JP2004300510A - Protection method of ion-exchange membrane electrolytic cell using gas diffusion cathode - Google Patents

Protection method of ion-exchange membrane electrolytic cell using gas diffusion cathode Download PDF

Info

Publication number
JP2004300510A
JP2004300510A JP2003094535A JP2003094535A JP2004300510A JP 2004300510 A JP2004300510 A JP 2004300510A JP 2003094535 A JP2003094535 A JP 2003094535A JP 2003094535 A JP2003094535 A JP 2003094535A JP 2004300510 A JP2004300510 A JP 2004300510A
Authority
JP
Japan
Prior art keywords
cathode
electrolytic cell
chamber
gas
gas chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003094535A
Other languages
Japanese (ja)
Inventor
Kenji Nonomura
健二 野々村
Koji Saiki
幸治 斎木
Hiroaki Aikawa
洋明 相川
Tsugikatsu Osakabe
次功 刑部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Osaka Soda Co Ltd
Asahi Kasei Chemicals Corp
Tokuyama Corp
Tosoh Corp
AGC Inc
De Nora Permelec Ltd
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Permelec Electrode Ltd
Asahi Glass Co Ltd
Mitsui Chemicals Inc
Daiso Co Ltd
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Asahi Kasei Chemicals Corp
Tokuyama Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd, Permelec Electrode Ltd, Asahi Glass Co Ltd, Mitsui Chemicals Inc, Daiso Co Ltd, Toagosei Co Ltd, Kanegafuchi Chemical Industry Co Ltd, Asahi Kasei Chemicals Corp, Tokuyama Corp, Tosoh Corp filed Critical Chlorine Engineers Corp Ltd
Priority to JP2003094535A priority Critical patent/JP2004300510A/en
Publication of JP2004300510A publication Critical patent/JP2004300510A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent corrosion of a cathode gas chamber while an electrolytic cell is out of operation and maintain a high electrolytic performance of the two-chambered alkali chloride electrolytic cell which is equipped with a gas diffusion cathode and is used for preparing chlorine and caustic alkali through electrolysis of an aqueous alkali chloride solution. <P>SOLUTION: When stopping the operation of the alkali chloride electrolytic cell 1 equipped with the gas diffusion cathode 8, the supply of an oxygen-containing gas to the cathode gas chamber 4 is stopped, and the oxygen-containing gas atmosphere in the cathode gas chamber is substantially replaced by an aqueous caustic alkali solution. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、イオン交換膜型電解槽の運転停止時の保護方法及び装置に関し、更に詳しくは、ガス拡散陰極を使用したイオン交換膜型塩化アルカリ電解槽の運転停止時の保護方法及び装置に関する。
【0002】
【従来の技術】
塩化アルカリ電解を代表とする電解工業は素材産業として重要な役割を果たしている。このような重要な役割を持つものの、塩化アルカリ電解に要する消費エネルギーが大きく、日本のようにエネルギーコストが高い国ではその省エネルギー化が大きな問題となる。例えば、塩化アルカリ電解では環境問題の解決と共に省エネルギー化を達成するために、水銀法から隔膜法を経てイオン交換膜法へと転換され、約25年で約40%の省エネルギー化を達成してきた。しかし、この省エネルギー化でも不十分で、エネルギーである電力コストが全製造費の約半分を占めているが、現行の方法を使用する限りこれ以上の電力節約は不可能なところまで来ている。更なる省エネルギー化を達成するためには電極反応を変換する等の抜本的な変更を行わなければならない。その例として燃料電池等で採用されているガス拡散陰極の使用は現在考えられている中で最も可能性が高く、電力節約が大きい手段である。従来の金属陰極を使用する電解反応▲1▼が、陰極としてガス拡散陰極を使用し酸素を供給すると電解反応▲2▼に変換される。
【0003】
2NaCl+2HO→Cl+2NaOH+H Eo=2.19V ▲1▼
2NaCl+1/2O+2HO→Cl+2NaOH Eo=1.14V▲2▼
【0004】
つまり金属陰極をガス拡散陰極に変換し酸素を供給する電解反応にすることにより、理論分解電位が2.19Vから1.14Vに減少し、理論的には40%以上の省エネルギー化が可能となる。このガス拡散陰極の使用による塩化アルカリ電解の実用化に向けて種々の検討がなされているが、さらに電解電圧を低下させる方法としてガス拡散陰極をイオン交換膜に密着して設置し実質的に陰極液室をなくしてしまう、換言すると陰極室をガス室として構成する方法(陽極室と陰極ガス室の2つの部屋からなり2室法と総称する)が特開平11−124698号公報等で多数提案されている。この方法を採用した場合、イオン交換膜と陰極との間(親水層)に陰極液室などの空間が極小となるため陰極液の電気抵抗が極限まで小さくなり電解電圧を最小に維持できるという利点を有する。
【0005】
先述のように、ガス拡散陰極を備えた2室法塩化アルカリ電解槽について、性能を改良する等の提案は多数なされているものの、今までに電解槽を保護する方法についての提案は殆どなかった。
【0006】
【特許文献1】
特開2001−26893号公報
【0007】
【発明が解決しようとする課題】
ガス拡散陰極を使用するイオン交換膜法電解槽の場合、本来の高い性能を維持しつつ長期間にわたり運転するには、電解運転条件が重要であるとともに、特に電解槽が停止したときの処置の仕方も重要な問題である。処置の仕方によっては、停止時に電解槽の性能を大幅に低下させたり、場合によっては使用できない状態にもなりうるからである。
ところで、ガス拡散陰極を備えたイオン交換膜法による2室法塩化アルカリ電解では次のようなプロセスが行われる。すなわち、陽極を含む陽極室と、陰極を含む陰極ガス室とがイオン交換膜によって区画され、陽極室には塩化アルカリ水溶液を供給し、陽極において塩素ガスを生成し、また陰極ガス室には酸素含有ガスと水分を供給し、ガス拡散陰極において苛性アルカリを生成する。
【0008】
陽極は塩素発生電位から塩素過電圧分だけ貴な電位となり、またガス拡散陰極は酸素の還元電位から過電圧分だけ卑な電位となる。電解槽が停止すれば、塩素の発生反応及び酸素の還元反応は停止するが、陽極液である塩化アルカリ水溶液には塩素が溶存しているため、陽極及び陽極室の電圧電位は塩素発生電位に保持される。一方、ガス拡散陰極及び陰極ガス室は、苛性アルカリ水溶液と酸素含有ガスに接触する条件にあるため、ガス拡散陰極と陰極ガス室の電圧電位は酸素還元電位に保持される。本来、電解槽はこのような電圧電位条件に耐えうる材料が使用され、具体的には、一般に陽極室構成材料はチタンを用いる。
【0009】
陽極はチタンを基材とし、この上に塩素発生のため特定の電極触媒である白金、ルテニウム、イリジウム、パラジウム、ロジウム等の貴金属やそれらの酸化物がコーティングされたものが用いられる。陰極ガス室構成材料にはニッケルやニッケル含有合金が用いられる。
このような電解槽において電解反応が行われている場合、ガス拡散陰極の電圧電位は、酸素還元電位から過電圧分だけ卑になっている。電解を停止した場合、過電圧がなくなり酸素還元電位と等しくなるから、電解を行っているときと比較すると電位は貴になる。この条件下において酸素含有ガスが存在すれば、ニッケルやニッケル含有合金である陰極ガス室の腐食は進行しやすくなる。
【0010】
また陽極を含む陽極室と、陰極を含む陰極ガス室はイオン交換膜によって区画されている。2室法電解槽の運転を停止した際、陽極室には塩化アルカリ水溶液は残存するが、陰極ガス室では苛性アルカリの発生がなくなるため、苛性アルカリ水溶液は親水層に保持されたわずかな苛性アルカリ水溶液があるのみである。この場合においては、濃度勾配に従ってイオン交換膜を透過して陽極室にある塩化アルカリ水溶液が陰極ガス室に浸入するとたちまち苛性アルカリ水溶液は塩化アルカリ水溶液に置換されてしまう。本来、陰極ガス室はアルカリ性である苛性アルカリ水溶液に対しては十分な耐食性を持つが、中性である塩化アルカリ水溶液に対しては耐食性がなく容易に腐食する。
【0011】
このような運転停止時の塩化アルカリ電解槽のガス拡散陰極を保護する手段として、該ガス拡散陰極に微小電流を流す方法が提案されている(特許文献1)。このガス拡散陰極の保護方法は、微小電流によりガス拡散陰極の電位を運転継続時とほぼ同じ値に維持できるため、ガス拡散陰極の腐食は実質的に回避できる。しかしながら微小電流とはいえ電流を流し続けるため、厳密な意味での運転停止時とはいえず、例えば運転を停止して電解槽やガス拡散陰極の点検や修理を行う場合には、この方法は採用できない。更に微小電流とはいえ運転停止が長期に渡ると消費電力量が無視できなくなり、その間苛性ソーダ等の電解生成物が得られないため、経済的なロスが大きくなる。従って微小電流を流すことなく、運転停止時の電解槽やガス拡散陰極を保護できる方法が要請されている。
【0012】
従って本発明は、ガス拡散陰極を備えた、特に2室法電解槽で、塩化アルカリ水溶液を電解して塩素及び苛性アルカリを製造する運転を停止する際、停止中の陰極ガス室の腐食を防止し、これによって電解槽本来の高い性能を長期にわたって維持することができる塩化アルカリ電解槽の保護方法及び保護装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、ガス拡散陰極を備えた2室法電解槽で、塩化アルカリ水溶液を電解し塩素及び苛性アルカリを製造する方法に関して検討を重ねた。特に、電解槽停止中に発生する陰極ガス室の腐食を防止し、電解槽本来の高い電解性能を長期間維持できる手段について鋭意検討を重ねた結果、本発明を完成するに至った。
すなわち、本発明は、次の手段によって前記の課題を解決することができる。(1)ガス拡散陰極を備えた2室法塩化アルカリ電解槽の運転を停止する際の前記電解槽の保護方法において、陰極ガス室への酸素含有ガスの供給を停止するとともに、陰極ガス室を実質的に酸素含有ガス雰囲気から苛性アルカリ水溶液で置換することを特徴とする塩化アルカリ電解槽の保護方法。
(2)陰極ガス室を置換する方法として、陰極ガス室内に苛性アルカリ水溶液を循環させるようにした請求項2又は3に記載の塩化アルカリ電解槽の保護方法。(3)ガス拡散陰極を備えた2室法塩化アルカリ電解槽が停止した際に、陰極ガス室への酸素含有ガスの供給を停止する操作、及びその供給の停止後に陰極ガス室内を苛性アルカリ水溶液に置換する操作を行う保護システムを備えたことを特徴とする塩化アルカリ電解槽の保護装置。
