JP2004300483A - Material having structure composed of crystalline substance and amorphous substance - Google Patents

Material having structure composed of crystalline substance and amorphous substance Download PDF

Info

Publication number
JP2004300483A
JP2004300483A JP2003092738A JP2003092738A JP2004300483A JP 2004300483 A JP2004300483 A JP 2004300483A JP 2003092738 A JP2003092738 A JP 2003092738A JP 2003092738 A JP2003092738 A JP 2003092738A JP 2004300483 A JP2004300483 A JP 2004300483A
Authority
JP
Japan
Prior art keywords
amorphous
alloy
powder
crystalline
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003092738A
Other languages
Japanese (ja)
Inventor
Teruyuki Awano
照幸 阿波野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003092738A priority Critical patent/JP2004300483A/en
Publication of JP2004300483A publication Critical patent/JP2004300483A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact having a structure composed of a crystalline substance and an amorphous substance, and also to provide a clad material comprising the same. <P>SOLUTION: An amorphous powder material is used as a starting raw material, and a temperature gradient is provided at pressure molding. As a concrete working method for it, a friction sinter bonding method is used. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高強度材料分野、或いは磁性材料分野など様々な技術分野で実用化されている非晶質合金またはアモルファス合金分野に関連するものである。
【0002】
【従来の技術】
結晶構造をもたない無秩序な原子配列を有する非晶質合金は、別名アモルファス合金とも呼ばれ、その有する高強度、高耐食性、高透磁性などの優れた特性から、現在、磁性部品、スポーツ用品、自動車・航空機等の輸送関連部品など様々な技術分野で実用化されつつあり、更に今後、益々の応用展開が期待されている材料である。
【0003】
その製造方法は、金属原子を気相状態から凝集させる方法、溶融状態から急速冷却する方法、或いは結晶に欠陥を導入する方法などが有り、得られる形状は薄膜、薄片、薄帯、細線、或いは粉末である。通常、これらの非晶質材料を用いて固体状の成形体を得るには、非晶質の結晶化防止を目的として、結晶化温度以下の温度領域で成形される。また、約10年前には、ガラス遷移現象を利用した固体状のバルクアモルファス合金が開発され、近年、そのバルクアモルファスを他の異種材料に非晶質を保ちながら接合する方法として、パルス通電接合方法、爆発法、或いは摩擦接合法が紹介されている。(非特許文献1参照)
【0004】
このようにして得られた成形体は、全体が均一な非晶質であり、前記したような優れた特性を有している。しかしながら、反面、全体が均一な非晶質であるが故に、成形体としては脆いなど、機械的な性質の面からの問題もあり、結晶質と非晶質の長所をあわせ持った材料が望まれていた。
【0005】
特に、加工しやすい粉末状の原料を用いて、加熱によって成形体を製作する場合には、弱い加熱条件では成形体は非晶質のままであるが、空隙が残って密度と機械的強度が低下し、反対に加熱がわずかでも強いと著しく結晶化が進んでしまうために、結晶質と非晶質相の存在比を制御できず、所望の物性を持つ成形体が得られない、という問題があった。
【0006】
【非特許文献1】
日刊工業新聞 平成13年3月28日付記事
【0007】
【発明が解決しようとする課題】
本願発明は、従来の非晶質のみからなる成形体では無く、結晶質から非晶質へ連続的に変化した組織を有することにより、新たな特性が期待出来る機能材料を提供することを目的とする。
【0008】
【課題を解決するための手段】
本願発明者は、鋭意検討を重ねた結果、非晶質材料を出発原料として用い、非晶質と結晶質の連続層からなる組織を有した成形体を提供しうることを見出し、本発明を完成した。
すなわち、本発明は、次の通りである。
(1)結晶質と非晶質とからなり、それらの境界が結晶層から非晶層への連続層で形成されていることを特徴とする合金の成形体。
(2)非晶質部分が鉄系合金、コバルト系合金あるいは、ニッケル系合金のいずれかからなる合金材料、或いはパラジウム、銅、ニオブ、チタンのいずれかを主成分とした合金材料からなることを特徴とする前記(1)記載の成形体。
