JP2004303464A - Cooling method of storage battery - Google Patents

Cooling method of storage battery Download PDF

Info

Publication number
JP2004303464A
JP2004303464A JP2003092043A JP2003092043A JP2004303464A JP 2004303464 A JP2004303464 A JP 2004303464A JP 2003092043 A JP2003092043 A JP 2003092043A JP 2003092043 A JP2003092043 A JP 2003092043A JP 2004303464 A JP2004303464 A JP 2004303464A
Authority
JP
Japan
Prior art keywords
storage battery
cooling
temperature
cooling water
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003092043A
Other languages
Japanese (ja)
Inventor
Hikari Sakamoto
光 坂本
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2003092043A priority Critical patent/JP2004303464A/en
Publication of JP2004303464A publication Critical patent/JP2004303464A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling method of a storage battery capable of generally equalizing cooling effect on respective cells without complicating a cooling device. <P>SOLUTION: A storage battery cooling means 2 is connected to a through-hole 14 of the storage battery 1 wherein a plurality of cell lines 12 each having a plurality of cells 11 arranged in one direction are disposed so as to form the through-hole 14 in the vertical direction between the cells 11 to run cooling water. In addition, the cooling water is preferably reused, and at least either the temperature or the flow rate of the cooling water supplied from the cooling means 2 is preferably controlled based on result from measurement of the temperature of the storage battery 1 in cooling it or the temperature of the cooling water after passing the through-hole 14 of the storage battery 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、蓄電池の電槽化成時などにおける発熱を抑制するための蓄電池の冷却方法に関する。
【0002】
【従来の技術】
密閉型の蓄電池が、電槽化成時または充電時などに発熱することは周知である。この発熱は、例えば鉛蓄電池の場合、蓄電池の充電効率が低いために発生するもの、充電中に正極付近で発生した酸素が負極で消費される際に発生するものなどである。これらの発熱の影響を抑制するために蓄電池を冷却することも広く知られている。
【0003】
例えば、電池の電槽外壁を冷却機能をもった治具で固定して電槽化成を実施すること(特許文献1参照)、化成槽内の冷却水を循環させながらその温度がほぼ一定となるようにすること(特許文献2参照)、密閉型蓄電池の蓋に開口部を設けてその内部に冷却水を通すための冷却管を挿入すること(特許文献3参照)、密閉型蓄電池の蓋に開口部を設けて電解液を供給・排出して電槽化成時における電解液の温度をほぼ一定に保つこと(特許文献4参照)などが具体的に知られている。
【0004】
また、蓄電池の構造としては、放熱性を向上させるために各セル間に空気流路等の空間を設けたもの(特許文献5、特許文献6参照)、複数のセルが一方向に配列されたセル列の間の上下方向に貫通孔が形成されるように配置したもの(特許文献7参照)などが知られている。
【特許文献1】特開平3−138859号公報
【特許文献2】特開2000−195508号公報
【特許文献3】特開2000−200620号公報
【特許文献4】特開2000−208143号公報
【特許文献5】特開昭54−48047号公報
【特許文献6】特開平8−227700号公報
【特許文献7】意匠登録第1161317号公報
【0005】
【発明が解決しようとする課題】
ところで、複数のセルが一方向に配列されたセル列が複数個並列に配置された構造の蓄電池や、前述の特許文献5〜7のような構造の蓄電池を、前述の特許文献1〜4に記載された技術により冷却しようとすると、下記の不都合を生じる。