【0014】
本発明の保護対象である電解槽は、ガス拡散陰極を有する塩化アルカリ電解槽で、ガス拡散陰極が隔膜に密着した2室法電解槽である。
電解槽の運転停止は異常が生じた場合や定期点検等のために行うが、前述した通り、単に通電を停止するだけでは、陽極側の塩化アルカリ水溶液が隔膜を通して陰極側に浸透したり(2室法電解槽の場合)、残留酸素がガス拡散陰極や他の電解槽部材を腐食したり、過電圧分の運転電位との差により前記部材に腐食が生じたりする。
これを防止するために本発明では、電解槽の運転停止、つまり通電停止後に、電解槽の陰極ガス室内の酸素含有ガス雰囲気を、電解槽部材の腐食抑制雰囲気で置換する。該腐食抑制雰囲気は、苛性アルカリ水溶液である。
【0015】
苛性アルカリ水溶液は運転時に継続的に生成し電解槽近傍に貯留されていることが多いため、製造や運搬の必要がなく、非常に好都合である。この苛性アルカリ水溶液を陰極ガス室に供給して運転停止直後の酸素含有ガス雰囲気と置換すると、酸素が電解槽外に排出されて酸素による電解槽部材の腐食が実質的に防止される。更に濃度勾配によって中性の塩化アルカリ水溶液が隔膜であるイオン交換膜を透過して陰極ガス室へ達しても、陰極ガス室内にアルカリ性の苛性アルカリ水溶液が満たされていればアルカリ性雰囲気に保持されるので、陰極ガス室は腐食されることなく維持できる。
苛性アルカリ水溶液は運転停止前の陰極室生成物の水溶液であり、陰極室に導入しても不都合が生じることがなく、運転再開時に再度酸素含有ガス雰囲気に置換する際に残留しても問題はない。
【0016】
電解槽部材の腐食は運転停止直後から生じるため、通電停止後、可能な限り迅速に雰囲気置換を行うべきである。通電後に一定時間酸素含有ガスが陰極ガス室中に残存するような場合には、雰囲気置換が終了するまで前述したように電解槽に微小電流を流しても良い。
【0017】
【発明の実施の形態】
本発明で使用可能な2室法電解槽の例を図1を参照して説明する。
電解槽本体1は、イオン交換膜2により陽極室3と陰極ガス室4に区画され、前記イオン交換膜2の陽極室3側にはメッシュ状の不溶性陽極6が密着し、イオン交換膜2の陰極ガス室4側には炭素繊維織物や金属繊維からなる親水層7を挟み、ガス拡散陰極8が密着している。ガス拡散陰極8とガス室背板5の間、つまり陰極ガス室4内部には、1枚又は複数の金網を重ね合わせてなるガス室充填材9が存在する。なお、10は陽極室下部に設けられた陽極液導入口、11は陽極室上部に設けられた陽極液及びガス取出口、12はガス室上部に設けられた酸素含有ガス導入口、13はガス室下部に設けられた苛性アルカリ水溶液取出口である。
【0018】
この電解槽本体1の陽極室3に塩化アルカリ水溶液を供給し、かつ陰極ガス室4に酸素含有ガスを供給しながら両電極6、8間に通電すると、ガス拡散陰極8では親水層7側から苛性アルカリ水溶液の水分が、反対面の陰極ガス室4側からは酸素含有ガスが供給され、ガス拡散陰極8の反応点において苛性アルカリの生成反応が進行する。ガス拡散陰極8の反応点において生成した高濃度の苛性アルカリ水溶液は濃度勾配に従って親水層7へ拡散し直ちに吸収、保持され、また親水層7内部やガス拡散陰極8の裏面のガス室を流下して苛性アルカリ水溶液取出口13から排出される。
陰極ガス室4、ガス室背板5及びガス室充填材9を形成する形成材の材質としてはニッケルやニッケル含有合金を用いることが一般的である。図1で示される2室法電解槽の場合、ガス拡散陰極8で発生した苛性アルカリは親水槽7に一旦保持されるが、そののちにガス拡散陰極の裏側つまり陰極ガス室4へ大部分が移行し、流下、排出される。
【0019】
このような電解槽1において電解反応が行われている場合、ガス拡散陰極8の電圧電位は、酸素還元電位から過電圧分だけ卑になっている。電解を停止した場合、過電圧がなくなり酸素還元電位と等しくなるから、電解を行っているときと比較すると電位は貴になる。その条件下において酸素ガスが存在すれば、陰極ガス室4、ガス室背板5及びガス室充填材9等の腐食が進むこととなる。また陽極室3よりイオン交換膜2を透過して塩化アルカリ水溶液が陰極ガス室4へ到達すれば陰極ガス室4の内部はアルカリ性から中性に移行し、陰極ガス室4、ガス室背板5及びガス室充填材9の腐食は顕著に現れる。
電解槽1が停止した場合においては、陰極ガス室4への酸素含有ガスの供給は不要であるので、酸素含有ガスの供給は当然停止するが、陰極ガス室4内部、ガス室上部に設けられた酸素含有ガス導入口12、ガス室下部に設けられた苛性アルカリ水溶液取出口13内部には酸素含有ガスが残留しており、停止中もその状態が続く。従って酸素含有ガスの供給を停止するだけでは陰極ガス室4内部の腐食を防止することは困難であることが分かった。また電解槽停止時においては陽極室3よりイオン交換膜2を透過して塩化アルカリ水溶液が陰極ガス室4へ到達するため陰極ガス室4内部は腐食しうる。
【0020】
そこで、陰極ガス室4内部の腐食を防止するためには、陰極ガス室4内部をアルカリ性に保つことが望ましく、これにより腐食を抑えることが可能となる。その方法としてはいくつかの案が考えられるが、電解反応中に実際に存在している苛性ソーダ水溶液等の苛性アルカリ水溶液を苛性アルカリ水溶液取出口13から取り入れ、ガス室内部に満たして置換するか、或いは苛性アルカリ水溶液取出口13より取り入れて酸素含有ガス導入口12より取り出し、再び苛性アルカリ水溶液取出口13から取り入れて循環する方法で陰極ガス室4内部をアルカリ性に保つことが最も簡単で、しかも効果的である。
またこの方法は電解槽で生成した苛性アルカリ水溶液を用いて置換することも出来るため、新たな置換設備を設ける必要もない。ここで置換又は循環する苛性アルカリ水溶液は、液中に存在する酸素含有気体を除去すると、より大きな耐食効果をもたらす。
【0021】
苛性アルカリ水溶液の濃度は、25から35重量%の範囲であれば濃度勾配はなくなりイオン交換膜を透過して陽極室にある塩化アルカリ水溶液が陰極ガス室に浸入することが無いが、より好ましくは30から35重量%の範囲が良い。また温度は20から90℃の範囲であれば良い。この温度範囲より低ければ水溶液中の苛性アルカリが凝固、結晶化する環境となり、またこの温度範囲より高く維持することはイオン交換膜など電解槽を構成する部材に悪影響を与えることとなり好ましくない。
陰極ガス室4内部等の腐食は、電解槽1を停止した瞬間から加速されるわけであるから、苛性アルカリ水溶液の置換作業は、電解槽1が停止したのち、速やかに実施する必要があるため自動化しておくとよい。すなわち、電解停止を感知するシステムにより自動でコントロールされるバルブで酸素含有ガスの供給を止め、苛性アルカリ水溶液を苛性アルカリ水溶液取出口13から供給し、或いは苛性アルカリ水溶液取出口13より取り入れて酸素含有ガス導入口12より取り出し、再び苛性アルカリ水溶液取出口13から取り入れて循環する方法を自動で行う。
本実施態様によれば、ガス拡散陰極を備えた2室法塩化アルカリ電解槽の電解停止中において、陰極ガス室内部の腐食が防止でき、電解槽を長期に渡り高性能に維持できる。
【0022】
【実施例】
次に実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
【0023】
〔実施例〕
有効面積が幅100mm、高さ600mmの2室法電解槽を使用した。銀製マイクロメッシュを芯材とし、PTFE粉末4部、カーボン粉末6部を混練充填して製作されたガス拡散陰極を使用した。このガス拡散陰極はガス拡散層と反応層の2層構造からなり、反応層には銀微粒子触媒を担持させた。
ニッケル製ガス室背板、ガス室充填材、前記ガス拡散陰極、炭素繊維織物(親水層)、旭硝子製フレミオン8934(隔膜)、チタンメッシュに酸化ルテニウムと酸化チタンからなる混合物を被覆した不溶性陽極の順に重ねて電解槽を構成した。
【0024】
陽極室に濃度が220g/リットル、87℃に加温した食塩水を供給し、次いで陰極ガス室に酸素含有ガス供給口よりPSA濃縮酸素(94容量%)を酸素基準で0.75Nリットル/min(必要理論量の1.2倍)、温度87℃に加熱して供給した。電解槽全体を87℃に調節しながら電流を180A供給した。このときの電流密度は3kA/平方メートルであった。定常状態に達した後の電解電圧は1.95V、陽極液取出口濃度は145g/リットル、生成苛性ソーダ濃度は32.4重量%であった。このときの電流効率は97%であった。
電解試験は120日間行った。途中での運転停止は10日後、20日後、30日後、40日後、50日後、60日後、70日後、80日後、90日後、100日後、110日後の11回、それぞれ24時間運転を停止した。この停止時には酸素含有ガスの供給を止め、55℃、31.5重量%苛性ソーダ水溶液で陰極ガス室を満たした。
120日間の電解試験終了後、電解槽を解体し、陰極ガス室を観察したが腐食の発生は見られなかった。
【0025】
〔比較例〕
実施例と同じ条件で120日間の電解試験を行った。ただし、停止時に酸素含有ガスの供給は停止したものの、苛性ソーダ水溶液は陰極ガス室へ供給、置換することなくそのまま放置した。
120日間の電解試験終了後、電解槽を解体し、陰極ガス室を観察したところ陰極ガス室全面に腐食が見られた。
【0026】
【発明の効果】
本発明は、上記のような構成からなるため、電解槽を停止した際、陰極ガス室内部の腐食を防止し、これによって電解槽本来の高い性能を長期に渡って維持できる塩化アルカリ電解槽の保護方法及び保護装置を提供できる。
【図面の簡単な説明】
【図1】図1は本発明の2室法電解槽の構造を説明する図である。
【符号の説明】
1 電解槽本体
2 イオン交換膜
3 陽極室
4 陰極ガス室
5 ガス室背板
6 陽極
7 親水層
8 ガス拡散陰極
9 ガス室充填材
10 陽極液導入口
11 陽極液及びガス取出口
12 酸素含有ガス導入口
13 苛性アルカリ水溶液取出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a protection method and apparatus when an ion exchange membrane electrolytic cell is stopped, and more particularly to a protection method and device when an ion exchange membrane type alkaline chloride electrolytic cell using a gas diffusion cathode is stopped.
[0002]
[Prior art]
The electrolytic industry represented by alkali chloride electrolysis plays an important role as a material industry. Although it has such an important role, energy consumption required for alkali chloride electrolysis is large, and energy saving is a big problem in countries with high energy costs such as Japan. For example, in alkaline chloride electrolysis, in order to solve environmental problems and achieve energy savings, the mercury method has been switched to the ion exchange membrane method via the diaphragm method, and energy savings of about 40% have been achieved in about 25 years. However, even this energy saving is not enough, and the power cost of energy accounts for about half of the total manufacturing cost, but no further power savings are possible using the current method. In order to achieve further energy saving, fundamental changes such as conversion of electrode reactions must be made. As an example, the use of a gas diffusion cathode employed in a fuel cell or the like is the most probable and is a means for saving power. The conventional electrolytic reaction (1) using a metal cathode is converted into an electrolytic reaction (2) when oxygen is supplied using a gas diffusion cathode as a cathode.
