JP2004301598A - Surveying method by vrs-ts system - Google Patents

Surveying method by vrs-ts system Download PDF

Info

Publication number
JP2004301598A
JP2004301598A JP2003093512A JP2003093512A JP2004301598A JP 2004301598 A JP2004301598 A JP 2004301598A JP 2003093512 A JP2003093512 A JP 2003093512A JP 2003093512 A JP2003093512 A JP 2003093512A JP 2004301598 A JP2004301598 A JP 2004301598A
Authority
JP
Japan
Prior art keywords
survey
vrs
surveying
point
new
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003093512A
Other languages
Japanese (ja)
Other versions
JP4276458B2 (en
JP2004301598A5 (en
Inventor
Kenji Mishima
研二 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2003093512A priority Critical patent/JP4276458B2/en
Publication of JP2004301598A publication Critical patent/JP2004301598A/en
Publication of JP2004301598A5 publication Critical patent/JP2004301598A5/ja
Application granted granted Critical
Publication of JP4276458B2 publication Critical patent/JP4276458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the precise evaluation of the survey of a reference point and a surveying method by a VRS-TS system by solving the problem of the distance between a fixed station and a mobile station by the VRS-RTK system, properly using the type of survey by surveying an inferior observation environment that does not suite GPS survey by a conventional surveying system by TS, and hence comparing and evaluating survey results by a different survey system. <P>SOLUTION: In the surveying method by the VRS-TS system, a plurality of new VRS points surveyed by the VRS-RTK system are combined by a polygonal surveying by a total station, or the like, a polygonal survey network with the new VRS points as already known points is composed, the closing difference between a tentative network average calculation to the polygonal survey network and a known point is evaluated, and the survey precision of the new VRS points is evaluated. The GPS survey value of the mobile station performed by acquiring a baseline vector from the virtual reference station can be verified precisely by the method. Additionally, the GPS survey and a conventional survey can be used in combination according to the condition of a survey location, thus assuring high precision and enhancing the freedom of the surveying method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する分野】
本発明は、VRS−TS方式による測量方法に関するものである。
【0002】
【従来の技術】
GPSを利用した測量としては、たとえば、特許文献1に記載されるようにキネマティック測位とスタティック測位がある。キネマティック測位は、スタティック測位に比して基線ベクトルを短時間で求めることができる。さらにリアルタイムキネマティック方式(以下、「RTK−GPS方式」と称する。)では、基準局と移動局の間を携帯電話等の通信システムでリンクすると、移動局側でリアルタイムに測位解を得ることができる。
【0003】
しかし、上述したRTK−GPS方式は測量精度を維持するためには、固定局と移動局との間隔は10km以下という制限がある上に、衛星の配置により測定精度が劣化するという問題がある。何よりもRTK方式の測位解は開放トラバースと同様なので、測位解の点検の方法がないというのが問題である。また、GPS全般の問題として上空が開けていなければならないというのが前提でありわが国の場合、国土の多くは山岳地形であり、平地でも森林は深い。また都市部は高層化が著しく、必ずしもGPSに適した観測環境とは言い難いのが実情である。
【0004】
これらの問題を解決するために、近時、仮想基準局を使用したRTK方式による測量(本明細書において、仮想基準局を利用したRTK方式による測量を便宜上、「VRS−RTK方式(Virtual Reference Station − RealTime Kinematic positioning)」と、仮想基準局とTS方式を併用した測量を「VRS−TS」と称する。)が提案されている。この方式は、複数の固定基準点により囲まれたエリア内にある移動局の近傍に設定した仮想基準局(VRS:Virtual Reference Station)をRTK方式における固定基準点として利用するものであるが、移動局は仮想基準局からの放射法による測量であるため、信頼性を検証することはできないという問題がある。
【0005】
【特許文献1】
特開平6−289122号
【0006】
【発明が解決しようとする課題】
本発明は、以上の欠点を解消すべくなされたもので、固定局と移動局間の距離の問題をVRS−RTK方式によって解決し、GPS測量に適さない劣悪な観測環境をTSによる従来測量方式で測量することによって測量の種類を適宜使い分ける。その結果として異なる測量方式による測量成果を比較し、評価することで基準点測量の精度評価及びVRS−TS方式の測量方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明によれば上記目的は、
VRS−RTK方式により測量された複数のVRS新点間を、トータルステーション等によって多角測量して結合し、前記VRS新点を既知点とする多角測量網を構成し、前記多角測量網に対する仮定網平均計算により既知点との閉合差を評価し、VRS新点の測量精度を評価するVRS−TS方式による測量方法。
【0008】
図1に本発明の原理を示す。図において3はGPS衛星からの電波を受信する固定基準点となる固定局、4は一般電話回線、専用線、あるいはLAN等の適宜の通信回線5により固定局3に接続されるVRS計算センタを示す。
【0009】
1は固定局3に囲まれたエリア内を移動する移動局により測量されたGPS観測新点であり、移動局の近傍に固定局を仮想し、これを仮想基準局6とする。
【0010】
移動局とVRS計算センタ4とは携帯電話等により通信可能であり、移動局は上記仮想基準局6における仮想データをあたかもRTK法における固定局でのデータとして扱い、移動局との基線ベクトルを演算する。
【0011】
上記移動局における測点は、GPS観測新点1として、所定の点検作業を行った後、固定基準点(固定局3)を基にした水平位置及びジオイド面への投影値である標高値が付与される。
【0012】
本発明は、以上のようにして求められたGPS観測新点1が、仮想の基準局6との間の基線ベクトルを基にして求められ、精度の検証が困難であることに対する対策として考案されたもので、これらGPS観測新点1、1・・間を結ぶように複数の従来測量新点2、2・・を設定し、上記GPS観測新点1を既知点とし、これら従来測量新点2により多角測量網を構築する。
【0013】
上述したように、GPS観測新点1をジオイド面への投影値として求めることにより、GPS測量網とトータルステーションによる従来測量網とは結合されているために、以後、多角測量網における測量は、GPS観測新点1を既知点として、従来測量新点2をトータルステーションにより測量して行うことができる。
【0014】
GPS観測新点1の検証は、上記多角測量網に対して網平均計算(仮定網平均計算)を実行することにより行われ、既知点成果との比較の結果(閉合差)が所定の許容範囲より大きな場合には、再測等が検討される。
【0015】
これに対し、閉合差が所定の許容範囲より小さな場合には、GPS観測新点1の位置の正しさが立証されることとなり、次いで、実用網平均計算により当該測量目標点の位置を決定する。この場合、既知点たるGPS観測新点1からの他の既知点を視準して求められる方向角の取り付けができないために、水平位置は厳密水平網平均計算により、標高は、厳密高低網平均計算により求められる。
