JP2004298728A - Catalytic fiber and its manufacturing method - Google Patents

Catalytic fiber and its manufacturing method Download PDF

Info

Publication number
JP2004298728A
JP2004298728A JP2003094093A JP2003094093A JP2004298728A JP 2004298728 A JP2004298728 A JP 2004298728A JP 2003094093 A JP2003094093 A JP 2003094093A JP 2003094093 A JP2003094093 A JP 2003094093A JP 2004298728 A JP2004298728 A JP 2004298728A
Authority
JP
Japan
Prior art keywords
titanium
fiber
catalyst
oxide
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003094093A
Other languages
Japanese (ja)
Inventor
Yasuyuki Oki
泰行 沖
Hironobu Koike
宏信 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003094093A priority Critical patent/JP2004298728A/en
Publication of JP2004298728A publication Critical patent/JP2004298728A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic fiber to be hardly poisoned by sulfur oxides. <P>SOLUTION: This catalytic fiber is an oxide containing titanium, vanadium, silicon and zirconium as elements. It is preferable that this catalytic fiber shows the peak corresponding to titanium oxide in an X-ray diffraction spectrum but does not show the peaks corresponding to vanadium oxide, silicon oxide and zirconium oxide. This catalytic fiber is manufactured by spinning a catalytic precursor fiber from a spinning solution containing a titanium compound-hydrolyzed polymer, an organic solvent and vanadium, silicon and zirconium as elements and firing the obtained catalytic precursor fiber. When gas is denitrified, the gas containing nitrogen oxides is brought into contact with this catalytic fiber. When halogenated organic matter contained in gas is decomposed, the gas containing the halogenated organic matter is brought into contact with this catalytic fiber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は触媒繊維およびその製造方法に関し、詳しくは硫黄酸化物による触媒性能の低下が少ない触媒繊維と、その製造方法に関する。
【0002】
【従来の技術】
触媒繊維は、繊維状の触媒であって、例えば排ガス中の窒素酸化物を還元したり、有機ハロゲン化物を分解するための触媒フィルターとして用いられている。かかる触媒繊維として、特許文献1〔特開平05−184923号公報〕には、元素としてチタンおよびバナジウムを含む酸化物であり、ジルコニウムを含まないものが開示されている。
【0003】
しかし、かかる従来の触媒繊維は、硫黄酸化物(SOx)によって被毒され易いという問題があった。硫黄酸化物により被毒されると触媒としての性能が低下してしまう。
【0004】
【特許文献1】特開平05−184923号公報
【0005】
【発明が解決しようとする課題】
そこで本発明者は、硫黄酸化物によって被毒され難い触媒繊維を開発するべく鋭意検討した結果、元素としてチタンおよびバナジウムに加えて、珪素およびジルコニウムを含むことで、硫黄酸化物による被毒が少ない触媒繊維となし得ることを見出し、本発明に至った。
【0006】
【課題を解決するための手段】
すなわち本発明は、元素としてチタン、バナジウム、珪素およびジルコニウムを含む酸化物からなる触媒繊維を提供するものである。
【0007】
【発明の実施の形態】
本発明の触媒繊維は、元素としてチタンおよびバナジウムを含む酸化物からなる。チタンの含有量は、酸化物(TiO)換算でチタンとバナジウムの酸化物(TiOとV)換算の合計量に対して通常0.5質量倍以上0.95質量倍以下、好ましくは0.65質量倍以上0.8質量倍以下程度であり、バナジウムの含有量は酸化物(V)換算でチタンとバナジウムの酸化物(TiOとV)換算の合計量に対して通常0.05質量倍以上0.5質量倍以下、好ましくは0.2質量倍以上0.35質量倍以下程度である。
【0008】
珪素の含有量は酸化物(SiO)換算でチタンとバナジウムの酸化物(TiOとV)換算の合計量に対して通常0.001質量倍以上0.4質量倍以下、好ましくは0.01質量倍以上0.1質量倍以下程度である。ジルコニウムの含有量は酸化物(ZrO)換算でチタンとバナジウムの酸化物(TiOとV)換算の合計量に対して通常0.001質量倍以上0.4質量倍以下、好ましくは0.01質量倍以上0.1質量倍以下程度である。
【0009】
かかる本発明の触媒繊維は、例えばチタン加水分解重合物および有機溶媒を含有し、元素としてバナジウム、珪素およびジルコニウムを含有する紡糸液を紡糸して触媒前駆体繊維を得、得られた触媒前駆体繊維を焼成する方法により製造することができる。
【0010】
かかる紡糸液は、例えばチタン化合物を水と反応させてチタン加水分解重合物を得、得られたチタン加水分解重合物を有機溶媒と混合して紡糸液を得るに際して、チタン化合物をバナジウム化合物、珪素化合物およびジルコニウム化合物の存在下に水と反応させるか、あるいはチタン加水分解重合物をバナジウム化合物、珪素化合物およびジルコニウム化合物と共に有機溶媒と混合することで得ることができる。
【0011】
チタン化合物としては、例えばチタンアルコキシドが挙げられる。チタンアルコキシドは、式(1)
【化1】

Figure 2004298728
〔式中、R11、R12、R13およびR14はそれぞれ独立にアルキル基を示す。〕
で示される化合物であって、得られる触媒繊維の機械的強度の点で、R11、R12、R13およびR14は炭素数1〜4のアルキル基であることが好ましい。かかるチタンアルコキシドとしては、例えばチタンテトラメトキシド、チタンテトラエトキシド、チタンテトラn−プロポキシド、チタンテトライソプロポキシド、チタンテトラn−ブトキシド、チタンテトラsec−ブトキシド、チタンテトラtert−ブトキシドなどのチタンテトラアルコキシドが好ましく、さらに好ましくはチタンテトライソプロポキシドである。
【0012】
水の使用量はチタン化合物に対して通常、1.5モル倍以上4モル倍以下程度である。
【0013】
反応は通常、有機溶媒中で行なわれる。有機溶媒としては、例えばエタノール、イソプロパノールなどのアルコール類、テトラヒドロフラン、ジエチルエーテルなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられ、それぞれ単独で、または2種以上を混合して用いられる。かかる有機溶媒の使用量は、チタン化合物と水とが混和し得る程度であればよく、通常はチタン化合物に対して0.5モル倍以上であり、経済的には通常50モル倍以下程度である。
【0014】
チタン化合物は、例えば式(2)
【化2】
Figure 2004298728
〔式中、R21およびR22はそれぞれ独立にアルキル基またはアルコキシル基を示す。〕
で示される化合物の共存下に水と反応させてもよい。置換基R21およびR22におけるアルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基などの炭素数1〜4程度のアルキル基が挙げられる。アルコキシル基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基などの炭素数1〜4程度のアルコキシル基などが挙げられる。かかる式(2)で示される化合物としては、例えばアセト酢酸エチル、アセト酢酸イソプロピルなどのβ−ジケトン化合物などが挙げられる。
【0015】
また、サリチル酸エチル、サリチル酸メチルなどのサリチル酸アルキルエステルの共存下に水と反応させてもよい。かかる式(2)で示される化合物や、サリチル酸アルキルエステルを用いる場合、その使用量は、チタン化合物に対して通常0.01モル倍以上、好ましくは0.05モル倍以上であり、通常1.9モル倍以下、好ましくは1モル倍以下である。