[0003]
2NaCl + 2H 2 O → Cl 2 + 2NaOH + H 2 Eo = 2.19V (1)
2NaCl + 1 / 2O 2 + 2H 2 O → Cl 2 + 2NaOH Eo = 1.14V (2)
[0004]
In other words, by converting the metal cathode into a gas diffusion cathode and performing an electrolytic reaction for supplying oxygen, the theoretical decomposition potential is reduced from 2.19 V to 1.14 V, and theoretically it is possible to save 40% or more of energy. . Various studies have been made for the practical use of alkali chloride electrolysis by using this gas diffusion cathode. However, as a method for further reducing the electrolysis voltage, the gas diffusion cathode is installed in close contact with the ion exchange membrane, and the cathode is substantially reduced. A number of methods for eliminating the liquid chamber, in other words, forming the cathode chamber as a gas chamber (consisting of two chambers consisting of an anode chamber and a cathode gas chamber, collectively referred to as a two-chamber method) are proposed in JP-A-11-124698 Has been. When this method is adopted, the space such as the catholyte chamber is minimized between the ion exchange membrane and the cathode (hydrophilic layer), so that the electrical resistance of the catholyte is minimized and the electrolysis voltage can be kept to a minimum. Have
[0005]
As described above, although there have been many proposals for improving the performance of the two-chamber alkaline chloride electrolytic cell equipped with a gas diffusion cathode, there have been few proposals for a method for protecting the electrolytic cell so far. .
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-26893
[Problems to be solved by the invention]
In the case of an ion exchange membrane electrolytic cell using a gas diffusion cathode, the electrolytic operation conditions are important in order to operate over a long period of time while maintaining the original high performance, and particularly when the electrolytic cell is stopped. The way is also an important issue. This is because depending on the method of treatment, the performance of the electrolytic cell may be significantly reduced at the time of stoppage, or in some cases it may be unusable.
By the way, in the two-chamber alkali chloride electrolysis by the ion exchange membrane method provided with a gas diffusion cathode, the following process is performed. That is, an anode chamber including an anode and a cathode gas chamber including a cathode are partitioned by an ion exchange membrane, an aqueous alkali chloride solution is supplied to the anode chamber, chlorine gas is generated at the anode, and oxygen gas is supplied to the cathode gas chamber. The contained gas and moisture are supplied, and caustic is generated at the gas diffusion cathode.
[0008]
The anode has a noble potential corresponding to the chlorine overvoltage from the chlorine generation potential, and the gas diffusion cathode has a base potential corresponding to the overvoltage from the reduction potential of oxygen. If the electrolytic cell is stopped, the chlorine generation reaction and the oxygen reduction reaction are stopped. However, since chlorine is dissolved in the alkali chloride aqueous solution that is the anolyte, the voltage potential of the anode and the anode chamber becomes the chlorine generation potential. Retained. On the other hand, since the gas diffusion cathode and the cathode gas chamber are in contact with the caustic aqueous solution and the oxygen-containing gas, the voltage potential of the gas diffusion cathode and the cathode gas chamber is maintained at the oxygen reduction potential. Originally, a material that can withstand such a voltage potential condition is used for the electrolytic cell, and specifically, titanium is generally used as a material constituting the anode chamber.
[0009]
The anode is made of titanium as a base material and coated with a noble metal such as platinum, ruthenium, iridium, palladium, rhodium or their oxides, which are specific electrode catalysts for generating chlorine. Nickel or a nickel-containing alloy is used as the cathode gas chamber constituent material.
When an electrolytic reaction is performed in such an electrolytic cell, the voltage potential of the gas diffusion cathode is lower than the oxygen reduction potential by the amount of overvoltage. When the electrolysis is stopped, the overvoltage disappears and becomes equal to the oxygen reduction potential, so that the potential becomes noble compared to when electrolysis is performed. If an oxygen-containing gas is present under these conditions, corrosion of the cathode gas chamber, which is nickel or a nickel-containing alloy, tends to proceed.
[0010]
An anode chamber including an anode and a cathode gas chamber including a cathode are partitioned by an ion exchange membrane. When the operation of the two-chamber electrolytic cell is stopped, the aqueous alkali chloride solution remains in the anode chamber, but no caustic alkali is generated in the cathode gas chamber, so that the caustic aqueous solution is a slight amount of caustic alkali retained in the hydrophilic layer. There is only an aqueous solution. In this case, when the aqueous alkali chloride solution in the anode chamber penetrates the ion exchange membrane according to the concentration gradient and enters the cathode gas chamber, the aqueous caustic solution is immediately replaced with the aqueous alkali chloride solution. Originally, the cathode gas chamber has sufficient corrosion resistance against an alkaline caustic aqueous solution, but does not have corrosion resistance against a neutral alkaline chloride aqueous solution and easily corrodes.