【0006】
特許文献1に記載された技術は、電池の電槽外壁を冷却機能をもった治具で固定するものであるため、複数のセルが一方向に配列されたセル列が複数並列に配置された構造の蓄電池に適用すると、治具に接していない部分(例えばセル間など)については冷却効果が現れにくいという問題がある。
【0007】
また、特許文献2に記載された技術は、化成槽内の冷却水を循環させながらその温度がほぼ一定となるようにするものであるため、例えば少なくとも前記セル列の相互間に貫通孔が設けられているような蓄電池に対しても冷却効果が現れるが、各セル間において冷却効果の違いが現れないように貫通孔内における冷却水の流れを理想的な状態に保つことは特許文献2に記載された技術のみでは困難である。
【0008】
また、特許文献3に記載された技術は、密閉型蓄電池の蓋に開口部を設けてその内部に冷却水を通すための冷却管を挿入するものであり、特許文献4に記載された技術は、密閉型蓄電池の蓋に開口部を設けて電解液を供給・排出して電槽化成時における電解液の温度をほぼ一定に保つものであるから、両者とも各セル間において冷却効果の違いが現れないようにすることは可能であるが、蓄電池の内部に管を通すための作業が面倒であり、さらに各セルの温度を一定にするための制御を個別に行う必要があり、セル数が多い場合には冷却装置が大掛かりとなるなどの問題点がある。
【0009】
そこで、本発明では、複数のセルが一方向に配列されたセル列が複数並列に配置され、少なくとも前記セル列の相互間に貫通孔が設けられてなる蓄電池を冷却するに際し、冷却装置を複雑にすることなく、さらに各セルの冷却効果がほぼ均一となる蓄電池の冷却方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1の発明は、複数のセルが一方向に配列されたセル列の複数個を、該セル列間の上下方向に貫通孔が形成されるように配置し、該貫通孔に蓄電池冷却手段を接続して該貫通孔内に冷却水を流すことを特徴とする蓄電池の冷却方法に関するものである。
【0011】
また、請求項2の発明は、請求項1の発明において、前記蓄電池冷却手段から供給される冷却水の温度または流量が、冷却中の前記蓄電池の温度または前記貫通孔を通過した後の冷却水の温度の測定結果に基づいて制御されることを特徴とする。
【0012】
【発明の実施の形態】
本発明の実施の形態を、図面を用いて説明する。
【0013】
図1は、本発明の実施形態の蓄電池の冷却方法を好適に実現する蓄電池の冷却系の基本的一例を概略的に示す斜視図である。図1において、1は蓄電池、2は蓄電池1を冷却するための蓄電池冷却手段、3は蓄電池1を冷却水中に保持する保持槽である。
【0014】
蓄電池1は、複数のセル11が一方向に配列されたセル列12の複数個(図1では2個)を並列に配置したものであり、その上部には蓋13が設けられている。また、セル列12の間には上下方向に形成された貫通孔14が設けられており、蓋13には貫通孔14の開口部(以下、貫通孔開口部とする)14aが設けられ、さらに端子15が設けられている。なお、図1における蓄電池1は、密閉型のものを示しているが、それに限られるものではない。また、貫通孔開口部14aは7個示されているが、実際にはその個数は適宜決定されるものである。
【0015】
蓄電池冷却手段2は、冷却水を蓄電池冷却手段2に導入する配管21と、配管21に流れる冷却水の流量を調整する制御弁22と、蓄電池1の貫通孔14に冷却水を導入する導入部23とを有する。また、導入部23の先端には、蓄電池1の貫通孔開口部14aの形状に合致したパイプ状部24が形成されている。
【0016】
保持槽3は、蓄電池1を収容するとともに、蓄電池1の貫通孔14を通って排出された冷却水31を、排水口32の位置により定まる一定の水位に保つことにより、蓄電池1全体の冷却を図るものである。この保持槽3は、蓄電池1の電槽化成に用いる場合には化成槽と呼ばれるものであるが、本発明の実施形態は、蓄電池1の電槽化成時の冷却を図るためだけではなく、例えば充電時の冷却などにも適用できることはいうまでもない。
【0017】
すなわち、図1に示された本発明の実施形態によれば、複数のセル11が一方向に配列されたセル列12の複数個を、セル列12間の上下方向に貫通孔14が形成されるように配置した蓄電池1の貫通孔14に蓄電池冷却手段2を接続して冷却水を流すようにしているため、冷却装置を複雑にすることなく、さらに各セル11の冷却効果がほぼ均一となるような蓄電池の冷却方法を提供することが可能となる。
【0018】
また、本発明の実施形態は、例えば簡易型ハイブリッドシステムを採用した自動車に用いられる鉛蓄電池の化成・充電に適したものとなる。
【0019】
例えば、簡易型ハイブリッドシステムを採用した自動車に用いられる蓄電池1は、鉛蓄電池の最小単位であるセル11を18個直列接続して約36Vの起電力を得るようにしたものであり、一般には9個のセル11からなるセル列12が2個並列にされ、密閉型構造とされたものである。このようにセル数の多い密閉型の鉛蓄電池は、電槽化成時または充電末期における発熱が従来型の蓄電池よりも大きく、前述の特許文献1〜4における技術を適用しても十分な冷却効果を得ることが困難である。
【0020】
そこで、図1に例示された冷却装置を適用することにより、例えば前述の特許文献3、特許文献4に記載されたように密閉型蓄電池の各セルに直接冷却管等を挿入することなく各セルの冷却効果がほぼ均一となるような蓄電池の冷却方法を実現することができる。
【0021】
以上、本発明の実施形態の基本的一例を説明したが、本発明の実施形態は図1に示された冷却系を利用したものに限られず、種々の応用例が考えられる。
【0022】