【0016】
チタン化合物を水と反応させるには、例えば有機溶媒中でチタン化合物および水を混合すればよく、通常はチタン化合物および有機溶媒の混合物に水を添加すればよい。式(2)で示される化合物や、サリチル酸アルキルエステルの共存下に反応させる場合には、チタン化合物、有機溶媒および式(2)で示される化合物や、サリチル酸アルキルエステルの混合物に水を添加すればよい。反応温度は、通常0℃以上有機溶媒および水の沸点以下であり、還流下に反応させてもよい。
【0017】
水は、そのまま加えてもよいが、有機溶媒で希釈して加えることが、均一な触媒前駆体繊維が容易に得られる点で、好ましい。水を有機溶媒で希釈する場合の有機溶媒の使用量は、水に対して1質量倍以上100質量倍以下程度である。
【0018】
反応は通常、不活性ガス雰囲気下で行なわれる。不活性ガスとしては、例えば窒素ガス、アルゴンガスなどが挙げられる。
【0019】
かくしてチタン化合物が加水分解してチタン加水分解物が生成し、これがさらに重合することで、チタン加水分解重合物が生成する。生成した加水分解重合物は、反応後の反応混合物において析出していてもよいし、有機溶媒に溶解していてもよい。
【0020】
反応後の反応混合物から有機溶媒および未反応の水を留去することで、チタン加水分解重合物を取り出してもよい。
【0021】
かくして得られたチタン加水分解重合物を有機溶媒と混合することで紡糸液を得る。
【0022】
有機溶媒としては、例えばエタノール、イソプロパノールなどのアルコール類、テトラヒドロフラン、ジエチルエーテルなどのエーテル類、ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられる。紡糸液における有機溶媒の含有量は紡糸液を基準として通常20質量%以上50質量%以下である。紡糸液において、チタン加水分解重合物、バナジウム化合物、珪素化合物およびジルコニウム化合物は、有機溶媒に溶解していることが、触媒前駆体繊維が容易に得られる点で、好ましい。
【0023】
紡糸液は、バナジウム化合物、珪素化合物およびジルコニウム化合物の存在下にチタン化合物を水と反応させるか、あるいはバナジウム化合物、珪素化合物およびジルコニウム化合物と共にチタン加水分解重合物を有機溶媒と混合する方法によって得られる。
【0024】
バナジウム化合物としては、例えばバナジウムアルコキシド、バナジルアルコキシド、トリエトキシバナジル、バナジウムアセチルアセトネート、塩化バナジウム、塩化バナジルなどが挙げられる。
【0025】
珪素化合物としては、例えば式(3)
【化3】
Sin−1(OR2n+2 (3)
〔式中、Rはアルキル基を表し、nは1以上の数を示す。〕
で表されるアルキルシリケートが挙げられる。ここで、置換基Rとしては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基などの炭素数1〜4のアルキル基が挙げられ、好ましくはエチル基である。nは4〜6程度であることが好ましい。
【0026】
ジルコニウム化合物としては、例えばジルコニウムテトラブトキシドなどのジルコニウムアルコキシド、ジルコニウムブトキシアセチルアセトネートなどのジルコニウムアセチルアセトネートなどが挙げられる。
【0027】
バナジウム化合物、珪素化合物およびジルコニウム化合物の存在下にチタン化合物を水と反応させることで、バナジウム、珪素およびジルコニウムを含有するチタン加水分解重合物が生成する。
【0028】
また、バナジウム化合物、珪素化合物およびジルコニウム化合物と共にチタン加水分解重合物を有機溶媒と混合することで、バナジウム化合物、珪素化合物およびジルコニウム化合物をそのままで含む紡糸液を得ることができる。
【0029】
紡糸液は、脂肪酸を含有していてもよい。脂肪酸としては、式(4)
【化4】
COOH (4)
〔式中、Rは水素原子、飽和炭化水素残基または不飽和炭化水素残基を示す。〕
で示される化合物が挙げられ、中でも置換基Rが炭素数8以上の飽和炭化水素残基または不飽和炭化水素残基であるものが好ましい。
【0030】
かかる脂肪酸としては、例えばギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、イソステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、
アクリル酸、クロトン酸、イソクロトン酸、ウンデシレン酸、オレイン酸、エライジン酸、セトレイン酸、エルカ酸、ブラシジン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、プロピオール酸、ステアロール酸の不飽和脂肪酸などが挙げられる。
【0031】
かかる脂肪酸の含有量は、チタン加水分解重合物のチタン原子に対して、触媒活性の点で、通常0.01モル倍以上、好ましくは0.05モル倍以上であり、触媒繊維の機械的強度の点で、0.5モル倍以下、好ましくは0.3モル倍以下である。かかる脂肪酸は通常、チタン加水分解重合物と共に有機溶媒と混合される。
【0032】
かかる紡糸液を紡糸するには、例えばノズル押出紡糸法、遠心紡糸法、吹出紡糸法などの通常の紡糸方法で紡糸すればよい。紡糸に際しては、紡糸された直後の紡糸液を延伸してもよい。延伸には、例えば回転ローラーを用いる方法、空気流を用いる方法などが挙げられる。紡糸に際して防止液の粘度は10ポアズ以上2000ポアズ以下、好ましくは20ポアズ以上1500ポアズ以下程度である。紡糸液をこの粘度範囲とするには、例えば紡糸液に含まれる有機溶媒の含有量を適宜調整すればよい。また紡糸液の温度を調整してもよい。かくして紡糸することで紡糸液中の有機溶媒を揮発させ、固形分を繊維状となった触媒前駆体繊維を得ることができる。
【0033】
得られた触媒前駆体繊維は、水蒸気処理されてもよい。触媒前駆体繊維を水蒸気処理するには、例えば触媒前駆体繊維を水蒸気と接触させればよく、通常は水蒸気分圧が通常0.3気圧(0.03MPa)以上飽和水蒸気圧以下、好ましくは0.5気圧(0.05MPa)以上の雰囲気に触媒前駆体繊維を晒せばよい。水蒸気処理温度は通常70℃以上300℃以下、好ましくは85℃以上であり、水蒸気処理時間は通常1時間以上30時間以下、好ましくは5時間以上である。
【0034】
かくして得られた触媒前駆体繊維を焼成するには、通常の方法で焼成すればよい。焼成温度は触媒活性の点で200℃以上900℃以下程度である。触媒前駆体繊維は、張力をかけながら焼成されてもよい。
【0035】
かくして得られる本発明の触媒繊維は、触媒活性の点で、X線回折(XRD)スペクトルにおいてチタン酸化物に相当するピークを示すこと、さらにはアナターゼ型チタン酸化物に相当するピークを示すことがさらに好ましく、例えばXRDスペクトルから求められるアナターゼ結晶化率が60%以上であることが好ましい。また結晶子径が6nm以上であることが、更に好ましい。かかる結晶子径は通常200nm以下である。また、XRDスペクトルにおいてバナジウム酸化物、珪素酸化物およびジルコニウム酸化物に相当するピークを実質的に示さないことが好ましい。
【0036】
本発明の触媒繊維において、チタン、バナジウム、珪素およびジルコニウムは、それぞれ独立に酸化物を形成していてもよいし、複合酸化物を形成していてもよい。
【0037】
かかる本発明の触媒繊維は、繊維径(d)が通常0.1μm以上100μm以下、好ましくは2μm以上50μm以下であり、繊維長(L)が通常0.2μm以上であって長繊維であってもよく、アスペクト比(L/d)が2以上である。
【0038】
本発明の触媒繊維は、触媒活性の点で、BET比表面積が10m/g以上、さらには180m/g以上、特には200m/g以上であり、窒素吸着法により測定される全細孔容積が0.05cm/g以上、さらには0.2cm/g以上であり、細孔半径1nm以上の細孔容積が0.02cm/g以上、さらには0.2cm/g以上であることが、好ましい。ここで、BET比表面積は通常400m/g以下である。
【0039】
かくして得られる本発明の触媒繊維は、例えば脱硝触媒として有用であり、本発明の触媒繊維に、窒素酸化物を含有するガスを接触させることで、このガスを脱硝することができる。また、ダイオキシン類などの有機ハロゲン化物を分解するための有機ハロゲン化物分解触媒としても有用であり、例えば本発明の触媒繊維に、有機ハロゲン化物を含むガスを接触させることで、このガスに含まれる有機ハロゲン化物を分解することができる。ガスを接触させる際の触媒繊維の温度は、通常150℃以上であり、900℃以下である。窒素酸化物を含有するガスや、有機ハロゲン化物を含有するガスは、硫黄酸化物を含有していてもよい。
【0040】
【発明の効果】
本発明の触媒繊維は硫黄酸化物によって被毒され難いので、窒素酸化物と共に硫黄酸化物を含有するガスと接触させても、長期間に亙り、この窒素酸化物を還元することができる。また、有機ハロゲン化物と共に硫黄酸化物を含有するガスと接触させても、長期間に亙り、この有機ハロゲン化物を分解することができる。
【0041】
【実施例】
以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。
なお、以下の実施例において、触媒繊維のBET比表面積、細孔容積、引張強度、触媒繊維の結晶形、アナターゼ化率および結晶子径は以下の方法により測定した。
【0042】
(1)BET比表面積、全細孔容積、細孔半径1nm以上の細孔容積
触媒繊維を乳鉢にて軽く粉砕し、ガス吸着/脱着アナライザー・オムニソープ360〔コールター(Coulter)社製〕を使い、130℃、6時間、真空度6×10−5Torr(8mPa)以下の条件で真空脱気した後、窒素ガスを用いた連続容量法にて細孔半径に対する細孔分布曲線を求め、その細孔分布曲線よりBET比表面積、全細孔容積および細孔半径1nm以上の細孔容積を算出した。
【0043】
(2)触媒繊維の結晶形