【0016】
したがってこの発明において、VRS−RTK方式を使用して求めたGPS観測新点1に対する測量結果を高い精度で検証することが可能になる。また、一般にGPS観測新点1に対する標識は、トータルステーションによる標識が永久標識であるのに対して、一時標識で足りるために、例えば、ビルディングの屋上等、上空に開けた場所にGPS観測新点1を設定することが可能となるために、選点の効率が向上する。
【0017】
さらに、GPSによる測位とトータルステーションを使用した従来測量を混用することにより、都市の地上、あるいは山間部等、衛星を捕捉するために十分に上空が開けていない場所ではトータルステーションによる測量を行い、これらを囲む上空が開けている場所にGPS観測新点1を設定することが可能になるために、測量効率が向上する。
【0018】
【発明の実施の形態】
図1における点Pを基準点測量する場合を例にとって本発明の実施の形態を説明する。基準点測量に際し、図2に示すように、作業計画が作成される(手順1)。作業計画において、後述するGPS観測新点1及び従来測量新点2の概略位置、測点相互の視通線、さらには、平均計算する際の測点番号等を図示した平均計画図が作成される。
【0019】
次に手順2で測量現場の踏査、選点が行われる。GPS衛星を利用したVRS−RTK法とトータルステーションによる従来測量を併用する本発明において、GPS測量による新点(GPS観測新点1)は、VRS−RTK方式によるために、相互の視通は要しないが、衛星捕捉のために、十分に上空に開けた場所が選定される。
【0020】
一方、従来測量による新点(従来測量新点2)は、上空に開かれている必要はないが、相互視通可能であることが必要で、かかる条件を満足する点に選点される。
【0021】
次いで、手順3で測量標の設置を行う。上述したように、従来測量の基準点となるGPS観測新点1は、仮想点であるVRSに対する相対位置を示すに過ぎず、かつ、相互の視通は保証されないために、各GPS観測新点1に対する測量標は一時標識とされる。これに対し、従来測量新点2においては、永久標識の設置が望ましい。
【0022】
この後、手順4において観測を行う。観測は、VRS−RTKによる観測(手順4−1)と、トータルステーションを使用した観測(手順4−2)を併用して行われる。この実施の形態において、VRS−RTKによる観測に際し、固定基準点3として、常時GPS衛星のデータを取得し、かつ、高い精度で座標等の情報を得ることのできる国土地理院が設置した電子基準点が使用される。
【0023】
上述したように、上記電子基準点3のリアルタイムデータはVRS計算センタ4にリアルタイムに配信され、一方、移動局からは携帯電話でVRS計算センタ4に対して、例えば単独測位により得た自局の概略位置を送信する。移動局の位置情報を受領したVRS計算センタ4は、移動局の測位に利用可能な3点以上の電子基準点3を決定するとともに、これらの位置と位相データから移動局の近傍に仮想基準局6を設定した後、この仮想基準局6での観測位相データを生成し、仮想基準局6の位置及び生成した位相データを送信する。
【0024】
GPS観測新点1での測位は、上記仮想基準局6を固定局としたRTK方式で行われ、基線解析は、上記VRS計算センタ4からの仮想基準局6における位相データと移動局においてGPS衛星から受信した位相データを使用した干渉測位法によりリアルタイムに行われる。
【0025】
上記各GPS観測新点1に対する位置情報の決定は、仮想基準局6と固定局としたRTK方式によりおこなわれる。
【0026】
一方、TS観測(手順4−2)は、上述したGPS観測新点1を既知点とした多角測量、望ましくは結合多角方式により行われ、具体的には、トータルステーションを使用して従来測量新点2間の水平角、鉛直角及び距離を計測して行われる。従来測量新点2位置は、現地において、水平角観測値に対する倍角差及び観測差、鉛直角観測値に対する高度定数の較差、距離測定に対する1セット内の測定値の較差及び各セットの平均値の較差、測標水準測量値に対する往復観測値の較差等、内部整合による個別観測の点検がなされ、各々所定の許容範囲内に入らない場合は再測が行われる。
【0027】
以上のようにしてTS観測に対する点検を行った後、手順5において検証を行う。検証は、GPS観測新点1の1点を拘束した仮定網平均計算によりのGPS観測新点1との閉合差、あるいは、フリーネットワーク解法の変動ベクトルの大きさを評価して行い、当該閉合差が所定の許容範囲を超える場合には、GPS測量を含めて再測が検討される。また、あらかじめ、測量当該地域の三角点、公共基準点などの既設基準点で、移動局によってGPS観測し、既設基準点との差からアフィン変換のパラメータを求め、当該地域のローカルな変換パラメータからGPS観測新点1を座標変換して既設点との整合性を図る。再測に際しては、例ば、GPS測量、あるいは従来測量のいずれか一方のみを行うことができる。
【0028】
許容範囲は、測量に求められる精度、例えば、基準点測量の場合には、観測点の等級を考慮に入れて適宜決定され、具体的には、従来測量における点検計算での許容範囲を参考に決定するのが望ましい。例えば、辺数をN、路線長をΣS(km)とし、多角網が単路線、あるいは結合多角の場合には、
水平位置の閉合差は、10(cm)+3(cm)×N1/2×ΣS、
標高の閉合差は、20(cm)+(10(cm)×ΣS/N1/2
程度、
閉合多角の場合には、
水平位置の閉合差は、1.5(cm)×N1/2×ΣS、
標高の閉合差は、10(cm)×ΣS/N1/2
程度で、標高差の正反較差は、双方15(cm)程度、
あるいは、仮定網平均計算、フリーネットワーク解法の変動ベクトル10(cm)程度以内、実用網平均計算における各点の誤差楕円の長軸半径10(cm)以内程度でとすることが望ましい。
【0029】
以上のようにしてGPS観測新点1を含め、各新点の精度を検証して所定の精度が確認されると、手順6において平均計算が行われ、従来測量新点2の位置が決定される。平均計算は、水平位置に対しては厳密水平網平均計算が、標高に対しては厳密高低網平均計算が使用され、これらの成果は、手順7における成果整理でまとめられる。
【0030】
【発明の効果】
以上の説明から明らかなように、本発明によれば、仮想基準局からの基線ベクトルを取得して行われる移動局のGPS測量値を高い精度で検証することが可能になる。また、測量場所の状況に応じてGPS測量と従来測量を混在して使用することが可能となるために、高い精度を保証しながら測量方法の自由度を高めることができる。
【図面の簡単な説明】
【図1】本発明を示す説明図である。
【図2】本発明による基準点測量方法を示すフローチャートである。
【符号の説明】
1 GPS観測新点
2 従来測量新点
3 固定局
4 VRS計算センタ
5 通信回線
6 仮想基準局
[0001]
[Field of the Invention]
The present invention relates to a surveying method using the VRS-TS method.
[0002]
[Prior art]
Surveying using GPS includes, for example, kinematic positioning and static positioning, as described in Patent Document 1. In kinematic positioning, a baseline vector can be obtained in a shorter time than in static positioning. Further, in the real-time kinematic system (hereinafter referred to as "RTK-GPS system"), when a reference station and a mobile station are linked by a communication system such as a mobile phone, a positioning solution can be obtained in real time on the mobile station side. .
[0003]
However, in order to maintain the surveying accuracy, the above-described RTK-GPS system has a problem that the distance between a fixed station and a mobile station is limited to 10 km or less, and the measurement accuracy is deteriorated by the arrangement of satellites. Above all, the positioning solution of the RTK method is the same as the open traverse, and therefore, there is no method for checking the positioning solution. In addition, it is presumed that the sky must be open as a general GPS problem. In Japan, much of the land is mountainous, and forests are deep even on flat terrain. In urban areas, the skyscrapers are remarkably high and it is difficult to say that the observation environment is suitable for GPS.
[0004]