図2は、本発明の実施形態の蓄電池の冷却方法を好適に実現する蓄電池の冷却系の応用例の一例を概略的に示す説明図である。なお、図2において、図1と同様の箇所には同一の符号を付し、詳細な説明を省略することとする。なお、パイプ状部24の先端は貫通孔開口部14aから少し入った所にあり、パイプ状部24から流出する冷却水が貫通孔14内壁を伝い落ちる様にした。また、点線示の通り、貫通孔14は蓋13を含め蓄電池1の上部のみが7個に分割されているが、その下方では互いに連通し、2本の比較的長い部材と蓄電池側壁により2個のセル列12が互いに連結され、蓄電池の下端および側壁下部に開口する様に形成されている。
【0023】
図2において、図1と異なる点は、冷却水を再利用する機能を設けたこと、冷却中の蓄電池の温度または蓄電池の貫通孔を通過した後の冷却水の温度を測定した結果に基づいて蓄電池冷却手段から供給される冷却水の温度または流量の少なくとも一方を制御する機能を設けたことである。
【0024】
まず、冷却水を再利用する機能について説明する。図2において、4はポンプであって、使用後の冷却水を保持槽3から吸引するものである。5は冷却器であって、ポンプ4から送られた使用後の冷却水を再冷却するものである。6は再生用配管であって、保持槽3とポンプ4との間、ポンプ4と冷却器5との間をそれぞれ接続するものである。なお、冷却器5には、蒸発等により減少した冷却水を補給する機能(図示せず)が設けられている。
【0025】
次に、冷却中の蓄電池の温度または蓄電池の貫通孔を通過した後の冷却水の温度を測定した結果に基づいて蓄電池冷却手段から供給される冷却水の温度または流量の少なくとも一方を制御する機能について説明する。
【0026】
図2において、7は温度センサであって、冷却中の蓄電池1の温度または蓄電池1の貫通孔14を通過した後の冷却水の温度を検出するものである。8は演算制御装置であって、温度センサ7により検出された温度が目的の温度となるように、ポンプ4、冷却器5、制御弁22のうち少なくとも1つを制御するものである。
【0027】
図2に例示された実施形態においては、冷却水を再利用する機能を設けることにより、冷却水の有効利用を図ることができる。また、冷却中の蓄電池1の温度または蓄電池1の貫通孔14を通過した後の冷却水の温度を測定した結果に基づいて蓄電池冷却手段2から供給される冷却水の温度または流量の少なくとも一方を制御する機能を設けることにより、電槽化成時や充電時などにおける各セル11の温度がほぼ一定となる蓄電池の冷却方法を容易に実現することができる。
【0028】
なお、図2に例示された実施形態において、冷却水を再利用する機能または冷却中の蓄電池1の温度または蓄電池1の貫通孔14を通過した後の冷却水の温度を測定した結果に基づいて蓄電池冷却手段2から供給される冷却水の温度または流量の少なくとも一方を制御する機能は、両方とも設けられている必要はなく、一方のみであってもよいことはいうまでもない。
【0029】
また、本発明の実施形態に用いられる蓄電池冷却手段は、図1または図2に例示されたものに限られない。以下、その例を説明する。
【0030】
図3は、本発明の実施形態に用いられる蓄電池冷却手段の応用例を概略的に示す説明図である。なお、図3において、図1または図2と同様の箇所には同一の符号を付し、詳細な説明を省略することとする。
【0031】
図3において、蓄電池冷却手段2の導入部23は、蓄電池1の蓋13と接する面にパッキン25を有する。パッキン25は、例えばゴムなどの材料で構成される。また、導入部23は、蓄電池1の貫通孔開口部14aの全てを覆っている。すなわち、導入部23は、図1および図2におけるパイプ状部24と同様の機能を有する。
【0032】
図3に示された蓄電池冷却手段の応用例は、例えば蓄電池1の貫通孔開口部14aの個数が多い場合などに、蓄電池1に蓄電池冷却手段2を取り付ける際の作業性が向上するという利点を有する。
【0033】
以上、本発明の実施形態の蓄電池の冷却方法を好適に実現する蓄電池の冷却系について例を挙げて説明したが、ここで本発明の実施形態を実際に蓄電池の冷却に用いた場合の結果を、前述の特許文献1〜4に記載された方法と比較して説明する。
【0034】
(実施例の説明) 本発明の実施の形態の蓄電池の冷却方法を実際に蓄電池の電槽化成時の冷却に用いてその効果を確認した。
【0035】
蓄電池1は、前述の簡易型ハイブリッドシステムを採用した自動車に用いられる鉛蓄電池であって、9個のセル11からなるセル列12が2個並列にされ、密閉型構造とされたものとした。寸法は、高さ200mm、幅(セル11の配列方向)257mm、奥行(セル列12の配列方向)172mmとした。また、貫通孔14は長さ24mm、幅8mmで、蓋13には貫通孔開口部14aが7個設けられているものとした。
【0036】
また、蓄電池1の電槽化成時の条件は、充電電流4Aで、正極理論容量の220%の充電電気量を流すようにした。
【0037】
そして、上記電槽化成時の蓄電池1に対して、本発明の実施形態の方法および特許文献1〜4の方法を用いて冷却を行った。その条件を表1に、結果を表2にそれぞれ示す。なお、表1および表2において、本発明の図1、図2による方法をそれぞれ実施例1、実施例2とし、特許文献1〜4による方法をそれぞれ従来例1〜4とした。
【0038】
【表1】

Figure 2004303464
【0039】
【表2】
Figure 2004303464
【0040】
なお、従来例1〜4の方法においては、それぞれ下記の傾向がみられた。
(1)従来例1の方法では、治具が直接接していない面における温度上昇が顕著であった。
(2)従来例2の方法では、冷却水の水流の下流側のほうが電池温度が高くなる傾向があり、また、電池間に比較的温度の高い水が滞留していた。
(3)従来例3の方法では、セル上部の余剰液を冷却する効果しかなく、冷却管内を流れる冷却水がセル内部の冷却には寄与していない。また、各セルの開口部に冷却管を挿入する作業が煩雑であり、各冷却管を流れる冷却水の温度調整も複雑となっていた。