[0011]
As a means for protecting the gas diffusion cathode of the alkali chloride electrolytic cell during such operation stop, a method of passing a minute current through the gas diffusion cathode has been proposed (Patent Document 1). In this method for protecting the gas diffusion cathode, the potential of the gas diffusion cathode can be maintained at substantially the same value as when the operation is continued by a minute current, so that corrosion of the gas diffusion cathode can be substantially avoided. However, since the current continues to flow even though it is a minute current, it cannot be said to be strictly when the operation is stopped.For example, when the operation is stopped and the electrolytic cell or the gas diffusion cathode is inspected and repaired, this method is Cannot be adopted. Furthermore, even if the operation is stopped for a long time although it is a minute current, the amount of power consumption cannot be ignored, and during that time, an electrolysis product such as caustic soda cannot be obtained, resulting in a large economic loss. Therefore, there is a demand for a method capable of protecting the electrolytic cell and the gas diffusion cathode when the operation is stopped without passing a minute current.
[0012]
Therefore, the present invention prevents corrosion of the stopped cathode gas chamber when the operation of electrolyzing an aqueous alkali chloride solution to produce chlorine and caustic alkali is stopped, particularly in a two-chamber electrolytic cell equipped with a gas diffusion cathode. Thus, an object of the present invention is to provide a protection method and a protection device for an alkaline chloride electrolytic cell capable of maintaining the original high performance of the electrolytic cell over a long period of time.
[0013]
[Means for Solving the Problems]
The present inventors have repeatedly studied a method for producing chlorine and caustic by electrolyzing an aqueous alkali chloride solution in a two-chamber electrolytic cell equipped with a gas diffusion cathode. In particular, the present invention has been completed as a result of intensive studies on means capable of preventing the corrosion of the cathode gas chamber generated while the electrolytic cell is stopped and maintaining the high electrolytic performance inherent in the electrolytic cell for a long period of time.
That is, the present invention can solve the above problems by the following means. (1) In the method for protecting an electrolytic cell when the operation of a two-chamber alkaline chloride electrolytic cell equipped with a gas diffusion cathode is stopped, the supply of the oxygen-containing gas to the cathode gas chamber is stopped, and the cathode gas chamber is A method for protecting an alkaline chloride electrolytic cell, characterized by substituting a caustic aqueous solution from an oxygen-containing gas atmosphere substantially.
(2) The method for protecting an alkaline chloride electrolytic cell according to claim 2 or 3, wherein a caustic aqueous solution is circulated in the cathode gas chamber as a method for replacing the cathode gas chamber. (3) When the two-chamber alkaline chloride electrolytic cell equipped with the gas diffusion cathode is stopped, the operation of stopping the supply of the oxygen-containing gas to the cathode gas chamber, and the cathode gas chamber in the cathode gas chamber after the supply is stopped A protection device for an alkaline chloride electrolysis tank, comprising a protection system for performing an operation of replacing the alkaline electrolyte.
[0014]
The electrolytic cell to be protected according to the present invention is an alkali chloride electrolytic cell having a gas diffusion cathode, and is a two-chamber electrolytic cell in which the gas diffusion cathode is in close contact with the diaphragm.
The operation of the electrolytic cell is stopped when an abnormality occurs or for periodic inspections. As described above, the alkaline aqueous chloride solution on the anode side permeates the cathode side through the diaphragm (2). In the case of a chamber electrolytic cell), residual oxygen corrodes the gas diffusion cathode and other electrolytic cell members, or the member is corroded due to a difference from the operating potential corresponding to the overvoltage.
In order to prevent this, in the present invention, after the operation of the electrolytic cell is stopped, that is, the energization is stopped, the oxygen-containing gas atmosphere in the cathode gas chamber of the electrolytic cell is replaced with the corrosion-inhibiting atmosphere of the electrolytic cell member. The corrosion-inhibiting atmosphere is a caustic aqueous solution.
[0015]
Since the aqueous caustic solution is often generated continuously during operation and stored in the vicinity of the electrolytic cell, there is no need for production or transportation, which is very convenient. When this caustic aqueous solution is supplied to the cathode gas chamber to replace the oxygen-containing gas atmosphere immediately after the operation is stopped, oxygen is discharged out of the electrolytic cell, and corrosion of the electrolytic cell member by oxygen is substantially prevented. Furthermore, even if a neutral alkali chloride aqueous solution permeates through the ion exchange membrane, which is a diaphragm, and reaches the cathode gas chamber due to the concentration gradient, it is maintained in an alkaline atmosphere as long as the alkaline caustic aqueous solution is filled in the cathode gas chamber. Therefore, the cathode gas chamber can be maintained without being corroded.