In order to solve these problems, in recent years, a survey using an RTK method using a virtual reference station (in this specification, a survey using an RTK method using a virtual reference station is referred to as a “VRS-RTK method (Virtual Reference Station-RealTime) for convenience). Kinetic positioning), and a survey using both the virtual reference station and the TS method is referred to as “VRS-TS”.). In this method, a virtual reference station (VRS) set near a mobile station in an area surrounded by a plurality of fixed reference points is used as a fixed reference point in the RTK method. Is a survey based on the radiation method from a virtual reference station, so that there is a problem that its reliability cannot be verified.
[0005]
[Patent Document 1]
JP-A-6-289122 [0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned disadvantages, and solves the problem of the distance between a fixed station and a mobile station by a VRS-RTK method. The type of the survey is properly used by performing the survey. As a result, an object of the present invention is to provide an evaluation method of accuracy of reference point survey and a VRS-TS method by comparing and evaluating survey results by different survey methods.
[0007]
[Means for Solving the Problems]
According to the invention, the object is
A plurality of VRS new points measured by the VRS-RTK method are connected by polygonal surveying by a total station or the like to form a polygonal surveying network having the VRS newpoints as known points, and a hypothetical network average for the polygonal surveying network is established. A surveying method based on the VRS-TS method that evaluates a closing difference from a known point by calculation and evaluates a surveying accuracy of a new VRS point.
[0008]
FIG. 1 shows the principle of the present invention. In the figure, reference numeral 3 denotes a fixed station serving as a fixed reference point for receiving radio waves from GPS satellites, and 4 denotes a VRS calculation center connected to the fixed station 3 by an appropriate communication line 5 such as a general telephone line, a dedicated line, or a LAN. Show.
[0009]
Reference numeral 1 denotes a new GPS observation point measured by a mobile station moving in an area surrounded by the fixed station 3. The fixed station is imagined in the vicinity of the mobile station, which is referred to as a virtual reference station 6.
[0010]
The mobile station and the VRS calculation center 4 can communicate with each other by a mobile phone or the like, and the mobile station treats the virtual data in the virtual reference station 6 as if it were data in a fixed station in the RTK method, and calculates a baseline vector with the mobile station. .
[0011]
The measurement point at the mobile station is a GPS observation new point 1, and after performing a predetermined inspection work, the horizontal position based on the fixed reference point (fixed station 3) and the elevation value which is a projection value on the geoid surface are obtained. Granted.
[0012]
The present invention has been devised as a countermeasure against the difficulty in verifying the accuracy, in which the GPS observation new point 1 obtained as described above is obtained based on the base line vector with the virtual reference station 6. A plurality of conventional survey new points 2, 2,... Are set so as to connect between these GPS observation new points 1, 1,. To construct a multi-angle survey network.
[0013]
As described above, since the GPS observation new point 1 is obtained as a projection value on the geoid surface, the GPS surveying network is connected to the conventional surveying network by the total station. With the new observation point 1 as a known point, the conventional new survey point 2 can be measured by a total station.
[0014]
The verification of the GPS observation new point 1 is performed by performing a net average calculation (assumed net average calculation) on the above-mentioned multi-point survey network, and a result of comparison with the known point result (closed difference) is determined within a predetermined allowable range. If it is larger, remeasurement etc. will be considered.
[0015]
On the other hand, when the closing difference is smaller than the predetermined allowable range, the correctness of the position of the new GPS observation point 1 is proved, and then the position of the survey target point is determined by practical net average calculation. . In this case, since it is not possible to attach a direction angle obtained by collimating another known point from the GPS observation new point 1 which is a known point, the horizontal position is calculated by strict horizontal half-average calculation, and the altitude is calculated by exact high-low half-tone average. It is determined by calculation.