触媒を乳鉢にて軽く粉砕し、X線回折装置〔理学電機(株)製、「RAD−IIA」〕を用いてX線回折スペクトルを求め、このスペクトルから同定した。
【0044】
(3)アナターゼ結晶化率
上記で得たX線回折スペクトルから、アナターゼ型酸化チタン(101)面のピークの面積Sを求めた。別途、同様にして標準試料〔アナターゼ型チタン酸化物の粉末、「STT−65C−S」(商品名)、チタン工業社製〕のアナターゼ型酸化チタン(101)面のピークの面積Sを求めた。触媒繊維の金属換算のチタン含有量(モル分率)xを用いて、式(4)により結晶化率A(%)を算出した。
【数1】
A=S/(S・x) (4)
【0045】
(4)アナターゼ結晶子径
上記で得たX線回折スペクトルから、アナターゼ型酸化チタン(101)面の半価幅β(ラジアン)と(101)面のピーク位置θ(ラジアン)を求め、式(5)
【数2】
L=K・λ/(β・cosθ) (5)
〔式中、KはScherrer定数で0.94、λ(nm)は測定X線波長(CuKα線:0.15406nm)を示す。〕
により結晶子径L(nm)を算出した。
【0046】
(5)酸量
得られた触媒繊維0.1gをガラスビーズ0.4gと混合し、測定セルに入れ、真空下に20℃/分で350℃に昇温し、同温度で1時間保持する。その後、100℃でアンモニアガス(100Torr(0.013MPa))と30分間接触させて、触媒繊維にアンモニアを吸着させた。次いで同温度で30分間アンモニアガスを排気し、次いでヘリウムガス気流を20Ncm3/分で測定セルに導入しつつ、100℃から10℃/分で昇温して、触媒繊維から脱離したアンモニアを四重極質量分析器で測定して、触媒繊維1gあたりのアンモニアの吸着量(μmol)として、酸量(μmol/g)を求めた。
【0047】
実施例1
〔触媒繊維Aの製造〕
チタンテトライソプロポキシド(試薬1級、和光純薬工業製)225g、バナジウムイソプロポキシド(日亜化学工業製)61.9g、エチルシリケート〔多摩化学工業社製、「エチルシリケート40」、式(3)におけるnが1〜5であるシリケートの混合物〕4.8g、80質量%ジルコニウムn−ブトキシドのn−ブタノール溶液(Research Chemicals社製)15.2gおよびアセト酢酸エチル(試薬特級、和光純薬工業製)5.2gをイソプロピルアルコール(試薬特級、和光純薬工業製)63.1gに溶解させ、加熱しながら、窒素雰囲気下、1時間還流して、チタンアルコキシド溶液を調製した。このとき、チタンテトライソプロポキシド、バナジウムイソプロポキシド、エチルシリケート、ジルコニウムn−ブトキシドのn−ブタノール溶液の使用量は、酸化物換算で、チタン(TiO)69.9質量%、バナジウム(V)25.5質量%、珪素(SiO)2.1質量%、ジルコニウム(ZrO)2.5質量%である。また、アセト酢酸エチルの添加量はチタンテトライソプロポキシド1モルに対し0.05モルである。
【0048】
一方、水32.7gとイソプロピルアルコール294.9gとを混合して水濃度10重量%の混合溶液を調製した。この水の量はチタンテトライソプロポキシド1モルに対して2.30モルである。
【0049】
上記で得たチタンアルコキシド溶液を窒素雰囲気中で還流させると同時に、溶媒を留出させながら、上記で得た混合溶液を撹拌下、添加した。溶媒の留出速度と混合溶液添加による溶媒の供給速度はほぼ等しくなるように調整した。混合溶液の添加時間は116分であった。
【0050】
チタンテトライソプロポキシド1モルに対して1.80モルの水に相当する量の混合溶液を添加したとき、チタンアルコキシド溶液中に重合体の析出が始まった。更に混合溶液の添加を続け、全量添加して、チタン加水分解重合物を含むスラリーを得た。
【0051】
濃縮後、窒素雰囲気中でテトラヒドロフラン(試薬特級、和光純薬工業製)272gを添加し、1時間還流して重合体を溶解させた後、イソステアリン酸(試薬、和光純薬工業製)22.5gを加えて1時間還流し、重合体溶液を得た。
【0052】
得られた重合体溶液を窒素雰囲気中で孔径3μmのフッ素樹脂製メンブレンフィルターで濾過した後、加熱してイソプロピルアルコールとテトラヒドロフランとの混合溶媒を留出させて濃縮し紡糸液239gを得た。この紡糸液の40℃における粘度は50ポアズ(5Pa・s)であった。
【0053】
上記で得た紡糸液を40℃に保持し、20kgf/cm(2MPa)の窒素ガスにより孔径50μmのノズルから40℃、相対湿度60%の空気中に押し出し、70m/分の速度で巻き取り、触媒前駆体繊維を得た。
【0054】
得られた触媒前駆体繊維を85℃、相対湿度95%の恒温恒湿器の中に入れて15時間水蒸気処理した後、50℃/時で昇温し、425℃の空気中で1時間焼成して、アナターゼ型結晶構造を有し繊維径15μmの触媒繊維Aを得た。この触媒繊維AのX線回折スペクトルには、チタン酸化物(アナターゼ)のX線回折ピークが観察されたが、バナジウム酸化物、珪素酸化物およびジルコニウム酸化物のX線回折ピークは観察されなかった。この触媒繊維AのBET比表面積は200m/g、全細孔容積は0.33cm/g、細孔半径1nm以上の細孔容積は0.33cm/g、結晶型はアナターゼ、アナターゼ結晶化率は86%、結晶子径は7.9nm、酸量は503μmol/gであった。
【0055】
〔触媒シートAの製造〕
水1L(1000cm)にパラ系アラミドパルプ(商品名:トワロン1094、日本アラミド製)6.21g、界面活性剤としてラウリルジメチルアミノ酢酸ベタイン(商品名:アンヒトール24B、有効成分26%、花王製)0.59g、消泡剤(商品名:ホームレスP−98、明成化学工業製)0.52g、上記で得た触媒繊維A 7.28gを順に添加した後、パルプ離解機(「No.2529」、熊谷理機工業製)で攪拌して混合液を得た。得られた混合液に水17Lを添加して攪拌した後、角型シートマシーン(「No.2555」、熊谷理機工業製)によりウェットシートを作製した。得られたウェットシートを脱水、乾燥して、目付け156g/m、250mm角の触媒シートAを得た。
【0056】
〔脱硝性能の評価〕
上記で得た触媒シートAを直径53mmの円板状に切り抜き、試験シートとした。この試験シートをフェルト2枚で挟み、内径53mmの反応管の中に固定した後、NOx濃度100ppm、NH濃度100ppm、O濃度10%、HO濃度20%で200℃の混合ガス(組成は分圧比)を流速1.27NL/分(線速:1.0m/分)で導入して。反応管を通過する前の混合ガスのNOx濃度(C)および通過した後のガスのNOx濃度(C)をNOx自動計測器(「ECL−77A型」、柳本製作所製)により測定し、式(6)
【数3】
NOX(%)=(C−C)/C×100 (6)
により脱硝率(RNOX)を求めたところ、64%であった。
〔耐SOx試験1〕
上記と同様にして切出した試験シートをフェルト2枚で挟み、内径53mmの反応管に固定した後、SO濃度500ppm、O濃度10%、HO濃度20%を含む170℃の混合ガス(組成は分圧比)を流速1NL/分で24時間導入し、その後、上記と同様にして脱硝率(RNOX)を求めたところ、53%であった。
【0057】
〔耐SOx試験2〕
混合ガスの導入時間を48時間とした以外は上記「耐SOx試験1」と同様に操作して、脱硝率(RNOX)を求めたところ、52%であった。
【0058】
比較例1
〔触媒繊維Bの製造〕
チタンテトライソプロポキシド(試薬1級、和光純薬工業製)255g、バナジウムイソプロポキシド(日亜化学工業製)70.1g、およびアセト酢酸エチル(試薬特級、和光純薬工業製)5.84gを、イソプロピルアルコール(試薬特級、和光純薬工業製)94.1gに溶解させ、窒素雰囲気下、1時間還流して、チタンアルコキシド溶液を調製した。このとき、チタンテトライソプロポキシドおよびバナジウムイソプロポキシドの使用量は、酸化物換算で、チタン(TiO)73質量%、バナジウム(V)27質量%となる量である。また、アセト酢酸エチルの添加量はチタンテトライソプロポキシド1モルに対し0.05モルである。
【0059】
一方、水37.0gとイソプロピルアルコール334gとを混合して水濃度10重量%の混合溶液を調製した。この水の量はチタンテトライソプロポキシド1モルに対して2.30モルである。
【0060】
上記で得たチタンアルコキシド溶液を窒素雰囲気中で還流させると同時に、溶媒を留出させながら、上で得られた混合溶液を撹拌下、添加した。溶媒の留出速度と混合溶液添加による溶媒の供給速度はほぼ等しくなるように調整した。混合溶液の添加時間は116分であった。
【0061】
チタンテトライソプロポキシド1モルに対して1.80モルの水に相当する量の混合溶液を添加したとき、チタンアルコキシド溶液中に重合体の析出が始まった。更に混合溶液の添加を続け、全量添加して、チタン加水分解重合物を含むスラリーを得た。
【0062】
上記で得たスラリーを窒素雰囲気中で1時間還流した後、そのまま加熱により溶媒を留出させ、チタン濃度(金属換算)が3.07×10−3mol/gになるまで濃縮した。
【0063】
濃縮後、窒素雰囲気中でテトラヒドロフラン(試薬特級、和光純薬工業製)271gを添加し、1時間還流して重合体を溶解させた後、イソステアリン酸(試薬、和光純薬工業製)25.5gを加えて1時間還流し、重合体溶液を得た。
【0064】
得られた重合体溶液を窒素雰囲気中で孔径3μmのフッ素樹脂製メンブレンフィルターで濾過した後、加熱してイソプロピルアルコールとテトラヒドロフランとの混合溶媒を留出させて濃縮し紡糸液262gを得た。この紡糸液の40℃における粘度は50ポアズ(5Pa・s)であった。
【0065】
上記で得た紡糸液を40℃に保持し、20kgf/cm(2MPa)の窒素ガスで孔径50μmのノズルから40℃、相対湿度60%の空気雰囲気中に押し出し、70m/分の速度で巻き取り、触媒前駆体繊維を得た。
【0066】
得られた触媒前駆体繊維を85℃、相対湿度95%の恒温恒湿器の中に入れて15時間水蒸気処理した後、200℃/時で昇温し、350℃の空気中で1時間焼成して、アナターゼ型結晶構造を有し繊維径15μmの触媒繊維Bを得た。この触媒繊維BのX線回折スペクトルには、チタン酸化物(アナターゼ)のX線回折ピークが観察されたが、バナジウム酸化物のX線回折ピークは観察されなかった。この触媒繊維BのBET比表面積は215m/g、全細孔容積は0.18cm/g、細孔半径1nm以上の細孔容積は0.18cm/g、結晶型はアナターゼ、アナターゼ結晶化率は71%、結晶子径は6.3nm、酸量は462μmol/gであった。
【0067】
〔触媒シートBの製造〕
水1Lにパラ系アラミドパルプ(商品名:トワロン1094、日本アラミド製)5.43g、界面活性剤としてラウリルジメチルアミノ酢酸ベタイン(商品名:アンヒトール24B、有効成分26%、花王製)0.55g、消泡剤(商品名:ホームレスP−98、明成化学工業製)0.55g、上記で得た触媒繊維B 7.28gを順に添加した後、パルプ離解機(「No.2529」、熊谷理機工業製)で攪拌して混合液を得た。得られた混合液に水17Lを添加して攪拌した後、角型シートマシーン(No.2555、熊谷理機工業製)によりウェットシートを作製した。得られたウェットシートを脱水、乾燥して、目付け151g/m、250mm角の触媒シートBを得た。
【0068】
〔脱硝性能の評価〕
触媒シートAに代えて上記で得た触媒シートBを用いる以外は実施例1と同様に操作して、この触媒シートBの脱硝率(RNOX)を求めたところ、66%であった。
【0069】
〔耐SOx試験1〕
触媒シートAに代えて上記で得た触媒シートBを用いる以外は実施例1と同様に操作して耐SOx試験1を行い、脱硝率(RNOX)を求めたところ、47%であった。
【0070】
〔耐SOx試験2〕
混合ガスの導入時間を48時間とした以外は上記「耐SOx試験1」と同様に操作して、脱硝率(RNOX)を求めたところ、39%であった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst fiber and a method for producing the same, and more particularly, to a catalyst fiber in which a reduction in catalytic performance due to sulfur oxides is small and a method for producing the same.
[0002]
[Prior art]
The catalyst fiber is a fibrous catalyst and is used, for example, as a catalyst filter for reducing nitrogen oxides in exhaust gas or decomposing organic halides. Patent Document 1 (Japanese Patent Application Laid-Open No. 05-184923) discloses an oxide containing titanium and vanadium as elements and not containing zirconium as such a catalyst fiber.
[0003]
However, such conventional catalyst fibers have a problem that they are easily poisoned by sulfur oxides (SOx). When poisoned by sulfur oxides, the performance as a catalyst decreases.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. 05-184923
[Problems to be solved by the invention]
Therefore, the present inventor has conducted intensive studies to develop catalyst fibers that are hardly poisoned by sulfur oxides.As a result, in addition to titanium and vanadium as elements, silicon and zirconium are included, so that poisoning by sulfur oxides is small. They have found that they can be made into catalyst fibers, and have reached the present invention.
[0006]
[Means for Solving the Problems]
That is, the present invention provides a catalyst fiber comprising an oxide containing titanium, vanadium, silicon and zirconium as elements.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalyst fiber of the present invention is composed of an oxide containing titanium and vanadium as elements. The content of titanium oxide (TiO 2) 0.95 mass times usually 0.5 times by mass or more relative to the total amount of the oxides of titanium and vanadium (TiO 2 and V 2 O 5) converted at the conversion below, It is preferably about 0.65 mass times or more and about 0.8 mass times or less, and the content of vanadium is oxide (V 2 O 5 ) conversion and titanium and vanadium oxide (TiO 2 and V 2 O 5 ) conversion. The total amount is usually 0.05 to 0.5 times by mass, preferably 0.2 to 0.35 times by mass.
[0008]
The content of silicon is usually 0.001 mass times or more and 0.4 mass times or less with respect to the total amount of oxides of titanium and vanadium (TiO 2 and V 2 O 5 ) in terms of oxides (SiO 2 ). Is about 0.01 to 0.1 times by mass. The content of zirconium is usually 0.001 mass times or more and 0.4 mass times or less with respect to the total amount of oxides of titanium and vanadium (TiO 2 and V 2 O 5 ) in terms of oxides (ZrO 2 ). Is about 0.01 to 0.1 times by mass.
[0009]
The catalyst fiber of the present invention contains, for example, a titanium hydrolysis polymer and an organic solvent, and spins a spinning solution containing vanadium, silicon and zirconium as elements to obtain a catalyst precursor fiber, and obtains the obtained catalyst precursor. It can be produced by a method of firing fibers.
[0010]
Such a spinning solution is, for example, a titanium compound is reacted with water to obtain a titanium hydrolyzed polymer, and when the obtained titanium hydrolyzed polymer is mixed with an organic solvent to obtain a spinning solution, the titanium compound is converted into a vanadium compound and silicon. It can be obtained by reacting with water in the presence of a compound and a zirconium compound, or by mixing a titanium hydrolysis polymer with an organic solvent together with a vanadium compound, a silicon compound and a zirconium compound.