(3)非晶質部分が、Fe、Co、Ni元素のいずれか一種類以上を主成分とし、かつB、Si、P、C元素のいずれか一種類以上が15〜30原子%の範囲であることを特徴とする前記(1)または(2)に記載の成形体。
(4)非晶質の合金からなる粉体材料を、摩擦焼結によって粉体材料に温度勾配を持たせることで接合することを特徴とする、成形体の製造方法。
【0009】
(5)非晶質の粉体材料が鉄系合金、コバルト系合金あるいは、ニッケル系合金のいずれかからなる粉体合金材料、或いはパラジウム、銅、ニオブ、チタンのいずれかを主成分とした粉体合金材料からなることを特徴とする前記(4)記載の製造方法。
(6)非晶質の粉体材料が、Fe、Co、Ni元素のいずれか一種類以上を主成分とし、かつB、Si、P、C元素のいずれか一種類以上が15〜30原子%の範囲であることを特徴とする前記(4)または(5)に記載の製造方法。
(7)前記(1)から(3)記載の成形体が他の金属材料と接合してなることを特徴とするクラッド材。
(8)接合方法が摩擦焼結接合方法である前記(7)記載のクラッド材。
【0010】
【発明の実施の形態】
以下、本願発明の特に好ましい態様を中心に詳細を説明する。
本願発明における成形体の好ましい出発原料は、粉体材料である。粉体材料を出発原料として用いることは、バルク(固体)材料より熱伝導を精度良く制御し易く、その結果、本願発明の目的である温度勾配の設定が行い易い。また、種々形状の易成形性の点からも好ましい。
【0011】
出発原料となる非晶質粉体の組成は、鉄系合金として鉄元素とリン、ホウ素、ジルコニウム、炭素、ケイ素、クロム、モリブデン元素のいずれか一種類以上の元素の組み合わせを含んだ非晶質合金、コバルト系合金としてコバルト元素とジルコニウム、ケイ素、ホウ素、クロム、炭素、モリブデン元素のいずれか一種類以上の元素の組み合わせを含んだ非晶質合金、ニッケル系合金としてニッケル元素とジルコニウム、ケイ素、ホウ素、クロム、モリブデン元素のいずれか一種類以上の元素の組み合わせを含んだ非晶質合金、更にパラジウムとケイ素、銅とジルコニウム、ニオブとニッケル、チタンと銅などから成る元素の組み合わせの一種類以上を含んだ非晶質合金であることが好ましい。
【0012】
より具体的には、例えば、Fe8020、Fe8020、Fe90Zr10、Fe8013、Fe7810Si12、Fe62Mo2018、Fe8113Si、Fe72CoSi15、Fe62Ni16Si14、Fe72Co18Zy10、Fe63Co18Ni19Zr10、FeCo70Si1015、FeCo75Si16、Fe62Cr12Mo18、Fe46Cr16Mo2018、Fe72Cr13、Fe45Cr25Mo1013、Co90Zr10、Co73Si1512、Co56Cr2618、Co79Cr11Zr10、Co81Mo10Zr、Co44Mo3620、Co34Cr28Mo2018、Co83Zr11、Co8010Zr10、Ni90Zr10、Ni76Si1012、Ni34Cr24Mo2418、Pd80Si20、Cu80Zr20、Nb50Ni50、Ti50Cu50、Al87Ni、Al8510Ni15、Al84LaNi10、Mg80Ce10Ni10等であり、特にFe、Co、Ni元素のいずれか一種類以上を主成分として、非晶質形成元素B、Si、P、Cのいずれか一種類以上が15〜30原子%添加した組成が好ましい。尚、上記の組成に限定されること無く、他の組成による非晶質粉体を用いてもかまわないし、また、非晶質粉体を主成分として他の粉体を混合させた粉体を用いてもかまわない。
【0013】
この粉体出発原料と接合させてクラッド材を製作する材料としては、基本的にどのような材料でも用いることができる。例えば一般の鋼材、銅材、アルミ材等が挙げられる。尚、本願発明に係る摩擦焼結接合方法を用いる場合は、耐熱性のあるもののほうが好ましい。
このような出発原料を用いて、得られた成形体の組織が結晶質と非晶質からなる成形体およびクラッド材を製作するためには、成形時に原料に温度勾配をかけて、加圧成形する方法が好ましい。具体的には、高温側においては非晶質が結晶化する温度以上で、低温側においては非晶質組織を保持し、且つ焼結可能な温度となる勾配である。
【0014】
これらの成形方法として、原料を均一加熱雰囲気に設置し、周囲を水冷等の冷却装置で冷却して温度勾配を得る方法、或いは、加熱熱源そのものに温度勾配が生じるように制御することで加熱する方法、更には、原料の一部を加熱熱源によって加熱し、原料の熱伝導度特性を利用して温度勾配を得る方法などがある。
【0015】
その中で最も好ましい方法は、摩擦焼結接合方法である。摩擦焼結接合方法とは、原料粉体に直接的な運動エネルギーを与え、その運動エネルギーを熱エネルギーに変換することで、原料粉体を塑性状態とし、係る後、所定の圧力で焼結、或いは焼結と接合を同時に行う技術である。従って、運動エネルギーが直接的に与えられた境界面の温度が最も高くなり、また、その熱は伝導によって粉体内部に伝えられる。その結果、本願発明において好ましい温度の勾配が得られることになる。また、本方法における加熱温度に対する制御は、基本的に加圧力と寄り代、或いは時間の設定により行われ、加工後の冷却は、空冷、或いは水冷などが適宜選択できる。また、摩擦焼結接合の加工中に、空冷等の手段による温度勾配のための制御を加えてもかまわない。
【0016】
本願発明によって得られる成形体の組織は、非晶質の結晶化によって生じた結晶質の成形体層、その結晶質と非晶質のまま成形された箇所の混在した成形体層、及び非晶質のまま成形された成形体層から成る。これらの組織は、得られた成形体を研磨し、エッチングすることにより、光学顕微鏡で容易に観察することができる。例えば、非晶質の結晶化により生じた結晶質は、原料の粒径より微細な再結晶組織が粒内において観察される。反面、非晶質のまま成形された箇所は、原料の粉体相互間の境界のみがエッチングされ、且つ原料の粉体粒径を保ったままの状態で観察される。また、別の判定方法としては、成形体断面のX線回折等を用いて結晶化度を測定し、結晶相と非晶質相の比を測定する方法もある。