[0016]
Therefore, in the present invention, it is possible to verify the survey result for the GPS observation new point 1 obtained using the VRS-RTK method with high accuracy. In general, a sign for the GPS observation new point 1 is a permanent sign on the total station, whereas a temporary sign is sufficient. For example, the GPS observation new point 1 is located in a place opened in the sky such as the roof of a building. Can be set, so that the efficiency of the point selection is improved.
[0017]
Furthermore, by mixing GPS positioning and conventional surveying using a total station, surveying by a total station is performed in places where the sky is not sufficiently open to capture satellites, such as on the ground of a city or in a mountainous area. Since the GPS observation new point 1 can be set at a place where the surrounding sky is open, the surveying efficiency is improved.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described by taking as an example a case where a point P in FIG. 1 is used as a reference point survey. In the reference point survey, a work plan is created as shown in FIG. 2 (procedure 1). In the work plan, an average plan diagram is created showing the approximate positions of the new GPS observation point 1 and the conventional survey new point 2 described later, the line of sight between the stations, and the station numbers for calculating the average. You.
[0019]
Next, surveying and selection of the survey site are performed in step 2. In the present invention in which the VRS-RTK method using the GPS satellites and the conventional survey by the total station are used together, the new point by the GPS survey (GPS observation new point 1) does not require mutual visibility because it is based on the VRS-RTK method. However, a location that is sufficiently open above the sky for satellite acquisition is selected.
[0020]
On the other hand, the new point by the conventional survey (the new point 2 of the conventional survey) does not need to be open to the sky, but needs to be mutually visible, and is selected as a point satisfying such a condition.
[0021]
Next, a survey target is installed in step 3. As described above, the GPS observation new point 1 serving as a reference point of the conventional survey merely indicates a relative position with respect to the virtual point VRS, and mutual observation is not guaranteed. The survey mark for 1 is a temporary sign. On the other hand, in the conventional survey new point 2, it is desirable to install a permanent marker.
[0022]
Thereafter, observation is performed in procedure 4. The observation is performed using both the observation using the VRS-RTK (procedure 4-1) and the observation using the total station (procedure 4-2). In this embodiment, when observing with the VRS-RTK, an electronic reference system set up by the Geographical Survey Institute established by the Geospatial Information Authority of Japan that can constantly acquire GPS satellite data and obtain information such as coordinates with high accuracy as the fixed reference point 3. Points are used.
[0023]
As described above, the real-time data of the electronic reference point 3 is delivered to the VRS calculation center 4 in real time, while the mobile station sends the data to the VRS calculation center 4 by a mobile phone, for example, the local station obtained by independent positioning. Send the approximate location. The VRS calculation center 4 that has received the position information of the mobile station determines three or more electronic reference points 3 that can be used for positioning the mobile station, and, based on these position and phase data, places the virtual reference station 6 near the mobile station. Is set, the observation phase data at the virtual reference station 6 is generated, and the position of the virtual reference station 6 and the generated phase data are transmitted.
[0024]
The positioning at the GPS observation new point 1 is performed by the RTK method using the virtual reference station 6 as a fixed station, and the baseline analysis is performed by receiving the phase data at the virtual reference station 6 from the VRS calculation center 4 and the GPS data at the mobile station. It is performed in real time by the interference positioning method using the obtained phase data.
[0025]
The determination of the position information for each GPS observation new point 1 is performed by the RTK method using the virtual reference station 6 and the fixed station.