[0011]
Examples of the titanium compound include titanium alkoxide. The titanium alkoxide has the formula (1)
Embedded image
Figure 2004298728
[Wherein, R 11 , R 12 , R 13 and R 14 each independently represent an alkyl group. ]
R 11 , R 12 , R 13 and R 14 are preferably an alkyl group having 1 to 4 carbon atoms from the viewpoint of the mechanical strength of the obtained catalyst fiber. Examples of such titanium alkoxides include titanium tetramethoxide, titanium tetraethoxide, titanium tetra n-propoxide, titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetrasec-butoxide, and titanium tetratert-butoxide. Tetraalkoxides are preferred, and titanium tetraisopropoxide is more preferred.
[0012]
The amount of water to be used is usually about 1.5 to 4 times the molar amount of the titanium compound.
[0013]
The reaction is usually performed in an organic solvent. Examples of the organic solvent include alcohols such as ethanol and isopropanol, ethers such as tetrahydrofuran and diethyl ether, and aromatic hydrocarbons such as benzene and toluene. Used. The amount of the organic solvent to be used may be such that the titanium compound and water are miscible. Usually, the amount is 0.5 mol times or more with respect to the titanium compound, and the economical amount is usually about 50 mol times or less. is there.
[0014]
The titanium compound is, for example, of the formula (2)
Embedded image
Figure 2004298728
[Wherein, R 21 and R 22 each independently represent an alkyl group or an alkoxyl group. ]
May be reacted with water in the presence of the compound represented by Examples of the alkyl group for the substituents R 21 and R 22 include a carbon group having 1 carbon atom such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. And about 4 alkyl groups. Examples of the alkoxyl group include an alkoxyl group having about 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. Is mentioned. Examples of the compound represented by the formula (2) include β-diketone compounds such as ethyl acetoacetate and isopropyl acetoacetate.
[0015]
Further, the reaction may be carried out with water in the presence of an alkyl salicylate such as ethyl salicylate or methyl salicylate. When the compound represented by the formula (2) or the alkyl salicylate is used, the amount thereof is usually 0.01 mol times or more, preferably 0.05 mol times or more with respect to the titanium compound. It is 9 mole times or less, preferably 1 mole time or less.
[0016]
In order to react the titanium compound with water, for example, the titanium compound and water may be mixed in an organic solvent, and usually, water may be added to a mixture of the titanium compound and the organic solvent. When the reaction is carried out in the co-presence of the compound represented by the formula (2) or the salicylic acid alkyl ester, water is added to a mixture of the titanium compound, the organic solvent and the compound represented by the formula (2) or the salicylic acid alkyl ester. Good. The reaction temperature is usually from 0 ° C. to the boiling point of the organic solvent and water, and the reaction may be carried out under reflux.
[0017]
Although water may be added as it is, it is preferable to add it after diluting it with an organic solvent, since a uniform catalyst precursor fiber can be easily obtained. The amount of the organic solvent used when diluting water with the organic solvent is about 1 to 100 times by mass relative to water.
[0018]
The reaction is usually performed under an inert gas atmosphere. Examples of the inert gas include a nitrogen gas and an argon gas.
[0019]
Thus, the titanium compound is hydrolyzed to produce a titanium hydrolyzate, which is further polymerized to produce a titanium hydrolyzate. The resulting hydrolyzed polymer may be precipitated in the reaction mixture after the reaction, or may be dissolved in an organic solvent.
[0020]
The titanium hydrolysis polymer may be taken out by distilling off the organic solvent and unreacted water from the reaction mixture after the reaction.
[0021]
The spinning solution is obtained by mixing the thus obtained titanium hydrolyzed polymer with an organic solvent.
[0022]
Examples of the organic solvent include alcohols such as ethanol and isopropanol, ethers such as tetrahydrofuran and diethyl ether, and aromatic hydrocarbons such as benzene and toluene. The content of the organic solvent in the spinning solution is usually 20% by mass or more and 50% by mass or less based on the spinning solution. In the spinning solution, the titanium hydrolysis polymer, the vanadium compound, the silicon compound and the zirconium compound are preferably dissolved in an organic solvent in that the catalyst precursor fiber can be easily obtained.
[0023]
The spinning solution is obtained by a method in which a titanium compound is reacted with water in the presence of a vanadium compound, a silicon compound and a zirconium compound, or a method in which a titanium hydrolysis polymer is mixed with an organic solvent together with a vanadium compound, a silicon compound and a zirconium compound. .
[0024]
Examples of the vanadium compound include vanadium alkoxide, vanadyl alkoxide, triethoxyvanadyl, vanadium acetylacetonate, vanadium chloride, vanadyl chloride and the like.
[0025]
As the silicon compound, for example, a compound represented by the formula (3)
Embedded image
Si n O n-1 (OR 3) 2n + 2 (3)
[Wherein, R 3 represents an alkyl group, and n represents a number of 1 or more. ]
The alkyl silicate represented by these is mentioned. Herein, the substituent R 3, for example, methyl group, ethyl group, n- propyl group, an isopropyl group, n- butyl group, and an alkyl group having 1 to 4 carbon atoms such as tert- butyl group, preferably It is an ethyl group. n is preferably about 4 to 6.
[0026]
Examples of the zirconium compound include zirconium alkoxide such as zirconium tetrabutoxide and zirconium acetylacetonate such as zirconium butoxyacetylacetonate.
[0027]
By reacting a titanium compound with water in the presence of a vanadium compound, a silicon compound and a zirconium compound, a titanium hydrolyzate containing vanadium, silicon and zirconium is produced.
[0028]
Further, by mixing the titanium hydrolysis polymer with an organic solvent together with the vanadium compound, the silicon compound and the zirconium compound, a spinning solution containing the vanadium compound, the silicon compound and the zirconium compound as it is can be obtained.
[0029]
The spinning solution may contain a fatty acid. As the fatty acid, the formula (4)
Embedded image
R 4 COOH (4)
[In the formula, R 4 represents a hydrogen atom, a saturated hydrocarbon residue or an unsaturated hydrocarbon residue. ]
Wherein the substituent R 4 is preferably a saturated hydrocarbon residue or an unsaturated hydrocarbon residue having 8 or more carbon atoms.
[0030]
Such fatty acids include, for example, formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid , Palmitic acid, heptadecylic acid, stearic acid, isostearic acid, nonadecanoic acid, arachinic acid, behenic acid, lignoceric acid, serotinic acid, heptacosanoic acid, montanic acid, melicic acid, saturated fatty acids such as lacceric acid,
Unsaturated fatty acids such as acrylic acid, crotonic acid, isocrotonic acid, undecylenic acid, oleic acid, elaidic acid, setleic acid, erucic acid, brassic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid, propiolic acid, and stearolic acid Is mentioned.
[0031]
The content of such a fatty acid is usually 0.01 mol times or more, preferably 0.05 mol times or more with respect to the titanium atom of the titanium hydrolyzed polymer in terms of catalytic activity, and the mechanical strength of the catalyst fiber In view of the above, it is 0.5 mol times or less, preferably 0.3 mol times or less. Such fatty acids are usually mixed with an organic solvent together with the titanium hydrolysis polymer.
[0032]
Such a spinning solution may be spun by a usual spinning method such as a nozzle extrusion spinning method, a centrifugal spinning method, and a blow spinning method. In spinning, the spinning solution immediately after spinning may be stretched. Examples of the stretching include a method using a rotating roller and a method using an air flow. During spinning, the viscosity of the preventive liquid is from 10 poise to 2000 poise, preferably from about 20 poise to 1500 poise. In order to adjust the spinning solution to this viscosity range, for example, the content of the organic solvent contained in the spinning solution may be appropriately adjusted. Further, the temperature of the spinning solution may be adjusted. By spinning in this manner, the organic solvent in the spinning solution is volatilized, and the catalyst precursor fiber in which the solid content becomes fibrous can be obtained.
[0033]
The obtained catalyst precursor fiber may be subjected to steam treatment. In order to treat the catalyst precursor fiber with steam, for example, the catalyst precursor fiber may be brought into contact with steam. Usually, the steam partial pressure is usually 0.3 atm (0.03 MPa) or more and a saturated steam pressure or less, preferably 0 or less. The catalyst precursor fibers may be exposed to an atmosphere of 0.5 atm (0.05 MPa) or more. The steam treatment temperature is usually 70 ° C. or more and 300 ° C. or less, preferably 85 ° C. or more, and the steam treatment time is usually 1 hour or more and 30 hours or less, preferably 5 hours or more.