(4)従来例4の方法では、セル内の電解液の温度をほぼ一定に保つことが困難であり、また、各セルの開口部に冷却管を挿入する作業が煩雑であった。さらに、電解液を循環させているため、電槽化成終了後の最終的なセル内の電解液量を所定の量に合わせることが、電解液循環系の余剰電解液の影響により困難となっていた。
【0041】
このように、本発明の実施例1〜2の蓄電池の冷却方法は、従来例1〜4の方法と比較して冷却効果および作業性の点で優れていることがわかる。
【0042】
以上、本発明の実施形態の具体例を説明したが、本発明の実施形態は上述の具体例に限らず、特許請求の範囲に記載された事項の範囲内で適宜変更することができることはいうまでもない。
【0043】
【発明の効果】
以上のとおり、本発明によれば、蓄電池の冷却方法において、複数のセルが一方向に配列されたセル列の複数個を、該セル列間の上下方向に貫通孔が形成されるように配置し、該貫通孔に冷却水を流す蓄電池冷却手段を接続することを特徴としているため、冷却装置を複雑にすることなく、さらに各セルの冷却効果がほぼ均一となるような蓄電池の冷却方法を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態の蓄電池の冷却方法を好適に実現する蓄電池の冷却系の基本的一例を概略的に示す斜視図である。
【図2】本発明の実施形態の蓄電池の冷却方法を好適に実現する蓄電池の冷却系の応用例の一例を概略的に示す説明図である。
【図3】本発明の実施形態に用いられる蓄電池冷却手段の応用例を概略的に示す説明図である。
【符号の説明】
1 蓄電池
2 蓄電池冷却手段
3 保持槽
4 ポンプ
5 冷却器
6 再生用配管
7 温度センサ
8 演算制御装置
11 セル
12 セル列
13 蓋
14 貫通孔
14a 貫通孔開口部
15 端子
21 配管
22 制御弁
23 導入部
24 パイプ状部
25 パッキン
31 冷却水
32 排水口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for cooling a storage battery for suppressing heat generation during formation of a battery case of a storage battery.
[0002]
[Prior art]
It is well known that a sealed storage battery generates heat during battery formation or charging. For example, in the case of a lead storage battery, this heat is generated due to low charging efficiency of the storage battery, or generated when oxygen generated near the positive electrode during charging is consumed by the negative electrode. It is widely known to cool a storage battery in order to suppress the influence of these heat generations.
[0003]
For example, when the outer wall of the battery case is fixed with a jig having a cooling function to form the battery case (see Patent Document 1), the temperature of the battery becomes almost constant while circulating the cooling water in the formation tank. (See Patent Literature 2), an opening is provided in the lid of the sealed storage battery, and a cooling pipe for passing cooling water is inserted therein (see Patent Literature 3). It is specifically known that an opening is provided to supply and discharge the electrolytic solution to keep the temperature of the electrolytic solution substantially constant during the formation of the battery container (see Patent Document 4).
[0004]
The storage battery has a structure in which a space such as an air flow path is provided between cells in order to improve heat dissipation (see Patent Documents 5 and 6), and a plurality of cells are arranged in one direction. An arrangement in which through holes are formed in the vertical direction between cell rows (see Patent Document 7) is known.