【0017】
また、非晶質の結晶化によって生じる結晶粒径については、マイクロメーターサイズ、サブミクロンサイズ、或いはナノメーターサイズに加熱温度、加熱時間、或いは冷却速度等を制御することにより調整出来る。
最終的に本願発明によって得ることが出来る形態は、単体としての成形体、または、他の材料と接合させたクラッド材である。
【0018】
摩擦焼結接合方法によって単体の成形体を得る場合は、出発原料の装填容器と運動エネルギーによって摩擦熱を生じさせるための冶具材料を、出発原料と難接合性の関係にある材料にすることが好ましい。また、摩擦焼結接合方法によってクラッド材を得る場合は、出発原料の装填容器と運動エネルギーによって摩擦熱を生じさせるための冶具材料の両方、或いはいずれかを、接合させる相手の材料にする。この場合、運動エネルギーによって摩擦熱を生じさせる材料に接合させた時、接合境界面が結晶質となり、表面層が非晶質となる。逆に、出発原料の装填容器側に接合させた時は、接合境界面が非晶質となり、表面層が結晶質となる。
【0019】
更に、特異な場合として、目的以外の層は工作機などの後加工により切削削除してもかまわないし、また、予め生じないような成形条件、例えば、成形体の全てが非晶質の再結晶によるナノメーターサイズの結晶粒径を有する成形体になるように設定してもかまわない。
【0020】
【実施例】
以下、本願発明の実施例を説明する。
[実施例1]
日本非晶質金属(株)よりMETGLAS 2605S−2(商標)のアモルファス粉末を入手した。このアモルファス粉末の粒径は数百マイクロメーター以下であり、組成は同社METGLAS 2605TCA(商標)相当のFe−B−Si系組成で、公表特性による結晶化温度は550℃である。
【0021】
係る粉体材料を内径20mm、外径40mm、深さ20mmの鋼製粉体材料装填容器に、タッピングにより深さ13mmで装填した。次に装填した粉体材料を鋼製の外径19.8mm、長さ50mmの円柱状台金で、回転数1500回転/分、加圧80MPa、寄り代4mmの条件下で加圧摩擦を実施した。その後、回転を停止させ、更に160MPaの条件による圧力を負荷し、摩擦焼結接合を実施した。摩擦焼結接合後は空冷で放置した。加工に要した時間は、粉体装填作業もいれて約3分間であった。摩擦焼結接合後の外観において、鋼製台金部と粉体成形部は接合状態を呈しており、また粉体成形部のみの厚さは、約4mmであった。
【0022】
その後、得られた成形体に関して光学顕微鏡による組織観察を腐蝕液ナイタールを用いて行った。その結果、鋼製台金と粉体成形部の境界面及び近傍において、粉体成形部は再結晶が生じており、厚さ方向中央においては再結晶と緻密化されたアモルファスの混在が認められた。更に粉体成形部の厚さ方向表面においては、緻密に成形されたアモルファスのみが観察された。尚、全体的に粒子間の著しい空孔等は観察されず、緻密な成形体を呈し、明らかに機械的強度の改善が期待出来る。
【0023】
【発明の効果】
本願発明は、非晶質の粉体材料を出発原料とし、該粉体材料による成形体の組織が結晶質と非晶質とからなる組織である成形体、或いは、そのクラッド材を提供する。非晶質合金は高強度、磁性的特性など通常の結晶質材料には無い特性を有するが、形状面の制約や、加工や接合が困難とされてきた。本願発明は、非晶質材料と結晶質材料の両特性を併せ持ち、且つ他の材料との接合問題も解決されたことから、今後、高強度や耐食性が要求される材料分野、或いは磁性材料分野などにおいて、新たな機能商品創出の可能性を有する産業上有益な発明である。
【図面の簡単な説明】
【図1】本願発明の実施例1における光学顕微鏡観察結果である。
【符号の説明】
写真1:粉体成形部と鋼製台金の接合界面における組織:結晶質
写真2:粉体成形部の表面から2mm深さ位置での組織:結晶質/非晶質混在
写真3:粉体成形部の表面近傍の組織:非晶質
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an amorphous alloy or an amorphous alloy field which has been put to practical use in various technical fields such as a high-strength material field or a magnetic material field.
[0002]
[Prior art]
Amorphous alloys having a disordered atomic arrangement without a crystal structure are also known as amorphous alloys, and are currently used in magnetic parts and sports equipment due to their excellent properties such as high strength, high corrosion resistance, and high magnetic permeability. It is a material that is being put to practical use in various technical fields such as transportation-related parts such as automobiles and aircraft, and is expected to be applied more and more in the future.
[0003]