[0034]
The catalyst precursor fiber thus obtained may be fired by a usual method. The firing temperature is about 200 ° C. or more and 900 ° C. or less in terms of catalytic activity. The catalyst precursor fibers may be fired under tension.
[0035]
The catalyst fiber of the present invention obtained as described above exhibits a peak corresponding to a titanium oxide in an X-ray diffraction (XRD) spectrum, and further exhibits a peak corresponding to an anatase type titanium oxide in terms of catalytic activity. More preferably, for example, the anatase crystallization ratio determined from the XRD spectrum is preferably 60% or more. More preferably, the crystallite diameter is 6 nm or more. Such a crystallite diameter is usually 200 nm or less. Further, it is preferable that the XRD spectrum does not substantially show peaks corresponding to vanadium oxide, silicon oxide, and zirconium oxide.
[0036]
In the catalyst fiber of the present invention, titanium, vanadium, silicon and zirconium may each independently form an oxide, or may form a composite oxide.
[0037]
The catalyst fiber of the present invention has a fiber diameter (d) of usually 0.1 μm or more and 100 μm or less, preferably 2 μm or more and 50 μm or less, and a fiber length (L) of usually 0.2 μm or more and is a long fiber. And the aspect ratio (L / d) is 2 or more.
[0038]
The catalyst fiber of the present invention has a BET specific surface area of 10 m 2 / g or more, more preferably 180 m 2 / g or more, particularly 200 m 2 / g or more in terms of catalytic activity, and has a total fineness measured by a nitrogen adsorption method. pore volume 0.05 cm 3 / g or more, more is at 0.2 cm 3 / g or more, more pore volume pore radius 1nm is 0.02 cm 3 / g or more, further 0.2 cm 3 / g or more Is preferred. Here, the BET specific surface area is usually 400 m 3 / g or less.
[0039]
The catalyst fiber of the present invention thus obtained is useful, for example, as a denitration catalyst. By contacting a gas containing nitrogen oxide with the catalyst fiber of the present invention, the gas can be denitrated. Further, it is also useful as an organic halide decomposition catalyst for decomposing organic halides such as dioxins. For example, by contacting a gas containing an organic halide with the catalyst fiber of the present invention, the catalyst fiber is contained in this gas. Organic halides can be decomposed. The temperature of the catalyst fibers when contacting the gas is usually 150 ° C. or higher and 900 ° C. or lower. The gas containing nitrogen oxides and the gas containing organic halides may contain sulfur oxides.
[0040]
【The invention's effect】
Since the catalyst fiber of the present invention is hardly poisoned by the sulfur oxide, the nitrogen oxide can be reduced over a long period of time even when it is brought into contact with a gas containing a sulfur oxide together with the nitrogen oxide. Further, even when the organic halide is brought into contact with a gas containing a sulfur oxide together with the organic halide, the organic halide can be decomposed for a long period of time.
[0041]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the following examples, the BET specific surface area, pore volume, tensile strength, crystal form, anatase conversion and crystallite diameter of the catalyst fiber were measured by the following methods.
[0042]
(1) A catalyst fiber having a BET specific surface area, a total pore volume, and a pore volume having a pore radius of 1 nm or more is lightly pulverized in a mortar, and a gas adsorption / desorption analyzer Omnisorp 360 (manufactured by Coulter) is used. , 130 ° C., 6 hours, vacuum deaeration under a condition of a vacuum degree of 6 × 10 −5 Torr (8 mPa) or less, a pore distribution curve with respect to a pore radius was obtained by a continuous volume method using nitrogen gas. The BET specific surface area, the total pore volume, and the pore volume with a pore radius of 1 nm or more were calculated from the pore distribution curve.
[0043]
(2) The crystalline catalyst of the catalyst fiber was lightly pulverized in a mortar, and an X-ray diffraction spectrum was obtained using an X-ray diffractometer (“RAD-IIA” manufactured by Rigaku Denki Co., Ltd.) and identified from this spectrum. .
[0044]
(3) from the X-ray diffraction spectrum obtained by the anatase crystallization ratio above, it was determined and the area S 1 of a peak of anatase type titanium oxide (101) face. Separately, a standard sample in the same manner as [powder anatase titanium oxide, "STT-65C-S" (trade name), Titan Kogyo Ltd.] and measuring the area S 2 of the peak of the anatase type titanium oxide (101) face of the Was. The crystallization ratio A (%) was calculated by the formula (4) using the titanium content (molar fraction) x of the catalyst fiber in terms of metal.
(Equation 1)
A = S 1 / (S 2 · x) (4)
[0045]
(4) Anatase crystallite diameter From the X-ray diffraction spectrum obtained above, the half width β (radian) of the anatase-type titanium oxide (101) plane and the peak position θ (radian) of the (101) plane were obtained, and the equation ( 5)
(Equation 2)
L = K · λ / (β · cosθ) (5)
[Where K is a Scherrer constant of 0.94, and λ (nm) indicates a measured X-ray wavelength (CuKα ray: 0.15406 nm). ]
The crystallite diameter L (nm) was calculated according to
[0046]
(5) Acid amount 0.1 g of the obtained catalyst fiber is mixed with 0.4 g of glass beads, put into a measuring cell, heated to 350 ° C. under vacuum at 20 ° C./min, and kept at the same temperature for 1 hour. . Thereafter, the catalyst fibers were brought into contact with ammonia gas (100 Torr (0.013 MPa)) at 100 ° C. for 30 minutes to adsorb ammonia on the catalyst fibers. Next, ammonia gas was exhausted at the same temperature for 30 minutes. Then, while introducing a helium gas stream into the measurement cell at 20 Ncm3 / min, the temperature was raised from 100 ° C to 10 ° C / min to remove ammonia desorbed from the catalyst fibers. The acid amount (μmol / g) was determined as the amount of adsorption (μmol) of ammonia per 1 g of the catalyst fiber, as measured by a heavy-pole mass spectrometer.
[0047]
Example 1
[Production of catalyst fiber A]
225 g of titanium tetraisopropoxide (first-class reagent, manufactured by Wako Pure Chemical Industries), 61.9 g of vanadium isopropoxide (manufactured by Nichia), ethyl silicate [Ethyl silicate 40, manufactured by Tama Chemical Co., formula ( Mixture of silicates wherein n is 1 to 5 in 3)] 4.8 g, 15.2 g of 80% by mass of zirconium n-butoxide in n-butanol (manufactured by Research Chemicals) and ethyl acetoacetate (reagent grade, Wako Pure Chemical Industries, Ltd.) 5.2 g of isopropyl alcohol (manufactured by Kogyo Co., Ltd.) was dissolved in 63.1 g of isopropyl alcohol (special grade of reagent, manufactured by Wako Pure Chemical Industries) and refluxed for 1 hour under a nitrogen atmosphere with heating to prepare a titanium alkoxide solution. At this time, the amount of the titanium tetraisopropoxide, vanadium isopropoxide, ethyl silicate, zirconium n-butoxide n-butanol solution used was 69.9 mass% of titanium (TiO 2 ) and vanadium (V 2 O 5 ) 25.5 mass%, silicon (SiO 2 ) 2.1 mass%, and zirconium (ZrO 2 ) 2.5 mass%. The addition amount of ethyl acetoacetate is 0.05 mol per 1 mol of titanium tetraisopropoxide.
[0048]
On the other hand, 32.7 g of water and 294.9 g of isopropyl alcohol were mixed to prepare a mixed solution having a water concentration of 10% by weight. The amount of this water is 2.30 mol per 1 mol of titanium tetraisopropoxide.
[0049]
The titanium alkoxide solution obtained above was refluxed in a nitrogen atmosphere, and at the same time, the mixed solution obtained above was added while stirring and the solvent was distilled off. The rate at which the solvent was distilled off and the rate at which the solvent was supplied by adding the mixed solution were adjusted to be substantially equal. The addition time of the mixed solution was 116 minutes.
[0050]
When an amount of the mixed solution corresponding to 1.80 mol of water per 1 mol of titanium tetraisopropoxide was added, precipitation of a polymer started in the titanium alkoxide solution. Further, the addition of the mixed solution was continued, and the whole amount was added to obtain a slurry containing the titanium hydrolysis polymer.
