JP2004299046A - Electrode for electrochemical machining, and electrochemical machining device and method - Google Patents

Electrode for electrochemical machining, and electrochemical machining device and method Download PDF

Info

Publication number
JP2004299046A
JP2004299046A JP2004068806A JP2004068806A JP2004299046A JP 2004299046 A JP2004299046 A JP 2004299046A JP 2004068806 A JP2004068806 A JP 2004068806A JP 2004068806 A JP2004068806 A JP 2004068806A JP 2004299046 A JP2004299046 A JP 2004299046A
Authority
JP
Japan
Prior art keywords
electrode
processing
electrolytic processing
substrate
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004068806A
Other languages
Japanese (ja)
Inventor
Yuzo Mori
勇▲蔵▼ 森
Yasushi Taima
康 當間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004068806A priority Critical patent/JP2004299046A/en
Publication of JP2004299046A publication Critical patent/JP2004299046A/en
Priority to US11/076,067 priority patent/US20050183963A1/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain stable machining characteristics, and to easily cope with achieving fineness of electrodes and flexibility of the electrodes. <P>SOLUTION: The electrochemical machining device is constituted so that a material obtained by chemically modifying ion dissociating functional groups 1b, 2b consisting of a sulfo group, a carboxyl group, a quaternary ammonium group, a primary to tertiary amino group or the like on the surface of conductive carbon materials 1a, 2a, or a graphite interlaminar compound including an alkali metal are used as electrochemical machining electrodes 1, 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電解加工用電極に係り、液体介在下で、特に純水を用いて電解加工を行うに際し、基板を加工する加工電極及び/または基板に給電する給電電極として使用される電解加工用電極に関するものである。また、本発明は、かかる電解加工用電極を用いて電解加工を行う電解加工装置及び方法に関するものである。   The present invention relates to an electrode for electrolytic processing, and particularly to an electrode for electrolytic processing used as a processing electrode for processing a substrate and / or a power supply electrode for supplying power to the substrate when performing electrolytic processing using liquid, particularly with pure water. It concerns the electrodes. The present invention also relates to an electrolytic processing apparatus and method for performing electrolytic processing using such an electrode for electrolytic processing.

純水、もしくは超純水を用いた電解加工においては、加工速度を増加させるために、イオン交換膜やイオン交換繊維などのイオン交換体が一般に用いられている。ここでいう純水、超純水とは、それぞれ25℃における比抵抗が0.1MΩ・cm以上、10MΩ・cm以上の水をさす。   In electrolytic processing using pure water or ultrapure water, ion exchangers such as ion exchange membranes and ion exchange fibers are generally used in order to increase the processing speed. Pure water and ultrapure water as used herein refer to water having a specific resistance of 0.1 MΩ · cm or more and 10 MΩ · cm or more at 25 ° C., respectively.

図1は、従来のイオン交換体を用いた電解加工装置を示す模式図である。図1に示すように、この電解加工装置においては、電源200に接続される陽極210と陰極220の表面にそれぞれイオン交換体230,240を取付け、これらの電極210,220と基板表面に形成した被加工物(例えば銅膜)250との間に純水や超純水などの液体260を供給する。そして、電極210,220の表面に取付けたイオン交換体230,240に被加工物250を接触又は近接させ、陽極210と陰極220との間に電源200を介して電圧を印加する。液体260中の水分子は、イオン交換体230,240により水酸化物イオンと水素イオンに解離され、例えば生成された水酸化物イオンが被加工物250の表面に供給される。これにより、被加工物250近傍の水酸化物イオンの濃度が高まり、被加工物250の原子と水酸化物イオンとが反応して被加工物250の表面層の除去加工が行われる。このように、イオン交換体230,240は、液体260中の水分子を水素イオンと水酸化物イオンに分解する触媒作用を有すると考えられている(例えば、特許文献1参照)。   FIG. 1 is a schematic diagram showing a conventional electrolytic processing apparatus using an ion exchanger. As shown in FIG. 1, in this electrolytic processing apparatus, ion exchangers 230 and 240 were attached to the surfaces of an anode 210 and a cathode 220 connected to a power supply 200, respectively, and formed on these electrodes 210 and 220 and the substrate surface. A liquid 260 such as pure water or ultrapure water is supplied between a workpiece (eg, a copper film) 250. Then, the workpiece 250 is brought into contact with or close to the ion exchangers 230 and 240 attached to the surfaces of the electrodes 210 and 220, and a voltage is applied between the anode 210 and the cathode 220 via the power supply 200. Water molecules in the liquid 260 are dissociated into hydroxide ions and hydrogen ions by the ion exchangers 230 and 240. For example, the generated hydroxide ions are supplied to the surface of the workpiece 250. Thus, the concentration of hydroxide ions in the vicinity of the workpiece 250 increases, and the atoms of the workpiece 250 react with the hydroxide ions to remove the surface layer of the workpiece 250. As described above, the ion exchangers 230 and 240 are considered to have a catalytic action of decomposing water molecules in the liquid 260 into hydrogen ions and hydroxide ions (for example, see Patent Document 1).

特開平10−58236号公報JP-A-10-58236

しかしながら、従来のように、イオン交換体としてイオン交換繊維を用いた場合には、加工の途中で繊維が脱離し、脱離した繊維の影響により加工特性が時間とともに変化することが問題となる。また、繊維の継ぎ目が被加工物の表面粗さに与える影響なども懸念されている。このような観点から、網状のイオン交換繊維を不織布の上に巻きつけ、これを円筒電極に取付けて被加工物の全面を平坦化する試みもなされているが、イオン交換体の厚さが不均一な場合には、被加工物表面の平坦化に支障をきたすことが有る。   However, when ion-exchange fibers are used as an ion exchanger as in the prior art, there is a problem that the fibers are detached during the processing, and the processing characteristics change with time due to the influence of the detached fibers. There is also a concern about the effect of the fiber seam on the surface roughness of the workpiece. From this point of view, attempts have been made to wind a net-like ion exchange fiber on a nonwoven fabric and attach it to a cylindrical electrode to flatten the entire surface of the workpiece, but the thickness of the ion exchanger is not sufficient. If it is uniform, it may hinder the flattening of the surface of the workpiece.

また、従来のイオン交換樹脂やイオン交換繊維では、特に微細な(小径の)電極210,220を形成しようとした場合、イオン交換体230,240を陽極210と陰極220の表面にそれぞれ分離して配置することができず、陽極210と陰極220の双方に亘るイオン交換体によりこれらの電極210,220を覆わざるを得なくなる。   Further, in the case of the conventional ion exchange resin or ion exchange fiber, particularly when the fine (small diameter) electrodes 210 and 220 are to be formed, the ion exchangers 230 and 240 are separated on the surfaces of the anode 210 and the cathode 220, respectively. They cannot be placed and have to cover these electrodes 210, 220 with an ion exchanger spanning both anode 210 and cathode 220.

この場合において、陽極210と陰極220との間の距離Lを、電極210,220と被加工物である金属(例えば銅)250との間の距離Lよりも短くすると、電極210,220間の通電が電極210,220と被加工物250との間の通電よりも優先される。このため、電極210,220間の距離Lを電極210,220と被加工物250との間の距離Lよりも長くなるように電極210,220を配置しなければならない。 In this case, the distance L 1 between the anode 210 and the cathode 220, the electrode 210 and 220 when shorter than the distance L 2 between the metal (e.g., copper) 250 as the workpiece, the electrode 210, 220 The energization between them has priority over the energization between the electrodes 210 and 220 and the workpiece 250. Therefore, it is necessary to arrange a electrode 210 and 220 to be longer than the distance L 2 between the distance L 1 between the electrodes 210, 220 and the electrode 210, 220 and the workpiece 250.

しかしながら、イオン交換体230,240自体の厚みにより電極210,220と被加工物250との間の距離Lを十分に短くすることができない。このため、陽極210と陰極220とを一定以上近づけることができず、結果として電極210,220の形状などに制限が生じてしまう。 However, it is impossible to sufficiently reduce the distance L 2 between the ion exchangers 230, 240 themselves in thickness between electrodes 210 and 220 and the workpiece 250. Therefore, the anode 210 and the cathode 220 cannot be brought closer to each other by a certain amount or more, and as a result, the shapes of the electrodes 210 and 220 are limited.

本発明は上記事情に鑑みてなされたもので、より安定した加工特性を得ることができ、さらに電極の微細化や電極の形状のフレキシブル化に容易に対応することができる電解加工用電極を提供することを第1の目的とする。
また、本発明は、かかる電解加工用電極を用いて電解加工を行う電解加工装置及び方法を提供することを第2の目的とする。
The present invention has been made in view of the above circumstances, and provides an electrode for electrolytic processing that can obtain more stable processing characteristics and can easily cope with miniaturization of the electrode and flexibility of the electrode shape. The first purpose is to do so.
A second object of the present invention is to provide an electrolytic processing apparatus and method for performing electrolytic processing using such an electrode for electrolytic processing.

請求項1に記載の発明は、導電性炭素材料の表面にイオン解離性官能基を化学修飾したことを特徴とする電解加工用電極である。このように、導電性炭素材料の表面にイオン解離性官能基を化学修飾した電解加工用電極によれば、従来のようなイオン交換体を使用することなく、電極表面が水を分解する触媒作用を持つので、電極と基板(被加工物)との間の距離を短くすることができる。したがって、陽極と陰極との間の距離も短くすることができ、電極の微細化や電極の形状のフレキシブル化に容易に対応することができる。また、陰極として用いる電解加工用電極と、陽極として用いる電解加工用電極のそれぞれに触媒作用を持たせることができるので、陽極と陰極との間に生じる漏れ電流を抑制することができる。   The invention according to claim 1 is an electrode for electrolytic processing, wherein an electrically dissociable functional group is chemically modified on the surface of a conductive carbon material. As described above, according to the electrode for electrolytic processing in which the surface of the conductive carbon material is chemically modified with an ion dissociating functional group, the electrode surface has a catalytic action of decomposing water without using a conventional ion exchanger. Therefore, the distance between the electrode and the substrate (workpiece) can be reduced. Therefore, the distance between the anode and the cathode can be reduced, and it is possible to easily cope with miniaturization of the electrode and flexibility of the shape of the electrode. In addition, since each of the electrode for electrolytic processing used as the cathode and the electrode for electrolytic processing used as the anode can have a catalytic action, leakage current generated between the anode and the cathode can be suppressed.

