carbide electrode catalyst by a sputtering method, at least one metal different from the transition metal is simultaneously sputtered. Method. 遷移金属炭化物電極触媒を溶液からの還元析出法で製造する際に、該溶液に該遷移金属と異なる少なくとも1種の金属原料を仕込んで同時析出させることを特徴とする請求項1ないし3のいずれかに記載の炭化物電極触媒の製造方法。4. The method according to claim 1, wherein, when the transition metal carbide electrode catalyst is produced by a reduction precipitation method from a solution, at least one metal raw material different from the transition metal is charged into the solution and co-precipitated. A method for producing a carbide electrode catalyst according to any one of the above.
JP2003097408A 2003-03-31 2003-03-31 Electrocatalyst made of transition metal carbide Expired - Fee Related JP4463490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097408A JP4463490B2 (en) 2003-03-31 2003-03-31 Electrocatalyst made of transition metal carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097408A JP4463490B2 (en) 2003-03-31 2003-03-31 Electrocatalyst made of transition metal carbide

Publications (2)

Publication Number Publication Date
JP2004303664A true JP2004303664A (en) 2004-10-28
JP4463490B2 JP4463490B2 (en) 2010-05-19

Family

ID=33409199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097408A Expired - Fee Related JP4463490B2 (en) 2003-03-31 2003-03-31 Electrocatalyst made of transition metal carbide

Country Status (1)

Country Link
JP (1) JP4463490B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053840A1 (en) * 2003-12-02 2005-06-16 Japan Science And Technology Agency Metal oxynitride electrode catalyst
WO2006019128A1 (en) * 2004-08-19 2006-02-23 Japan Science And Technology Agency Metal oxide electrode catalyst
WO2012096023A1 (en) 2011-01-14 2012-07-19 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and application thereof
WO2012096022A1 (en) 2011-01-14 2012-07-19 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and application thereof
WO2012114778A1 (en) 2011-02-21 2012-08-30 昭和電工株式会社 Method for manufacturing electrode catalyst for fuel cell
WO2013021688A1 (en) 2011-08-09 2013-02-14 昭和電工株式会社 Method for producing electrode catalyst for fuel cells, electrode catalyst for fuel cells, and use of same
US9136541B2 (en) 2010-02-10 2015-09-15 Showa Denko K.K. Process for producing fuel cell electrode catalyst, process for producing transition metal oxycarbonitride, fuel cell electrode catalyst and uses thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053840A1 (en) * 2003-12-02 2005-06-16 Japan Science And Technology Agency Metal oxynitride electrode catalyst
KR100769707B1 (en) * 2003-12-02 2007-10-23 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Metal oxynitride electrode catalyst
US7670712B2 (en) 2003-12-02 2010-03-02 Japan Science And Technology Agency Metal oxynitride electrode catalyst
WO2006019128A1 (en) * 2004-08-19 2006-02-23 Japan Science And Technology Agency Metal oxide electrode catalyst
JPWO2006019128A1 (en) * 2004-08-19 2008-07-31 独立行政法人科学技術振興機構 Metal oxide electrocatalyst
US7919215B2 (en) 2004-08-19 2011-04-05 Japan Science And Technology Agency Corrosion resistant metal oxide electrode catalyst for oxygen reduction
JP4712711B2 (en) * 2004-08-19 2011-06-29 独立行政法人科学技術振興機構 Metal oxide electrode catalyst
US9136541B2 (en) 2010-02-10 2015-09-15 Showa Denko K.K. Process for producing fuel cell electrode catalyst, process for producing transition metal oxycarbonitride, fuel cell electrode catalyst and uses thereof
WO2012096022A1 (en) 2011-01-14 2012-07-19 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and application thereof
US9118083B2 (en) 2011-01-14 2015-08-25 Showa Denko K.K Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
WO2012096023A1 (en) 2011-01-14 2012-07-19 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and application thereof
US9350025B2 (en) 2011-01-14 2016-05-24 Showa Denko K.K. Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
WO2012114778A1 (en) 2011-02-21 2012-08-30 昭和電工株式会社 Method for manufacturing electrode catalyst for fuel cell
US10026968B2 (en) 2011-02-21 2018-07-17 Showa Denko K.K. Method for producing fuel cell electrode catalyst
WO2013021688A1 (en) 2011-08-09 2013-02-14 昭和電工株式会社 Method for producing electrode catalyst for fuel cells, electrode catalyst for fuel cells, and use of same
US10044045B2 (en) 2011-08-09 2018-08-07 Showa Denko K.K. Process for producing a fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof

Also Published As

Publication number Publication date
JP4463490B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
Shim et al. Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell
JP4712711B2 (en) Metal oxide electrode catalyst
Savadogo et al. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium
US8143185B2 (en) Photocatalytic deposition of metals and compositions comprising the same
Anastasopoulos et al. The Particle Size Dependence of the Oxygen Reduction Reaction for Carbon‐Supported Platinum and Palladium
Mohammad et al. Superior electrocatalysis of formic acid electro-oxidation on a platinum, gold and manganese oxide nanoparticle-based ternary catalyst
Sarapuu et al. Electroreduction of oxygen on gold-supported nanostructured palladium films in acid solutions
JP2007257888A (en) Oxygen pole catalyst for solid polymer fuel cell, oxygen reduction electrode using it, and manufacturing method of those
KR100742698B1 (en) Coated catalytic material
JP5215867B2 (en) Electrocatalysts containing platinum and tungsten
Sakthivel et al. Highly active and stable Pt3Cr/C alloy catalyst in H2-PEMFC
JP5477463B2 (en) Fuel cell
Elezovic et al. High surface area Pd nanocatalyst on core-shell tungsten based support as a beneficial catalyst for low temperature fuel cells application
JP5078618B2 (en) Alloy catalyst for fuel cell cathode
Yin et al. Synthesis of phosphorus-iridium nanocrystals and their superior electrocatalytic activity for oxygen evolution reaction
Tsai et al. Effect of platinum present in multi-element nanoparticles on methanol oxidation
JP5265363B2 (en) Electrocatalysts containing platinum, tungsten, and nickel or zirconium
JP4463490B2 (en) Electrocatalyst made of transition metal carbide
JP7152987B2 (en) Electrocatalyst
JP4448792B2 (en) Metal oxynitride oxygen reduction electrode catalyst and method for producing the same
EP4230774A1 (en) Electrode, method for producing same, water electrolyzer, and fuel cell
John et al. The effect of carbonate and pH on hydrogen oxidation and oxygen reduction on Pt-Based electrocatalysts in alkaline media
JP2006127979A (en) Fuel cell and electrode catalyst therefor
KR100797173B1 (en) Metal oxide electrode catalyst
JP2017042759A (en) Catalyst for anode of fuel cell, anode and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4463490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees