JP2004298969A - Super abrasive grain blade - Google Patents

Super abrasive grain blade Download PDF

Info

Publication number
JP2004298969A
JP2004298969A JP2003092009A JP2003092009A JP2004298969A JP 2004298969 A JP2004298969 A JP 2004298969A JP 2003092009 A JP2003092009 A JP 2003092009A JP 2003092009 A JP2003092009 A JP 2003092009A JP 2004298969 A JP2004298969 A JP 2004298969A
Authority
JP
Japan
Prior art keywords
abrasive
abrasive grains
outer peripheral
blade
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003092009A
Other languages
Japanese (ja)
Other versions
JP4371689B2 (en
Inventor
Hisao Momokita
尚生 百北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Diamond Industrial Co Ltd
Original Assignee
Asahi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Diamond Industrial Co Ltd filed Critical Asahi Diamond Industrial Co Ltd
Priority to JP2003092009A priority Critical patent/JP4371689B2/en
Publication of JP2004298969A publication Critical patent/JP2004298969A/en
Application granted granted Critical
Publication of JP4371689B2 publication Critical patent/JP4371689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a super abrasive grain blade with an outer peripheral end side surface capable of substantially maintaining initial thickness until the blade becomes unusable due to abrasive longevity of an outer peripheral cutting work surface. <P>SOLUTION: This super abrasive grain blade is constituted by mounting chips including diamond abrasive grains or cubic crystalloidal boron abrasive grains on an outer peripheral part of a disc type base plate, a plurality of abrasive grain connected rows F from an inner edge of the chips in the outer edge direction of the chips on a chip side surface 2 of the base plate outer peripheral part and the diamond abrasive grains or the cubic crystalloidal boron abrasive grains are fastened on each of the abrasive grain connected rows F. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、アスファルト、コンクリート、石材、レンガ、セラミックスその他硬質材料を切断するための回転円板式ブレードに関する。さらに詳しくは、金属製基板の外周部及び外周端側面に砥粒を含有してなる回転円板式ブレードに関する。
【0002】
【従来の技術】
従来からコンクリートや石材などを切断するためのブレードには、硬度の高い素材、例えば、ダイヤモンドや立方晶窒化ホウ素(CBN)などの超砥粒を金属製基板台金の外周部及び/または、外周端側壁面に結合材で固着したブレードが使用されている。コンクリートや石材など大型の材料を切断するためのブレードには、切り粉の排出を容易にするため、通常、金属製基板台金の外周部に一定間隔及び幅で、基板の中心から放射状に切り込み溝を設けたセグメント式のブレードが使用され、一般にセグメントソーと呼ばれている。この方式では、各セグメントの外周に研削用砥粒を結合材で固着したチップが使用され、セグメントチップと呼ばれている。
従来のチップは、図4に示すように、砥粒をほぼ均一に埋め込んで使用しているため、外周の切断作用面の摩耗につれて外周端側面も摩耗していき、しかも、厚さ方向に対し凸型になる欠点があった。このように、側面が摩耗して行くと側面が薄くなり、基板の台金が切削対象材料と接触したり、また切削粉の排出悪化を起こすことになる。この現象はセグメント式のブレードに限らず、基板の台金の外周部に砥粒を環状に固着させたコンティニアス式ブレードでも同様に起こる。この結果、外周の切断作用面が寿命に達するより前に、クリアランス不足でブレードが使用不能となるか、切断精度悪化及び切れ味低下が起こることになる。また、コンクリートやアスファルトの切断において、比較的切断深さが深い場合には、外径の小さいブレードから順に溝を入れ、最終的に必要な深さを得るためのブレードにより切り落としを行うが、このとき、先行ブレードの側面が摩耗したことにより刃厚が薄くなっていた場合、後続ブレードの側面摩耗を促進し、外周の切断作用面が寿命に達する前にクリアランス不足でブレードが使用不能となる。
このような欠点を補うために、両側壁面の砥粒の含有密度を増加させるか、耐摩耗性の高い結合材を使用してサンドイッチ状に積層成形する方法が取られている。例えば、セグメントチップの側面上に、内部に含有されるダイヤモンド砥粒とほぼ同径の耐摩耗性粒子を共存させ表面に分散現出させる方法が提案されている(特公平7−12592号公報)。この方法の耐摩耗性粒子は切削作用がないか、または、非常に弱い材質のものを使用しているため、切れ味の低下を免れない。また、セグメントチップの切断方向に対して直角方向に積層構造にして、この積層構造の両側面層を中間層より砥粒の含有密度を高集中度にするか、または耐摩耗性結合材を使用する方法が提案されている(特開平9−267267号公報)。しかし、この方法は、積層にするためチップの製造工程が繁雑になり製造コストも上昇する。さらに、硬度の異なる少なくとも2種の砥粒層部材を使用する方法が提案されている(実公昭60−12694号公報)。この技術は、硬度の低い砥粒は摩耗が大きく、切れ味の維持をできるものではない。
これらの方法では、砥粒がランダムか、ほぼ等間隔密度で配布されていることから、切れ味の維持と厚み寸法維持とを両立して実現することは困難である。
この他、切れ味の変動を一定にするために、セグメント内の砥粒の層をブレードの円周に対して傾斜させる方法が提案されている(特開平3−161278号公報)。この技術は切れ味の変動を一定にするためには有効であるが、砥粒はランダムに等間隔密度に含有されており、ブレード外周側壁摩耗防止効果は従来品と同程度である。
【特許文献1】
特公平7−12592号公報
【特許文献2】
特開平9−267267号公報
【特許文献3】
実公昭60−12694号公報
【特許文献4】
特開平3−161278号公報
【0003】
【発明が解決しようとする課題】
本発明は、外周の切断作用面の摩耗寿命によってブレードが使用不能となるまで、外周端側面は実質的に初期の厚さを保ち、チップ外周切断作用面への水回りを改善し、かつ、切れ味が低下しないことを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者は、鋭意研究の結果、ブレード外周端側面の砥粒層表面に特定の粒径の砥粒を特定のパターンにより配列することによって、前記課題を解決できることを見出し本発明を完成するに至った。
すなわち本発明は、
(1)円板状の基板の外周部にダイヤモンド砥粒又は立方晶窒化ホウ素砥粒を含有するチップを取り付けてなる超砥粒ブレードにおいて、該基板外周部のチップ側面にチップの内縁からチップの外縁方向に複数の砥粒連結列を設け、該砥粒連結列の各列にダイヤモンド砥粒又は立方晶窒化ホウ素砥粒を固着してなることを特徴とする超砥粒ブレード、
(2)砥粒連結列に固着した砥粒の平均粒径が、チップ中に含有する砥粒の平均粒径の1.0〜2.0倍であることを特徴とする第1項記載の超砥粒ブレード、
(3)円板状の基板がセグメント型であることを特徴とする第1項又は第2項記載の超砥粒ブレード、
(4)円板状の基板の外周面及び外周部側面に砥粒を単層で固着してなる超砥粒ブレードであって、該外周部側面の下縁から上縁方向に複数の砥粒連結列を設け、該砥粒連結列の各列にダイヤモンド砥粒又は立方晶窒化ホウ素砥粒を固着してなることを特徴とする超砥粒ブレード、及び
(5)砥粒連結列に固着した砥粒の平均粒径が、外周部側面に単層で固着してなる砥粒の平均粒径の1.0〜2.0倍であることを特徴とする第4項記載の超砥粒ブレード、を提供するものである。
【0005】
【発明の実施の形態】
本発明に用いるダイヤモンド砥粒は、例えば天然、または合成ダイヤモンド又は金属被覆合成ダイヤモンドの砥粒などを使用することができる。本発明に用いるダイヤモンド砥粒の粒度及び粒度分布は、例えば、JIS B 4130により分級規定されたダイヤモンド砥粒の粒度及び粒度分布のものを、本発明超砥粒ブレードの用途に応じて適宜選択して使用することができる。
本発明に用いる立方晶窒化ホウ素砥粒は、CBNと略称されるものであって、立方晶窒化ホウ素又は金属被覆立方晶窒化ホウ素を使用することができる。本発明に用いる立方晶窒化ホウ素砥粒の粒度及び粒度分布は、例えば、JIS B 4130により分級規定された立方晶窒化ホウ素の粒度及び粒度分布のものを、本発明超砥粒ブレードの用途に応じて適宜選択して使用することができる。
本発明に用いる円板状の基板は、本発明の超砥粒ブレードを支えるものであって、円板状の基板の中心に取り付けられた駆動軸によって回転することができる。通常、円板状の基板の基本構成には金属製円板が使用され、台金、コアまたはベースとも呼ばれる。
【0006】
本発明は、第一態様及び第二態様の2態様よりなる。第一態様は本発明に用いる円板状の基板の外周部外縁に砥粒を含有するチップを固着させたものであり、第二態様は、チップを使用せず、円板状基板の台金外周部の外周面及び外周部側面に砥粒を単層で固着させたものである。
本発明第一態様の超砥粒ブレードは、硬度の極めて高いダイヤモンドや立方晶窒化ホウ素(CBN)による砥粒(超砥粒)を結合材とともに含有する砥粒層を円板状の基板の外周部外縁に固着したブレードである。
本発明第一態様の超砥粒ブレードは、円板状の基板の外周部外縁全面に、砥粒層を固着したコンティニアス型、又は、砥粒層を相互に一定の間隔をあけて分割配置したセグメント型にして、固着作製することができる。
本発明第一態様の超砥粒ブレードに用いるチップは、本発明に用いる砥粒と結合材との混合物を金型、カーボン型などに入れ、圧縮成形し、この粉末の融点以下の温度で加熱加圧して結合固着した焼結体として作製することができる。また、円板状の基板の外周外縁に本発明に用いる砥粒を結合材とともに焼結固着して、又は、チップをろう付け、溶接、接着して作製することができる。
本発明第一態様に用いるチップの結合材は、チップの成形に際して本発明に用いる砥粒間を濡らし強固に形状維持し、また、円板状の基板に砥粒層を強固に固着させることができる。
本発明第一態様に用いるチップの結合材は、本発明の目的を達成できるものであれば、通常超砥粒ブレードに用いることのできるチップの結合材を特に制限することなく、本発明超砥粒ブレードの用途に応じて適宜選択して使用することができる。例えば、レジンボンド、メタルボンド、ビトリファイドボンドなどを使用することができる。
【0007】
以下に、図面によって本発明をさらに詳細に説明する。図4は、本発明超砥粒ブレードAとの違いを示す従来品超砥粒ブレードの側面図及び刃先図である。
本発明第一態様の超砥粒ブレードAは、図1(a)に示すようなコンティニアス型、又は図1(b)に示すようなセグメント型のものを使用することができる。
本発明第一態様の超砥粒ブレードAに用いる円板状の基板の外周部外縁には、図2又は図3に示すようなチップ1を固着して設けることができる。
本発明第一態様の超砥粒ブレードAは、切断作用を行う外周部外縁のチップ刃先3と切断作用を補完し切断対象材料の切り粉の排出に寄与する外周部外縁のチップ側面2を有するチップ1を固着することができる。切り粉の排出が不十分であると、チップが発熱し、切れ味が悪化し、ブレードチップ刃先3は切断対象内部へ進行することができなくなる。
本発明第一態様の超砥粒ブレードAは、切り粉の排出をさらによくするために、円板状の基板であるホイール台金Cの外周部に一定の間隔ごとに、外周部外縁から基板の中心方向に一定の長さ及び幅の割り溝Bを設け、外周部をセグメント型にすることができる。
本発明第一態様に用いるチップ1は、厚さTが本発明のホイール台金C外周縁部のホイール台金の厚さEと同じか、これより大きいものを使用する必要がある。本発明のチップの厚さTがホイール台金の厚さEより薄いと、チップ側面が台金の外周縁部より外部に張り出すこと(クリアランス)ができず、切り粉の排出が悪く、かつ、対象材料の切断進行にともなってホイール台金Cの外縁部が対象材料と接触し切断進行が困難になる。本発明第一態様に用いるチップの厚さT、クリアランスの大きさはは、切断対象材料に応じて適宜選択することができる。本発明第一態様に用いるチップ1のチップ側面2は、リムと呼ばれる部分であって、切断作用を補完し切断対象材料の切り粉を排出し、前記クリアランスを常に保持する重要な機能を有する。チップ側面2の外縁は切削作用面であり、チップ側面2の内縁は基板中心方向に向ってチップ1の端縁であり、この外縁と内縁の間の長さが砥粒層の深さと呼ばれるものであって、チップの高さXに相当するもので、切断対象材料に応じて適宜選択することができる。
本発明第一態様に用いるチップ側面2には、この機能を現出するために、本発明に用いるチップ1の内縁から外縁方向に向って、一定間隔ごとに砥粒連結列Fを設けることができる。該砥粒連結列Fの形状は本発明の目的を達成することのできるものであれば、特に制限することなく各種のパターンのものを使用することができる。例えば、図2に示すように、チップ1の内縁から外縁方向に向って放射状に直線又は曲線状態にして、チップ側面2にチップの内縁から外縁まで砥粒連結列Fを設けることができる。砥粒を一線状かつ放射状に近い角度に配列することにより同一砥粒数において回転方向に対する砥粒間隔が広くなる。このため、砥粒間隔に起因する切れ味の低下が起こり難くなる。
また、図3に示すように、ホイールの回転方向に対して傾斜角度θが、例えば、30度又は45度などで直線又は曲線状にチップ側面2にチップの内縁から外縁まで砥粒連結列Fを設けることができる。放射状を傾斜角度0度とした場合、この角度が大きくなるにつれ、回転方向に砥粒が連結した部分が存在することになり、切れ味への影響が懸念されるため、放射状とすることが好ましく、傾斜させた場合でも45度までにとどめることが望ましい。
【0008】
本発明第一態様に用いるチップ側面2の砥粒連結列Fの形成は、チップ側面用パンチ(圧着用具)に砥粒連結列用の砥粒を接着(仮固定)しておき、チップ両側面用パンチの中間部に、結合材(例えばメタルパウダー)中に均一に分散された砥粒含有混合物を充填し、又は砥粒含有混合物を成形しグリーンコンパクトとして充填し、焼結することによって作製することができる。
本発明第一態様に用いる砥粒連結列Fは、砥粒同士を隣接して列を形成することができる。この隣接砥粒連結列を放射線状とすることで、同一砥粒数において回転方向に対する砥粒間隔が最大となり、切れ味の低下が起こり難くなる。また、隣接する砥粒同士を隔離して配置することもできるが、同一砥粒数における回転方向の砥粒間隔は前記の場合と比較すると狭くなるため、隔離する距離は平均砥粒径以内にとどめることが望ましい。
本発明第一態様に用いる砥粒連結列Fは、ホイールの大きさ、1個のセグメントチップの長さ、及びチップの高さに応じて適宜選択された砥粒連結列の間隔dで配置することができる。
本発明第一態様に用いる砥粒連結列Fの砥粒の平均粒径は、チップ中の分散砥粒4の平均粒径の1.0〜2.0倍、好ましくは、1.05〜1.50倍のものを使用することができる。砥粒連結列の砥粒の平均粒径がチップ中に含有する分散砥粒の平均粒径の1.0倍未満のものは、側面に現出している分散砥粒よりも突出させることが困難であり、仮に突出させる事ができても埋め込み深さが浅いため、容易に脱落してしまう。また、2.0倍を超えるものは、大き過ぎて、チップ中に含有する分散砥粒の研削効果を引き出すことができない。
【0009】
本発明第一態様に用いる砥粒連結列Fの砥粒の露出は、図2に示すように、チップ中の分散砥粒4がチップ側面2上に露出している高さと同等、若しくは、それ以上の高さで露出している必要がある。砥粒連結列の砥粒の露出している高さがチップ中に含有する砥粒の露出高さより低いとチップ外周切断作用面への水回りは改善されないため、本発明の効果を発現できない。
本発明第一態様に用いる外周部がセグメント型の超砥粒ブレードAは、円板状の基板であるホイール台金Cの外周部に一定の間隔ごとに、外周部外縁から基板の中心方向に一定の長さ及び幅の割り溝Bを設け、外周部のチップ1を分割(セグメント)配置したものである。コンクリートや石材などを切断する場合、切り粉の排出をよくすることができる。このタイプのブレードをセグメントソーと呼んでいる。
本発明第二態様に用いる超砥粒ブレードは、外周部外縁/外周部側面上に電着等で単層に固着することで、切れ味が向上するとともに切り粉の排出を促進する効果を有する。
このような砥粒層がホイール台金外周部上に固着してなる本発明第二態様の超砥粒ブレードは、小型のホイールを使用する電動工具などに特に好適に使用することができる。
【0010】
【実施例】
以下に、図面による説明とともに、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例及び図面によりなんら限定されるものではない。
実施例1
下記仕様のセグメントソーを使用した。
ホイールの外径Dが480mm、ホイール台金の厚さEが2.6mmであり、チップの厚さTが3.40mm、チップの高さXが12mm、チップの長さLが40mm、砥粒連結列の間隔dが8mmであり、チップ内縁から外縁方向に放射状に直線状体でチップ側面に砥粒連結列Fが形成され、砥粒連結列の砥粒は平均粒径500μm(♯30)の合成ダイヤモンドを使用し、1砥粒連結列に使用した砥粒数は平均24個であり、これを隣接砥粒同士が密着するようにパンチに仮固定し、焼結した。チップ中の分散砥粒は平均粒径400μm(♯40)の合成ダイヤモンドを使用し、結合材Co系ボンドによって、砥粒の含有密度が240mg/cmのチップを作製した。
切断装置は移動式エンジンカッターを使用した。主軸回転速度は1620/分(周速2326m/分)とした。切断対象材料は鉄筋径10mm、ピッチ100mmの鉄筋コンクリート舗装を使用した。切り込みは130mmの一発切りであり、380mを連続切断した。切れ味の評価は切断可能送り速度にて比較し、寿命の評価は切断距離に対するチップ摩耗高さにて比較した。
試験結果は、対象とする比較例1のノーマルタイプの結果を100%とするとき、切れ味は106%、寿命は105%であった。チップの高さの摩耗は7.6mm(比較例1は8.0mm)であり、残存チップの平均厚さは3.38mm(比較例1は3.20mm)であった。
実施例2
砥粒連結列の間隔dが8mmであり、砥粒連結列の傾斜角度θが45°の傾斜直線とし、1砥粒連結列に使用した砥粒数を平均34個とした以外は、実施例1と同じ条件で行った。
試験結果は、対象比較例1のノーマルタイプの結果を100%として、切れ味は102%、寿命は110%であった。チップの高さの摩耗は7.3mm(比較例1は8.0mm)であり、残存チップの平均厚さは3.39mm(比較例1は3.20mm)であった。
比較例1
砥粒連結列を設けないこと以外は、実施例1と同じ条件で行った。
試験結果は、比較のためのノーマルタイプの基準例として、切れ味は100%、寿命は100%とした。高さの摩耗は8.0mmであり、残存厚さは3.20mmであった。
【0011】
【発明の効果】
本発明によれば、超砥粒ブレードの切断作用面の摩耗寿命によってブレードが使用不能となるまで、外周端側面は実質的に初期の厚さを保ち、チップ外周切断作用面への水回りを改善し、かつ、切れ味が低下しない超砥粒ブレードを提供できる。
【図面の簡単な説明】
【図1】図1(a)は、コンティニアス型超砥粒ブレードの側面図及び断面図を示す。
図1(b)は、セグメント型超砥粒ブレードの側面図及び断面図を示す。
【図2】図2は、放射直線状砥粒連結列チップの側面図及び刃先図を示す。
【図3】図3は、45°傾斜直線状砥粒連結列チップの側面図及び刃先図を示す。
【図4】図4は、従来品超砥粒ブレードの側面図及び刃先図を示す。
【符号の説明】
1 チップ
2 チップ側面
3 チップ刃先
4 チップ中の分散砥粒
A 超砥粒ブレード
B 割り溝
C ホイール台金
D ホイールの外径
E ホイール台金の厚さ
F 砥粒連結列
d 砥粒連結列の間隔
θ 砥粒連結列の傾斜角度
L チップの長さ
T チップの厚さ
X チップの高さ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotating disk type blade for cutting asphalt, concrete, stone, brick, ceramics and other hard materials. More specifically, the present invention relates to a rotating disk type blade containing abrasive grains on the outer peripheral portion and the outer peripheral side surface of a metal substrate.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a blade having a high hardness, for example, a super-abrasive such as diamond or cubic boron nitride (CBN) is used for a blade for cutting concrete, stone, or the like using an outer peripheral portion and / or outer peripheral surface of a metal substrate base metal. A blade fixed to the end wall surface with a bonding material is used. The blades for cutting large materials such as concrete and stone are usually cut radially from the center of the board at regular intervals and widths around the outer periphery of the metal base metal to facilitate the removal of chips. A segment type blade provided with a groove is used, and is generally called a segment saw. In this method, a chip in which abrasive grains for grinding are fixed to the outer periphery of each segment with a binder is used, and is called a segment chip.
As shown in FIG. 4, the conventional chip uses abrasive grains embedded almost uniformly, so that the outer peripheral end side surface also wears as the outer peripheral cutting action surface wears, and moreover, in the thickness direction. There was a disadvantage of becoming convex. As described above, when the side surface is worn, the side surface becomes thin, and the base metal of the substrate comes into contact with the material to be cut, and the discharge of the cutting powder is deteriorated. This phenomenon occurs not only in a segment type blade but also in a continuous type blade in which abrasive grains are annularly fixed to an outer peripheral portion of a base metal of a substrate. As a result, the blade becomes unusable due to insufficient clearance, or the cutting accuracy deteriorates and the sharpness deteriorates before the outer peripheral cutting action surface reaches the end of its life. Also, in cutting concrete or asphalt, if the cutting depth is relatively deep, grooves are cut in order from the blade with the smaller outer diameter, and the blade is cut off with the blade to finally obtain the required depth, but this is done. At this time, when the blade thickness is reduced due to the wear of the side surface of the preceding blade, the side surface wear of the subsequent blade is promoted, and the blade becomes unusable due to insufficient clearance before the cutting action surface on the outer periphery reaches the end of its life.