[0026]
On the other hand, the TS observation (procedure 4-2) is performed by a polygonal survey using the above-described GPS observation new point 1 as a known point, preferably a combined polygonal method. The measurement is performed by measuring a horizontal angle, a vertical angle, and a distance between the two. The two points of the conventional survey new point are the on-site difference of the double angle difference and the observation difference for the horizontal angle observation value, the difference of the altitude constant for the vertical angle observation value, the difference of the measurement value in one set for the distance measurement, and the average value of each set. Inspection of individual observations by internal matching, such as a difference and a difference between round-trip observation values to a target level measurement value, is performed. If each of the observations does not fall within a predetermined allowable range, a re-measurement is performed.
[0027]
After checking the TS observation as described above, verification is performed in step 5. The verification is performed by evaluating the closeness difference from the GPS observation new point 1 by the assumed network average calculation in which one GPS observation new point 1 is constrained, or the magnitude of the fluctuation vector of the free network solution method, If exceeds the predetermined allowable range, re-measurement including GPS survey is considered. Also, beforehand, GPS measurement is performed by a mobile station at an existing reference point such as a triangulation point, a public reference point, etc. in the surveying area, an affine transformation parameter is obtained from a difference from the existing reference point, and a local transformation parameter of the area is used. The coordinates of the new GPS observation point 1 are converted to achieve consistency with the existing points. At the time of re-measurement, for example, only one of the GPS survey and the conventional survey can be performed.
[0028]
The allowable range is appropriately determined in consideration of the accuracy required for the survey, for example, in the case of the reference point survey, the grade of the observation point, and specifically, referring to the allowable range in the inspection calculation in the conventional survey. It is desirable to decide. For example, if the number of sides is N, the route length is ΣS (km), and the polygon network is a single route or a connected polygon,
The closing difference at the horizontal position is 10 (cm) +3 (cm) × N 1/2 × ΣS,
The altitude closure difference is 20 (cm) + (10 (cm) × ΣS / N 1/2 )
degree,
In the case of a closed polygon,
The closing difference at the horizontal position is 1.5 (cm) × N 1/2 × ΣS,
The altitude closure difference is 10 (cm) × ΣS / N 1/2 )
In both cases, the height difference between the positive and negative directions is about 15 (cm),
Alternatively, it is desirable that the fluctuation vector of the assumed network average calculation and the free network solution be within about 10 (cm), and the major axis radius of the error ellipse at each point in the practical network average calculation be within about 10 (cm).
[0029]
As described above, when the accuracy of each new point including the GPS observation new point 1 is verified and the predetermined accuracy is confirmed, an average calculation is performed in step 6 and the position of the conventional survey new point 2 is determined. You. For the average calculation, strict horizontal net average calculation is used for the horizontal position, and strict elevation low average calculation is used for the elevation. These results are summarized in the result sorting in the procedure 7.
[0030]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to verify the GPS survey value of the mobile station performed by acquiring the base line vector from the virtual reference station with high accuracy. Further, since it is possible to use the GPS surveying and the conventional surveying together depending on the situation of the surveying place, it is possible to increase the degree of freedom of the surveying method while guaranteeing high accuracy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the present invention.
FIG. 2 is a flowchart illustrating a reference point surveying method according to the present invention.
[Explanation of symbols]
1 GPS observation new point 2 Conventional surveying new point 3 Fixed station 4 VRS calculation center 5 Communication line 6 Virtual reference station