[Patent Document 1] JP-A-3-13859 [Patent Document 2] JP-A-2000-195508 [Patent Document 3] JP-A-2000-20060 [Patent Document 4] JP-A-2000-208143 [Patent] Reference 5: Japanese Patent Application Laid-Open No. 54-48047 Patent Document 6: Japanese Patent Application Laid-Open No. 8-227700 Patent Document 7: Design Registration No. 11613117
[Problems to be solved by the invention]
Incidentally, a storage battery having a structure in which a plurality of cell rows in which a plurality of cells are arranged in one direction and a plurality of cells are arranged in parallel, and a storage battery having a structure like the above-described Patent Documents 5 to 7 are described in Patent Documents 1 to 4 described above. Attempts to cool with the described technique result in the following disadvantages.
[0006]
Since the technique described in Patent Document 1 fixes the outer wall of the battery case with a jig having a cooling function, a plurality of cell rows in which a plurality of cells are arranged in one direction are arranged in parallel. When applied to a storage battery having a structure, there is a problem that a cooling effect is less likely to be exerted on a portion not in contact with the jig (for example, between cells).
[0007]
Further, the technology described in Patent Document 2 is to circulate the cooling water in the chemical conversion tank so that the temperature thereof becomes substantially constant. For example, at least through holes are provided between the cell rows. A cooling effect appears even for a storage battery as described above, but it is disclosed in Patent Document 2 to keep the flow of cooling water in the through hole in an ideal state so that no difference in cooling effect appears between cells. It is difficult only with the described technology.
[0008]
Further, the technique described in Patent Document 3 is to provide an opening in a lid of a sealed storage battery and insert a cooling pipe through which cooling water passes, and the technique described in Patent Document 4 is Since the opening and closing of the closed storage battery is provided to supply and discharge the electrolyte and keep the temperature of the electrolyte almost constant during battery formation, the difference in the cooling effect between each cell in both cases Although it is possible to prevent them from appearing, it is troublesome to pass the tube through the inside of the storage battery, and it is necessary to perform individual control to keep the temperature of each cell constant. In many cases, there is a problem that the cooling device becomes large.
[0009]
Therefore, in the present invention, when cooling a storage battery in which a plurality of cell rows in which a plurality of cells are arranged in one direction are arranged in parallel and at least a through hole is provided between the cell rows, a cooling device is complicated. It is another object of the present invention to provide a method of cooling a storage battery in which the cooling effect of each cell is substantially uniform without making the cells more effective.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is characterized in that a plurality of cell rows in which a plurality of cells are arranged in one direction are arranged so that a through hole is formed in a vertical direction between the cell rows, and the battery cooling means is provided in the through hole. And flowing cooling water through the through-holes.
[0011]
According to a second aspect of the present invention, in the first aspect of the present invention, the temperature or the flow rate of the cooling water supplied from the storage battery cooling means is the temperature of the storage battery during cooling or the cooling water after passing through the through hole. Is controlled based on the measurement result of the temperature.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a perspective view schematically showing a basic example of a cooling system of a storage battery that suitably realizes a method of cooling a storage battery according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a storage battery, 2 denotes a storage battery cooling means for cooling the storage battery 1, and 3 denotes a holding tank for holding the storage battery 1 in cooling water.
[0014]
The storage battery 1 has a plurality (two in FIG. 1) of cell rows 12 in which a plurality of cells 11 are arranged in one direction, and a lid 13 is provided on an upper portion thereof. Further, a through hole 14 formed in the vertical direction is provided between the cell rows 12, and an opening 14a (hereinafter, referred to as a through hole opening) of the through hole 14 is provided in the lid 13; A terminal 15 is provided. In addition, although the storage battery 1 in FIG. 1 is shown as a closed type, it is not limited thereto. Although seven through-hole openings 14a are shown, the number is actually determined as appropriate.
[0015]
The storage battery cooling means 2 includes a pipe 21 for introducing cooling water to the storage battery cooling means 2, a control valve 22 for adjusting a flow rate of the cooling water flowing through the pipe 21, and an introduction part for introducing cooling water to the through hole 14 of the storage battery 1. 23. Further, a pipe-shaped portion 24 conforming to the shape of the through-hole opening 14 a of the storage battery 1 is formed at the tip of the introduction portion 23.
[0016]
The holding tank 3 accommodates the storage battery 1 and keeps the cooling water 31 discharged through the through hole 14 of the storage battery 1 at a constant water level determined by the position of the drain port 32, thereby cooling the entire storage battery 1. It is intended. The holding tank 3 is called a formation tank when used for forming the battery case of the storage battery 1, but the embodiment of the present invention is not limited to cooling the storage battery 1 at the time of forming the battery case. It goes without saying that the present invention can be applied to cooling during charging.