請求項2に記載の発明は、前記イオン解離性官能基は、スルホ基またはカルボキシル基であることを特徴とする請求項1記載の電解加工用電極である。
請求項3に記載の発明は、前記イオン解離性官能基は、第4級アンモニウム基、第1〜3級アミノ基から選択される少なくとも1種類のイオン交換基であることを特徴とする請求項1記載の電解加工用電極である。
The invention according to claim 2 is the electrode for electrolytic processing according to claim 1, wherein the ion-dissociable functional group is a sulfo group or a carboxyl group.
The invention according to claim 3 is characterized in that the ion dissociable functional group is at least one kind of ion exchange group selected from a quaternary ammonium group and a tertiary amino group. 2. The electrode for electrolytic processing according to 1.

請求項4に記載の発明は、アルカリ金属を含む黒鉛層間化合物からなることを特徴とする電解加工用電極である。このように、アルカリ金属を含む黒鉛層間化合物からなる電解加工用電極では、黒鉛の層間に挿入されたアルカリ金属によって水分子のイオンへの分解が促進されると考えられる。つまり、このような電解加工用電極を用いた場合も、電極と基板(被加工物)との間の距離を短くすることができるため、陽極と陰極との間の距離も短くすることができ、電極の微細化や電極の形状のフレキシブル化に容易に対応することができる。また、陰極として用いる黒鉛層間加工物と、陽極として用いる黒鉛層間加工物のそれぞれに触媒作用を持たせることができるので、陽極と陰極との間に生じる漏れ電流を抑制することができる。   The invention according to claim 4 is an electrode for electrolytic processing, comprising an intercalated graphite compound containing an alkali metal. Thus, in an electrode for electrolytic processing made of a graphite intercalation compound containing an alkali metal, it is considered that the decomposition of water molecules into ions is promoted by the alkali metal inserted between the graphite layers. In other words, even when such an electrode for electrolytic processing is used, the distance between the electrode and the substrate (workpiece) can be reduced, so that the distance between the anode and the cathode can also be reduced. In addition, it is possible to easily cope with miniaturization of the electrode and flexibility of the shape of the electrode. In addition, since each of the graphite interlayer processed product used as the cathode and the graphite interlayer processed product used as the anode can have a catalytic action, a leakage current generated between the anode and the cathode can be suppressed.

請求項5に記載の発明は、基板を保持する基板ホルダと、加工電極と、前記基板に給電する給電電極と、前記加工電極と前記給電電極との間に電圧を印加する電源と、前記基板と前記加工電極との間に液体を供給する液体供給部とを備え、前記加工電極及び前記給電電極の少なくとも一方として請求項1乃至4のいずれか一項に記載の電解加工用電極を用い、前記基板を前記加工電極に近接させて、液体の存在下において前記基板の表面の電解加工を行うことを特徴とする電解加工装置である。   The invention according to claim 5, wherein a substrate holder for holding a substrate, a processing electrode, a power supply electrode for supplying power to the substrate, a power supply for applying a voltage between the processing electrode and the power supply electrode, and the substrate And a liquid supply unit for supplying a liquid between the processing electrode, using the electrode for electrolytic processing according to any one of claims 1 to 4 as at least one of the processing electrode and the power supply electrode, An electrolytic processing apparatus, wherein the substrate is brought close to the processing electrode, and the surface of the substrate is subjected to electrolytic processing in the presence of a liquid.

請求項6に記載の発明は、基板に給電電極により給電し、前記給電電極と加工電極との間に電圧を印加し、前記加工電極を前記基板に近接させて、液体の存在下において前記基板の表面の電解加工を行う電解加工方法において、前記加工電極及び前記給電電極の少なくとも一方として請求項1乃至4のいずれか一項に記載の電解加工用電極を用いることを特徴とする電解加工方法である。   The invention according to claim 6, wherein power is supplied to the substrate by a power supply electrode, a voltage is applied between the power supply electrode and the processing electrode, the processing electrode is brought close to the substrate, and the substrate is placed in the presence of a liquid. 5. An electrolytic processing method for performing electrolytic processing on the surface of claim 1, wherein the electrode for electrolytic processing according to any one of claims 1 to 4 is used as at least one of the processing electrode and the power supply electrode. It is.

本発明によれば、導電性炭素材料の表面にイオン解離性官能基を化学修飾したり、アルカリ金属を含む層間化合物を電解加工用電極として使用することにより、電極と被加工物との間の距離を短くすることができる。したがって、陽極と陰極との間の距離も短くすることができ、電極の微細化や電極の形状のフレキシブル化に容易に対応することができる。また、陰極、陽極のそれぞれに電解加工用電極を使用することができるので、陽極と陰極との間に生じる漏れ電流を抑制することができる。   According to the present invention, the surface of the conductive carbon material is chemically modified with an ion dissociating functional group, or by using an intercalation compound containing an alkali metal as an electrode for electrolytic processing, the distance between the electrode and the workpiece is reduced. The distance can be shortened. Therefore, the distance between the anode and the cathode can be reduced, and it is possible to easily cope with miniaturization of the electrode and flexibility of the shape of the electrode. In addition, since an electrode for electrolytic processing can be used for each of the cathode and the anode, a leakage current generated between the anode and the cathode can be suppressed.

以下、本発明の実施の形態を図面を参照して説明する。
図2は、本発明に係る電解加工用電極を用いた電解加工装置の一例を示す模式図である。図2に示すように、この電解加工装置には、導電性炭素材料1a,2aの表面にイオン解離性官能基1b,2bを化学修飾して、電源3の陽極及び陰極にそれぞれ接続した一対の電解加工用電極1,2が備えられており、この電解加工用電極1,2と基板の表面に形成された銅等の被加工物4との間には、純水や超純水などの液体5が供給される。そして、電解加工用電極1,2中のイオン解離性官能基1b,2bに被加工物4を近接させ、電解加工用電極1,2の導電性炭素材料1a,2aの間に電源3を介して電圧を印加する。すると、液体5中の水分子は、イオン解離性官能基1b,2bにより水酸化物イオンと水素イオンに解離され、例えば生成された水酸化物イオンが被加工物4の表面に供給される。これにより、被加工物4近傍の水酸化物イオンの濃度が高まり、被加工物4の原子と水酸化物イオンとが反応して被加工物4の表面層の除去加工が行われる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic diagram showing an example of an electrolytic processing apparatus using the electrode for electrolytic processing according to the present invention. As shown in FIG. 2, this electrolytic processing apparatus includes a pair of a conductive carbon material 1a, 2a whose surfaces are chemically modified with ion-dissociative functional groups 1b, 2b and which are connected to an anode and a cathode of a power source 3, respectively. Electrode 1 and 2 are provided between the electrodes 1 and 2 and the workpiece 4 such as copper formed on the surface of the substrate. Liquid 5 is supplied. Then, the workpiece 4 is brought close to the ion dissociable functional groups 1b and 2b in the electrodes 1 and 2, and the power supply 3 is interposed between the conductive carbon materials 1a and 2a of the electrodes 1 and 2. Voltage. Then, the water molecules in the liquid 5 are dissociated into hydroxide ions and hydrogen ions by the ion dissociable functional groups 1b and 2b. For example, the generated hydroxide ions are supplied to the surface of the workpiece 4. As a result, the concentration of hydroxide ions in the vicinity of the workpiece 4 increases, and the atoms of the workpiece 4 react with the hydroxide ions to remove the surface layer of the workpiece 4.

このように、この例によれば、電解加工用電極1,2と被加工物(基板)4との間の距離を短くすることができる。したがって、陽極となる電解加工用電極1と陰極となる電解加工用電極2の間の距離も短くすることができ、電解加工用電極1,2の微細化や電解加工用電極1,2の形状のフレキシブル化に容易に対応することができる。また、陽極として用いる導電性炭素材料1aと陰極として用いる導電性炭素材料2aのそれぞれにイオン解離性官能基1b,2bを結合(化学修飾)させることで、陽極と陰極との間、すなわち電解加工用電極1,2間に生じる漏れ電流を抑制することができる。   Thus, according to this example, the distance between the electrodes for electrolytic processing 1 and 2 and the workpiece (substrate) 4 can be shortened. Therefore, the distance between the electrolytic processing electrode 1 serving as the anode and the electrolytic processing electrode 2 serving as the cathode can be shortened, and the size of the electrodes 1 and 2 can be reduced. Can be easily handled. In addition, the ion-dissociative functional groups 1b and 2b are bonded (chemically modified) to the conductive carbon material 1a used as the anode and the conductive carbon material 2a used as the cathode, respectively, so that between the anode and the cathode, that is, electrolytic processing. The leakage current generated between the electrodes 1 and 2 can be suppressed.

この導電性炭素材料1a,2aの表面に化学修飾するイオン解離性官能基1b,2bとしては、塩基性基として第4級アンモニウム基及び第1〜3級アミノ基から選択される少なくとも1種類のイオン交換基が、酸性基としてスルホ基またはカルボキシル基が挙げられる。   As the ion-dissociable functional groups 1b and 2b that chemically modify the surfaces of the conductive carbon materials 1a and 2a, at least one kind selected from quaternary ammonium groups and primary to tertiary amino groups as basic groups. The ion-exchange group includes a sulfo group or a carboxyl group as the acidic group.

本発明の化学修飾を行う導電性炭素材料1a,2aとして、1cm程度以上の比較的広い面積を加工する場合には、ガラス状炭素のように表面が平滑で形状精度の高い加工が可能な炭素材料を使用することが好ましい。また、1μm以下のレベルの微細加工を行う場合には、フラーレンもしくはカーボンナノチューブ等のナノ分子を利用することが好ましい。導電性炭素材料1a,2aとして、網状のものを用いることが好ましく、このように、網状の導電性炭素材料1a,2aを基材として用いることで、導電性炭素材料1a,2aに通水性を持たせることができるので、効率よく水を分解することが可能となる。 When processing a relatively large area of about 1 cm 2 or more as the conductive carbon materials 1a and 2a to be subjected to the chemical modification of the present invention, processing with a smooth surface and high shape accuracy like glassy carbon is possible. Preferably, a carbon material is used. In the case of performing fine processing at a level of 1 μm or less, it is preferable to use nanoparticles such as fullerene or carbon nanotube. It is preferable to use a net-like material as the conductive carbon materials 1a and 2a. In this way, by using the net-like conductive carbon materials 1a and 2a as a base material, water permeability is provided to the conductive carbon materials 1a and 2a. Since water can be provided, water can be efficiently decomposed.

導電性炭素材料1a,2aにイオン交換基等のイオン解離性官能基1b,2bを化学修飾するための好ましい方法としては、気相中で放電処理する方法、電解液中で陽極酸化する方法、薬品に浸漬する方法、更にはグラフト重合等により表面を改質する方法が挙げられる。   Preferred methods for chemically modifying the conductive carbon materials 1a, 2a with ion-dissociative functional groups 1b, 2b such as ion-exchange groups include a method of performing a discharge treatment in a gas phase, a method of anodizing in an electrolytic solution, Examples include a method of immersion in a chemical, and a method of modifying the surface by graft polymerization or the like.

ここで、気相中で放電処理する方法は、例えば酸素を含む気体中でのRF放電(13.25MHz)によるプラズマ中に導電性炭素材料1a,2aを暴露することで、導電性炭素材料1a,2aの表面をカルボキシル基などのイオン解離性官能基1b,2bで化学修飾することが可能である。また同様の放電処理を窒素雰囲気中で行うことにより、塩基性を示すイオン解離性官能基1b,2bを導入することが可能であり、これらの方法が好ましく用いられる(S.S.Wong, A.T.Woolley, E.Joselevich,C. M.Leiber, Chem.Phys.Lett.,306(1999)219.参照)。   Here, a method of performing a discharge treatment in the gas phase is, for example, by exposing the conductive carbon materials 1a and 2a to plasma by RF discharge (13.25 MHz) in a gas containing oxygen, thereby forming the conductive carbon material 1a. , 2a can be chemically modified with ion-dissociable functional groups 1b, 2b such as carboxyl groups. By performing the same discharge treatment in a nitrogen atmosphere, it is possible to introduce ion-dissociative functional groups 1b and 2b showing basicity, and these methods are preferably used (SSWong, ATWoolley, E See Joselevich, CMLeiber, Chem. Phys. Lett., 306 (1999) 219.).

電解液中で陽極酸化する方法では、通常、導電性炭素材料1a,2aを陽極とし、陰極としては、例えば白金(Pt)、金(Au)、鉛(Pb)、亜鉛(Zn)等の金属、炭素材(炭素材質のもの全て)などを用いることができる(J.H.Wandass, J.A.Gardella, N.L.Weinberg, M.E.Bolster, L.Salvati, J.Electrochem.Soc.,134(1987)2734.参照)。   In the method of anodizing in an electrolytic solution, the conductive carbon materials 1a and 2a are usually used as anodes, and the cathode is made of a metal such as platinum (Pt), gold (Au), lead (Pb), zinc (Zn) or the like. And carbon materials (all carbon materials) (see JH Wandass, JAGardella, NL Weinberg, MEBolster, L. Salvati, J. Electrochem. Soc., 134 (1987) 2734).

電解液としては、硝酸、硫酸、リン酸、塩酸、臭化水素酸またはこれらのイオンを含む塩を挙げることができる。これらのイオンを含む塩としては、例えばリチウム、ナトリウム、カリウム等のアルカリ金属塩、マグネシウム、カルシウム、バリウム等のアルカリ土類金属塩、アンモニウム塩、スルホニウム塩、ホスホニウム塩、Fe、Cu、ランタノイド金属などの塩等を挙げることができる。実施においては、これらの電解液を単独もしくは混合して使用する。電解電流密度は、例えば1〜100mA/cm程度が好ましいが、この条件に制限されるものではない。この方法により、炭素材料表面がカルボキシル基で化学修飾されることが知られている。 Examples of the electrolytic solution include nitric acid, sulfuric acid, phosphoric acid, hydrochloric acid, hydrobromic acid and salts containing these ions. Salts containing these ions include, for example, alkali metal salts such as lithium, sodium and potassium, alkaline earth metal salts such as magnesium, calcium and barium, ammonium salts, sulfonium salts, phosphonium salts, Fe, Cu, lanthanoid metals and the like. And the like. In practice, these electrolytes are used alone or as a mixture. The electrolysis current density is preferably, for example, about 1 to 100 mA / cm 2, but is not limited to this condition. It is known that the carbon material surface is chemically modified with a carboxyl group by this method.

薬品に浸漬する方法は、例えば硝酸などの酸化性溶液に導電性炭素材料1a,2aを浸漬することによって、導電性炭素材料1a,2aの表面を容易にカルボキシル基などのイオン解離性官能基1b,2bで化学修飾することが可能であり、この方法が好ましく用いられる。   The method of immersing in a chemical is to immerse the conductive carbon materials 1a and 2a in an oxidizing solution such as nitric acid, so that the surfaces of the conductive carbon materials 1a and 2a can be easily ion-dissociable functional groups 1b such as carboxyl groups. , 2b can be chemically modified, and this method is preferably used.

また、加熱した硫酸中に導電性炭素材料1a,2aを浸漬することにより、導電性炭素材料1a,2aの表面をスルホ基などのイオン解離性官能基1b、2bで化学修飾することが可能である。   By immersing the conductive carbon materials 1a and 2a in heated sulfuric acid, the surfaces of the conductive carbon materials 1a and 2a can be chemically modified with ion dissociable functional groups 1b and 2b such as sulfo groups. is there.

更には、濃硫酸と濃硝酸の混合液に導電性炭素材料1a,2aを浸漬して一旦ニトロ化し、しかる後、例えば塩酸中にスズ(Sn)とニトロ化された導電性炭素材料1a,2aを浸漬することで、導電性炭素材料1a,2aをアミノ基からなるイオン解離性官能基1b,2bで化学修飾することができる。   Further, the conductive carbon materials 1a and 2a are immersed in a mixed solution of concentrated sulfuric acid and concentrated nitric acid to be once nitrated, and then, for example, the conductive carbon materials 1a and 2a nitrated with tin (Sn) in hydrochloric acid. By immersion, the conductive carbon materials 1a and 2a can be chemically modified with the ion dissociable functional groups 1b and 2b composed of amino groups.

グラフト重合等により表面改質する方法では、例えば導電性炭素材料1a,2aに、γ線を照射した後グラフト重合を行う所謂放射線グラフト重合法により、グラフト鎖を導入し、次に導入したグラフト鎖をアミノ化して第4級アンモニウム基を導入して作製される。導入されるイオン交換基の容量は、導入するグラフト鎖の量により決定される。グラフト重合を行うためには、例えばアクリル酸、スチレン、メタクリル酸グリシジル、更にはスチレンスルホン酸ナトリウム、クロロメチルスチレン等のモノマーを用い、これらのモノマー濃度、反応温度及び反応時間を制御することで、重合するグラフト量を制御することができる。
また、導入したグラフト鎖を、加熱した硫酸で処理するとスルホ基が導入され、加熱したリン酸で処理すればリン酸基が導入される。
In the method of surface modification by graft polymerization or the like, for example, a graft chain is introduced into the conductive carbon materials 1a and 2a by a so-called radiation graft polymerization method in which γ-rays are irradiated and then graft polymerization is performed, and then the introduced graft chain is introduced. By introducing a quaternary ammonium group. The capacity of the ion exchange group to be introduced is determined by the amount of the graft chain to be introduced. In order to perform the graft polymerization, for example, acrylic acid, styrene, glycidyl methacrylate, further using a monomer such as sodium styrenesulfonate, chloromethylstyrene, by controlling the concentration of these monomers, reaction temperature and reaction time, The amount of graft to be polymerized can be controlled.
When the introduced graft chain is treated with heated sulfuric acid, a sulfo group is introduced, and when treated with heated phosphoric acid, a phosphate group is introduced.

グラフト重合法では、放射線(γ線または電子線または紫外線)を先に基材に照射する(前照射)ことで基材にラジカルを発生させ、次にモノマーと反応させてグラフト重合することができる。また、基材にモノマーを含浸させ、そこに放射線(γ線、電子線、紫外線のいずれか)を照射(同時照射)することで、ラジカル重合することもできる。   In the graft polymerization method, radicals are generated in the substrate by first irradiating the substrate (radiation (γ-rays or electron beams or ultraviolet rays) (pre-irradiation)), and then the radicals can be reacted with the monomers to perform graft polymerization. . In addition, radical polymerization can also be performed by impregnating the base material with a monomer and irradiating (simultaneously irradiating) radiation (any of γ-rays, electron beams, and ultraviolet rays) thereto.

図3乃至図5は、前述の例と同様な構成の、導電性炭素材料にイオン解離性官能基を化学修飾した電解加工用電極を加工電極に使用した電解加工装置の他の例を示す。図3に示すように、この電解加工装置は、例えばステンレス製で超純水10を保持する加工槽12を有する加工装置本体14と、廃液タンク16、超純水循環・精製部18、及び高圧ポンプ20を有する超純水循環・精製装置22と、プランジャポンプ24及び圧力トランスミッタ26を有する高圧超純水供給装置28とを備えている。   FIGS. 3 to 5 show another example of an electrolytic processing apparatus using an electrode for electrolytic processing in which a conductive carbon material is chemically modified with an ion-dissociating functional group and which has the same configuration as the above-described example. As shown in FIG. 3, this electrolytic processing apparatus includes, for example, a processing apparatus main body 14 made of stainless steel and having a processing tank 12 for holding ultrapure water 10, a waste liquid tank 16, an ultrapure water circulation / purification unit 18, and a high pressure An ultrapure water circulation / purification device 22 having a pump 20 and a high-pressure ultrapure water supply device 28 having a plunger pump 24 and a pressure transmitter 26 are provided.

図4は、図3に示す電解加工装置の加工装置本体14を示す縦断面図である。加工装置本体14は、図4に示すように、半導体ウェハ等の基板Wを吸着等によって着脱自在に水平に保持する基板ホルダ(保持テーブル)30を備えている。この基板ホルダ30は、加工槽12の内部に配置されており、XYθの3自由度を持っている。すなわち、基板ホルダ30で保持された基板Wは、超純水10中に浸漬された状態で、X,Y方向に水平移動自在で、θ軸(Z軸)を中心に水平面上を回転するようになっている。この基板ホルダ30は、基板Wを保持するとともに、基板Wへの給電を行う役割を果たすもので、例えばチタン製でその表面に1μmの白金めっきが施されている。また、ラジアル方向、スラスト方向ともに超純水による静圧軸受32(図3参照)により支持されている。   FIG. 4 is a longitudinal sectional view showing the processing apparatus main body 14 of the electrolytic processing apparatus shown in FIG. As shown in FIG. 4, the processing apparatus main body 14 includes a substrate holder (holding table) 30 for horizontally holding a substrate W such as a semiconductor wafer in a detachable manner by suction or the like. The substrate holder 30 is disposed inside the processing tank 12 and has three degrees of freedom of XYθ. That is, the substrate W held by the substrate holder 30 can be horizontally moved in the X and Y directions while being immersed in the ultrapure water 10 and rotate on a horizontal plane about the θ axis (Z axis). It has become. The substrate holder 30 serves to hold the substrate W and supply power to the substrate W. The substrate holder 30 is made of, for example, titanium and has a 1 μm platinum plating on its surface. Further, both the radial direction and the thrust direction are supported by a hydrostatic bearing 32 (see FIG. 3) made of ultrapure water.

図5は、図4に示す加工装置本体14の主要部を示す斜視図である。図5に示すように、基板ホルダ30の上方には、その軸心O−Oが水平方向に延びる円柱又は円筒状の電解加工用電極34が配置されている。この電解加工用電極34は、前述の例と同様に、導電性炭素材料34aの表面に、例えばカルボキシル基等のイオン解離性官能基34bが化学修飾されている。   FIG. 5 is a perspective view showing a main part of the processing apparatus main body 14 shown in FIG. As shown in FIG. 5, above the substrate holder 30, a column or cylindrical electrode for electrolytic processing 34 whose axis OO extends horizontally is arranged. In the electrode 34 for electrolytic processing, similarly to the above-described example, the surface of the conductive carbon material 34a is chemically modified with an ion dissociable functional group 34b such as a carboxyl group.

この電解加工用電極34は、軸心O−Oに沿って延び、上下動自在な回転軸36に連結されている。この回転軸36は、基板ホルダ30と同様に、ラジアル方向、スラスト方向ともに超純水による静圧軸受(図示せず)により支持されている。このような構成により、電解加工用電極34は、回転軸36の回転に伴って軸心O−Oを中心に自転し、しかも基板ホルダ30で保持した基板Wとの間隔が調整できるようになっている。電解加工時には、電解加工用電極34を下降させ、基板ホルダ30で保持した基板Wの表面に近接させる。   The electrode 34 for electrolytic processing extends along the axis OO and is connected to a rotating shaft 36 that can move up and down. The rotating shaft 36 is supported by a hydrostatic bearing (not shown) made of ultrapure water in both the radial direction and the thrust direction, similarly to the substrate holder 30. With such a configuration, the electrode 34 for electrolytic processing rotates around the axis OO with the rotation of the rotating shaft 36, and the distance between the electrode 34 and the substrate W held by the substrate holder 30 can be adjusted. ing. At the time of electrolytic processing, the electrode 34 for electrolytic processing is lowered and brought close to the surface of the substrate W held by the substrate holder 30.

また、図4に示すように、電解加工用電極34の導電性炭素材料34aと基板ホルダ30で保持した基板Wとの間に電圧を印加する電源38が設けられている。なお、この例では、例えば被加工物としての銅を電解加工するため、電解加工用電極34の導電性炭素材料34aを電源38の陰極に、被加工物(銅)を電源38の陽極にそれぞれ接続した例を示している。被加工物の種類によっては、電解加工用電極34の導電性炭素材料34aを電源38の陽極に、被加工物を電源38の陰極にそれぞれ接続してもよい。   As shown in FIG. 4, a power supply 38 for applying a voltage is provided between the conductive carbon material 34a of the electrode 34 for electrolytic processing and the substrate W held by the substrate holder 30. In this example, in order to electrolytically process copper as a workpiece, for example, the conductive carbon material 34a of the electrode 34 for electrolytic processing is used as the cathode of the power supply 38, and the workpiece (copper) is used as the anode of the power supply 38. An example of connection is shown. Depending on the type of the workpiece, the conductive carbon material 34a of the electrode 34 for electrolytic processing may be connected to the anode of the power supply 38, and the workpiece may be connected to the cathode of the power supply 38.

ここで、基板ホルダ30は鉛直軸を中心として、電解加工用電極34は水平軸を中心として、超純水10を巻き込む方向にそれぞれ回転するように構成されており、この回転方向の上流側には、基板ホルダ30で保持した基板Wと電解加工用電極34との間に超純水を高圧で吹き付ける超純水ノズル40が配置されている。これにより、基板Wと電解加工用電極34の少なくとも一方を回転させながら、この回転方向の上流側から電解加工用電極34と基板Wとの間に超純水10を吹き付けて、電解加工用電極34と基板Wとの間に溜まる気泡や加工生成物などを効果的に除去できるようになっている。   Here, the substrate holder 30 is configured to rotate around a vertical axis, and the electrode for electrolytic processing 34 is rotated around a horizontal axis in a direction in which the ultrapure water 10 is wound. The ultrapure water nozzle 40 for spraying ultrapure water at a high pressure is disposed between the substrate W held by the substrate holder 30 and the electrode 34 for electrolytic processing. Thus, while rotating at least one of the substrate W and the electrode 34 for electro-machining, the ultrapure water 10 is sprayed between the electrode 34 for electro-machining and the substrate W from the upstream side in the direction of rotation, thereby rotating the electrode 34 for electro-machining. Air bubbles, processing products, and the like accumulated between the substrate 34 and the substrate W can be effectively removed.

この超純水ノズル40には、図3に示すように、超純水循環・精製装置22の超純水循環・精製部18で精製された超純水が、高圧超純水供給装置28の圧力トランスミッタ26からプランジャポンプ24を介して昇圧されて供給されるようになっている。また、加工槽12内の超純水10は、図3に示すように、オーバーフローして廃液タンク16に溜まり、超純水循環・精製部18で精製された後、直接加工槽12内に戻される。また、この超純水10の一部は、高圧ポンプ20を経由して静圧軸受32にも供給される。   As shown in FIG. 3, the ultrapure water purified by the ultrapure water circulation / purification unit 18 of the ultrapure water circulation / purification device 22 is supplied to the ultrapure water nozzle 40 by the ultrapure water supply device 28. The pressure is increased and supplied from the pressure transmitter 26 via the plunger pump 24. Further, as shown in FIG. 3, the ultrapure water 10 in the processing tank 12 overflows and accumulates in the waste liquid tank 16, is purified by the ultrapure water circulation / refining unit 18, and is returned directly to the processing tank 12. It is. A part of the ultrapure water 10 is also supplied to the hydrostatic bearing 32 via the high-pressure pump 20.

このような電解加工装置において、基板ホルダ30で基板Wを保持し、電解加工用電極34を下降させて、この電解加工用電極34の表面のイオン解離性官能基34bを基板Wの表面に線状に近接させる。この状態で、超純水循環・精製装置22によって、加工槽12内の超純水10を精製しながら循環させつつ、電解加工用電極34の導電性炭素材料34aを電源38の陰極に、基板Wを電源38の陽極にそれぞれ接続して、導電性炭素材料34aと基板Wとの間に電圧を印加する。同時に、基板ホルダ30と電解加工用電極34とを超純水10を巻き込む方向に同時に回転させ、この回転方向の上流側に配置した超純水ノズル40から電解加工用電極34と基板Wとの間に超純水を高圧で吹き付ける。これにより、電解加工用電極34の表面のイオン解離性官能基34bでの化学反応により生成した水素イオンと水酸化物イオンとによって、基板Wの表面の除去加工が行われる。この場合、加工槽12内に超純水10の流れが形成され、これがイオン解離性官能基34bの表面に沿って流通することにより、水素イオンと水酸化物イオンが多量に生成され、これを基板Wの表面に供給して効率のよい加工を行うことができる。   In such an electrolytic processing apparatus, the substrate W is held by the substrate holder 30, the electrode 34 for electrolytic processing is lowered, and the ion dissociable functional groups 34b on the surface of the electrode 34 for electrolytic processing are lined with the surface of the substrate W. Close to each other. In this state, the conductive carbon material 34a of the electrode 34 for electrolytic processing is connected to the cathode of the power supply 38 while the ultrapure water 10 in the processing tank 12 is circulated while being purified by the ultrapure water circulating / purifying device 22. W is connected to the anode of the power supply 38, and a voltage is applied between the conductive carbon material 34a and the substrate W. At the same time, the substrate holder 30 and the electrode 34 for electrolytic processing are simultaneously rotated in the direction in which the ultrapure water 10 is wound, and the electrode 34 for electrolytic processing and the substrate W are moved from the ultrapure water nozzle 40 disposed on the upstream side in the rotation direction. Spray ultrapure water at high pressure. As a result, the surface of the substrate W is removed by the hydrogen ions and hydroxide ions generated by the chemical reaction at the ion dissociable functional groups 34b on the surface of the electrode 34 for electrolytic processing. In this case, a flow of the ultrapure water 10 is formed in the processing tank 12, and flows along the surface of the ion dissociable functional group 34b, so that a large amount of hydrogen ions and hydroxide ions are generated, and this is generated. It can be supplied to the surface of the substrate W to perform efficient processing.

ここで、基板ホルダ30と電解加工用電極34とを超純水10を巻き込む方向に同時に回転させ、この回転方向の上流側から電解加工用電極34と基板Wとの間に超純水を高圧で吹き付けることによって、基板Wと電解加工用電極34との間にある超純水10を効果的に置換することが可能になり、これにより、加工に伴って発生するガスや加工生成物を効率的に除去して安定な加工を行うことができる。   Here, the substrate holder 30 and the electrode for electrolytic processing 34 are simultaneously rotated in the direction in which the ultrapure water 10 is wound, and ultrapure water is supplied between the electrode 34 for electrolytic processing and the substrate W at a high pressure from the upstream side in the rotation direction. By spraying, it is possible to effectively replace the ultrapure water 10 between the substrate W and the electrode 34 for electrolytic processing, thereby efficiently removing gas and processing products generated during processing. And stable processing can be performed.

図6は、前述と同様の、導電性炭素材料の表面にイオン解離性官能基を化学修飾して構成した電解加工用電極を加工電極として使用した更に他の電解加工装置を示す。この図6に示す電解加工装置の図3乃至図5に示す電解加工装置と異なる点は、電解加工用電極134として、楕円体又は球状のものを使用し、この電解加工用電極134を下降させたとき、導電性炭素材料134aの外周面のイオン解離性官能基134bの下部が基板ホルダ30で保持した基板Wに点状に近接した状態で、電解加工用電極134と基板ホルダ30が回転するようになっている点にある。その他の構成は、上述した電解加工装置と同様である。図6に示す電解加工装置によれば、加工部の面積が小さくなって、加工部周辺への超純水10の供給が容易に行われて、安定した条件で加工を行うことができる。   FIG. 6 shows still another electrolytic processing apparatus using an electrolytic processing electrode formed by chemically modifying an ion-dissociative functional group on the surface of a conductive carbon material as a processing electrode as described above. The electrolytic processing apparatus shown in FIG. 6 is different from the electrolytic processing apparatuses shown in FIGS. 3 to 5 in that an elliptical or spherical electrode is used as the electrolytic processing electrode 134, and the electrolytic processing electrode 134 is lowered. When the electrode 134 for electrolytic processing and the substrate holder 30 rotate, the lower part of the ion dissociable functional group 134b on the outer peripheral surface of the conductive carbon material 134a is in a point-like proximity to the substrate W held by the substrate holder 30. It is in such a point. Other configurations are the same as those of the above-described electrolytic processing apparatus. According to the electrolytic processing apparatus shown in FIG. 6, the area of the processing portion is reduced, the supply of the ultrapure water 10 around the processing portion is easily performed, and the processing can be performed under stable conditions.

上述した電解加工装置によれば、砥粒や濃い薬液を使用しないので、加工槽12内の汚染は加工工程で発生する反応生成物が主になり、電解加工後の基板の洗浄を簡略化もしくは省略できる。また、使用した超純水の循環処理を行うことで、排水量も低減し、薬液の処理も不要であるので、稼動コストを極めて小さく抑えることができる。   According to the above-described electrolytic processing apparatus, since the abrasive grains and the thick chemical solution are not used, the contamination in the processing tank 12 is mainly a reaction product generated in the processing step, and the cleaning of the substrate after the electrolytic processing is simplified or Can be omitted. In addition, by performing the circulating treatment of the used ultrapure water, the amount of wastewater is reduced, and the treatment of the chemical solution is not required. Therefore, the operating cost can be extremely reduced.

電解加工用電極において、電極基材として金、銀、白金、銅及び酸化インジウム等を用い、チオール及びジスフィルド等でイオン交換基を有する有機化合物を化学結合することでイオン交換基を導入する方法もある。それに対し、本発明では、電極の基材として導電性炭素材料を用い、その炭素表面に直接的に無機反応によってイオン解離性官能基を効果的に導入する。すなわち、電極基材とイオン解離性官能基(またはイオン交換基)との間に有機化合物による炭素鎖を持たない結合の生成が可能なため、化学修飾層の厚さを薄くすることができ、またイオン解離性官能基の耐久性(耐離脱性)、導電性の向上につながる。   In an electrode for electrolytic processing, a method of introducing an ion-exchange group by chemically bonding an organic compound having an ion-exchange group with thiol, disulfide, or the like using gold, silver, platinum, copper, indium oxide, or the like as an electrode substrate is also available. is there. In contrast, in the present invention, a conductive carbon material is used as a base material of an electrode, and an ion-dissociable functional group is effectively introduced directly into the carbon surface by an inorganic reaction. That is, since a bond having no carbon chain can be generated by an organic compound between the electrode base material and the ion dissociable functional group (or ion exchange group), the thickness of the chemical modification layer can be reduced, In addition, the durability (separation resistance) of the ion dissociable functional group and the conductivity are improved.

図7は、本発明に係る他の実施の形態の電解加工用電極を用いた電解加工装置の一例を示す模式図である。図7に示すように、この電解加工装置には、アルカリ金属を含む黒鉛層間化合物からなり、電源3の陽極及び陰極にそれぞれ接続した一対の電解加工用電極6,7が備えられており、この電解加工用電極(黒鉛層間化合物)6,7と基板の表面に形成された銅等の被加工物4との間には、純水や超純水などの液体5が供給される。そして、電解加工用電極6,7の表面に被加工物4を近接させ、電解加工用電極6,7の間に電源3を介して電圧を印加する。すると、液体5中の水分子は、黒鉛層間化合物からなる電解加工用電極6,7により水酸化物イオンと水素イオンに解離され、例えば生成された水酸化物イオンが被加工物4の表面に供給される。これにより、被加工物4近傍の水酸化物イオンの濃度が高まり、被加工物4の原子と水酸化物イオンとが反応して被加工物4の表面層の除去加工が行われる。   FIG. 7 is a schematic view showing an example of an electrolytic processing apparatus using an electrode for electrolytic processing according to another embodiment of the present invention. As shown in FIG. 7, the electrolytic processing apparatus is provided with a pair of electrolytic processing electrodes 6 and 7 made of a graphite intercalation compound containing an alkali metal and connected to an anode and a cathode of a power supply 3, respectively. A liquid 5 such as pure water or ultrapure water is supplied between the electrodes for electrolytic processing (graphite intercalation compounds) 6 and 7 and the workpiece 4 such as copper formed on the surface of the substrate. Then, the workpiece 4 is brought close to the surfaces of the electrodes for electrolytic processing 6 and 7, and a voltage is applied between the electrodes 6 and 7 for electrolytic processing via the power supply 3. Then, the water molecules in the liquid 5 are dissociated into hydroxide ions and hydrogen ions by the electrodes 6 and 7 for electrolytic processing made of a graphite intercalation compound. For example, the generated hydroxide ions are deposited on the surface of the workpiece 4. Supplied. As a result, the concentration of hydroxide ions in the vicinity of the workpiece 4 increases, and the atoms of the workpiece 4 react with the hydroxide ions to remove the surface layer of the workpiece 4.

このように、この例によっても、電解加工用電極6,7と被加工物(基板)4との間の距離を短くすることができる。したがって、陽極となる電解加工用電極6と陰極となる電解加工用電極7の間の距離も短くすることができ、電解加工用電極6,7の微細化や電解加工用電極6,7の形状のフレキシブル化に容易に対応することができる。また、陽極として用いる電解加工用電極6と陰極として用いる電解加工用電極7のそれぞれに触媒作用を持たせることで、陽極と陰極との間、すなわち電解加工用電極6,7間に生じる漏れ電流を抑制することができる。   Thus, also in this example, the distance between the electrodes 6 and 7 for electrolytic processing and the workpiece (substrate) 4 can be shortened. Therefore, the distance between the electrolytic processing electrode 6 serving as the anode and the electrolytic processing electrode 7 serving as the cathode can be reduced, and the size of the electrolytic processing electrodes 6 and 7 can be reduced and the shape of the electrolytic processing electrodes 6 and 7 can be reduced. Can be easily handled. In addition, by providing a catalytic action to each of the electrode 6 for electrolytic processing used as an anode and the electrode 7 for electrolytic processing used as a cathode, a leakage current generated between the anode and the cathode, that is, between the electrodes 6 and 7 for electrolytic processing. Can be suppressed.

この電解加工用電極(黒鉛層間化合物)6,7として使用する黒鉛(炭素材料)としては、一般には高配向性グラファイト(HOPG)を用いることが好ましいが、層間にアルカリ金属としてナトリウムを挿入する場合は、配向性の低いグラファイトを用いることが好ましい。ここで、炭素材料としては網状のものを用いることが好ましいことは、前述と同様である。   As the graphite (carbon material) used as the electrodes for electrolytic processing (graphite intercalation compounds) 6, 7, it is generally preferable to use highly oriented graphite (HOPG), but when sodium is inserted as an alkali metal between the layers. It is preferable to use graphite having low orientation. Here, it is the same as described above that it is preferable to use a net-shaped carbon material.