Claims (2)

VRS−RTK方式により測量された複数のVRS新点間を、トータルステーション等によって多角測量して結合し、前記VRS新点を既知点とする多角測量網を構成し、前記多角測量網に対する仮定網平均計算により既知点との閉合差を評価し、VRS新点の測量精度を評価するVRS−TS方式による測量方法。A plurality of VRS new points measured by the VRS-RTK method are connected by polygonal surveying using a total station or the like to form a polygonal surveying network having the VRS newpoints as known points, and a hypothetical network average for the polygonal surveying network is established. A surveying method based on the VRS-TS method that evaluates a closing difference from a known point by calculation and evaluates a surveying accuracy of a new VRS point. 請求項1記載の検証方法によりVRS−TS方式によるVRS新点の測量精度が所定範囲内であることが検証された後、前記多角測量網に対して厳密網平均計算を施して前記従来測量新点の位置を決定するVRS−TS方式による測量方法。After the verification method according to claim 1 verifies that the survey accuracy of the VRS new point by the VRS-TS method is within a predetermined range, strict net average calculation is performed on the polygonal survey network to execute the conventional survey new survey. A survey method based on the VRS-TS method for determining the position of a point.
JP2003093512A 2003-03-31 2003-03-31 Survey method by VRS-TS method Expired - Fee Related JP4276458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093512A JP4276458B2 (en) 2003-03-31 2003-03-31 Survey method by VRS-TS method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093512A JP4276458B2 (en) 2003-03-31 2003-03-31 Survey method by VRS-TS method