In order to compensate for such a defect, a method of increasing the density of abrasive grains on both side walls or forming a laminate in a sandwich shape using a binder having high wear resistance has been adopted. For example, a method has been proposed in which abrasion-resistant particles having substantially the same diameter as diamond abrasive grains contained therein coexist on the side surfaces of the segment chips and disperse and appear on the surface (Japanese Patent Publication No. 7-12592). . Since the wear-resistant particles of this method have no cutting action or are made of a very weak material, deterioration of sharpness is inevitable. In addition, the laminated structure is formed in a direction perpendicular to the cutting direction of the segment chip, and the layers on both sides of this laminated structure are made to have a higher concentration of abrasive grains than the intermediate layer, or use a wear-resistant binder. (Japanese Patent Laid-Open Publication No. 9-267267). However, this method complicates the chip manufacturing process and increases the manufacturing cost due to stacking. Further, a method using at least two types of abrasive layer members having different hardnesses has been proposed (Japanese Utility Model Publication No. Sho 60-12694). According to this technique, abrasive grains having low hardness have high abrasion and cannot maintain sharpness.
In these methods, since the abrasive grains are distributed at random or at approximately equal intervals, it is difficult to achieve both maintaining sharpness and maintaining thickness.
In addition, a method has been proposed in which the layer of abrasive grains in a segment is inclined with respect to the circumference of the blade in order to keep the fluctuation of sharpness constant (Japanese Patent Laid-Open No. Hei 3-161278). Although this technique is effective for keeping the fluctuation of sharpness constant, the abrasive grains are randomly contained at an equal interval density, and the effect of preventing the outer peripheral side wall wear of the blade is almost the same as that of the conventional product.
[Patent Document 1]
Japanese Patent Publication No. 7-12592 [Patent Document 2]
JP-A-9-267267 [Patent Document 3]
Japanese Utility Model Publication No. Sho 60-12694 [Patent Document 4]
JP-A-3-161278 [0003]
[Problems to be solved by the invention]
The present invention provides that, until the blade becomes unusable due to the wear life of the outer peripheral cutting action surface, the outer peripheral end side surface keeps substantially the initial thickness, improves water circulation to the chip outer peripheral cutting action surface, and The purpose is to prevent the sharpness from lowering.
[0004]
[Means for Solving the Problems]
The present inventor has assiduously studied and found that the above problem can be solved by arranging abrasive grains having a specific particle size in a specific pattern on the surface of the abrasive layer on the outer peripheral end surface of the blade, and completing the present invention. Reached.
That is, the present invention
(1) In a super-abrasive blade in which a chip containing diamond abrasive grains or cubic boron nitride abrasive grains is attached to an outer peripheral portion of a disk-shaped substrate, a chip is mounted on the chip side surface of the outer peripheral portion of the substrate from the inner edge of the chip. A super-abrasive blade characterized in that a plurality of abrasive grain connection rows are provided in an outer edge direction, and diamond abrasive grains or cubic boron nitride abrasive grains are fixed to each row of the abrasive grain connection rows,
(2) The average particle size of the abrasive grains fixed to the abrasive grain connecting row is 1.0 to 2.0 times the average particle size of the abrasive grains contained in the chip. Super abrasive blade,
(3) The superabrasive blade according to (1) or (2), wherein the disk-shaped substrate is a segment type.
(4) A superabrasive blade in which abrasive grains are fixed in a single layer to an outer peripheral surface and an outer peripheral side surface of a disk-shaped substrate, wherein a plurality of abrasive grains are arranged in a direction from a lower edge to an upper edge direction of the outer peripheral side surface. A super-abrasive blade characterized in that a connecting row is provided, and diamond or cubic boron nitride abrasive grains are fixed to each row of the abrasive connecting row; and (5) the abrasive grains are fixed to the connecting row. 5. The superabrasive blade according to claim 4, wherein the average grain size of the abrasive grains is 1.0 to 2.0 times the average grain size of the abrasive grains fixed to the outer peripheral side surface in a single layer. , Is provided.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
As the diamond abrasive used in the present invention, for example, natural or synthetic diamond or metal-coated synthetic diamond abrasive can be used. The particle size and particle size distribution of the diamond abrasive particles used in the present invention are, for example, appropriately selected according to the use of the superabrasive blade of the present invention, the particle size and particle size distribution of the diamond abrasive particles classified and specified by JIS B 4130. Can be used.
The cubic boron nitride abrasive grains used in the present invention are abbreviated as CBN, and cubic boron nitride or metal-coated cubic boron nitride can be used. The particle size and particle size distribution of the cubic boron nitride abrasive grains used in the present invention are, for example, those having the particle size and particle size distribution of cubic boron nitride classified and specified by JIS B 4130, depending on the use of the superabrasive blade of the present invention. Can be appropriately selected for use.
The disk-shaped substrate used in the present invention supports the superabrasive blade of the present invention, and can be rotated by a driving shaft attached to the center of the disk-shaped substrate. Usually, a metal disk is used as a basic configuration of a disk-shaped substrate, and is also called a base metal, a core, or a base.
[0006]
The present invention comprises two aspects, a first aspect and a second aspect. The first embodiment is such that a chip containing abrasive grains is fixed to the outer peripheral edge of the disk-shaped substrate used in the present invention, and the second embodiment does not use the chip, and the base metal of the disk-shaped substrate is used. A single layer of abrasive grains is fixed to the outer peripheral surface and the outer peripheral side surface of the outer peripheral portion.
The superabrasive grain blade according to the first aspect of the present invention has an abrasive layer containing abrasive grains (superabrasive grains) of diamond or cubic boron nitride (CBN) having extremely high hardness together with a binder, which is provided on the outer periphery of a disk-shaped substrate. A blade fixed to the outer edge.
The superabrasive blade of the first aspect of the present invention is a continuous type in which an abrasive layer is fixed on the entire outer peripheral portion of the outer periphery of the disk-shaped substrate, or the abrasive layer is divided and arranged at a certain interval from each other. It can be made into a fixed segment type and fixedly manufactured.
The chip used for the superabrasive blade of the first aspect of the present invention is obtained by putting a mixture of the abrasive and the binder used in the present invention in a mold, a carbon mold, etc., compression molding, and heating at a temperature equal to or lower than the melting point of the powder. It can be manufactured as a sintered body that is bonded and fixed by pressing. Further, it can be produced by sintering and fixing the abrasive grains used in the present invention together with a binder to the outer peripheral edge of the disk-shaped substrate, or by brazing, welding and bonding chips.
The chip bonding material used in the first aspect of the present invention is capable of wetting between the abrasive grains used in the present invention and firmly maintaining the shape during the molding of the chip, and also firmly fixing the abrasive layer to the disk-shaped substrate. it can.
The binder for the chip used in the first aspect of the present invention is not particularly limited as long as the object of the present invention can be achieved. It can be appropriately selected and used depending on the use of the grain blade. For example, a resin bond, a metal bond, a vitrified bond, or the like can be used.
[0007]
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 4 is a side view and a cutting edge view of a conventional superabrasive blade showing a difference from the superabrasive blade A of the present invention.
As the superabrasive blade A of the first embodiment of the present invention, a continuous type as shown in FIG. 1A or a segment type as shown in FIG. 1B can be used.
A chip 1 as shown in FIG. 2 or FIG. 3 can be fixedly provided on the outer peripheral portion of the disk-shaped substrate used for the superabrasive grain blade A of the first embodiment of the present invention.
The superabrasive blade A according to the first aspect of the present invention has a tip edge 3 at an outer peripheral portion that performs a cutting operation and a tip side surface 2 at an outer peripheral portion that complements the cutting operation and contributes to discharge of cutting powder of the material to be cut. The chip 1 can be fixed. If the chips are not sufficiently discharged, the chips generate heat and the sharpness deteriorates, so that the blade tip 3 cannot advance into the cutting target.
The superabrasive blade A according to the first aspect of the present invention is configured such that the substrate is removed from the outer peripheral portion outer edge at regular intervals on the outer peripheral portion of the wheel base metal C, which is a disk-shaped substrate, in order to further improve the discharge of cutting powder. A split groove B having a fixed length and a fixed width is provided in the center direction, and the outer peripheral portion can be made segment type.
The tip 1 used in the first aspect of the present invention must have a thickness T equal to or larger than the thickness E of the wheel base metal at the outer peripheral portion of the wheel base metal C of the present invention. If the thickness T of the chip of the present invention is smaller than the thickness E of the wheel base metal, the side surface of the chip cannot protrude outside the outer peripheral edge of the base metal (clearance), and the discharge of cutting chips is poor, and As the cutting of the target material progresses, the outer edge of the wheel base metal C comes into contact with the target material, making the cutting process difficult. The thickness T and the size of the clearance used in the first embodiment of the present invention can be appropriately selected according to the material to be cut. The chip side surface 2 of the chip 1 used in the first embodiment of the present invention is a portion called a rim, and has an important function of complementing the cutting action, discharging chips of the material to be cut, and always maintaining the clearance. The outer edge of the chip side surface 2 is a cutting action surface, the inner edge of the chip side surface 2 is the edge of the chip 1 toward the substrate center, and the length between the outer edge and the inner edge is called the depth of the abrasive layer. It corresponds to the height X of the chip, and can be appropriately selected according to the material to be cut.
In order to exhibit this function, the chip side surface 2 used in the first aspect of the present invention is provided with abrasive grain connection rows F at regular intervals from the inner edge to the outer edge direction of the chip 1 used in the present invention. it can. The shape of the abrasive grain connection row F is not particularly limited as long as the object of the present invention can be achieved, and various shapes can be used. For example, as shown in FIG. 2, the abrasive grain connecting rows F can be provided on the chip side surface 2 from the inner edge to the outer edge of the chip 1 in a linear or curved state radially from the inner edge to the outer edge of the chip 1. By arranging the abrasive grains at an angle close to one line and radially, the spacing between the abrasive grains in the rotation direction is widened for the same number of abrasive grains. For this reason, the sharpness is hardly reduced due to the abrasive grain spacing.
As shown in FIG. 3, the inclination angle θ with respect to the rotation direction of the wheel is, for example, 30 degrees or 45 degrees in a straight or curved manner on the chip side surface 2 from the inner edge to the outer edge of the chip. Can be provided. If the radial angle is 0 degree, as this angle increases, there will be a portion where the abrasive grains are connected in the rotation direction, there is a concern about the effect on sharpness, it is preferable to radial, It is desirable that the inclination is limited to 45 degrees or less.
[0008]
The formation of the abrasive grain connecting rows F on the chip side face 2 used in the first aspect of the present invention is performed by bonding (temporarily fixing) the abrasive grains for the abrasive grain connecting row to the chip side face punch (pressure bonding tool), The intermediate part of the punch is filled with an abrasive-containing mixture uniformly dispersed in a binder (for example, metal powder), or the abrasive-containing mixture is molded, filled as a green compact, and sintered. be able to.
In the abrasive grain connection row F used in the first aspect of the present invention, rows can be formed with abrasive grains adjacent to each other. By making the adjacent abrasive grain connection rows radial, the spacing between the abrasive grains in the rotational direction is maximized for the same number of abrasive grains, and the sharpness is less likely to decrease. It is also possible to arrange adjacent abrasive grains separated from each other, but since the abrasive grain spacing in the rotational direction at the same number of abrasive grains is narrower than in the above case, the separation distance is within the average abrasive grain size. It is desirable to stop.
The abrasive grain connection rows F used in the first aspect of the present invention are arranged at intervals d between the abrasive grain connection rows appropriately selected according to the size of the wheel, the length of one segment chip, and the height of the chip. be able to.
The average grain size of the abrasive grains in the abrasive grain connection row F used in the first aspect of the present invention is 1.0 to 2.0 times the average grain size of the dispersed abrasive grains 4 in the chip, and preferably 1.05 to 1 times. .50 times can be used. If the average grain size of the abrasive grains in the abrasive grain connecting row is less than 1.0 times the average grain size of the dispersed abrasive grains contained in the chip, it is more difficult to protrude than the dispersed abrasive grains appearing on the side surface However, even if it can be made to protrude, it easily falls off because the burying depth is shallow. On the other hand, when the ratio is more than 2.0 times, it is too large to obtain the grinding effect of the dispersed abrasive grains contained in the chip.
[0009]
The exposure of the abrasive grains in the abrasive grain connection row F used in the first embodiment of the present invention is, as shown in FIG. 2, equal to or higher than the height at which the dispersed abrasive grains 4 in the chip are exposed on the chip side surface 2. It must be exposed at the above height. If the exposed height of the abrasive grains in the abrasive grain connecting row is lower than the exposed height of the abrasive grains contained in the chip, the effect of the present invention cannot be exerted because water circulation to the chip outer peripheral cutting action surface is not improved.
The superabrasive blade A having a segment-type outer peripheral portion used in the first aspect of the present invention is arranged at regular intervals on the outer peripheral portion of the wheel base metal C, which is a disk-shaped substrate, from the outer peripheral edge toward the center of the substrate. In this configuration, a split groove B having a fixed length and width is provided, and the chips 1 on the outer peripheral portion are divided (segmented). When cutting concrete or stone materials, the discharge of cutting chips can be improved. This type of blade is called a segment saw.
The superabrasive blade used in the second aspect of the present invention has an effect of improving the sharpness and promoting the discharge of cutting powder by being fixed to a single layer on the outer periphery / outer periphery side surface by electrodeposition or the like.
The superabrasive blade of the second aspect of the present invention in which such an abrasive layer is fixed on the outer periphery of the wheel base metal can be particularly suitably used for an electric tool using a small wheel.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to the drawings and examples, but the present invention is not limited to these examples and the drawings.
Example 1
A segment saw with the following specifications was used.
Wheel outer diameter D is 480 mm, wheel base metal thickness E is 2.6 mm, chip thickness T is 3.40 mm, chip height X is 12 mm, chip length L is 40 mm, abrasive grains The distance d between the connecting rows is 8 mm, and an abrasive grain connecting row F is formed on the side surface of the chip by a linear body radially from the inner edge of the chip to the outer edge, and the abrasive grains in the abrasive grain connecting row have an average particle diameter of 500 μm (♯30). The average number of abrasive grains used in one abrasive grain connected row was 24, and this was temporarily fixed to a punch so that adjacent abrasive grains were in close contact with each other, and sintered. As the dispersed abrasive grains in the chip, synthetic diamond having an average particle diameter of 400 μm (# 40) was used, and a chip having an abrasive grain content of 240 mg / cm 3 was produced by a Co-based bond.
The cutting device used was a mobile engine cutter. The spindle rotation speed was 1620 / min (peripheral speed 2326 m / min). As a material to be cut, a reinforced concrete pavement having a reinforcing bar diameter of 10 mm and a pitch of 100 mm was used. The cut was a single cut of 130 mm, and 380 m was cut continuously. The evaluation of the sharpness was made by comparing the cutting speed, and the evaluation of the life was made by comparing the cutting distance with the tip wear height.
The test result was that the sharpness was 106% and the life was 105% when the result of the normal type of Comparative Example 1 was 100%. The chip height wear was 7.6 mm (Comparative Example 1 was 8.0 mm), and the average thickness of the remaining chips was 3.38 mm (Comparative Example 1 was 3.20 mm).
Example 2
Example 1 except that the interval d between the abrasive grain connecting rows was 8 mm, the inclination angle θ of the abrasive grain connecting rows was a 45 ° inclined straight line, and the average number of abrasive grains used in one abrasive grain connecting row was 34. Performed under the same conditions as in 1.
As a test result, the sharpness was 102% and the life was 110% with the result of the normal type of Comparative Example 1 as 100%. The wear at the tip height was 7.3 mm (8.0 mm in Comparative Example 1), and the average thickness of the remaining chips was 3.39 mm (3.20 mm in Comparative Example 1).
Comparative Example 1
The operation was performed under the same conditions as in Example 1 except that no abrasive grain connecting row was provided.
The test results were defined as a normal type reference example for comparison, with a sharpness of 100% and a life of 100%. The height wear was 8.0 mm and the residual thickness was 3.20 mm.
[0011]
【The invention's effect】
According to the present invention, until the blade becomes unusable due to the wear life of the cutting action surface of the superabrasive blade, the outer peripheral end side surface keeps substantially the initial thickness, and the water turns to the chip outer peripheral cutting action surface. It is possible to provide a superabrasive blade that is improved and does not reduce sharpness.
[Brief description of the drawings]
FIG. 1 (a) shows a side view and a cross-sectional view of a continuous type superabrasive blade.
FIG. 1B shows a side view and a sectional view of a segment type superabrasive blade.
FIG. 2 shows a side view and a cutting edge view of a radial linear abrasive grain connected row tip.
FIG. 3 shows a side view and a cutting edge view of a 45 ° inclined linear abrasive grain connecting row tip.