黒鉛層間化合物の合成方法としては、気相定圧反応法、液相接触反応法、固相加圧法、もしくは溶媒法が挙げられる。気相定圧反応法は、ガラス管の異なる場所にアルカリ金属とグラファイトを配置して真空下で封管し、グラファイトとアルカリ金属をそれぞれ温度制御して加熱する方法である。温度の設定により、アルカリ金属が挿入される位置や量が制御できる。例えばカリウムをHOPGに挿入する場合は、温度は250℃程度に設定すればよい。液相接触反応法は、液相のアルカリ金属を含む化合物とグラファイトを直接接触させて反応させる方法である。固相加圧法は、アルカリ金属とグラファイトを接触させた状態で5〜20気圧(0.5〜2MPa)程度に加圧し、かつ200℃程度に加熱する方法である。溶媒法は、アンモニアなどの溶媒にアルカリ金属を溶解させ、この溶液にグラファイトを浸漬させる方法である。   Examples of the method for synthesizing the graphite intercalation compound include a gas phase constant pressure reaction method, a liquid phase contact reaction method, a solid phase pressurization method, and a solvent method. The gas-phase constant-pressure reaction method is a method in which an alkali metal and graphite are arranged at different places in a glass tube, sealed under a vacuum, and the graphite and the alkali metal are heated at controlled temperatures. By setting the temperature, the position and amount of the alkali metal to be inserted can be controlled. For example, when inserting potassium into HOPG, the temperature may be set to about 250 ° C. The liquid phase contact reaction method is a method in which a compound containing a liquid phase alkali metal is brought into direct contact with graphite to cause a reaction. The solid phase pressurization method is a method in which an alkali metal and graphite are brought into contact with each other and pressurized to about 5 to 20 atm (0.5 to 2 MPa) and heated to about 200 ° C. The solvent method is a method in which an alkali metal is dissolved in a solvent such as ammonia and graphite is immersed in this solution.

なお、図示しないが、前述の図3乃至図5及び図6に示す実施の形態における導電性炭素材料34a,134aの表面にイオン解離性官能基34b,134bを化学修飾した電解加工用電極34,134の代わりに、前述のアルカリ金属を含む黒鉛層間絶縁膜からなる電解加工用電極を使用してもよいことは勿論である。
本発明では、加工に用いる液体として、純水以外に、添加剤として希薄な薬液を加えてもよい。例えば、2−プロパノール(IPA)を加工液の極性を調整するために加えてもよい。
これまで本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
Although not shown, the surface of the conductive carbon material 34a, 134a in the embodiment shown in FIGS. 3 to 5 and FIG. It is a matter of course that an electrode for electrolytic processing made of the graphite interlayer insulating film containing an alkali metal described above may be used instead of 134.
In the present invention, as a liquid used for processing, in addition to pure water, a dilute chemical solution may be added as an additive. For example, 2-propanol (IPA) may be added to adjust the polarity of the working fluid.
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that the present invention may be embodied in various forms within the scope of the technical idea.

(実施例1)
気相中で放電処理する方法により、導電性炭素材料にカルボキシル基を導入した電解加工用電極(実施例1)を作製した。つまり、約3cm離間した2本の棒状電極を予め水で湿らせておき、この電極間に100Vの交流電圧を印加しつつ、水で湿った状態の炭素棒試料を電極対の間に挿入することで、大気中でのアーク放電を起こさせ、このときのアーク放電による表面処理により、炭素棒試料(導電性炭素材料)の表面にカルボキシル基を導入した。このとき用いた炭素棒試料は、直径6mmのグラファイト製で、先端を球面状に丸めたものであり、水は超純水(18.2MΩ・cm)であった。この方法による表面処理を施した炭素棒試料(実施例1)について、炭素棒試料を陽極とし、白金平板を陰極として電流−電圧特性を測定した。実験装置構成については、超純水(18.2MΩ・cm)で満たされたアクリル製容器中で炭素棒試料と白金平板を対向させ、マイクロメータで両者の距離(電極間距離)を調整した後、両電極間に超純水を供給しつつ電圧を印加して、そのときに流れる電流値を読んだ。このときの電極間距離は15μmとした。
(Example 1)
An electrode for electrolytic processing in which a carboxyl group was introduced into a conductive carbon material (Example 1) was produced by a discharge treatment in a gas phase. That is, two rod-shaped electrodes separated by about 3 cm are wetted in advance with water, and an AC voltage of 100 V is applied between the electrodes, and a carbon rod sample wet with water is inserted between the electrode pairs. As a result, arc discharge was caused in the atmosphere, and carboxyl groups were introduced into the surface of the carbon rod sample (conductive carbon material) by surface treatment using the arc discharge. The carbon rod sample used at this time was made of graphite having a diameter of 6 mm, the tip of which was rounded into a spherical shape, and the water was ultrapure water (18.2 MΩ · cm). With respect to the carbon rod sample (Example 1) subjected to the surface treatment by this method, current-voltage characteristics were measured using the carbon rod sample as an anode and a platinum flat plate as a cathode. Regarding the experimental apparatus configuration, a carbon rod sample and a platinum flat plate were opposed to each other in an acrylic container filled with ultrapure water (18.2 MΩ · cm), and the distance between them (distance between electrodes) was adjusted with a micrometer. Then, a voltage was applied while supplying ultrapure water between both electrodes, and a current value flowing at that time was read. The distance between the electrodes at this time was 15 μm.

一方、アーク放電による表面処理を施す前の炭素棒試料(比較例1)について、実施例1と同様な方法で、陽極とした炭素棒試料と陰極とした白金平板との間を流れる電流−電圧特性を測定した。
この時の測定結果を図8に示す。この図8により、アーク放電による表面処理によりカルボキシル基が導入された炭素棒試料(実施例1)を使用すると、カルボキシル基が導入されていない炭素棒試料(比較例1)を使用した場合に比べ、60Vにおける電流値は10倍以上に増加していることが判る。
On the other hand, for the carbon rod sample before the surface treatment by arc discharge (Comparative Example 1), the current-voltage flowing between the carbon rod sample as the anode and the platinum plate as the cathode was obtained in the same manner as in Example 1. The properties were measured.
FIG. 8 shows the measurement results at this time. According to FIG. 8, when the carbon rod sample into which the carboxyl group was introduced by the surface treatment by the arc discharge (Example 1) was used, the carbon rod sample into which the carboxyl group was not introduced (Comparative Example 1) was used. , And 60 V are increased by a factor of 10 or more.

(実施例2)
電解液中で陽極酸化する方法により、導電性炭素材料にカルボキシル基を導入した電解加工用電極(実施例2)を作製した。つまり、炭素棒試料(導電性炭素材料)を陽極とし、20質量%−HSO水溶液中で12.5mA/cmの電流密度で30分間の陽極酸化を行った。対向電極はPtを用いた。用いた炭素棒試料は、直径6mmのグラファイト製で、先端を球面状に丸めたものである。実施例1と同様に、この陽極酸化によって表面処理を施した炭素棒試料(実施例2)について、実施例1と同様な条件で、電流−電圧特性を測定した。このときの電極間距離は15μmとした。
(Example 2)
An electrode for electrolytic processing (Example 2) in which a carboxyl group was introduced into a conductive carbon material was produced by anodizing in an electrolytic solution. That is, using a carbon rod sample (conductive carbon material) as an anode, anodization was performed for 30 minutes at a current density of 12.5 mA / cm 2 in a 20% by mass-H 2 SO 4 aqueous solution. Pt was used for the counter electrode. The carbon rod sample used was made of graphite having a diameter of 6 mm and the tip was rounded into a spherical shape. As in Example 1, the current-voltage characteristics of the carbon rod sample (Example 2) subjected to the surface treatment by anodic oxidation were measured under the same conditions as in Example 1. The distance between the electrodes at this time was 15 μm.

一方、電解液中で陽極酸化する前の炭素棒試料(比較例2)について、実施例1と同様な方法で、陽極とした炭素棒試料と陰極とした白金平板との間を流れる電流−電圧特性を測定した。
この時の測定結果を図9に示す。この図9により、電解液中で陽極酸化によりカルボキシル基が導入された炭素棒試料(実施例2)を使用すると、カルボキシル基が導入されていない炭素棒試料(比較例2)を使用した場合に比べ、電流値は10倍以上に増加していることが判る。
On the other hand, with respect to the carbon rod sample before anodic oxidation in the electrolytic solution (Comparative Example 2), in the same manner as in Example 1, the current-voltage flowing between the carbon rod sample as the anode and the platinum plate as the cathode was measured. The properties were measured.
FIG. 9 shows the measurement results at this time. According to FIG. 9, when the carbon rod sample into which a carboxyl group was introduced by anodic oxidation in the electrolytic solution (Example 2) was used, the carbon rod sample into which the carboxyl group was not introduced (Comparative Example 2) was used. In comparison, it can be seen that the current value has increased ten times or more.

次に、陽極酸化してカルボキシル基を導入した炭素棒試料(実施例2)を加工電極として用いて、シリコン基板上の銅薄膜の電解加工を行った。加工条件は、60V−1.07mAで10秒間、電極間距離25μmである。最大の加工深さは144nmで、この場合の電流効率は約48%であった。ここで、電流効率とは、全通過電気量のうち銅の加工に用いられた電気量の割合を表しており、その算出においては、銅が2価のイオン、もしくはイオン性の化合物となって溶出していると仮定した。   Next, electrolytic processing of a copper thin film on a silicon substrate was performed using a carbon rod sample (Example 2) into which a carboxyl group had been introduced by anodization as a processing electrode. The processing conditions are 60 V-1.07 mA for 10 seconds and a distance between electrodes of 25 μm. The maximum processing depth was 144 nm, and the current efficiency in this case was about 48%. Here, the current efficiency represents the ratio of the amount of electricity used for copper processing to the total amount of electricity passed, and in the calculation, copper is a divalent ion or an ionic compound. It was assumed to be eluted.