The production method includes a method of aggregating metal atoms from a gaseous state, a method of rapidly cooling from a molten state, and a method of introducing a defect into a crystal, and the obtained shape is a thin film, a thin piece, a thin strip, a thin wire, or It is a powder. Usually, in order to obtain a solid compact using these amorphous materials, the compact is molded in a temperature range of a crystallization temperature or lower for the purpose of preventing amorphous crystallization. Approximately 10 years ago, a solid bulk amorphous alloy utilizing a glass transition phenomenon was developed. In recent years, as a method of joining the bulk amorphous to another dissimilar material while maintaining the amorphous state, a pulse current welding method has been used. Methods, explosion methods, or friction welding methods are introduced. (See Non-Patent Document 1)
[0004]
The molded body thus obtained is entirely amorphous and uniform, and has the above-described excellent characteristics. However, on the other hand, there are problems in terms of mechanical properties, such as the brittleness of the molded body because it is entirely amorphous and a material having both the advantages of crystalline and amorphous is desired. Had been rare.
[0005]
In particular, when a molded body is manufactured by heating using a powdery raw material that is easy to process, the molded body remains amorphous under weak heating conditions, but voids remain and the density and mechanical strength are reduced. On the contrary, if the heating is slightly strong, crystallization remarkably progresses, so that the existing ratio of the crystalline phase and the amorphous phase cannot be controlled, and a molded product having desired physical properties cannot be obtained. was there.
[0006]
[Non-patent document 1]
Article of the Nikkan Kogyo Shimbun, dated March 28, 2001 [0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a functional material that can be expected to have new properties by having a structure that is continuously changed from a crystalline state to an amorphous state, rather than a conventional formed body consisting of only an amorphous body. I do.
[0008]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor has found that it is possible to provide a molded body having a structure composed of an amorphous and crystalline continuous layer using an amorphous material as a starting material, and completed.
That is, the present invention is as follows.
(1) A molded article of an alloy comprising a crystalline material and an amorphous material, wherein the boundary is formed by a continuous layer from a crystalline layer to an amorphous layer.
(2) The amorphous portion is made of an alloy material composed of any of an iron-based alloy, a cobalt-based alloy, or a nickel-based alloy, or an alloy material mainly composed of any of palladium, copper, niobium, and titanium. The molded article according to the above (1), which is characterized in that:
(3) The amorphous portion contains at least one of Fe, Co, and Ni elements as a main component, and at least one of B, Si, P, and C elements has a content of 15 to 30 atomic%. The molded article as described in (1) or (2) above.
(4) A method for manufacturing a compact, comprising joining a powder material made of an amorphous alloy by imparting a temperature gradient to the powder material by friction sintering.
[0009]
(5) A powdery material in which the amorphous powdery material is any of an iron-based alloy, a cobalt-based alloy, or a nickel-based alloy, or a powder mainly containing any of palladium, copper, niobium, and titanium The manufacturing method according to the above (4), comprising a body alloy material.
(6) The amorphous powder material contains at least one of Fe, Co, and Ni as a main component, and at least one of B, Si, P, and C contains 15 to 30 atomic%. (4) or (5).
(7) A clad material comprising the molded article according to (1) to (3) joined to another metal material.
(8) The clad material according to (7), wherein the joining method is a friction sintering joining method.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the details will be described focusing on particularly preferred embodiments of the present invention.
A preferred starting material for the molded article of the present invention is a powder material. Using a powder material as a starting material makes it easier to control the heat conduction with higher precision than a bulk (solid) material, and as a result, it is easier to set the temperature gradient, which is the object of the present invention. It is also preferable from the viewpoint of easy forming of various shapes.
[0011]
The composition of the amorphous powder used as a starting material is an amorphous alloy containing a combination of one or more elements of iron and phosphorus, boron, zirconium, carbon, silicon, chromium, and molybdenum as an iron-based alloy. Alloys, cobalt-based alloys such as cobalt and zirconium, silicon, boron, chromium, carbon, amorphous alloys containing a combination of any one or more of the molybdenum elements, nickel-based alloys with nickel and zirconium, silicon, Amorphous alloys containing a combination of one or more of the elements boron, chromium and molybdenum, and one or more combinations of elements consisting of palladium and silicon, copper and zirconium, niobium and nickel, titanium and copper, etc. Is preferably an amorphous alloy containing
[0012]
More specifically, for example, Fe 80 P 20, Fe 80 B 20, Fe 90 Zr 10, Fe 80 P 13 C 7, Fe 78 B 10 Si 12, Fe 62 Mo 20 C 18, Fe 81 B 13 Si 4 C 2, Fe 72 Co 8 Si 5 B 15, Fe 62 Ni 16 Si 8 B 14, Fe 72 Co 18 Zy 10, Fe 63 Co 18 Ni 19 Zr 10, Fe 5 Co 70 Si 10 B 15, Fe 5 Co 75 Si 4 B 16, Fe 62 Cr 12 Mo 8 C 18, Fe 46 Cr 16 Mo 20 C 18, Fe 72 Cr 8 P 13 C 7, Fe 45 Cr 25 Mo 10 P 13 C 7, Co 90 Zr 10, Co 73 Si 15 B 12 , Co 56 Cr 26 C 18 , Co 79 Cr 11 Zr 10 , Co 81 Mo 10 Zr 9, Co 44 Mo 36 C 20, Co 34 Cr 28 Mo 20 C 18, Co 83 W 6 Zr 11, Co 80 V 10 Zr 10, Ni 90 Zr 10, Ni 76 Si 10 B 12, Ni 34 Cr 24 Mo 24 C 18, Pd 80 Si 20, Cu 80 Zr 20, Nb 50 Ni 50, Ti 50 Cu 50, Al 87 Y 8 Ni 5, Al 85 Y 10 Ni 15, Al 84 La 6 Ni 10, Mg 80 Ce 10 Ni 10 or the like, and in particular, one or more of Fe, Co, and Ni elements as main components, and 15 to 30 atomic% of one or more of amorphous forming elements B, Si, P, and C added. The composition is preferred. In addition, without being limited to the above composition, an amorphous powder having another composition may be used, or a powder obtained by mixing another powder with the amorphous powder as a main component. You may use it.
[0013]
As a material for manufacturing the clad material by joining with the powder starting material, basically any material can be used. For example, general steel materials, copper materials, aluminum materials and the like can be mentioned. When the friction sintering joining method according to the present invention is used, a material having heat resistance is preferable.