[0051]
After concentration, 272 g of tetrahydrofuran (special grade reagent, manufactured by Wako Pure Chemical Industries) was added in a nitrogen atmosphere, and the mixture was refluxed for 1 hour to dissolve the polymer, and then 22.5 g of isostearic acid (reagent, manufactured by Wako Pure Chemical Industries) Was added and refluxed for 1 hour to obtain a polymer solution.
[0052]
The obtained polymer solution was filtered through a fluorine resin membrane filter having a pore diameter of 3 μm in a nitrogen atmosphere, and then heated to distill a mixed solvent of isopropyl alcohol and tetrahydrofuran and concentrated to obtain 239 g of a spinning solution. The viscosity at 40 ° C. of this spinning solution was 50 poise (5 Pa · s).
[0053]
The spinning solution obtained above is kept at 40 ° C., extruded with a nitrogen gas of 20 kgf / cm 2 (2 MPa) from a nozzle having a pore diameter of 50 μm into air at 40 ° C. and a relative humidity of 60%, and wound up at a speed of 70 m / min. Thus, a catalyst precursor fiber was obtained.
[0054]
The obtained catalyst precursor fiber is placed in a thermo-hygrostat at 85 ° C. and a relative humidity of 95%, subjected to steam treatment for 15 hours, then heated at 50 ° C./hour, and calcined in air at 425 ° C. for 1 hour. Thus, a catalyst fiber A having an anatase type crystal structure and a fiber diameter of 15 μm was obtained. In the X-ray diffraction spectrum of the catalyst fiber A, an X-ray diffraction peak of titanium oxide (anatase) was observed, but no X-ray diffraction peaks of vanadium oxide, silicon oxide and zirconium oxide were observed. . The catalyst fiber A has a BET specific surface area of 200 m 2 / g, a total pore volume of 0.33 cm 3 / g, a pore volume with a pore radius of 1 nm or more of 0.33 cm 3 / g, and a crystal type of anatase or anatase crystal. The conversion was 86%, the crystallite diameter was 7.9 nm, and the acid amount was 503 μmol / g.
[0055]
[Production of catalyst sheet A]
6.21 g of para-aramid pulp (trade name: Twaron 1094, manufactured by Nippon Aramid) in 1 L (1000 cm 3 ) of water, betaine lauryl dimethylaminoacetate (trade name: Amphitol 24B, active ingredient 26%, manufactured by Kao) as a surfactant 0.59 g, an antifoaming agent (trade name: Homeless P-98, manufactured by Meisei Chemical Co., Ltd.) 0.52 g, and 7.28 g of the catalyst fiber A obtained above were added in this order, and then a pulp disintegrator (“No. 2529”) (Kumagaya Riki Kogyo Co., Ltd.) to obtain a mixed solution. After 17 L of water was added to the obtained liquid mixture and stirred, a wet sheet was prepared using a square sheet machine (“No. 2555”, manufactured by Kumagaya Riki Kogyo Co., Ltd.). The obtained wet sheet was dehydrated and dried to obtain a catalyst sheet A having a basis weight of 156 g / m 2 and a square of 250 mm.
[0056]
(Evaluation of denitration performance)
The catalyst sheet A obtained as described above was cut into a disk having a diameter of 53 mm to obtain a test sheet. The test sheet was sandwiched between two felts and fixed in a reaction tube having an inner diameter of 53 mm. Then, a mixed gas of 200 ° C. at a NOx concentration of 100 ppm, an NH 3 concentration of 100 ppm, an O 2 concentration of 10%, and a H 2 O concentration of 20% ( The composition was introduced at a partial pressure ratio at a flow rate of 1.27 NL / min (linear velocity: 1.0 m / min). The NOx concentration (C 0 ) of the mixed gas before passing through the reaction tube and the NOx concentration (C 1 ) of the gas after passing were measured by a NOx automatic measuring device (“ECL-77A”, manufactured by Yanagimoto Seisakusho), Equation (6)
[Equation 3]
R NOX (%) = (C 0 −C 1 ) / C 0 × 100 (6)
As a result, the denitration rate (R NOX ) was determined to be 64%.
[SOx resistance test 1]
A test sheet cut in the same manner as described above is sandwiched between two felts and fixed in a reaction tube having an inner diameter of 53 mm. Then, a mixed gas containing 170 ppm of SO 2 , 10% of O 2 , and 20% of H 2 O at 170 ° C. The composition (partial pressure ratio) was introduced at a flow rate of 1 NL / min for 24 hours, and then the denitration rate (R NOX ) was determined in the same manner as above, to be 53%.
[0057]
[SOx resistance test 2]
The denitration ratio (R NOX ) was found to be 52% by operating in the same manner as in the above “SOx resistance test 1” except that the introduction time of the mixed gas was changed to 48 hours.
[0058]
Comparative Example 1
[Production of catalyst fiber B]
255 g of titanium tetraisopropoxide (first-class reagent, manufactured by Wako Pure Chemical Industries), 70.1 g of vanadium isopropoxide (manufactured by Nichia Corporation), and 5.84 g of ethyl acetoacetate (special reagent grade, manufactured by Wako Pure Chemical Industries) Was dissolved in 94.1 g of isopropyl alcohol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and refluxed under a nitrogen atmosphere for 1 hour to prepare a titanium alkoxide solution. At this time, the used amount of titanium tetraisopropoxide and vanadium isopropoxide is such that the amount becomes 73% by mass of titanium (TiO 2 ) and 27% by mass of vanadium (V 2 O 5 ) in terms of oxide. The addition amount of ethyl acetoacetate is 0.05 mol per 1 mol of titanium tetraisopropoxide.
[0059]
On the other hand, 37.0 g of water and 334 g of isopropyl alcohol were mixed to prepare a mixed solution having a water concentration of 10% by weight. The amount of this water is 2.30 mol per 1 mol of titanium tetraisopropoxide.
[0060]
The titanium alkoxide solution obtained above was refluxed in a nitrogen atmosphere, and at the same time, while the solvent was being distilled off, the mixed solution obtained above was added with stirring. The rate at which the solvent was distilled off and the rate at which the solvent was supplied by adding the mixed solution were adjusted to be substantially equal. The addition time of the mixed solution was 116 minutes.
[0061]
When an amount of the mixed solution corresponding to 1.80 mol of water per 1 mol of titanium tetraisopropoxide was added, precipitation of a polymer started in the titanium alkoxide solution. Further, the addition of the mixed solution was continued, and the whole amount was added to obtain a slurry containing the titanium hydrolysis polymer.
[0062]
After the slurry obtained above was refluxed for 1 hour in a nitrogen atmosphere, the solvent was distilled off by heating, and concentrated until the titanium concentration (in terms of metal) became 3.07 × 10 −3 mol / g.
[0063]
After concentration, 271 g of tetrahydrofuran (special grade reagent, manufactured by Wako Pure Chemical Industries) was added in a nitrogen atmosphere, and the mixture was refluxed for 1 hour to dissolve the polymer, and then 25.5 g of isostearic acid (reagent, manufactured by Wako Pure Chemical Industries). Was added and refluxed for 1 hour to obtain a polymer solution.
[0064]
The obtained polymer solution was filtered through a fluorine resin membrane filter having a pore diameter of 3 μm in a nitrogen atmosphere, and then heated to distill a mixed solvent of isopropyl alcohol and tetrahydrofuran and concentrated to obtain 262 g of a spinning solution. The viscosity at 40 ° C. of this spinning solution was 50 poise (5 Pa · s).
[0065]
The spinning solution obtained above is maintained at 40 ° C., and is extruded with a nitrogen gas of 20 kgf / cm 2 (2 MPa) from a nozzle having a pore diameter of 50 μm into an air atmosphere at 40 ° C. and a relative humidity of 60%, and wound at a speed of 70 m / min. Then, a catalyst precursor fiber was obtained.