一方、陽極酸化してカルボキシル基を導入する前の炭素棒試料(比較例2)を加工電極として用いて、シリコン基板上の銅薄膜の電解加工を行った。この場合、60V−0.043mAで60秒間の加工における最大加工深さは12nmで、電流効率は約3.3%であった。
これによって、陽極酸化による表面処理を行った炭素棒試料(実施例2)を電解加工の加工電極に使用することで、陽極酸化による表面処理を行う前の炭素棒試料(比較例2)を電解加工の加工電極に使用する場合に比べて、電解加工における電流値が増加するばかりでなく、電流効率も向上させることが可能であることが判る。
On the other hand, using a carbon rod sample (Comparative Example 2) before anodizing and introduction of a carboxyl group as a processing electrode, electrolytic processing of a copper thin film on a silicon substrate was performed. In this case, the maximum processing depth in processing at 60 V-0.043 mA for 60 seconds was 12 nm, and the current efficiency was about 3.3%.
Thus, the carbon rod sample (comparative example 2) before the surface treatment by anodic oxidation is used by using the carbon rod sample (example 2) subjected to the surface treatment by anodic oxidation as a working electrode for electrolytic processing. It can be seen that not only the current value in the electrolytic processing is increased but also the current efficiency can be improved as compared with the case where the electrode is used as a processing electrode for processing.

(実施例3)
薬品に浸漬する方法により、導電性炭素材料にスルホ基を導入した電解加工用電極(実施例3)を作製した。つまり、炭素棒試料(導電性炭素材料)を210℃に加熱した97%硫酸に3時間浸漬した。このとき用いた炭素棒試料は、直径6mmのグラファイト製で、先端を球面状に丸めたものである。ESCA(Electron Spectroscopy for Chemical Analysis)を用いて、表面処理後の炭素棒試料(導電性炭素材料)の表面結合(硫黄原子の2p軌道のピーク)を分析した結果、C-SO-CまたはC-SO-Cの結合を表す170.5eVのピークと、C-SOHのピークを表す171.2eVのピークが観測された。このことから、導電性炭素材料の表面にはスルホ基が導入されていると考えられる。この、薬品に浸漬する方法によって表面処理を施した炭素棒試料(実施例3)について、実施例1と同様な条件で、電流−電圧特性を測定した。このときの電極間距離は15μmとした。
(Example 3)
An electrode for electrolytic processing in which a sulfo group was introduced into a conductive carbon material (Example 3) was produced by a method of dipping in a chemical. That is, the carbon rod sample (conductive carbon material) was immersed in 97% sulfuric acid heated to 210 ° C. for 3 hours. The carbon rod sample used at this time was made of graphite having a diameter of 6 mm, and the tip was rounded into a spherical shape. As a result of analyzing the surface bond (peak of 2p orbital of sulfur atom) of the carbon rod sample (conductive carbon material) after the surface treatment using ESCA (Electron Spectroscopy for Chemical Analysis), C-SO 3 -C or C A peak of 170.5 eV representing a bond of —SO 4 —C and a peak of 171.2 eV representing a peak of C—SO 3 H were observed. From this, it is considered that a sulfo group is introduced on the surface of the conductive carbon material. The current-voltage characteristics of the carbon rod sample (Example 3) subjected to the surface treatment by the method of dipping in a chemical were measured under the same conditions as in Example 1. The distance between the electrodes at this time was 15 μm.

一方、加熱した硫酸に浸漬してスルホ基を導入する前の炭素棒試料(比較例3)について、実施例1と同様な方法で、陽極とした炭素棒試料と陰極とした白金平板との間を流れる電流−電圧特性を測定した。
この時の測定結果を図10に示す。この図10により、硫酸浸漬による表面処理によりスルホ基が導入された炭素棒試料(実施例3)を使用すると、スルホ基が導入されていない炭素棒試料(比較例3)に比べ、電流値は6倍以上に増加していることが判る。
On the other hand, a carbon rod sample before immersion in heated sulfuric acid to introduce a sulfo group (Comparative Example 3) was performed in the same manner as in Example 1 between a carbon rod sample as an anode and a platinum flat plate as a cathode. Was measured.
FIG. 10 shows the measurement result at this time. According to FIG. 10, when the carbon rod sample into which the sulfo group was introduced by the surface treatment by sulfuric acid immersion (Example 3) was used, the current value was lower than that of the carbon rod sample into which the sulfo group was not introduced (Comparative Example 3). It turns out that it has increased more than 6 times.

次に、硫酸浸漬による表面処理によりスルホ基を導入した炭素棒試料(実施例3)を加工電極として用いて、シリコン基板上の銅薄膜の電解加工を行った。加工条件は40V−0.087mAで30秒間、電極間距離25μmである。最大の加工深さは144nmで、この場合の電流効率は約47%であった。
これらの結果は、前述の比較例2で得られた最大加工深さと電流効率よりも明らかに大きく、したがって、硫酸浸漬を用いた表面処理を行ってスルホ基を導入した炭素棒試料(実施例3)を電解加工の加工電極に使用することで、電解加工における電流値ばかりでなく、電流効率も向上させることが可能であることが判る。
Next, electrolytic processing of a copper thin film on a silicon substrate was performed using a carbon rod sample (Example 3) into which a sulfo group was introduced by surface treatment by sulfuric acid immersion as a processing electrode. The processing conditions are 40 V-0.087 mA for 30 seconds and a distance between the electrodes of 25 μm. The maximum processing depth was 144 nm, and the current efficiency in this case was about 47%.
These results are clearly larger than the maximum machining depth and the current efficiency obtained in Comparative Example 2 described above, and therefore, a carbon rod sample (Example 3) in which a sulfo group was introduced by performing a surface treatment using sulfuric acid immersion. It can be seen that the use of ()) as a working electrode for electrolytic processing can improve not only the current value in electrolytic processing but also the current efficiency.

(実施例4)
液相接触反応法を用いて、アルカリ金属を含む黒鉛層化合物からなる電解加工用電極(実施例4)を作製(合成)した。つまり、バーナーを用い、るつぼ中で加熱溶融した硝酸ナトリウム(融点308℃)中に12.5×34×0.5mmのグラファイト板を浸漬し、そのまま2〜3分間加熱した。その後、グラファイト板をるつぼから取り出し空気中で放冷した。この方法により、グラファイトの層間にナトリウムを挿入した黒鉛層化合物からなる電極(実施例4)を作製した。そして、図11に示すように、アクリル容器340内に配置された一対の平行平板電極310,320の一方の電極310に、この黒鉛層化合物からなる電極(実施例4)を使用し、他方の電極320に白金板を使用して、電源330の陽極と陰極にそれぞれ接続し、超純水(18.2MΩ・cm)350中での電流−電圧特性を測定した。このときの電極間距離は12μm、対向面積は約0.4cmであった。
(Example 4)
An electrode for electrolytic processing (Example 4) made of a graphite layer compound containing an alkali metal was produced (synthesized) by using a liquid phase contact reaction method. That is, a graphite plate of 12.5 × 34 × 0.5 mm was immersed in sodium nitrate (melting point: 308 ° C.) melted by heating in a crucible using a burner, and heated as it was for 2 to 3 minutes. Thereafter, the graphite plate was taken out of the crucible and allowed to cool in air. According to this method, an electrode (Example 4) made of a graphite layer compound in which sodium was inserted between graphite layers was produced. Then, as shown in FIG. 11, an electrode made of the graphite layer compound (Example 4) is used for one electrode 310 of a pair of parallel plate electrodes 310 and 320 arranged in the acrylic container 340, and the other is used. Using a platinum plate as the electrode 320, the electrode was connected to the anode and the cathode of the power supply 330, respectively, and the current-voltage characteristics in ultrapure water (18.2 MΩ · cm) 350 were measured. At this time, the distance between the electrodes was 12 μm, and the facing area was about 0.4 cm 2 .

一方、溶融法を用いて、層間にナトリウムを挿入する前のグラファイト板からなる電極(比較例4)を前述の平行平板電極310,320の一方の電極310に使用して、前述と同様にして、電流−電圧特性を測定した。   On the other hand, using a melting method, an electrode made of a graphite plate before inserting sodium between layers (Comparative Example 4) was used as one of the parallel plate electrodes 310 and 320 in the same manner as described above. And the current-voltage characteristics were measured.

この時の測定結果を図12に示す。この図12により、グラファイトの層間にナトリウムを挿入した黒鉛層化合物からなる電極(実施例4)を使用すると、電流が150Vで50mA(125mA・m)弱となり、層間にナトリウムを挿入する前のグラファイトからなる電極(比較例4)を使用した時に比べ、50倍近い電流が得られることが判る。したがって、このように表面処理を行って、グラファイトの層間にナトリウムを挿入することにより、超純水の水素イオン、水酸化物イオンへの解離が促進されていると考えられる。 FIG. 12 shows the measurement results at this time. According to FIG. 12, when an electrode made of a graphite layer compound in which sodium was inserted between graphite layers (Example 4) was used, the current became slightly less than 50 mA (125 mA · m 2 ) at 150 V, and before the sodium was inserted between the layers. It can be seen that a current nearly 50 times as high as that obtained when using an electrode made of graphite (Comparative Example 4). Therefore, it is considered that dissociation of ultrapure water into hydrogen ions and hydroxide ions is promoted by performing the surface treatment in this way and inserting sodium between graphite layers.