Using such starting materials, in order to produce a molded body and a clad material in which the structure of the obtained molded body is composed of crystalline and amorphous, a temperature gradient is applied to the raw materials during molding, and pressure molding is performed. Is preferred. Specifically, the gradient is such that the temperature is higher than the temperature at which the amorphous phase is crystallized on the high temperature side, and the temperature at which the amorphous structure is maintained and sinterable on the low temperature side.
[0014]
As these forming methods, the raw material is placed in a uniform heating atmosphere and the surroundings are cooled by a cooling device such as water cooling to obtain a temperature gradient, or heating is performed by controlling the heating heat source itself so that a temperature gradient is generated. In addition, there is a method in which a part of the raw material is heated by a heating heat source, and a temperature gradient is obtained by utilizing the thermal conductivity characteristics of the raw material.
[0015]
The most preferable method is a friction sintering bonding method. The friction sintering joining method is to apply direct kinetic energy to the raw material powder and convert the kinetic energy to heat energy to make the raw material powder into a plastic state, and then sinter at a predetermined pressure, Alternatively, it is a technique of simultaneously performing sintering and joining. Therefore, the temperature of the boundary surface to which kinetic energy is directly applied becomes the highest, and the heat is transmitted to the inside of the powder by conduction. As a result, a preferable temperature gradient is obtained in the present invention. In addition, the control of the heating temperature in the present method is basically performed by setting the pressing force, the offset, or the time, and the cooling after the processing can be appropriately selected from air cooling or water cooling. Further, during the friction sintering process, control for temperature gradient by means such as air cooling may be added.
[0016]
The structure of the molded body obtained by the present invention includes a crystalline molded body layer formed by crystallization of amorphous, a molded body layer having a mixture of the crystalline and amorphous parts, and an amorphous body. It consists of a molded body layer molded as is. These structures can be easily observed with an optical microscope by polishing and etching the obtained molded body. For example, in the crystalline material generated by amorphous crystallization, a recrystallized structure finer than the particle diameter of the raw material is observed in the grains. On the other hand, in the portion formed as amorphous, only the boundaries between the powders of the raw material are etched, and observed in a state where the particle diameter of the raw material is maintained. As another determination method, there is a method of measuring the degree of crystallinity by using X-ray diffraction or the like of the cross section of the molded body, and measuring the ratio of the crystalline phase to the amorphous phase.
[0017]
Further, the crystal grain size generated by crystallization of the amorphous phase can be adjusted to a micrometer size, submicron size, or nanometer size by controlling the heating temperature, heating time, cooling rate, or the like.
The form finally obtainable by the present invention is a molded body as a single body or a clad material bonded to another material.
[0018]
When a single molded body is obtained by the friction sintering method, the material for the jig for generating frictional heat by the loading container and the kinetic energy of the starting material should be a material having a relationship with the starting material that is difficult to join. preferable. When a clad material is obtained by a friction sintering joining method, both or either of a loading container of a starting material and a jig material for generating frictional heat by kinetic energy are used as materials to be joined. In this case, when bonded to a material that generates frictional heat due to kinetic energy, the bonding interface becomes crystalline and the surface layer becomes amorphous. Conversely, when the starting material is bonded to the loading container side, the bonding interface becomes amorphous and the surface layer becomes crystalline.
[0019]
Further, as a special case, layers other than the intended layer may be cut and removed by post-processing such as a machine tool, and molding conditions that do not occur in advance, for example, all of the molded body are amorphous recrystallized. May be set so as to obtain a molded product having a crystal grain size of nanometer size by the following method.
[0020]
【Example】
Hereinafter, embodiments of the present invention will be described.
[Example 1]
An amorphous powder of METGLAS 2605S-2 (trademark) was obtained from Nippon Amorphous Metal Co., Ltd. The particle size of the amorphous powder is several hundred micrometers or less, the composition is a Fe-B-Si-based composition equivalent to the company's METGLAS 2605TCA (trademark), and the crystallization temperature according to published characteristics is 550 ° C.
[0021]
The powder material was loaded into a steel powder material loading container having an inner diameter of 20 mm, an outer diameter of 40 mm, and a depth of 20 mm by tapping at a depth of 13 mm. Next, the loaded powder material was subjected to pressure friction using a steel base metal having a diameter of 19.8 mm and a length of 50 mm at a rotation speed of 1500 rotations / minute, a pressure of 80 MPa, and a margin of 4 mm. did. Thereafter, the rotation was stopped, and a pressure under a condition of 160 MPa was applied to perform friction sinter joining. After the friction sintering, it was left in air cooling. The time required for the processing was about 3 minutes including the powder loading operation. In the appearance after the friction sintering, the steel base and the powder molded part were in a joined state, and only the thickness of the powder molded part was about 4 mm.