Caustic aqueous solution is an aqueous solution of the cathode chamber product before operation stop, and there is no problem even if it is introduced into the cathode chamber. Absent.
[0016]
Since corrosion of the electrolytic cell member occurs immediately after the operation is stopped, the atmosphere replacement should be performed as soon as possible after the energization is stopped. When the oxygen-containing gas remains in the cathode gas chamber for a certain time after energization, a minute current may be passed through the electrolytic cell as described above until the atmosphere replacement is completed.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An example of a two-chamber electrolytic cell that can be used in the present invention will be described with reference to FIG.
The electrolytic cell body 1 is partitioned into an anode chamber 3 and a cathode gas chamber 4 by an ion exchange membrane 2, and a mesh-like insoluble anode 6 is in close contact with the anode chamber 3 side of the ion exchange membrane 2. A gas diffusion cathode 8 is in close contact with the cathode gas chamber 4 side with a hydrophilic layer 7 made of carbon fiber fabric or metal fiber interposed therebetween. Between the gas diffusion cathode 8 and the gas chamber back plate 5, that is, inside the cathode gas chamber 4, there is a gas chamber filler 9 formed by superimposing one or more metal meshes. In addition, 10 is an anolyte inlet provided in the lower part of the anode chamber, 11 is an anolyte and gas outlet provided in the upper part of the anode chamber, 12 is an oxygen-containing gas inlet provided in the upper part of the gas chamber, and 13 is a gas. It is a caustic aqueous solution outlet provided in the lower part of the chamber.
[0018]
When an alkaline chloride aqueous solution is supplied to the anode chamber 3 of the electrolytic cell main body 1 and an oxygen-containing gas is supplied to the cathode gas chamber 4 while energization is performed between the electrodes 6 and 8, the gas diffusion cathode 8 starts from the hydrophilic layer 7 side. The moisture of the caustic aqueous solution is supplied with oxygen-containing gas from the opposite side of the cathode gas chamber 4, and the caustic generation reaction proceeds at the reaction point of the gas diffusion cathode 8. The high-concentration caustic aqueous solution generated at the reaction point of the gas diffusion cathode 8 diffuses into the hydrophilic layer 7 according to the concentration gradient and is immediately absorbed and held, and flows down in the gas chamber inside the hydrophilic layer 7 and the back surface of the gas diffusion cathode 8. And discharged from the caustic aqueous solution outlet 13.
As a material for forming the cathode gas chamber 4, the gas chamber back plate 5, and the gas chamber filler 9, nickel or a nickel-containing alloy is generally used. In the case of the two-chamber electrolytic cell shown in FIG. 1, caustic alkali generated in the gas diffusion cathode 8 is once held in the hydrophilic cell 7, but after that, most of the caustic is transferred to the back side of the gas diffusion cathode, that is, the cathode gas chamber 4. It moves, flows down and is discharged.
[0019]
When an electrolytic reaction is performed in such an electrolytic cell 1, the voltage potential of the gas diffusion cathode 8 is lower than the oxygen reduction potential by an amount corresponding to an overvoltage. When the electrolysis is stopped, the overvoltage disappears and becomes equal to the oxygen reduction potential, so that the potential becomes noble compared to when electrolysis is performed. If oxygen gas is present under the conditions, corrosion of the cathode gas chamber 4, the gas chamber back plate 5, the gas chamber filler 9 and the like proceeds. Further, when the aqueous alkali chloride solution reaches the cathode gas chamber 4 through the ion exchange membrane 2 from the anode chamber 3, the inside of the cathode gas chamber 4 shifts from alkaline to neutral, and the cathode gas chamber 4 and the gas chamber back plate 5 are transferred. And corrosion of the gas chamber filler 9 appears remarkably.
When the electrolytic cell 1 is stopped, the supply of the oxygen-containing gas to the cathode gas chamber 4 is not necessary, so the supply of the oxygen-containing gas is naturally stopped, but it is provided inside the cathode gas chamber 4 and above the gas chamber. The oxygen-containing gas remains inside the oxygen-containing gas inlet 12 and the caustic aqueous solution outlet 13 provided at the lower part of the gas chamber, and this state continues even during the stoppage. Accordingly, it has been found that it is difficult to prevent corrosion inside the cathode gas chamber 4 only by stopping the supply of the oxygen-containing gas. When the electrolytic cell is stopped, the inside of the cathode gas chamber 4 can be corroded because the aqueous alkali chloride solution reaches the cathode gas chamber 4 through the ion exchange membrane 2 from the anode chamber 3.
[0020]
Therefore, in order to prevent corrosion inside the cathode gas chamber 4, it is desirable to keep the inside of the cathode gas chamber 4 alkaline, which makes it possible to suppress corrosion. Several methods are conceivable as the method, and a caustic aqueous solution such as a caustic soda aqueous solution that is actually present during the electrolytic reaction is taken from the caustic aqueous solution outlet 13 to fill the gas chamber and replace it. Alternatively, it is simplest and most effective to keep the inside of the cathode gas chamber 4 alkaline by taking in from the caustic aqueous solution outlet 13 and taking out from the oxygen-containing gas inlet 12 and then taking in again from the caustic aqueous solution outlet 13 and circulating. Is.