[0066]
The obtained catalyst precursor fiber is placed in a thermo-hygrostat at 85 ° C. and a relative humidity of 95%, subjected to steam treatment for 15 hours, then heated at a rate of 200 ° C./hour and calcined in air at 350 ° C. for 1 hour. Thus, a catalyst fiber B having an anatase type crystal structure and a fiber diameter of 15 μm was obtained. In the X-ray diffraction spectrum of the catalyst fiber B, an X-ray diffraction peak of titanium oxide (anatase) was observed, but no X-ray diffraction peak of vanadium oxide was observed. The catalyst fiber B has a BET specific surface area of 215 m 2 / g, a total pore volume of 0.18 cm 3 / g, a pore volume with a pore radius of 1 nm or more of 0.18 cm 3 / g, and a crystal type of anatase or anatase crystal. The conversion was 71%, the crystallite diameter was 6.3 nm, and the acid amount was 462 μmol / g.
[0067]
[Production of catalyst sheet B]
In 1 L of water, 5.43 g of para-aramid pulp (trade name: Twaron 1094, manufactured by Nippon Aramid), 0.55 g of betaine lauryl dimethylaminoacetate (trade name: Amphitol 24B, active ingredient 26%, manufactured by Kao) as a surfactant, After adding 0.55 g of antifoaming agent (trade name: Homeless P-98, manufactured by Meisei Chemical Industry Co., Ltd.) and 7.28 g of the catalyst fiber B obtained above, a pulp disintegrator (“No. 2529”, Kumagaya Rikiki) (Manufactured by Kogyo) to obtain a mixed solution. After 17 L of water was added to the obtained mixed solution and stirred, a wet sheet was prepared using a square sheet machine (No. 2555, manufactured by Kumagaya Riki Kogyo Co., Ltd.). The obtained wet sheet was dehydrated and dried to obtain a catalyst sheet B having a basis weight of 151 g / m 2 and a square of 250 mm.
[0068]
(Evaluation of denitration performance)
The denitration ratio (R NOX ) of this catalyst sheet B was determined to be 66% by operating in the same manner as in Example 1 except that the catalyst sheet B obtained above was used instead of the catalyst sheet A.
[0069]
[SOx resistance test 1]
An SOx resistance test 1 was performed in the same manner as in Example 1 except that the catalyst sheet B obtained above was used instead of the catalyst sheet A, and the denitration ratio (R NOX ) was found to be 47%.
[0070]
[SOx resistance test 2]
The denitration ratio (R NOX ) was found to be 39% by operating in the same manner as in the above “SOx resistance test 1” except that the introduction time of the mixed gas was set to 48 hours.

Claims (5)

元素としてチタン、バナジウム、珪素およびジルコニウムを含む酸化物からなる触媒繊維。Catalyst fiber made of an oxide containing titanium, vanadium, silicon and zirconium as elements. X線回折スペクトルにおいてチタン酸化物に相当するピークを示し、バナジウム酸化物、珪素酸化物およびジルコニウム酸化物に相当するピークを示さない請求項1に記載の触媒繊維。The catalyst fiber according to claim 1, wherein the X-ray diffraction spectrum shows a peak corresponding to titanium oxide and does not show peaks corresponding to vanadium oxide, silicon oxide and zirconium oxide. チタン加水分解重合物および有機溶媒を含有し、元素としてバナジウム、珪素およびジルコニウムを含有する紡糸液を紡糸して触媒前駆体繊維を得、得られた触媒前駆体繊維を焼成することを特徴とする請求項1に記載の触媒繊維の製造方法。A catalyst precursor fiber is obtained by spinning a spinning solution containing a titanium hydrolysis polymer and an organic solvent, and containing vanadium, silicon and zirconium as elements, and firing the obtained catalyst precursor fiber. A method for producing a catalyst fiber according to claim 1. 請求項1または請求項2に記載の触媒繊維に、窒素酸化物を含有するガスを接触させることを特徴とする、前記ガスの脱硝方法。3. A method for denitrifying a gas, comprising bringing a gas containing nitrogen oxide into contact with the catalyst fiber according to claim 1 or 2. 請求項1または請求項2に記載の触媒繊維に、有機ハロゲン化物を含むガスを接触させることを特徴とする、前記ガスに含まれる有機ハロゲン化物の分解方法。A method for decomposing an organic halide contained in a gas, comprising contacting a gas containing an organic halide with the catalyst fiber according to claim 1 or 2.
JP2003094093A 2003-03-31 2003-03-31 Catalytic fiber and its manufacturing method Pending JP2004298728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094093A JP2004298728A (en) 2003-03-31 2003-03-31 Catalytic fiber and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094093A JP2004298728A (en) 2003-03-31 2003-03-31 Catalytic fiber and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004298728A true JP2004298728A (en) 2004-10-28

Family

ID=33406737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094093A Pending JP2004298728A (en) 2003-03-31 2003-03-31 Catalytic fiber and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004298728A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123114A1 (en) * 2006-04-18 2007-11-01 Teijin Limited Titania fiber and method for producing titania fiber
EP1887112A1 (en) * 2005-05-31 2008-02-13 Teijin Limited Ceramic fiber and process for producing the same
WO2015072567A1 (en) * 2013-11-18 2015-05-21 日立造船株式会社 Denitration catalyst and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887112A1 (en) * 2005-05-31 2008-02-13 Teijin Limited Ceramic fiber and process for producing the same
EP1887112A4 (en) * 2005-05-31 2009-01-21 Teijin Ltd Ceramic fiber and process for producing the same
KR100988751B1 (en) * 2005-05-31 2010-10-20 데이진 가부시키가이샤 Ceramic fiber and process for producing the same
WO2007123114A1 (en) * 2006-04-18 2007-11-01 Teijin Limited Titania fiber and method for producing titania fiber
JPWO2007123114A1 (en) * 2006-04-18 2009-09-03 帝人株式会社 Titania fiber and method for producing titania fiber
WO2015072567A1 (en) * 2013-11-18 2015-05-21 日立造船株式会社 Denitration catalyst and method for producing same
JP2015097977A (en) * 2013-11-18 2015-05-28 日立造船株式会社 Denitration catalyst and manufacturing method thereof
CN105764607A (en) * 2013-11-18 2016-07-13 日立造船株式会社 Denitration catalyst and method for producing same

Similar Documents

Publication Publication Date Title
KR20010050038A (en) Porous titania, catalyst comprising the porous titania
US20080268268A1 (en) Titanium oxide photocatalyst, method for producing same and use thereof
JP2004290924A (en) Catalytic fiber and its production method
Goutailler et al. Low temperature and aqueous sol–gel deposit of photocatalytic active nanoparticulate TiO 2
US6191067B1 (en) Titania fiber, method for producing the fiber and method for using the fiber
US20060240288A1 (en) Titania nanosheet alignment thin film, process for producing the same and article including titania nanosheet alignment thin film
Jitianu et al. New carbon multiwall nanotubes–TiO2 nanocomposites obtained by the sol–gel method
US6162759A (en) Method for producing a catalyst component-carrying titania fiber
US20190217279A1 (en) Denitrification catalyst for vessel, using ceramic nanotubes grown on porous metal structure, and preparation method thereof
Yang et al. Removal of elemental mercury (Hg0) from simulated flue gas over MnOx-TiO2 sorbents
CN105126802A (en) Preparation method for TiO2/CNT composite material and TiO2/CNT composite material based on same
Raja et al. Systematic effects of Fe doping on the activity of V 2 O 5/TiO 2-carbon nanotube catalyst for NH 3-SCR of NO x
WO2008009919A1 (en) Metal oxynitride
WO2007119489A1 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
JP2004298728A (en) Catalytic fiber and its manufacturing method
Enriquez et al. Mechanistic implications of the effect of TiO2 accessibility in TiO2–SiO2 coatings upon chlorinated organics photocatalytic removal in water
JP4424905B2 (en) Anatase type titania-silica composite, production method thereof and photocatalytic material
JP2004298729A (en) Catalytic fiber having excellent denitrifying performance and its manufacturing method
JPH10325021A (en) Titania fiber and its production
Ramachandran et al. Development of a Two‐Tier Fibrous Membrane by Sequential Electrospinning for Effective Air Filtration
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
JP4817219B2 (en) Method for producing flaky titanium oxide that absorbs visible light
JP2000192336A (en) Titania fiber and its production
EP1072311B1 (en) Heat resistant catalyst sheet and process for producing same
Jia et al. Preparation and characterization of Rb-doped TiO 2 powders for photocatalytic applications