[0022]
Thereafter, the structure of the obtained molded body was observed with an optical microscope using a corrosion liquid Nital. As a result, the powder molded part was recrystallized at and near the interface between the steel base metal and the powder molded part. At the center in the thickness direction, a mixture of recrystallized and densified amorphous was observed. Was. Further, only a densely formed amorphous was observed on the surface in the thickness direction of the powder molded part. Note that no remarkable pores and the like between the particles are observed as a whole, and a dense molded product is exhibited, and improvement in mechanical strength can be clearly expected.
[0023]
【The invention's effect】
The invention of the present application provides a compact having an amorphous powder material as a starting material, and a compact formed from the powder material, and a clad material thereof. Amorphous alloys have characteristics such as high strength and magnetic characteristics that are not found in ordinary crystalline materials, but they have been restricted in shape and difficult to process and join. Since the present invention has both properties of an amorphous material and a crystalline material, and has solved the problem of joining with other materials, the field of materials requiring high strength and corrosion resistance in the future, or the field of magnetic materials It is an industrially useful invention that has the potential to create new functional products.
[Brief description of the drawings]
FIG. 1 shows the results of observation with an optical microscope in Example 1 of the present invention.
[Explanation of symbols]
Photo 1: Structure at the joint interface between the powder molded part and the steel base metal: crystalline Photo 2: Texture at a depth of 2 mm from the surface of the powder molded part: mixed crystalline / amorphous Photo 3: powder Structure near the surface of the molded part: amorphous

Claims (8)

結晶質と非晶質とからなり、それらの境界が結晶層から非晶層への連続層で形成されていることを特徴とする合金の成形体。A molded product of an alloy comprising a crystalline material and an amorphous material, wherein the boundary is formed by a continuous layer from a crystalline layer to an amorphous layer. 非晶質部分が鉄系合金、コバルト系合金あるいは、ニッケル系合金のいずれかからなる合金材料、或いはパラジウム、銅、ニオブ、チタンのいずれかを主成分とした合金材料からなることを特徴とする請求項1記載の成形体。The amorphous portion is made of an alloy material made of any one of an iron-based alloy, a cobalt-based alloy, and a nickel-based alloy, or an alloy material containing any of palladium, copper, niobium, and titanium as a main component. The molded article according to claim 1. 非晶質部分が、Fe、Co、Ni元素のいずれか一種類以上を主成分とし、かつB、Si、P、C元素のいずれか一種類以上が15〜30原子%の範囲であることを特徴とする請求項1または2に記載の成形体。The amorphous portion contains at least one of Fe, Co, and Ni elements as a main component, and at least one of B, Si, P, and C elements has a range of 15 to 30 atomic%. The molded article according to claim 1 or 2, wherein 非晶質の合金からなる粉体材料を、摩擦焼結によって粉体材料に温度勾配を持たせることで接合することを特徴とする、成形体の製造方法。A method for manufacturing a molded body, comprising joining a powder material made of an amorphous alloy by imparting a temperature gradient to the powder material by friction sintering. 非晶質の粉体材料が鉄系合金、コバルト系合金あるいは、ニッケル系合金のいずれかからなる粉体合金材料、或いはパラジウム、銅、ニオブ、チタンのいずれかを主成分とした粉体合金材料からなることを特徴とする請求項4記載の製造方法。A powder alloy material in which the amorphous powder material is any of an iron alloy, a cobalt alloy, or a nickel alloy, or a powder alloy material containing any of palladium, copper, niobium, and titanium as a main component The production method according to claim 4, comprising: 非晶質の粉体材料が、Fe、Co、Ni元素のいずれか一種類以上を主成分とし、かつB、Si、P、C元素のいずれか一種類以上が15〜30原子%の範囲であることを特徴とする請求項4または5に記載の製造方法。The amorphous powder material contains at least one of Fe, Co and Ni elements as a main component, and at least one of B, Si, P and C elements has a content of 15 to 30 atomic%. The method according to claim 4, wherein the method is provided. 請求項1から3記載の成形体が他の金属材料と接合してなることを特徴とするクラッド材。A clad material comprising the molded body according to claim 1 and another metal material. 接合方法が摩擦焼結接合方法である請求項7記載のクラッド材。The clad material according to claim 7, wherein the joining method is a friction sintering joining method.