Moreover, since this method can be replaced using a caustic aqueous solution generated in an electrolytic cell, it is not necessary to provide a new replacement facility. The caustic aqueous solution that replaces or circulates here has a greater corrosion resistance effect when the oxygen-containing gas present in the liquid is removed.
[0021]
If the concentration of the aqueous caustic solution is in the range of 25 to 35% by weight, the concentration gradient disappears and the aqueous alkali chloride solution in the anode chamber does not penetrate into the cathode gas chamber through the ion exchange membrane. A range of 30 to 35% by weight is preferred. The temperature may be in the range of 20 to 90 ° C. If the temperature is lower than this temperature range, an environment in which the caustic alkali in the aqueous solution is solidified and crystallized is obtained, and maintaining the temperature higher than this temperature range is unfavorable because it adversely affects members such as an ion exchange membrane that constitute the electrolytic cell.
Corrosion of the inside of the cathode gas chamber 4 and the like is accelerated from the moment when the electrolytic cell 1 is stopped, so that the replacement work of the caustic aqueous solution needs to be performed promptly after the electrolytic cell 1 is stopped. It should be automated. That is, the supply of oxygen-containing gas is stopped by a valve that is automatically controlled by a system that detects electrolysis stop, and a caustic aqueous solution is supplied from the caustic aqueous solution outlet 13 or taken from the caustic aqueous solution outlet 13 to contain oxygen. A method of automatically taking out the gas from the gas inlet 12 and recirculating it through the caustic aqueous solution outlet 13 is automatically performed.
According to this embodiment, corrosion of the inside of the cathode gas chamber can be prevented while the electrolysis of the two-chamber alkaline chloride electrolytic cell equipped with the gas diffusion cathode is stopped, and the electrolytic cell can be maintained with high performance over a long period of time.
[0022]
【Example】
Next, the present invention will be described specifically by way of examples. However, the present invention is not limited to these examples.
[0023]
〔Example〕
A two-chamber electrolytic cell having an effective area of 100 mm width and 600 mm height was used. A gas diffusion cathode manufactured by mixing and filling 4 parts of PTFE powder and 6 parts of carbon powder using a silver micromesh as a core material was used. This gas diffusion cathode has a two-layer structure of a gas diffusion layer and a reaction layer, and a silver fine particle catalyst was supported on the reaction layer.
Nickel gas chamber back plate, gas chamber filler, gas diffusion cathode, carbon fiber fabric (hydrophilic layer), Asahi Glass Flemion 8934 (diaphragm), insoluble anode coated with a mixture of ruthenium oxide and titanium oxide on a titanium mesh The electrolytic cell was constructed by stacking in order.
[0024]
Saline solution having a concentration of 220 g / liter and heated to 87 ° C. is supplied to the anode chamber, and then PSA concentrated oxygen (94 vol%) is supplied to the cathode gas chamber from the oxygen-containing gas supply port at 0.75 N liter / min based on oxygen. (1.2 times the required theoretical amount), heated to a temperature of 87 ° C. and supplied. A current of 180 A was supplied while adjusting the entire electrolytic cell to 87 ° C. The current density at this time was 3 kA / square meter. After reaching the steady state, the electrolysis voltage was 1.95 V, the anolyte outlet concentration was 145 g / liter, and the generated caustic soda concentration was 32.4% by weight. The current efficiency at this time was 97%.
The electrolysis test was conducted for 120 days. In the middle of the operation, the operation was stopped for 24 hours, 11 times, 10 days, 20 days, 30 days, 40 days, 50 days, 60 days, 70 days, 80 days, 90 days, 100 days, and 110 days. When the operation was stopped, the supply of the oxygen-containing gas was stopped, and the cathode gas chamber was filled with an aqueous 31.5 wt% sodium hydroxide solution at 55 ° C.
After the 120-day electrolysis test, the electrolytic cell was disassembled and the cathode gas chamber was observed, but no corrosion was observed.
[0025]
[Comparative Example]
An electrolysis test for 120 days was performed under the same conditions as in the examples. However, although the supply of the oxygen-containing gas was stopped at the time of stopping, the caustic soda aqueous solution was supplied to the cathode gas chamber and left as it was without being replaced.
After the 120-day electrolysis test, the electrolytic cell was disassembled and the cathode gas chamber was observed. Corrosion was observed on the entire cathode gas chamber.
[0026]
【The invention's effect】
Since the present invention is constituted as described above, when the electrolytic cell is stopped, the inside of the cathode gas chamber is prevented from being corroded, and thereby the alkaline chloride electrolytic cell capable of maintaining the original high performance of the electrolytic cell over a long period of time. A protection method and a protection device can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the structure of a two-chamber electrolytic cell of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolyzer main body 2 Ion exchange membrane 3 Anode chamber 4 Cathode gas chamber 5 Gas chamber backplate 6 Anode 7 Hydrophilic layer 8 Gas diffusion cathode 9 Gas chamber filler 10 Anolyte inlet 11 Anolyte and gas outlet 12 Oxygen-containing gas Inlet 13 Caustic aqueous solution outlet