[0017]
That is, according to the embodiment of the present invention shown in FIG. 1, a plurality of cell rows 12 in which a plurality of cells 11 are arranged in one direction are formed with through holes 14 in the vertical direction between the cell rows 12. The storage battery cooling means 2 is connected to the through holes 14 of the storage batteries 1 arranged so as to flow cooling water, so that the cooling effect of each cell 11 is substantially uniform without complicating the cooling device. It is possible to provide such a storage battery cooling method.
[0018]
Further, the embodiment of the present invention is suitable for, for example, formation and charging of a lead storage battery used in a vehicle employing a simplified hybrid system.
[0019]
For example, a storage battery 1 used in a vehicle adopting a simplified hybrid system has a configuration in which 18 cells 11 which are the minimum unit of a lead storage battery are connected in series to obtain an electromotive force of about 36V. The cell array 12 is composed of two cells 11 arranged in parallel to form a sealed structure. As described above, the sealed lead storage battery having a large number of cells generates more heat at the time of battery formation or at the end of charging than the conventional storage battery, and has a sufficient cooling effect even when the techniques in Patent Documents 1 to 4 described above are applied. Is difficult to obtain.
[0020]
Therefore, by applying the cooling device illustrated in FIG. 1, for example, as described in Patent Documents 3 and 4 described above, each cell can be inserted without directly inserting a cooling pipe or the like into each cell of the sealed storage battery. The cooling method of the storage battery in which the cooling effect of the battery is substantially uniform can be realized.
[0021]
As described above, a basic example of the embodiment of the present invention has been described. However, the embodiment of the present invention is not limited to the one using the cooling system shown in FIG. 1, and various application examples can be considered.
[0022]
FIG. 2 is an explanatory view schematically showing an example of an application example of a storage battery cooling system that suitably implements the storage battery cooling method according to the embodiment of the present invention. In FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. Note that the tip of the pipe-shaped portion 24 is located slightly in from the through-hole opening portion 14a, so that the cooling water flowing out of the pipe-shaped portion 24 runs down the inner wall of the through-hole 14. As shown by the dotted line, the through-hole 14 is divided into seven parts only at the upper part of the storage battery 1 including the lid 13, but communicates below each other, and two through-holes 14 are formed by two relatively long members and the side wall of the storage battery. Are connected to each other and are formed so as to open to the lower end of the storage battery and the lower part of the side wall.
[0023]
2 differs from FIG. 1 in that a function for reusing the cooling water is provided and based on the result of measuring the temperature of the storage battery during cooling or the temperature of the cooling water after passing through the through hole of the storage battery. That is, a function of controlling at least one of the temperature and the flow rate of the cooling water supplied from the storage battery cooling means is provided.
[0024]
First, the function of reusing the cooling water will be described. In FIG. 2, reference numeral 4 denotes a pump which sucks used cooling water from the holding tank 3. Reference numeral 5 denotes a cooler for recooling the used cooling water sent from the pump 4. Reference numeral 6 denotes a regeneration pipe that connects between the holding tank 3 and the pump 4 and between the pump 4 and the cooler 5. The cooler 5 is provided with a function (not shown) for supplying cooling water reduced by evaporation or the like.
[0025]
Next, a function of controlling at least one of the temperature and the flow rate of the cooling water supplied from the storage battery cooling means based on the result of measuring the temperature of the storage battery during cooling or the temperature of the cooling water after passing through the through hole of the storage battery. Will be described.
[0026]
In FIG. 2, a temperature sensor 7 detects the temperature of the storage battery 1 during cooling or the temperature of the cooling water after passing through the through hole 14 of the storage battery 1. Reference numeral 8 denotes an arithmetic and control unit that controls at least one of the pump 4, the cooler 5, and the control valve 22 so that the temperature detected by the temperature sensor 7 becomes a target temperature.
[0027]
In the embodiment illustrated in FIG. 2, by providing a function of reusing the cooling water, it is possible to effectively use the cooling water. Further, at least one of the temperature and the flow rate of the cooling water supplied from the storage battery cooling means 2 is determined based on the result of measuring the temperature of the storage battery 1 during cooling or the temperature of the cooling water after passing through the through hole 14 of the storage battery 1. By providing the control function, it is possible to easily realize a method of cooling the storage battery in which the temperature of each cell 11 becomes substantially constant during battery formation or charging.
[0028]
In the embodiment illustrated in FIG. 2, based on the function of reusing the cooling water or the result of measuring the temperature of the storage battery 1 during cooling or the temperature of the cooling water after passing through the through hole 14 of the storage battery 1. It is needless to say that the function of controlling at least one of the temperature and the flow rate of the cooling water supplied from the storage battery cooling means 2 does not need to be provided, and only one may be provided.