JP2003092738A 2003-03-28 2003-03-28 Material having structure composed of crystalline substance and amorphous substance Pending JP2004300483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092738A JP2004300483A (en) 2003-03-28 2003-03-28 Material having structure composed of crystalline substance and amorphous substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092738A JP2004300483A (en) 2003-03-28 2003-03-28 Material having structure composed of crystalline substance and amorphous substance

Publications (1)

Publication Number Publication Date
JP2004300483A true JP2004300483A (en) 2004-10-28

Family

ID=33405701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092738A Pending JP2004300483A (en) 2003-03-28 2003-03-28 Material having structure composed of crystalline substance and amorphous substance

Country Status (1)

Country Link
JP (1) JP2004300483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010000791T5 (en) 2009-02-17 2012-07-26 Kanto Kagaku K.K. MIXED-MICROCRYSTALLINE-AMORPHIC GOLD ALLOYING OF ELECTROCHEMICALLY DISPOSED FILM AND BATHING SOLUTION, AND METHOD FOR PRODUCING AN ELECTROCHEMICALLY DISPOSED FILM THEREFOR
JP2016514787A (en) * 2013-03-27 2016-05-23 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Pump with electric motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010000791T5 (en) 2009-02-17 2012-07-26 Kanto Kagaku K.K. MIXED-MICROCRYSTALLINE-AMORPHIC GOLD ALLOYING OF ELECTROCHEMICALLY DISPOSED FILM AND BATHING SOLUTION, AND METHOD FOR PRODUCING AN ELECTROCHEMICALLY DISPOSED FILM THEREFOR
JP2016514787A (en) * 2013-03-27 2016-05-23 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Pump with electric motor

Similar Documents

Publication Publication Date Title
US20190084075A1 (en) System and method for additive manufacturing
AlMangour et al. Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting
EP2326443B1 (en) Method of producing objects containing nano metal or composite metal
Ye et al. Fabrication of metal matrix composites by metal injection molding—A review
US11427902B2 (en) Additive manufacturing of iron-based amorphous metal alloys
JP2021516293A (en) Manufacture of bulk metallic glass composites using powder-based laminate molding
CN108650883A (en) By the method for glassy metal increasing material manufacturing three-dimension object
Radulov et al. Production of net-shape Mn-Al permanent magnets by electron beam melting
WO2019139017A1 (en) Stainless steel powder for molding
JP2007051375A (en) Preparation of sheet by injection molding of powder, consolidation, and heat treating
WO2021039912A1 (en) Wc-based super-hard alloy powder, wc-based super-hard alloy member, and method for producing wc-based super-hard alloy member
Suárez et al. Consolidation and mechanical properties of ZrCu39. 85Y2. 37Al1. 8 bulk metallic glass obtained from gas-atomized powders by spark plasma sintering
Li et al. Influence of Al2O3–Y2O3 and Ce–Al–Ni amorphous alloy on physical properties of laser synthetic composite coatings on titanium alloys
JP2004300483A (en) Material having structure composed of crystalline substance and amorphous substance
WO2017150340A1 (en) Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
US5229165A (en) Plasma sprayed continuously reinforced aluminum base composites
JP3731041B2 (en) High corrosion resistance magnesium alloy and method for producing high corrosion resistance magnesium material
US20070107467A1 (en) Metal glass body, process for producing the same and apparatus therefor
Huang et al. Fusion bonding and microstructure formation in TiB 2-based ceramic/metal composite materials fabricated by combustion synthesis under high gravity
JP4968636B2 (en) Method for producing high-density solidified article with controlled continuous phase and dispersed phase
Attard et al. New materials development
JPH0645841B2 (en) Method of manufacturing permanent magnet material
Houshmand Phase selection and transformation kinetics of copper-zinc powder mixture subjected to ultrasonic powder consolidation
Huang et al. Combustion Synthesis of TiB 2-TiC/42CrMo4 Composites with Gradient Joint Prepared in Different High-Gravity Fields
Jeż et al. The structure and properties of magnetic composites based on amorphous Fe alloys