Claims (3)

ガス拡散陰極を備えた2室法塩化アルカリ電解槽の運転を停止する際の前記電解槽の保護方法において、陰極ガス室への酸素含有ガスの供給を停止するとともに、陰極ガス室を実質的に酸素含有ガス雰囲気から苛性アルカリ水溶液で置換することを特徴とする塩化アルカリ電解槽の保護方法。In the method for protecting an electrolytic cell when the operation of a two-chamber alkaline chloride electrolytic cell equipped with a gas diffusion cathode is stopped, the supply of the oxygen-containing gas to the cathode gas chamber is stopped, and the cathode gas chamber is substantially A method for protecting an alkaline chloride electrolytic cell, characterized by substituting a caustic aqueous solution from an oxygen-containing gas atmosphere. 陰極ガス室を置換する方法として、陰極ガス室内に苛性アルカリ水溶液を循環させるようにした請求項2又は3に記載の塩化アルカリ電解槽の保護方法。4. The method for protecting an alkaline chloride electrolytic cell according to claim 2, wherein a caustic aqueous solution is circulated in the cathode gas chamber as a method for replacing the cathode gas chamber. ガス拡散陰極を備えた2室法塩化アルカリ電解槽が停止した際に、陰極ガス室への酸素含有ガスの供給を停止する操作、及びその供給の停止後に陰極ガス室内を苛性アルカリ水溶液に置換する操作を行う保護システムを備えたことを特徴とする塩化アルカリ電解槽の保護装置。When the two-chamber alkaline chloride electrolytic cell equipped with the gas diffusion cathode is stopped, the operation of stopping the supply of the oxygen-containing gas to the cathode gas chamber, and the cathode gas chamber is replaced with a caustic aqueous solution after the supply is stopped. A protection device for an alkaline chloride electrolytic cell, comprising a protection system for operation.
JP2003094535A 2003-03-31 2003-03-31 Protection method of ion-exchange membrane electrolytic cell using gas diffusion cathode Pending JP2004300510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094535A JP2004300510A (en) 2003-03-31 2003-03-31 Protection method of ion-exchange membrane electrolytic cell using gas diffusion cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094535A JP2004300510A (en) 2003-03-31 2003-03-31 Protection method of ion-exchange membrane electrolytic cell using gas diffusion cathode