[0029]
Further, the storage battery cooling means used in the embodiment of the present invention is not limited to those illustrated in FIG. 1 or FIG. Hereinafter, an example thereof will be described.
[0030]
FIG. 3 is an explanatory view schematically showing an application example of the storage battery cooling means used in the embodiment of the present invention. In FIG. 3, the same parts as those in FIG. 1 or FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0031]
In FIG. 3, the introduction part 23 of the storage battery cooling means 2 has a packing 25 on a surface of the storage battery 1 that is in contact with the lid 13. The packing 25 is made of a material such as rubber. In addition, the introduction portion 23 covers all the through-hole openings 14 a of the storage battery 1. That is, the introduction part 23 has the same function as the pipe-shaped part 24 in FIGS. 1 and 2.
[0032]
The application example of the storage battery cooling means shown in FIG. 3 has an advantage that workability when attaching the storage battery cooling means 2 to the storage battery 1 is improved, for example, when the number of the through-hole openings 14a of the storage battery 1 is large. Have.
[0033]
As described above, the cooling system of the storage battery that suitably implements the cooling method of the storage battery according to the embodiment of the present invention has been described with reference to the example. Here, the result when the embodiment of the present invention is actually used for cooling the storage battery will be described. This will be described in comparison with the methods described in Patent Documents 1 to 4 described above.
[0034]
(Explanation of Example) The effect of the method for cooling a storage battery according to the embodiment of the present invention was confirmed by actually using the method for cooling a storage battery during battery formation.
[0035]
The storage battery 1 is a lead storage battery used in a vehicle employing the above-mentioned simplified hybrid system, and has a closed structure in which two cell rows 12 each including nine cells 11 are arranged in parallel. The dimensions were 200 mm in height, 257 mm in width (arrangement direction of cells 11), and 172 mm in depth (arrangement direction of cell columns 12). The through-hole 14 was 24 mm long and 8 mm wide, and the lid 13 was provided with seven through-hole openings 14a.
[0036]
The conditions for forming the storage battery 1 in the battery case were such that a charging current of 4 A and a charge amount of 220% of the theoretical capacity of the positive electrode flowed.
[0037]
Then, the storage battery 1 at the time of battery case formation was cooled using the method of the embodiment of the present invention and the methods of Patent Documents 1 to 4. Table 1 shows the conditions, and Table 2 shows the results. In Tables 1 and 2, the methods according to FIGS. 1 and 2 of the present invention are referred to as Examples 1 and 2, respectively, and the methods according to Patent Documents 1 to 4 are referred to as Conventional Examples 1 to 4, respectively.
[0038]
[Table 1]
Figure 2004303464
[0039]
[Table 2]
Figure 2004303464
[0040]
In the methods of Conventional Examples 1 to 4, the following trends were observed, respectively.
(1) In the method of Conventional Example 1, the temperature rise on the surface where the jig was not directly in contact was remarkable.
(2) In the method of Conventional Example 2, the battery temperature tends to be higher on the downstream side of the water flow of the cooling water, and water having a relatively high temperature stays between the batteries.
(3) In the method of Conventional Example 3, the only effect is to cool the excess liquid in the upper part of the cell, and the cooling water flowing in the cooling pipe does not contribute to cooling the inside of the cell. Further, the operation of inserting the cooling pipe into the opening of each cell is complicated, and the temperature adjustment of the cooling water flowing through each cooling pipe is also complicated.
(4) In the method of Conventional Example 4, it is difficult to keep the temperature of the electrolytic solution in the cell almost constant, and the operation of inserting the cooling pipe into the opening of each cell is complicated. Furthermore, since the electrolyte is circulated, it is difficult to adjust the final amount of the electrolyte in the cell after the formation of the battery container to a predetermined amount due to the influence of the excess electrolyte in the electrolyte circulation system. Was.
[0041]
Thus, it can be seen that the cooling methods of the storage batteries of Examples 1 and 2 of the present invention are superior in cooling effect and workability as compared with the methods of Conventional Examples 1 to 4.
[0042]
As mentioned above, although the specific example of the embodiment of the present invention has been described, the embodiment of the present invention is not limited to the above specific example, and it can be appropriately changed within the scope of the matters described in the claims. Not even.