FIG. 4 shows a side view and a cutting edge view of a conventional superabrasive blade.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tip 2 Tip side surface 3 Tip edge 4 Dispersion abrasive grains in a tip A Super abrasive grain blade B Split groove C Wheel base metal D Wheel outer diameter E Wheel base metal thickness F Abrasive grain connection row d Abrasive grain connection row Spacing θ Incline angle of abrasive grain connection line L Tip length T Tip thickness X Tip height

Claims (5)

円板状の基板の外周部にダイヤモンド砥粒又は立方晶窒化ホウ素砥粒を含有するチップを取り付けてなる超砥粒ブレードにおいて、該基板外周部のチップ側面にチップの内縁からチップの外縁方向に複数の砥粒連結列を設け、該砥粒連結列の各列にダイヤモンド砥粒又は立方晶窒化ホウ素砥粒を固着してなることを特徴とする超砥粒ブレード。In a super-abrasive blade in which a chip containing diamond abrasive grains or cubic boron nitride abrasive grains is attached to an outer peripheral portion of a disk-shaped substrate, a tip side of the substrate outer peripheral portion extends in a direction from the inner edge of the chip to the outer edge of the chip. A superabrasive blade comprising a plurality of abrasive grain connecting rows, and diamond abrasive grains or cubic boron nitride abrasive grains fixed to each row of the abrasive grain connecting rows. 砥粒連結列に固着した砥粒の平均粒径が、チップ中に含有する砥粒の平均粒径の1.0〜2.0倍であることを特徴とする請求項1記載の超砥粒ブレード。2. The superabrasive grain according to claim 1, wherein the average grain diameter of the abrasive grains fixed to the abrasive grain connection row is 1.0 to 2.0 times the average grain size of the abrasive grains contained in the chip. blade. 円板状の基板がセグメント型であることを特徴とする請求項1又は2記載の超砥粒ブレード。The superabrasive blade according to claim 1 or 2, wherein the disk-shaped substrate is a segment type. 円板状の基板の外周面及び外周部側面に砥粒を単層で固着してなる超砥粒ブレードであって、該外周部側面の下縁から上縁方向に複数の砥粒連結列を設け、該砥粒連結列の各列にダイヤモンド砥粒又は立方晶窒化ホウ素砥粒を固着してなることを特徴とする超砥粒ブレード。A superabrasive blade in which abrasive grains are fixed in a single layer to an outer peripheral surface and an outer peripheral side surface of a disk-shaped substrate, and a plurality of abrasive grain connecting rows are arranged in a direction from a lower edge to an upper edge direction of the outer peripheral surface. And a diamond abrasive grain or a cubic boron nitride abrasive grain is fixed to each row of the abrasive grain connecting rows. 砥粒連結列に固着した砥粒の平均粒径が、外周部側面に単層で固着してなる砥粒の平均粒径の1.0〜2.0倍であることを特徴とする請求項4記載の超砥粒ブレード。The average grain size of the abrasive grains fixed to the abrasive grain connecting row is 1.0 to 2.0 times the average grain size of the abrasive grains fixed in a single layer on the outer peripheral side surface. 4. The superabrasive blade according to 4.
JP2003092009A 2003-03-28 2003-03-28 Super abrasive blade Expired - Lifetime JP4371689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092009A JP4371689B2 (en) 2003-03-28 2003-03-28 Super abrasive blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092009A JP4371689B2 (en) 2003-03-28 2003-03-28 Super abrasive blade

Publications (2)

Publication Number Publication Date
JP2004298969A true JP2004298969A (en) 2004-10-28
JP4371689B2 JP4371689B2 (en) 2009-11-25

Family

ID=33405234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092009A Expired - Lifetime JP4371689B2 (en) 2003-03-28 2003-03-28 Super abrasive blade

Country Status (1)

Country Link
JP (1) JP4371689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356556A (en) * 2017-09-28 2020-06-30 圣戈班磨料磨具公司 Abrasive article and method of forming the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4415517Y1 (en) * 1965-07-19 1969-07-04
JPS5438762U (en) * 1977-08-22 1979-03-14
JPS63114882A (en) * 1986-10-31 1988-05-19 Tokyo Tungsten Co Ltd Rotary cutting blade
JP2003039332A (en) * 2001-07-26 2003-02-13 Noritake Super Abrasive:Kk Rotary disk grinding wheel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4415517Y1 (en) * 1965-07-19 1969-07-04
JPS5438762U (en) * 1977-08-22 1979-03-14
JPS63114882A (en) * 1986-10-31 1988-05-19 Tokyo Tungsten Co Ltd Rotary cutting blade
JP2003039332A (en) * 2001-07-26 2003-02-13 Noritake Super Abrasive:Kk Rotary disk grinding wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356556A (en) * 2017-09-28 2020-06-30 圣戈班磨料磨具公司 Abrasive article and method of forming the same
US11504783B2 (en) 2017-09-28 2022-11-22 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming

Also Published As

Publication number Publication date
JP4371689B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
CA2188286C (en) Improved superabrasive tool
US6196911B1 (en) Tools with abrasive segments
US4516560A (en) Abrasive cutting wheel and method of cutting abradable material
EP2095908B1 (en) Obliquely grooved grinding wheel and method for manufacturing the same
JP3739304B2 (en) Rotating disc grinding wheel
JPS6190876A (en) Super abrasive grain electrodeposition circular saw
KR19990087801A (en) Single metal layer abrasive cutting tool with undulating cutting plane
WO2001076821A1 (en) Grinding stone
JP2002524287A (en) Diamond blade with rim-type cutting tip for use in grinding or cutting equipment
JP5701211B2 (en) Electroformed thin cutting saw and core drill impregnated with abrasive
WO2002066217A1 (en) Machining tips and cutting wheel, grinding wheel and drilling wheel therewith
JP2004298969A (en) Super abrasive grain blade
KR100369114B1 (en) Thin Blade for Wheel Cutter
EP1252975A2 (en) Electro-deposited thin-blade grindstone
JP2001293661A (en) Rotating disk grinding wheel
JPH0760648A (en) Precision grinding cutting grinding wheel
JPH11309711A (en) Diamond saw blade and production of diamond whetstone used for it
JPH05345280A (en) Tip structure of diamond cutting grinding wheel
JP2002018729A (en) Grinding wheel and blade of three-layer structure
JPH11207635A (en) Cup-like grinding wheel and wafer surface grinding method
JP3722791B2 (en) blade
JP3539679B2 (en) Segment structure of diamond blade
JPH081807Y2 (en) Cutting stone
JPH1199478A (en) Diamond cutting grinding wheel
JPH0451981Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4371689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term