Publications (1)

Publication Number Publication Date
JP2004300510A true JP2004300510A (en) 2004-10-28

Family

ID=33407070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094535A Pending JP2004300510A (en) 2003-03-31 2003-03-31 Protection method of ion-exchange membrane electrolytic cell using gas diffusion cathode

Country Status (1)

Country Link
JP (1) JP2004300510A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111942A (en) * 2008-10-06 2010-05-20 Chlorine Eng Corp Ltd Operation method of ozonizer and ozonizer
WO2010137283A1 (en) 2009-05-26 2010-12-02 クロリンエンジニアズ株式会社 Gas diffusion electrode-equipped ion-exchange membrane electrolytic cell
EP2639338A2 (en) 2012-03-15 2013-09-18 Bayer Intellectual Property GmbH Method for the electrolysis of alkali chlorides with oxygen consumption electrodes in a micro-gap arrangement
EP2639337A2 (en) 2012-03-15 2013-09-18 Bayer Intellectual Property GmbH Method for the electrolysis of alkali chlorides with oxygen consumption electrodes
EP2639339A2 (en) 2012-03-15 2013-09-18 Bayer Intellectual Property GmbH Method for the electrolysis of alkali chlorides with oxygen consumption electrodes with openings
EP3670706A1 (en) 2018-12-18 2020-06-24 Covestro Deutschland AG Method for the membrane electrolysis of alkali chloride solutions with gas diffusion electrode
US20220298658A1 (en) * 2021-03-18 2022-09-22 Kabushiki Kaisha Toshiba Electrochemical device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111942A (en) * 2008-10-06 2010-05-20 Chlorine Eng Corp Ltd Operation method of ozonizer and ozonizer
WO2010137283A1 (en) 2009-05-26 2010-12-02 クロリンエンジニアズ株式会社 Gas diffusion electrode-equipped ion-exchange membrane electrolytic cell
EP2639338A2 (en) 2012-03-15 2013-09-18 Bayer Intellectual Property GmbH Method for the electrolysis of alkali chlorides with oxygen consumption electrodes in a micro-gap arrangement
EP2639337A2 (en) 2012-03-15 2013-09-18 Bayer Intellectual Property GmbH Method for the electrolysis of alkali chlorides with oxygen consumption electrodes
EP2639339A2 (en) 2012-03-15 2013-09-18 Bayer Intellectual Property GmbH Method for the electrolysis of alkali chlorides with oxygen consumption electrodes with openings
DE102012204040A1 (en) 2012-03-15 2013-09-19 Bayer Materialscience Aktiengesellschaft Process for the electrolysis of alkali chlorides with oxygen-consuming electrodes
DE102012204041A1 (en) 2012-03-15 2013-09-19 Bayer Materialscience Aktiengesellschaft Process for the electrolysis of alkali chlorides with oxygen-consuming electrodes having openings
DE102012204042A1 (en) 2012-03-15 2013-09-19 Bayer Materialscience Aktiengesellschaft Process for the electrolysis of alkali chlorides with oxygen-consuming electrodes in micro-gap arrangement
US9150970B2 (en) 2012-03-15 2015-10-06 Bayer Intellectual Property Gmbh Process for electrolysis of alkali metal chlorides with oxygen-consuming electrodes in micro-gap arrangement
US9273404B2 (en) 2012-03-15 2016-03-01 Bayer Intellectual Property Gmbh Process for electrolysis of alkali metal chlorides with oxygen-consuming electrodes
EP3670706A1 (en) 2018-12-18 2020-06-24 Covestro Deutschland AG Method for the membrane electrolysis of alkali chloride solutions with gas diffusion electrode
WO2020127021A2 (en) 2018-12-18 2020-06-25 Covestro Intellectual Property Gmbh & Co. Kg Membrane electrolysis processes for akaline chloride solutions, using a gas-diffusion electrode
US20220298658A1 (en) * 2021-03-18 2022-09-22 Kabushiki Kaisha Toshiba Electrochemical device
US11879178B2 (en) * 2021-03-18 2024-01-23 Kabushiki Kaisha Toshiba Electrochemical device

Similar Documents

Publication Publication Date Title
EP3399070B1 (en) Method for electrolyzing alkaline water
JP6450636B2 (en) Electrolysis method
JP2525553B2 (en) Electrodialysis tank and electrodialysis method
CN103305861B (en) Use the method for oxygen-consuming electrode electrolyzing alkali metal chloride
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JPWO2010119918A1 (en) Electrolysis method using a two-chamber ion exchange membrane salt electrolyzer with a gas diffusion electrode
TWI564434B (en) An apparatus and method for electrochemical production of oxidant related compounds
KR20130105505A (en) Process for electrolysis of alkali metal chlorides with oxygen-consuming electrodes having orifices
JP6315885B2 (en) Electrolysis of alkali metal chlorides using oxygen-consuming electrodes in a microgap configuration.
JP5160542B2 (en) Chloro-alkaline electrolytic cell with oxygen diffusion cathode
JP2004300510A (en) Protection method of ion-exchange membrane electrolytic cell using gas diffusion cathode
CN114402095B (en) Cross-flow water electrolysis
US6203687B1 (en) Method for shutting down an electrolysis cell with a membrane and an oxygen-reducing cathode
JP2001020089A (en) Protective method of alkali chloride electrolytic cell and protective device therefor
JP2003293178A (en) Method for preparing chemical for water treatment
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis
JP3408462B2 (en) Method for protecting gas diffusion cathode in alkaline chloride electrolytic cell
JP3906923B2 (en) Method for activating gas diffusion electrode
JPH0715152B2 (en) Oxygen cathode protection method
JPH0978279A (en) Hydrochloric acid electrolysis device
KR20210032469A (en) How to improve the performance of nickel electrodes
JPH06248482A (en) Electrolytic cell for hydrogen peroxide preparation and electrolytic preparation of hydrogen peroxide
JPH10204670A (en) Sodium chloride electrolytic cell
JPH108283A (en) Liquid permeation type gas diffusion cathode structural body

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050303

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060327

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

RD02 Notification of acceptance of power of attorney

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Effective date: 20061207

Free format text: JAPANESE INTERMEDIATE CODE: A02