[0043]
【The invention's effect】
As described above, according to the present invention, in the method for cooling a storage battery, a plurality of cell rows in which a plurality of cells are arranged in one direction are arranged so that through holes are formed in the vertical direction between the cell rows. Since the storage battery cooling means for flowing cooling water is connected to the through-hole, a cooling method of the storage battery in which the cooling effect of each cell becomes substantially uniform without complicating the cooling device is provided. Can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a basic example of a storage battery cooling system that suitably implements a storage battery cooling method according to an embodiment of the present invention.
FIG. 2 is an explanatory view schematically showing an example of an application example of a storage battery cooling system that suitably implements the storage battery cooling method according to the embodiment of the present invention.
FIG. 3 is an explanatory view schematically showing an application example of a storage battery cooling means used in the embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 storage battery 2 storage battery cooling means 3 holding tank 4 pump 5 cooler 6 regeneration pipe 7 temperature sensor 8 arithmetic control unit 11 cell 12 cell row 13 lid 14 through hole 14 a through hole opening 15 terminal 21 pipe 22 control valve 23 introduction part 24 pipe-shaped part 25 packing 31 cooling water 32 drainage port

Claims (2)

複数のセルが一方向に配列されたセル列の複数個を、該セル列間の上下方向に貫通孔が形成されるように配置し、該貫通孔に蓄電池冷却手段を接続して該貫通孔内に冷却水を流すことを特徴とする蓄電池の冷却方法。A plurality of cell rows in which a plurality of cells are arranged in one direction are arranged so that a through hole is formed in a vertical direction between the cell rows, and a storage battery cooling means is connected to the through hole to form the through hole. A method for cooling a storage battery, characterized by flowing cooling water into the storage battery. 前記蓄電池冷却手段から供給される冷却水の温度または流量が、冷却中の前記蓄電池の温度または前記貫通孔を通過した後の冷却水の温度の測定結果に基づいて制御されることを特徴とする、請求項1記載の蓄電池の冷却方法。The temperature or flow rate of the cooling water supplied from the storage battery cooling means is controlled based on a measurement result of the temperature of the storage battery during cooling or the temperature of the cooling water after passing through the through hole. The method for cooling a storage battery according to claim 1.
JP2003092043A 2003-03-28 2003-03-28 Cooling method of storage battery Pending JP2004303464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092043A JP2004303464A (en) 2003-03-28 2003-03-28 Cooling method of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092043A JP2004303464A (en) 2003-03-28 2003-03-28 Cooling method of storage battery

Publications (1)

Publication Number Publication Date
JP2004303464A true JP2004303464A (en) 2004-10-28

Family

ID=33405255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092043A Pending JP2004303464A (en) 2003-03-28 2003-03-28 Cooling method of storage battery

Country Status (1)

Country Link
JP (1) JP2004303464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210033218A (en) * 2019-09-18 2021-03-26 주식회사 한국아트라스비엑스 Water tank coolant circulation device that maintains the coolant inside the Hwaseong water tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210033218A (en) * 2019-09-18 2021-03-26 주식회사 한국아트라스비엑스 Water tank coolant circulation device that maintains the coolant inside the Hwaseong water tank
KR102233122B1 (en) * 2019-09-18 2021-03-29 주식회사 한국아트라스비엑스 Water tank coolant circulation device that maintains the coolant inside the Hwaseong water tank

Similar Documents

Publication Publication Date Title
CA1276972C (en) Multi-cell metal/air battery
BR112012032269B1 (en) METHOD FOR OPERATING ELECTROCHEMICAL CELL AND ELECTROCHEMICAL CELL
JP5719851B2 (en) Circulating electrolyte storage system
JP2008130489A (en) Power supply system
US5011747A (en) Metal/air battery with pulsed gas bubbling
US5543243A (en) Battery electrolyte circulation system
JP2009123517A (en) Fuel cell system and its control method
BRPI0822051B1 (en) rechargable battery
JP5999316B2 (en) Air battery
JP2010015957A (en) Electrical storage device
JP2004303464A (en) Cooling method of storage battery
JP2015207492A (en) Metal-air battery housing and metal-air battery
JP2010244863A (en) Power storage device
JP2008053086A (en) Fuel cell system
EP2569815B1 (en) Fuel cell stacks
WO2016178186A1 (en) Zinc-air cell with airlift pump
JP2018037290A (en) Flow battery
JP2007057203A (en) Cooling water circulating device
AU6811894A (en) Battery electrolyte circulation system
JPS5846535Y2 (en) Metal ↓−Air battery
JPH07142046A (en) Battery case
JP2000239873A (en) Electrolytic device and electrolytic cell used for the same
RU2118014C1 (en) Air-metal electrochemical cell
KR20150138773A (en) Electrolyte storage unit for Flow battery and Vanadium redox flow battery comprising the same
EP0316113A2 (en) Metal/air battery with pulsed gas bubbling