なお、実施例4においては、硝酸ナトリウムを加熱溶融した液体中にグラファイトを浸漬したが、浸漬する液体としては硝酸カリウムなど、アルカリ金属を含む塩なら何でもよい。   In Example 4, graphite was immersed in a liquid in which sodium nitrate was heated and melted, but any liquid containing an alkali metal, such as potassium nitrate, may be immersed in the liquid.

従来のイオン交換体を用いた電解加工装置を示す模式図である。It is a schematic diagram which shows the electrolytic processing apparatus using the conventional ion exchanger. 本発明に係る電解加工用電極を用いた電解加工装置の一例を示す模式図である。It is a schematic diagram which shows an example of the electrolytic processing apparatus using the electrode for electrolytic processing which concerns on this invention. 本発明に係る電解加工用電極を用いた電解加工装置の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the electrolytic processing apparatus using the electrode for electrolytic processing which concerns on this invention. 図3に示す電解加工装置の加工装置本体を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a processing apparatus main body of the electrolytic processing apparatus shown in FIG. 3. 図4に示す加工装置本体の主要部を示す斜視図である。FIG. 5 is a perspective view illustrating a main part of the processing apparatus main body illustrated in FIG. 4. 本発明に係る電解加工用電極を用いた電解加工装置の更に他の例の主要部を示す斜視図である。It is a perspective view which shows the principal part of further another example of the electrolytic processing apparatus using the electrode for electrolytic processing which concerns on this invention. 本発明に係る他の電解加工用電極を用いた電解加工装置の一例を示す模式図である。It is a schematic diagram which shows an example of the electrolytic processing apparatus using another electrode for electrolytic processing which concerns on this invention. 実施例1と比較例1における電流−電圧特性を示すグラフである。4 is a graph showing current-voltage characteristics in Example 1 and Comparative Example 1. 実施例2と比較例2における電流−電圧特性を示すグラフである。9 is a graph showing current-voltage characteristics in Example 2 and Comparative Example 2. 実施例3と比較例3における電流−電圧特性を示すグラフである。9 is a graph showing current-voltage characteristics in Example 3 and Comparative Example 3. 実施例4と比較例4における電流−電圧特性を測定するのに使用する装置を模式的に示す図である。FIG. 13 is a diagram schematically illustrating an apparatus used for measuring current-voltage characteristics in Example 4 and Comparative Example 4. 実施例4と比較例4における電流−電圧特性を示すグラフである。9 is a graph showing current-voltage characteristics in Example 4 and Comparative Example 4.

符号の説明Explanation of reference numerals

1,2,34,134 電解加工用電極
1a,2a,34a,134a 導電性炭素材料
1b,2b,34b,134b イオン解離性官能基
3,38 電源
4 被加工物
5 液体
6,7 電解加工用電極(黒鉛層間化合物)
10 超純水
12 加工槽
14 加工装置本体
16 廃液タンク
18 超純水循環・精製部
20 高圧ポンプ
22 超純水循環・精製装置
24 プランジャポンプ
26 圧力トランスミッタ
28 高圧超純水供給装置
30 基板ホルダ
32 静圧軸受
36 回転軸
40 超純水ノズル
1, 2, 34, 134 Electrodes for electrolytic processing 1a, 2a, 34a, 134a Conductive carbon materials 1b, 2b, 34b, 134b Ion dissociative functional groups 3, 38 Power supply 4 Workpiece 5 Liquid 6, 7 For electrolytic processing Electrode (graphite intercalation compound)
DESCRIPTION OF SYMBOLS 10 Ultrapure water 12 Processing tank 14 Processing device main body 16 Waste liquid tank 18 Ultrapure water circulation / purification unit 20 High pressure pump 22 Ultrapure water circulation / purification device 24 Plunger pump 26 Pressure transmitter 28 High pressure ultrapure water supply device 30 Substrate holder 32 Hydrostatic bearing 36 Rotating shaft 40 Ultrapure water nozzle

Claims (6)

導電性炭素材料の表面にイオン解離性官能基を化学修飾したことを特徴とする電解加工用電極。   An electrode for electrolytic processing, wherein a surface of a conductive carbon material is chemically modified with an ion dissociable functional group. 前記イオン解離性官能基は、スルホ基またはカルボキシル基であることを特徴とする請求項1記載の電解加工用電極。   The electrode according to claim 1, wherein the ion-dissociable functional group is a sulfo group or a carboxyl group. 前記イオン解離性官能基は、第4級アンモニウム基、第1〜3級アミノ基から選択される少なくとも1種類のイオン交換基であることを特徴とする請求項1記載の電解加工用電極。   The electrode according to claim 1, wherein the ion-dissociable functional group is at least one kind of ion exchange group selected from a quaternary ammonium group and a tertiary amino group. アルカリ金属を含む黒鉛層間化合物からなることを特徴とする電解加工用電極。   An electrode for electrolytic processing, comprising an intercalated graphite compound containing an alkali metal. 基板を保持する基板ホルダと、
加工電極と、
前記基板に給電する給電電極と、
前記加工電極と前記給電電極との間に電圧を印加する電源と、
前記基板と前記加工電極との間に液体を供給する液体供給部とを備え、
前記加工電極及び前記給電電極の少なくとも一方として請求項1乃至4のいずれか一項に記載の電解加工用電極を用い、
前記基板を前記加工電極に近接させて、液体の存在下において前記基板の表面の電解加工を行うことを特徴とする電解加工装置。
A substrate holder for holding the substrate,
Machining electrode,
A power supply electrode for supplying power to the substrate,
A power supply for applying a voltage between the processing electrode and the power supply electrode,
A liquid supply unit that supplies a liquid between the substrate and the processing electrode,
Using the electrode for electrolytic processing according to any one of claims 1 to 4 as at least one of the processing electrode and the power supply electrode,
An electrolytic processing apparatus, wherein the substrate is brought close to the processing electrode, and the surface of the substrate is subjected to electrolytic processing in the presence of a liquid.
基板に給電電極により給電し、前記給電電極と加工電極との間に電圧を印加し、前記加工電極を前記基板に近接させて、液体の存在下において前記基板の表面の電解加工を行う電解加工方法において、
前記加工電極及び前記給電電極の少なくとも一方として請求項1乃至4のいずれか一項に記載の電解加工用電極を用いることを特徴とする電解加工方法。
An electrolytic process in which power is supplied to a substrate by a power supply electrode, a voltage is applied between the power supply electrode and the processing electrode, the processing electrode is brought close to the substrate, and the surface of the substrate is subjected to electrolytic processing in the presence of a liquid. In the method,
An electrolytic processing method, comprising using the electrode for electrolytic processing according to any one of claims 1 to 4 as at least one of the processing electrode and the power supply electrode.
JP2004068806A 2002-10-08 2004-03-11 Electrode for electrochemical machining, and electrochemical machining device and method Withdrawn JP2004299046A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004068806A JP2004299046A (en) 2003-03-14 2004-03-11 Electrode for electrochemical machining, and electrochemical machining device and method
US11/076,067 US20050183963A1 (en) 2002-10-08 2005-03-10 Electrode for electrolytic processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003070898 2003-03-14
JP2004068806A JP2004299046A (en) 2003-03-14 2004-03-11 Electrode for electrochemical machining, and electrochemical machining device and method

Publications (1)

Publication Number Publication Date
JP2004299046A true JP2004299046A (en) 2004-10-28

Family

ID=33421712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068806A Withdrawn JP2004299046A (en) 2002-10-08 2004-03-11 Electrode for electrochemical machining, and electrochemical machining device and method

Country Status (1)

Country Link
JP (1) JP2004299046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539328A (en) * 2007-09-14 2010-12-16 イクストルード ホーン ゲーエムベーハー Electrolyte for electrochemical processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539328A (en) * 2007-09-14 2010-12-16 イクストルード ホーン ゲーエムベーハー Electrolyte for electrochemical processing

Similar Documents

Publication Publication Date Title
JP2830733B2 (en) Electrolytic water generation method and electrolysis water generation mechanism
US7651625B2 (en) Catalyst-aided chemical processing method and apparatus
US6743349B2 (en) Electrochemical machining method and apparatus
US6875335B2 (en) Electrolytic machining method and apparatus
JP4535822B2 (en) Conductive diamond electrode and manufacturing method thereof
KR100712389B1 (en) The process and the apparatus for cleansing the electronic part using functional water
JP2008121099A (en) Catalyst-aided chemical processing method and apparatus
JP3313263B2 (en) Electrolytic water generation method, its generation apparatus, and semiconductor manufacturing apparatus
JPH06260480A (en) Method and device for wet treatment
US20050183963A1 (en) Electrode for electrolytic processing
JP2581403B2 (en) Wet processing method and processing apparatus
CN1802456A (en) Method for regenerating etching solutions containing iron for the use in etching or pickling copper or copper alloys and an apparatus for carrying out said method
JP2006502310A (en) Electrolytic processing equipment
JP2007245047A (en) Wastwater treatment system
JP2004299046A (en) Electrode for electrochemical machining, and electrochemical machining device and method
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
TWI615363B (en) Method for decreasing the concentration of at least one contamination cation in an electrolytic solution
JP4053805B2 (en) Functional water, production method and production apparatus thereof
JP3980518B2 (en) Wet cleaning processing apparatus and wet cleaning processing method
JP4167470B2 (en) Method for producing conductive organic thin film
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JP3953400B2 (en) Ion dissociation promotion method, electrode for electrolytic processing, electrolytic processing method and apparatus
TWI288681B (en) Electrode for electrolytic processing, and electrolytic processing apparatus and electrolytic processing method using the same
TW200914377A (en) Process &amp; apparatus
CN108940206A (en) A kind of carbon-based adsorbent material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Effective date: 20080827

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090810