Publications (3)

Publication Number Publication Date
JP2004301598A true JP2004301598A (en) 2004-10-28
JP2004301598A5 JP2004301598A5 (en) 2006-06-08
JP4276458B2 JP4276458B2 (en) 2009-06-10

Family

ID=33406288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093512A Expired - Fee Related JP4276458B2 (en) 2003-03-31 2003-03-31 Survey method by VRS-TS method

Country Status (1)

Country Link
JP (1) JP4276458B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046298A1 (en) * 2004-10-29 2006-05-04 Hitachi Zosen Corporation Relative positioning method and relative positioning system using satellite
WO2006046305A1 (en) * 2004-10-29 2006-05-04 Hitachi Zosen Corporation Relative measuring method and relative measuring system using satellite
JP2006200933A (en) * 2005-01-18 2006-08-03 Mitsubishi Electric Corp Positioning device, positioning server device and positioning system
CN102200436A (en) * 2011-03-24 2011-09-28 广东省电力设计研究院 Real-time kinematic GPS (RTK-GRS) and total station integrated topographic surveying method and system with encoded data
KR101157724B1 (en) 2009-12-21 2012-06-20 윤은경 study device for more easily understanding a traverse survey and suvey studying method using it
TWI453449B (en) * 2012-12-27 2014-09-21 Ind Tech Res Inst System and method of collaborative positioning calibration, and method of deploying reference station
CN106556383A (en) * 2016-12-02 2017-04-05 上海华测导航技术股份有限公司 A kind of method of RTK slope compensations certainty of measurement checking
JP2017172977A (en) * 2016-03-18 2017-09-28 株式会社パスコ Traverse survey data processing device
JP2017172978A (en) * 2016-03-18 2017-09-28 株式会社パスコ Traverse survey result display device
CN116027357A (en) * 2023-03-30 2023-04-28 武汉大学 Grid correction method, device, equipment and storage medium based on atmosphere and terrain

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318273A (en) * 2001-04-20 2002-10-31 Jekku:Kk Mobile station positioning system utilizing unidirectional communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318273A (en) * 2001-04-20 2002-10-31 Jekku:Kk Mobile station positioning system utilizing unidirectional communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三島研二: "基準点測量におけるVRS−GPS測位方式の実証試験", リアルタイム測位技術研究発表会資料集, JPN6008050712, 5 July 2002 (2002-07-05), JP, pages 117 - 122, ISSN: 0001152710 *
飯村友三郎,外2名, TS・GPSによる基準点測量, JPN6008050715, 31 March 1998 (1998-03-31), JP, pages 148 - 150, ISSN: 0001152711 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067416B1 (en) 2004-10-29 2011-09-27 히다치 조센 가부시키가이샤 Relative positioning method and relative positioning system using satellite
KR101067415B1 (en) 2004-10-29 2011-09-27 히다치 조센 가부시키가이샤 Relative measuring method and relative measuring system using satellite
WO2006046298A1 (en) * 2004-10-29 2006-05-04 Hitachi Zosen Corporation Relative positioning method and relative positioning system using satellite
JPWO2006046305A1 (en) * 2004-10-29 2008-05-22 日立造船株式会社 Relative measurement method and system using satellite
US7609202B2 (en) 2004-10-29 2009-10-27 Hitachi Zosen Corporation Relative measurement method and relative measurement system using satellite
US7616152B2 (en) 2004-10-29 2009-11-10 Hitachi Zosen Corporation Relative position measurement method and relative position measurement system using satellites
WO2006046305A1 (en) * 2004-10-29 2006-05-04 Hitachi Zosen Corporation Relative measuring method and relative measuring system using satellite
JP2006200933A (en) * 2005-01-18 2006-08-03 Mitsubishi Electric Corp Positioning device, positioning server device and positioning system
JP4549874B2 (en) * 2005-01-18 2010-09-22 三菱電機株式会社 Positioning device, positioning server device and positioning system
KR101157724B1 (en) 2009-12-21 2012-06-20 윤은경 study device for more easily understanding a traverse survey and suvey studying method using it
CN102200436A (en) * 2011-03-24 2011-09-28 广东省电力设计研究院 Real-time kinematic GPS (RTK-GRS) and total station integrated topographic surveying method and system with encoded data
TWI453449B (en) * 2012-12-27 2014-09-21 Ind Tech Res Inst System and method of collaborative positioning calibration, and method of deploying reference station
US10001564B2 (en) 2012-12-27 2018-06-19 Industrial Technology Research Institute System and method of collaborative positioning calibration, and method of deploying reference station
JP2017172977A (en) * 2016-03-18 2017-09-28 株式会社パスコ Traverse survey data processing device
JP2017172978A (en) * 2016-03-18 2017-09-28 株式会社パスコ Traverse survey result display device
CN106556383A (en) * 2016-12-02 2017-04-05 上海华测导航技术股份有限公司 A kind of method of RTK slope compensations certainty of measurement checking
CN106556383B (en) * 2016-12-02 2019-05-07 上海华测导航技术股份有限公司 A kind of method of RTK slope compensation measurement accuracy verifying
CN116027357A (en) * 2023-03-30 2023-04-28 武汉大学 Grid correction method, device, equipment and storage medium based on atmosphere and terrain

Also Published As

Publication number Publication date
JP4276458B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
Johnson et al. Ultra-wideband aiding of GPS for quick deployment of anchors in a GPS-denied ad-hoc sensor tracking and communication system
CN105865334B (en) Underground is built(Structure)Build object mapping method
CN109470222B (en) Supervision control method for super high-rise building engineering measurement
Hauser et al. Calibration and accuracy analysis of a low-cost mapping-grade mobile laser scanning system
JP4276458B2 (en) Survey method by VRS-TS method
Fenais et al. Assessing the accuracy of an outdoor augmented reality solution for mapping underground utilities
CN110411430A (en) The survey of forced centering observation pier sets Construction Method of Metro Station
Mozas-Calvache et al. Analysis and comparison of lines obtained from GNSS and UAV for large-scale maps
CN108692710A (en) A kind of highway ancestral land measurement method and system
Hauser Three-dimensional accuracy analysis of a mapping-grade mobile laser scanning system
Taylor et al. Surface modelling for GPS satellite visibility
Liu et al. [Retracted] Research on Mapping Error Control of Underground Space Mobile LiDAR Constrained by Cooperative Targets
Guyer et al. An Introduction to GPS Real Time Kinematic Topographic Survey Procedures
Roongpiboonsopit et al. Integrated global navigation satellite system (iGNSS) QoS prediction
Bondrea et al. Construction survey and precision analysis using RTK technology and a total station at axis stake-out on a construction site
Lepadatu et al. Civil engineering and building service topographic permanent landmarks network. Spatial coordinate optimization
Rashidian et al. Developing a hybrid GPS/Wi-Fi navigation system for user guidance
Müürsepp et al. Automatic NLOS Classification from Virtual 3D City Models
Pham et al. Resection method for direct georeferencing in Terrestrial Laser Scanner
Olatunde et al. Control Extension Using Global Navigation Satellite System Receivers in Auchi, Nigeria
Călina et al. Topographic survey carried out for the rehabilitation and modernization of the road from the agro-balneoturistic location Bala, Mehedinţi County
Sedlak Options For Testing Kinematic GPS Measurements in Terms of Accuracy
Coppa et al. A backpack MMS application
Bundoo Establishing a Geodetic Reference Network in Montserrado County–Liberia, using GNSS Technology
Ahmed Surveying with GPS for construction works using the national RTK reference network and precise geoid models

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Ref document number: 4276458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees