JP2004296805A - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
JP2004296805A
JP2004296805A JP2003087500A JP2003087500A JP2004296805A JP 2004296805 A JP2004296805 A JP 2004296805A JP 2003087500 A JP2003087500 A JP 2003087500A JP 2003087500 A JP2003087500 A JP 2003087500A JP 2004296805 A JP2004296805 A JP 2004296805A
Authority
JP
Japan
Prior art keywords
temperature
optical transmitter
constant current
electronic cooler
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003087500A
Other languages
Japanese (ja)
Inventor
Shinji Shibao
新路 柴尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003087500A priority Critical patent/JP2004296805A/en
Publication of JP2004296805A publication Critical patent/JP2004296805A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmitter which operates a light-emitting element stably at a high temperature and reduces the electric power consumption by a cooling component that is necessary for the stable operation of the light-emitting element. <P>SOLUTION: The optical transmitter comprises a semiconductor laser (LD), a temperature detecting element connected thermally to the semiconductor laser, an electronic cooler on which the semiconductor laser is mounted, an LD driving circuit which outputs an LD driving current to the semiconductor laser, a temperature compensating circuit which controls the value of the output current from the LD driving circuit in response to a detected signal from the temperature detecting element, and a constant-current circuit which gives a constant-current to the electronic cooler. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、発光素子を冷却する電子冷却器を搭載した光送信器に関する。
【0002】
【従来の技術】
従来の半導体レーザ(LD)を搭載した光送信器では、使用温度が変化する環境下において、LDの出力光を安定化させるために、ペルチェ素子を用いてLDの素子温度を一定に保っていた。
【0003】
このような光送信器では、ペルチェ素子上にLDを搭載し、LDの素子温度をサーミスタで検出する。サーミスタの検出温度に基づいて、加熱もしくは冷却といったペルチェ素子の温度制御を行い、LDの素子温度を、例えば25℃の一定温度に保つ。このとき、光送信器の使用温度の変化に関わらず、LDの動作性能は安定化するため、LDの駆動回路からLDに与えられる駆動電流は一定値でよい(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−53378号公報(図3、第1−第2頁)
【0005】
しかし、光送信器の使用温度が、例えば70℃となる場合、LDを25℃にするためには、光送信器の使用温度とLDの素子温度との温度差に応じて、ペルチェ素子に大電力を与える必要があり、その結果、消費電力が著しく大きくなるという問題があった。例えば、このときのペルチェ素子を除く光送信器全体の消費電力2Wに対して、ペルチェ素子の消費電力は2W程度にもなる。
また、ペルチェ素子の温度制御回路は、オペアンプや抵抗等を用いた増幅器で実現されることが多く、部品点数が増加した。
【0006】
これに対して、LDの温度を常に一定にせずに、使用温度が変化する環境下において、サーミスタで検出されたLDの素子温度に応じて、LDの駆動電流の電流値を補償する温度補償回路を備えた技術が知られている(例えば、特許文献2参照)。
【0007】
【特許文献2】
特開2002−111120号公報(図1、第2−第4頁)
【0008】
しかしながら、このような光送信器では、使用温度の変化に応じて、LDの素子温度も同じように変化するため、光出力を安定化させるには、高温になるほど多くのLDの駆動電流を供給する必要があった。
このとき、高温時に駆動電流が不足して所望の光出力を得られるようにLDを駆動できなかったり、LDを高速動作せる際に、LDの周波数特性が劣化する。このため、LDの送信光波形の立ち上がり/立下り時間が遅くなって、光送信波形のアイ開口が閉じてしまうという問題があった。
【0009】
【発明が解決しようとする課題】
従来の光送信器では、ペルチェ素子のような電子冷却器を用いて、発光素子であるLDの素子温度を安定化させる場合、光送信器の使用温度が高くなると、ペルチェ素子に供給する消費電力が著しく大きくなるという問題があった。
【0010】
また、LDの素子温度を一定にせずに、素子温度に応じてLDの駆動電流の電流値を調整する場合は、高温時にLDの駆動特性が劣化したり、LDの周波数特性が悪くなって、送信光波形の品質が劣化するという問題があった。
【0011】
この発明は、このような課題を解決するためになされたものであり、高温度時において発光素子を安定に動作させるとともに、発光素子の安定動作のために必要な冷却部品の消費電力を低減させる光送信器を得ることを目的とする。
【0012】
【課題を解決するための手段】
この発明による光送信器は、発光素子と、前記発光素子と熱的に接続された温度検出素子と、前記発光素子と熱的に接続された電子冷却器と、前記発光素子に駆動電流を出力する駆動回路と、前記温度検出素子の検出信号に応じて、前記駆動回路の出力電流の電流値を制御する温度補償回路と、前記電子冷却器に定電流を与える定電流回路とを備えたものである。
【0013】
また、前記定電流回路は、前記筐体の動作温度範囲内で、前記温度検出素子の検出温度が前記筐体の使用温度以下になるような一定の電流値を与えるものであっても良い。
【0014】
【発明の実施の形態】
実施の形態1.
図1は、本発明に係る実施の形態1による光送信器の構成を示す断面図である。
図において、光送信器1は、光モジュール2と基板3を、金属製の筐体4内に収容し、固定している。光モジュール2は、発光素子である半導体レーザ(LD)5、温度検出素子6、および電子冷却器7をパッケージ100の内部に収容し、パッケージ100の側壁に光ファイバ8を保持している。
【0015】
電子冷却器7は、光モジュール2を構成するパッケージ100の内側の底面に接合され、上面に基板9を載置している。LD5および温度検出素子6は、基板9上面に載置されて互いに熱的に接続されるとともに、電子冷却器6とも熱的に接続されている。電子冷却器7は、ペルチェ素子の上下を絶縁基板で挟みこんで構成され、上面に搭載されたLD5で発生した熱を吸熱し、下面に接合されたパッケージ100の底面に放熱するように動作する。温度検出素子6は、サーミスタで構成され、LD5の素子温度の変化に応じて、出力電流(温度信号)が変化する。
すなわち、LD5の素子温度TLを出力する。また、基板9には、フォトダイオード(PD)50が設けられている。PD50は、LD5の背面から出射された光信号を受光し、受光した光信号に比例したモニタ電流を出力する。
【0016】
LD5は、電子冷却器7上で固定されたレンズを介在させて、光ファイバ8と光学的に結合し、LD5の前面から出射された光信号は、光ファイバ8の端面に入力される。パッケージ100は、金属部材で構成される側壁に、導電部材の信号端子を誘電体で内包して成るフィードスルーが嵌合されており、気密を保持したままパッケージ100の内外で電気信号を伝送する。
【0017】
基板3は、上面に複数の電子回路部品10を搭載している。基板3は、光モジュール2のフィードスルー、および導体ワイヤを介在させて、基板9と電気的に接続されている。かくして、電子回路部品10は、LD5および温度検出素子6と電気的に接続され、LD5および温度検出素子6と電子回路部品10との間で電気信号が授受される。
【0018】
筐体4の内側の底面には、光モジュール2を構成するパッケージ100の外側の底面が接合されている。また、筐体4の外側の底面にヒートシンク11が設けられており、かくして光モジュール2の底面に接合された電子冷却器7と、ヒートシンク11とが、間接的に熱的に接続される。また、筐体4の側面には、光ファイバ8が保持され、光ファイバ8の端面に入力された光信号を、筐体4の外部に伝送する。
【0019】
図2は、光送信器1内部の回路構成を示す電気回路図である。
図において、光送信器1には、LD駆動回路20、温度補償回路21、APC回路30、定電流回路35が設けられ、夫々電子回路部品10を構成している。LD駆動回路20は、光信号として変換されるNRZ(Non Return Zero)符号のデータ信号(DATA)が入力される。LD駆動回路20は、このデータ信号に基づいてLD5を駆動し、その出力光を強度変調するための変調電流Imodを、LD5に供給する。また、LD駆動回路20は、内部にカレントミラー回路を構成しており、変調電流Imodのピーク電流(振幅)に比例した電流信号を検出し、この電流信号は電圧信号に変換されて変調モニタ信号Vmonとして出力される。LD駆動回路20には図示しないベース電圧が与えられる。
【0020】
温度補償回路21は、温度検出素子6から出力される温度信号Itと変調モニタ信号Vmonに基づいて、LD駆動回路20に変調制御信号Vmodを供給する。例えば、温度補償回路21では、温度信号Itが電圧信号Vtに変換され、基準電圧(定電圧)Veと加算されて温度補償された基準信号(温度補償信号)Vm(=Ve+Vt)が演算される。また、この温度補償信号Vmと変調モニタ信号Vmonの差分(=Vm−Vmon)が演算され、演算された差分信号を増幅した信号が変調制御信号Vmodとして出力される。LD駆動回路20は、この変調制御信号Vmodに応じて、LD5の光出力の変調振幅を調整するための変調電流Imodを調整する。
【0021】
また、APC回路30は、PD50のモニタ電流に応じて、LD5の出力光の強度が一定となるように調整されたバイアス電流Ibを出力する。バイアス電流Ibと変調電流Imodとが合流し、LD駆動電流ILDとしてLD5に供給されて、強度変調された光信号を出力する。
かくして、温度補償回路21は、温度検出素子5の検出する温度に応じて、LD駆動回路20から出力される変調電流Imodを補償し、結果としてLD5に供給されるLD駆動電流ILDの電流量を補償する。
【0022】
電子冷却器7は、定電流回路35によって、一定の電流(定電流)が供給されている。これによって、電子冷却器7は、LD5で発生する熱量を一定量吸熱して光送信器側に放熱するように冷却動作する。
なお、定電流回路35、LD5、LD駆動回路20には、異なる接地電位が供給される。
【0023】
ここで、電子冷却器7の冷却動作について詳細に説明する。
LD5は、光送信器1の使用温度が例えば70℃に変化したとき、その温度変化に応じてLD5の温度が上昇し、これに応じて素子温度が高くなる。この際、温度補償回路21の作用によってLD5に多くの電流供給が為される。しかし、所望の光出力を得るためのLD5の動作限界温度が60℃である場合、LD5の素子温度が光送信器の使用温度と同じく、例えば70℃もの高温になると、LD5に供給すべきLD駆動電流が不足して所望の光出力を得ることができなくなる。
【0024】
しかし、この実施の形態1では、LD5の動作限界温度を光送信器1の使用温度付近まで延長するために、電子冷却器7に定電流を与えて、延長したい温度差分(ΔTc)だけLD5を冷却することによって、LD5の動作限界温度を見かけ上延長させている。すなわち、定電流回路35から供給される定電流によって、電子冷却器7は、LD5の素子温度TLDを、光送信器1の使用温度TTXに対して温度差ΔTc低い温度に設定するように冷却動作させる。なお、この実施の形態では、使用温度TTXを、筐体4の外壁面を取り囲む空気の温度(周囲温度)もしくはヒートシンク11の外表面の温度で代表させる。しかし、筐体4に放熱性効率の高いヒートシンクを用いた場合は、周囲温度と内部空気の温度との温度差は少ないので、使用温度として光送信器1の内壁面の表面温度、平均温度、あるいは内部空気の温度等を用いても良い。
【0025】
この冷却のために電子冷却器7から放出される電力をΔWcとすると、電子冷却器7の熱抵抗Rcは、Rc=ΔTc/ΔWc(℃/W)となる。
一方、光送信器1の筐体4には十分大きなヒートシンク11が設けられているので、光送信器1周囲の外気との熱抵抗RTXは、電子冷却器7の熱抵抗Rcよりも十分に大きく、RTX<<Rcの関係が成り立つ。かくして、電子冷却器7から放出される電力ΔWによる光送信器1の温度上昇ΔTTXは、温度差ΔTcに対して十分に小さく、ΔTTX<<ΔTcの関係になる。
【0026】
したがって、冷却中のLD5の素子温度TLD、光送信器1の使用温度をTTXとし、素子温度TLD が、TLD=TTX+ΔTTX−ΔTcの関係式で与えられるとすると、ΔTTX<<ΔTcに基づいて、実質的にTLD=TTX−ΔTcが成り立つ。すなわち、レーザダイオードLD5の実用上の素子温度TLDは、光送信器1の使用温度TTXから冷却温度差分(ΔTc)低い温度に設定されることになる。
【0027】
ここで、例えば、LD5の素子温度TLD(=60℃)と光送信器1の使用温度TTXとの温度差ΔTc(=10℃)を得るように、電子冷却器7に定電流ILDを与える。この冷却のために電子冷却器7から放出される電力ΔW=0.5Wとすると、電子冷却器7の熱抵抗Rc=20(℃/W)となる。このとき、例えば、光送信器1(筐体4の底面積=80mm×80mm)の熱抵抗RTX=2(℃/W)(RTX<<Rc)とするヒートシンク11を筐体4の底面に設けると、ΔTTX=RTX×ΔW=1℃となり、ΔTTX<<ΔTcとなる。また、TTX=TLD‐ΔTTX+ΔTc=69℃より、LD5の素子温度TLDが動作限界温度の上限であっても、光送信器1の使用温度TTXを、ほぼ70℃近くまで上げることができる。
【0028】
ここで、この実施の形態1によって、LD5を安定動作させる上で、格段の効果が得られることを説明するために、以下に従来技術との比較を行う。
【0029】
従来、特許文献2に記載したような電子冷却器を搭載しない光送信器(LD駆動電流補償方式)を用いた場合、高温度でLDに所望の動作をさせるために、LDを搭載する光送信器の使用上限温度を、70℃よりも10℃程度低い温度に設定しなければならなかった。
【0030】
ここで、図3は、従来のLD駆動電流補償方式の光送信器を用いた場合に、LD駆動電流に対する光出力の温度特性を示す図である。この図では、LDの素子温度0℃、25℃、60℃、および70℃のときの、LD駆動電流ILD(0℃)、ILD(25℃)、ILD(60℃)、およびILD(70℃)に関する光出力特性を示している。図に示すように、この種の光送信器では、周囲温度(使用温度)=0℃、25℃、60℃および70℃のときに、LDの素子温度TLDは0℃、25℃、60℃、および70℃となる。
【0031】
この場合、光送信器の使用温度が高温度(図中の70℃)になったときはLD駆動電流が不足し、所望の光出力を得ることができなくなる。かくして、光送信器の動作限界温度を70℃よりも10℃程度低くする必要がある。
【0032】
また、図4は、従来のLD電流制御方式の光送信器を用いた場合に、その使用温度(周囲温度)に対するLDの周波数帯域を示す図であって、光送信波形の波形劣化が少なく十分な開口径を有するアイ開口を得るための周波数帯域を示している。図において、光送信器の使用温度が所望される動作限界温度である高温(例えば70℃)になった場合に、最大ビットレートに相当する使用周波数f0よりも高い周波数帯域では、LDの光送信波形の周波数特性(例えば、通過特性)が劣化し、高温度で帯域不足を生じてしまう。
【0033】
これに対して、図5は、この実施の形態1による光送信器を用いて、温度差ΔTcを10℃としたときの、LD駆動電流に対する光出力の温度特性を示す図である。この図では、LD5の素子温度0℃、25℃、および60℃のときの、LD駆動電流ILD(0℃)、ILD(25℃)、およびILD(60℃)に関する光出力特性を示している。図に示すように、光送信器1の周囲温度(使用温度)=10℃、35℃、および70℃のとき、LD5の素子温度TLDは、0℃、25℃、および60℃となる。
【0034】
したがって、光送信器1の使用温度が高温度(図中の70℃)になっても、電子冷却器7の動作によりLD5の素子温度が60℃となって、LD駆動電流ILDの電流不足が解消され、光送信器1の動作限界温度を10℃程度拡大することができる。
【0035】
また、図6はこの実施の形態1による光送信器1の、周囲温度(使用温度)に対するLD5の周波数帯域を示す図であって、LD5の光送信波形の波形劣化が少なく、十分に品質の高いアイ開口を得るための周波数帯域を示している。図において、光送信器1の使用温度が高温(例えば70℃)であっても、LD5が良好に動作して、最大ビットレートに相当する使用周波数f0よりも高い周波数帯域で、LD5の光送信波形が所定の周波数特性(例えば、通過特性)を満足することがわかる。
【0036】
このように、この実施の形態1によれば、定電流で動作する電子冷却器7を用いてLD5を冷却することによって、LD5を搭載する光送信器1の使用温度の動作限界温度を、より高温度(例えば70℃)に設定しても、LD5を安定に動作させることができるとともに、LD5の光送信波形の波形劣化を抑え、より品質の高い出力波形を得ることができる。
【0037】
次に、この実施の形態1によれば、電子冷却器7の消費電力についても顕著な改善効果を得ることができる。
従来の特許文献1に記載されるような光送信器(ペルチェ駆動電流制御方式)では、サーミスタの検出温度TLDが基準温度T0(例えば25℃)に一致するように、ペルチェ素子に供給する電流をフィードバック制御によって増減させていた。このため、例えば、光送信器1の使用温度が70℃となるときは、LDの素子温度が25℃になるようにペルチェ素子で45℃冷却し、他方で、光送信器1の使用温度が0℃となるときは、LDの素子温度が25℃になるようにペルチェ素子で25℃加熱していた。
【0038】
しかし、この実施の形態の光送信器1では、電子冷却器7を定電流で動作させて、LD5と光送信器1との温度差ΔTc(例えば10℃)分だけ冷却する。これによって、電子冷却器から放出される電力ΔWc(例えば0.5W)は、光送信器全体の消費電力WTX(例えば2.4W)に対して、WTX>>ΔWcの関係にあって(5倍程度異なる)、電子冷却器7の駆動に伴なう消費電力上のデメリットは、実質上見つからない。
【0039】
図7は、この実施の形態1による方式(本実施例の方式)と、特許文献1の発明に基づく方式(LD駆動電流補償方式)と、特許文献2の発明に基づく方式(ペルチェ駆動電流制御方式)の夫々について、LD、電子冷却器、および光送信器全体の消費電力を比較した一例を示す表である。
【0040】
同表によれば、本実施例の方式は、電子冷却器を利用しないLD駆動電流補償方式に比べて、光送信器全体の消費電力は高くなるものの、その差は僅少(例えば0.3W)であって、実質的に消費電力としての遜色が見られない。しかし、本実施例の方式は、ペルチェ駆動電流制御方式に比べて、電子冷却器の消費電力が格段に少なくなり(1/4程度)、LD5を高温度で動作させながらも、光送信器全体として消費電力を改善する効果が著しく大きい。
【0041】
さらに、この実施の形態1によれば、電子冷却器7の温度のフィードバック制御を行うために、オペアンプや抵抗等を用いた増幅器や、マイコン等を用いて構成することがない。かくして、定電流回路35を設けるだけの簡素な構成で、LD5を高温度で安定に動作させるための冷却手段を実現することができる。また、これによって部品点数を減らすことができるので、小型で低価格な光送信器1を得ることができる。
【0042】
なお、上述の説明では、APC回路30を、LD駆動回路20とは別の構成品として説明した。しかし、APC回路30とLD駆動回路20を一体化したLD駆動回路回路を構成しても良く、この場合は、温度補償回路から出力される温度に応じて変化する補償信号に基づいて、LD駆動回路がLDにLD駆動電流(LDを消光させる電流)を供給するように動作する。
【0043】
以上、この実施の形態1によれば、定電流で動作する電子冷却器を用いて発光素子を冷却することによって、発光素子を搭載する光送信器の動作限界温度を発光素子の動作限界温度よりも高い温度に設定しても、発光素子の光送信波形の波形劣化を抑えるとともに、発光素子の冷却のために必要な冷却部品の消費電力を、低減させることができる。
【0044】
実施の形態2.
他の実施の形態として、実施の形態1の図2に示した定電流回路35に対して、スイッチ回路を設けて、電子冷却器7をスイッチング動作させても良い。この場合、温度検出素子6の検出温度を、予め設定されたLD5の動作限界温度よりも低い所定の閾値温度(例えば、50℃)と比較して、その検出温度が、所定の閾値温度に以上であるか否かを判定する。この比較の結果、温度検出素子6の検出温度が所定の閾値(例えば、50℃)以上になったときに、定電流回路35をON動作させて、定電流の供給を開始する(このときの光送信器1の周囲温度は50℃より小さい)。他方、温度検出素子6の検出温度が所定の閾値よりも下回っているとき(例えば、49℃なったとき)に、定電流回路35をOFF動作させて、定電流の供給を停止する。
【0045】
これによって、LD5がその動作限界とある高温度(例えば、70℃)付近に近づいたときに、電子冷却器7を定電流駆動させることができ、LD5の動作中の平均時間を考えたときの電子冷却器7の消費電力のデューティーを、より改善することができる。
【0046】
【発明の効果】
以上、この発明によれば、定電流で動作する電子冷却器を用いて発光素子を冷却することによって、発光素子を搭載する光送信器の使用温度をより高い温度に設定することができるとともに、発光素子の冷却のために必要な冷却部品の消費電力を、低減させることができる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態1による光送信器の構成を示す断面図である。
【図2】本発明に係る実施の形態1による光送信器の回路構成図である。
【図3】従来の技術による光送信器のLD駆動電流と光出力の静特性を示す図である。
【図4】従来の技術による光送信器の周囲温度とLDが良好に動作する周波数帯域を示す図である。
【図5】本発明に係る実施の形態1による光送信器のLD駆動電流と光出力の静特性を示す図である。
【図6】本発明に係る実施の形態1による光送信器の周囲温度とLDが良好に動作する周波数帯域を示す図である。
【図7】本発明に係る実施の形態1と、従来技術との消費電力の比較を示す図である。
【符号の説明】
1 光送信器、5 半導体レーザ(LD)、6 温度検出素子、7 電子冷却器、11 ヒートシンク、20 LD駆動回路、21 温度補償回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical transmitter equipped with an electronic cooler for cooling a light emitting element.
[0002]
[Prior art]
In an optical transmitter equipped with a conventional semiconductor laser (LD), in an environment where the operating temperature changes, the element temperature of the LD is kept constant by using a Peltier element in order to stabilize the output light of the LD. .
[0003]
In such an optical transmitter, an LD is mounted on a Peltier element, and the element temperature of the LD is detected by a thermistor. Based on the temperature detected by the thermistor, temperature control of the Peltier element such as heating or cooling is performed, and the element temperature of the LD is maintained at a constant temperature of, for example, 25 ° C. At this time, the operating current of the LD is stabilized irrespective of a change in the operating temperature of the optical transmitter, so that the driving current given from the LD driving circuit to the LD may be a constant value (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-53378 A (FIG. 3, page 1-2)
[0005]
However, when the operating temperature of the optical transmitter is, for example, 70 ° C., in order to set the LD to 25 ° C., a large Peltier element is required according to the temperature difference between the operating temperature of the optical transmitter and the element temperature of the LD. It is necessary to supply power, and as a result, there is a problem that power consumption is significantly increased. For example, at this time, the power consumption of the Peltier device is about 2 W with respect to the total power consumption of 2 W of the optical transmitter excluding the Peltier device.
Further, the temperature control circuit of the Peltier element is often realized by an amplifier using an operational amplifier or a resistor, and the number of components has increased.
[0006]
On the other hand, in an environment in which the operating temperature changes without always keeping the LD temperature constant, a temperature compensation circuit for compensating the current value of the LD drive current in accordance with the LD element temperature detected by the thermistor. Is known (for example, see Patent Document 2).
[0007]
[Patent Document 2]
JP-A-2002-111120 (FIG. 1, pages 2 to 4)
[0008]
However, in such an optical transmitter, the element temperature of the LD also changes in the same manner in accordance with the change in the operating temperature. Therefore, in order to stabilize the optical output, the higher the temperature, the more the LD drive current is supplied. I needed to.
At this time, at a high temperature, the driving current is insufficient and the LD cannot be driven to obtain a desired optical output, or the frequency characteristics of the LD deteriorate when the LD is operated at high speed. For this reason, there has been a problem that the rise / fall time of the transmission light waveform of the LD is delayed, and the eye opening of the light transmission waveform is closed.
[0009]
[Problems to be solved by the invention]
In a conventional optical transmitter, when using an electronic cooler such as a Peltier element to stabilize the element temperature of an LD, which is a light emitting element, when the operating temperature of the optical transmitter increases, the power consumption supplied to the Peltier element Has a problem that it becomes significantly large.
[0010]
Further, when the current value of the drive current of the LD is adjusted according to the device temperature without keeping the device temperature of the LD constant, the drive characteristics of the LD are deteriorated at a high temperature, or the frequency characteristics of the LD are deteriorated. There is a problem that the quality of the transmitted light waveform is deteriorated.
[0011]
The present invention has been made to solve such a problem, and stably operates a light emitting element at a high temperature, and reduces power consumption of cooling components necessary for stable operation of the light emitting element. The aim is to obtain an optical transmitter.
[0012]
[Means for Solving the Problems]
An optical transmitter according to the present invention includes a light emitting element, a temperature detecting element thermally connected to the light emitting element, an electronic cooler thermally connected to the light emitting element, and outputting a drive current to the light emitting element. A temperature compensation circuit for controlling a current value of an output current of the drive circuit in accordance with a detection signal of the temperature detection element, and a constant current circuit for supplying a constant current to the electronic cooler. It is.
[0013]
Further, the constant current circuit may provide a constant current value such that a temperature detected by the temperature detecting element becomes equal to or lower than a use temperature of the housing within an operating temperature range of the housing.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a sectional view showing a configuration of the optical transmitter according to the first embodiment of the present invention.
In the figure, an optical transmitter 1 accommodates and fixes an optical module 2 and a substrate 3 in a metal housing 4. The optical module 2 accommodates a semiconductor laser (LD) 5, which is a light emitting element, a temperature detecting element 6, and an electronic cooler 7 inside a package 100, and holds an optical fiber 8 on a side wall of the package 100.
[0015]
The electronic cooler 7 is joined to a bottom surface inside a package 100 constituting the optical module 2 and has a substrate 9 mounted on an upper surface. The LD 5 and the temperature detecting element 6 are mounted on the upper surface of the substrate 9 and are thermally connected to each other, and are also thermally connected to the electronic cooler 6. The electronic cooler 7 is configured by sandwiching the upper and lower sides of a Peltier element with an insulating substrate, and operates so as to absorb heat generated by the LD 5 mounted on the upper surface and radiate the heat to the bottom surface of the package 100 bonded to the lower surface. . The temperature detecting element 6 is formed of a thermistor, and an output current (temperature signal) changes according to a change in the element temperature of the LD 5.
That is, the device temperature TL of the LD 5 is output. Further, a photodiode (PD) 50 is provided on the substrate 9. The PD 50 receives an optical signal emitted from the rear surface of the LD 5 and outputs a monitor current proportional to the received optical signal.
[0016]
The LD 5 is optically coupled to the optical fiber 8 via a lens fixed on the electronic cooler 7, and an optical signal emitted from the front surface of the LD 5 is input to an end face of the optical fiber 8. The package 100 has a side wall made of a metal member fitted with a feedthrough formed by enclosing a signal terminal of a conductive member with a dielectric, and transmits an electric signal inside and outside the package 100 while maintaining airtightness. .
[0017]
The substrate 3 has a plurality of electronic circuit components 10 mounted on an upper surface. The substrate 3 is electrically connected to the substrate 9 with the feedthrough of the optical module 2 and the conductor wire interposed. Thus, the electronic circuit component 10 is electrically connected to the LD 5 and the temperature detecting element 6, and an electric signal is transmitted and received between the LD 5 and the temperature detecting element 6 and the electronic circuit component 10.
[0018]
The outer bottom surface of the package 100 constituting the optical module 2 is joined to the inner bottom surface of the housing 4. In addition, a heat sink 11 is provided on the outer bottom surface of the housing 4, and thus the electronic cooler 7 joined to the bottom surface of the optical module 2 is indirectly thermally connected to the heat sink 11. An optical fiber 8 is held on a side surface of the housing 4, and transmits an optical signal input to an end surface of the optical fiber 8 to the outside of the housing 4.
[0019]
FIG. 2 is an electric circuit diagram showing a circuit configuration inside the optical transmitter 1.
In the figure, an optical transmitter 1 is provided with an LD drive circuit 20, a temperature compensation circuit 21, an APC circuit 30, and a constant current circuit 35, each of which constitutes an electronic circuit component 10. The LD drive circuit 20 receives an NRZ (Non Return Zero) code data signal (DATA) that is converted as an optical signal. The LD drive circuit 20 drives the LD 5 based on the data signal and supplies the LD 5 with a modulation current Imod for intensity-modulating the output light. The LD drive circuit 20 includes a current mirror circuit therein, detects a current signal proportional to the peak current (amplitude) of the modulation current Imod, and converts the current signal into a voltage signal to generate a modulation monitor signal. It is output as Vmon. The LD drive circuit 20 is supplied with a base voltage (not shown).
[0020]
The temperature compensation circuit 21 supplies a modulation control signal Vmod to the LD drive circuit 20 based on the temperature signal It output from the temperature detection element 6 and the modulation monitor signal Vmon. For example, in the temperature compensation circuit 21, the temperature signal It is converted into a voltage signal Vt, added to a reference voltage (constant voltage) Ve, and a temperature-compensated reference signal (temperature compensation signal) Vm (= Ve + Vt) is calculated. . Further, a difference (= Vm-Vmon) between the temperature compensation signal Vm and the modulation monitor signal Vmon is calculated, and a signal obtained by amplifying the calculated difference signal is output as the modulation control signal Vmod. The LD drive circuit 20 adjusts the modulation current Imod for adjusting the modulation amplitude of the optical output of the LD 5 according to the modulation control signal Vmod.
[0021]
The APC circuit 30 outputs a bias current Ib adjusted according to the monitor current of the PD 50 so that the intensity of the output light of the LD 5 is constant. The bias current Ib and the modulation current Imod merge and are supplied to the LD 5 as the LD drive current ILD to output an intensity-modulated optical signal.
Thus, the temperature compensating circuit 21 compensates for the modulation current Imod output from the LD driving circuit 20 according to the temperature detected by the temperature detecting element 5, and reduces the amount of the LD driving current ILD supplied to the LD 5 as a result. Compensate.
[0022]
A constant current (constant current) is supplied to the electronic cooler 7 by a constant current circuit 35. Thus, the electronic cooler 7 performs a cooling operation so as to absorb a certain amount of heat generated in the LD 5 and radiate the heat to the optical transmitter.
Note that different ground potentials are supplied to the constant current circuit 35, the LD5, and the LD drive circuit 20.
[0023]
Here, the cooling operation of the electronic cooler 7 will be described in detail.
When the working temperature of the optical transmitter 1 changes to, for example, 70 ° C., the temperature of the LD 5 rises according to the temperature change, and the element temperature rises accordingly. At this time, a large amount of current is supplied to the LD 5 by the operation of the temperature compensation circuit 21. However, when the operation limit temperature of the LD 5 for obtaining a desired optical output is 60 ° C., when the element temperature of the LD 5 becomes as high as, for example, 70 ° C. like the operating temperature of the optical transmitter, the LD to be supplied to the LD 5 is supplied. Insufficient driving current makes it impossible to obtain a desired optical output.
[0024]
However, in the first embodiment, in order to extend the operating limit temperature of the LD 5 to near the operating temperature of the optical transmitter 1, a constant current is applied to the electronic cooler 7 to reduce the LD 5 by the temperature difference (ΔTc) to be extended. By cooling, the operating limit temperature of the LD 5 is apparently extended. That is, with the constant current supplied from the constant current circuit 35, the electronic cooler 7 performs the cooling operation so as to set the element temperature TLD of the LD 5 to a temperature lower than the use temperature TTX of the optical transmitter 1 by a temperature difference ΔTc. Let it. In this embodiment, the use temperature TTX is represented by the temperature of the air surrounding the outer wall surface of the housing 4 (ambient temperature) or the temperature of the outer surface of the heat sink 11. However, when a heat sink having a high heat radiation efficiency is used for the housing 4, the temperature difference between the ambient temperature and the temperature of the internal air is small, so the surface temperature of the inner wall surface of the optical transmitter 1, the average temperature, Alternatively, the temperature of the internal air may be used.
[0025]
Assuming that the electric power released from the electronic cooler 7 for this cooling is ΔWc, the thermal resistance Rc of the electronic cooler 7 is Rc = ΔTc / ΔWc (° C./W).
On the other hand, since the housing 4 of the optical transmitter 1 is provided with the sufficiently large heat sink 11, the thermal resistance RTX with the outside air around the optical transmitter 1 is sufficiently larger than the thermal resistance Rc of the electronic cooler 7. , RTX << Rc. Thus, the temperature rise ΔTTX of the optical transmitter 1 due to the power ΔW emitted from the electronic cooler 7 is sufficiently small with respect to the temperature difference ΔTc, and has a relationship of ΔTTX << ΔTc.
[0026]
Therefore, assuming that the element temperature TLD of the LD 5 during cooling and the use temperature of the optical transmitter 1 are TTX, and that the element temperature TLD is given by a relational expression of TLD = TTX + ΔTTX−ΔTc, substantially, based on ΔTTX << ΔTc TLD = TTX−ΔTc holds. That is, the practical element temperature TLD of the laser diode LD5 is set to a temperature lower than the working temperature TTX of the optical transmitter 1 by a cooling temperature difference (ΔTc).
[0027]
Here, for example, a constant current ILD is given to the electronic cooler 7 so as to obtain a temperature difference ΔTc (= 10 ° C.) between the element temperature TLD (= 60 ° C.) of the LD 5 and the use temperature TTX of the optical transmitter 1. Assuming that the electric power ΔW = 0.5 W emitted from the electronic cooler 7 for this cooling, the thermal resistance Rc of the electronic cooler 7 becomes 20 (° C./W). At this time, for example, a heat sink 11 having a thermal resistance RTX = 2 (° C./W) (RTX << Rc) of the optical transmitter 1 (the bottom area of the housing 4 = 80 mm × 80 mm) is provided on the bottom surface of the housing 4. Then, ΔTTX = RTX × ΔW = 1 ° C., and ΔTTX << ΔTc. Further, from TTX = TLD-ΔTTX + ΔTc = 69 ° C., even when the element temperature TLD of the LD 5 is the upper limit of the operation limit temperature, the operating temperature TTX of the optical transmitter 1 can be raised to almost 70 ° C.
[0028]
Here, in order to explain that a remarkable effect can be obtained in stably operating the LD 5 according to the first embodiment, a comparison with the related art will be made below.
[0029]
Conventionally, when an optical transmitter (LD drive current compensation method) without an electronic cooler as described in Patent Document 2 is used, an optical transmitter with an LD is mounted in order to make the LD perform a desired operation at a high temperature. The upper operating temperature of the vessel had to be set to a temperature lower by about 10 ° C. than 70 ° C.
[0030]
Here, FIG. 3 is a diagram showing a temperature characteristic of an optical output with respect to an LD drive current when a conventional LD drive current compensation type optical transmitter is used. In this figure, the LD drive currents ILD (0 ° C.), ILD (25 ° C.), ILD (60 ° C.), and ILD (70 ° C.) when the LD element temperatures are 0 ° C., 25 ° C., 60 ° C., and 70 ° C. 3) shows the light output characteristics. As shown in the figure, in this type of optical transmitter, when the ambient temperature (operating temperature) = 0 ° C., 25 ° C., 60 ° C., and 70 ° C., the element temperature TLD of the LD is 0 ° C., 25 ° C., 60 ° C. , And 70 ° C.
[0031]
In this case, when the operating temperature of the optical transmitter becomes high (70 ° C. in the figure), the LD drive current becomes insufficient, and a desired optical output cannot be obtained. Thus, it is necessary to lower the operating limit temperature of the optical transmitter by about 10 ° C. from 70 ° C.
[0032]
FIG. 4 is a diagram showing the frequency band of the LD with respect to the operating temperature (ambient temperature) when a conventional LD current control type optical transmitter is used. 4 shows a frequency band for obtaining an eye opening having a large opening diameter. In the figure, when the operating temperature of the optical transmitter becomes a high temperature (for example, 70 ° C.) which is a desired operation limit temperature, in the frequency band higher than the operating frequency f0 corresponding to the maximum bit rate, the optical transmission of the LD is performed. The frequency characteristics (e.g., pass characteristics) of the waveform are degraded, resulting in insufficient band at high temperatures.
[0033]
On the other hand, FIG. 5 is a diagram illustrating a temperature characteristic of an optical output with respect to an LD drive current when the temperature difference ΔTc is set to 10 ° C. using the optical transmitter according to the first embodiment. This figure shows the optical output characteristics with respect to the LD drive currents ILD (0 ° C.), ILD (25 ° C.), and ILD (60 ° C.) when the element temperature of the LD 5 is 0 ° C., 25 ° C., and 60 ° C. . As shown in the figure, when the ambient temperature (operating temperature) of the optical transmitter 1 is 10 ° C., 35 ° C., and 70 ° C., the element temperatures TLD of the LD 5 are 0 ° C., 25 ° C., and 60 ° C.
[0034]
Therefore, even if the operating temperature of the optical transmitter 1 becomes high (70 ° C. in the drawing), the element temperature of the LD 5 becomes 60 ° C. due to the operation of the electronic cooler 7, and the shortage of the LD drive current ILD occurs. As a result, the operating limit temperature of the optical transmitter 1 can be increased by about 10 ° C.
[0035]
FIG. 6 is a diagram showing the frequency band of the LD 5 with respect to the ambient temperature (operating temperature) of the optical transmitter 1 according to the first embodiment. 3 shows a frequency band for obtaining a high eye opening. In the figure, even if the operating temperature of the optical transmitter 1 is high (for example, 70 ° C.), the LD 5 operates well, and the optical transmission of the LD 5 is performed in a frequency band higher than the operating frequency f0 corresponding to the maximum bit rate. It can be seen that the waveform satisfies predetermined frequency characteristics (for example, pass characteristics).
[0036]
As described above, according to the first embodiment, the LD 5 is cooled by using the electronic cooler 7 that operates at a constant current, so that the operating temperature limit of the operating temperature of the optical transmitter 1 on which the LD 5 is mounted is further reduced. Even if the temperature is set to a high temperature (for example, 70 ° C.), the LD 5 can be operated stably, and the waveform deterioration of the optical transmission waveform of the LD 5 can be suppressed, and a higher quality output waveform can be obtained.
[0037]
Next, according to the first embodiment, a remarkable improvement in the power consumption of the electronic cooler 7 can be obtained.
In an optical transmitter (Peltier drive current control method) as described in the conventional Patent Document 1, the current supplied to the Peltier element is set so that the detection temperature TLD of the thermistor matches the reference temperature T0 (for example, 25 ° C.). It was increased or decreased by feedback control. For this reason, for example, when the operating temperature of the optical transmitter 1 is 70 ° C., the LD is cooled by 45 ° C. with a Peltier element so that the element temperature of the LD becomes 25 ° C., while the operating temperature of the optical transmitter 1 is lowered. When the temperature reached 0 ° C., the LD was heated by a Peltier device at 25 ° C. so that the device temperature of the LD became 25 ° C.
[0038]
However, in the optical transmitter 1 according to this embodiment, the electronic cooler 7 is operated at a constant current to cool by the temperature difference ΔTc (for example, 10 ° C.) between the LD 5 and the optical transmitter 1. As a result, the power ΔWc (eg, 0.5 W) emitted from the electronic cooler is in a relation of WTX >> ΔWc with respect to the power consumption WTX (eg, 2.4 W) of the entire optical transmitter (5 times). The degree of power consumption accompanying the driving of the electronic cooler 7 is practically not found.
[0039]
FIG. 7 shows a method according to the first embodiment (the method of the present embodiment), a method based on the invention of Patent Document 1 (LD drive current compensation method), and a method based on the invention of Patent Document 2 (Peltier drive current control). 9 is a table showing an example in which the power consumption of the LD, the electronic cooler, and the entire optical transmitter is compared for each of (method).
[0040]
According to the table, the method of the present embodiment increases the power consumption of the entire optical transmitter as compared with the LD drive current compensation method that does not use the electronic cooler, but the difference is small (for example, 0.3 W). However, there is no substantial difference in power consumption. However, in the method of the present embodiment, the power consumption of the electronic cooler is significantly reduced (about 1/4) as compared with the Peltier drive current control method, and the entire optical transmitter is operated while the LD 5 is operated at a high temperature. The effect of improving power consumption is remarkably large.
[0041]
Further, according to the first embodiment, the feedback control of the temperature of the electronic cooler 7 is not performed by using an operational amplifier, an amplifier using a resistor, or the like, or a microcomputer. Thus, a cooling means for stably operating the LD 5 at a high temperature can be realized with a simple configuration in which only the constant current circuit 35 is provided. In addition, since the number of components can be reduced, a small and low-priced optical transmitter 1 can be obtained.
[0042]
In the above description, the APC circuit 30 has been described as a component different from the LD drive circuit 20. However, an LD drive circuit in which the APC circuit 30 and the LD drive circuit 20 are integrated may be configured. In this case, the LD drive circuit is controlled based on a compensation signal output from the temperature compensation circuit that changes according to the temperature. The circuit operates to supply the LD drive current (current for extinguishing the LD) to the LD.
[0043]
As described above, according to the first embodiment, the light-emitting element is cooled by using the electronic cooler that operates at a constant current, so that the operating limit temperature of the optical transmitter equipped with the light-emitting element is lower than the operating limit temperature of the light-emitting element. Even if the temperature is set to a high temperature, it is possible to suppress the waveform deterioration of the optical transmission waveform of the light emitting element and to reduce the power consumption of the cooling component required for cooling the light emitting element.
[0044]
Embodiment 2 FIG.
As another embodiment, a switch circuit may be provided for the constant current circuit 35 shown in FIG. 2 of the first embodiment, and the electronic cooler 7 may be switched. In this case, the temperature detected by the temperature detecting element 6 is compared with a predetermined threshold temperature (for example, 50 ° C.) lower than the preset operation limit temperature of the LD 5, and the detected temperature is higher than the predetermined threshold temperature. Is determined. As a result of this comparison, when the temperature detected by the temperature detecting element 6 becomes equal to or higher than a predetermined threshold value (for example, 50 ° C.), the constant current circuit 35 is turned on to start supplying a constant current (at this time). The ambient temperature of the optical transmitter 1 is less than 50 ° C.). On the other hand, when the temperature detected by the temperature detecting element 6 is lower than the predetermined threshold value (for example, when the temperature reaches 49 ° C.), the constant current circuit 35 is turned off to stop supplying the constant current.
[0045]
Thereby, when the LD 5 approaches its operating limit and near a certain high temperature (for example, 70 ° C.), the electronic cooler 7 can be driven at a constant current, and the average time during the operation of the LD 5 is considered. The duty of the power consumption of the electronic cooler 7 can be further improved.
[0046]
【The invention's effect】
As described above, according to the present invention, by using a thermoelectric cooler that operates at a constant current to cool the light emitting element, it is possible to set the operating temperature of the optical transmitter equipped with the light emitting element to a higher temperature, The power consumption of cooling components required for cooling the light emitting element can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration of an optical transmitter according to a first embodiment of the present invention.
FIG. 2 is a circuit configuration diagram of the optical transmitter according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a static characteristic of an LD drive current and an optical output of an optical transmitter according to a conventional technique.
FIG. 4 is a diagram showing an ambient temperature of an optical transmitter and a frequency band in which an LD operates well according to a conventional technique.
FIG. 5 is a diagram showing static characteristics of an LD drive current and an optical output of the optical transmitter according to the first embodiment of the present invention.
FIG. 6 is a diagram illustrating an ambient temperature of the optical transmitter and a frequency band in which the LD operates well according to the first embodiment of the present invention.
FIG. 7 is a diagram showing a comparison of power consumption between the first embodiment according to the present invention and a conventional technology.
[Explanation of symbols]
Reference Signs List 1 optical transmitter, 5 semiconductor laser (LD), 6 temperature detecting element, 7 electronic cooler, 11 heat sink, 20 LD drive circuit, 21 temperature compensation circuit.

Claims (6)

発光素子と、
前記発光素子と熱的に接続された温度検出素子と、
前記発光素子と熱的に接続された電子冷却器と、
前記発光素子に駆動電流を出力する駆動回路と、
前記温度検出素子の検出信号に応じて、前記駆動回路の出力電流の電流値を制御する温度補償回路と、
前記電子冷却器に定電流を与える定電流回路とを備えた光送信器。
A light emitting element;
A temperature detecting element thermally connected to the light emitting element,
An electronic cooler thermally connected to the light emitting element,
A drive circuit that outputs a drive current to the light emitting element;
A temperature compensation circuit that controls a current value of an output current of the drive circuit according to a detection signal of the temperature detection element;
An optical transmitter comprising: a constant current circuit that supplies a constant current to the electronic cooler.
定電流回路は、前記発光素子の温度が前記筐体の温度以下になるような一定の電流値を与えることを特徴とする請求項1記載の光送信器。The optical transmitter according to claim 1, wherein the constant current circuit gives a constant current value such that the temperature of the light emitting element becomes equal to or lower than the temperature of the housing. 定電流回路は、前記温度検出素子の検出温度が前記筐体の使用温度以下になるような一定の電流値を与えることを特徴とする請求項1記載の光送信器。2. The optical transmitter according to claim 1, wherein the constant current circuit gives a constant current value such that a temperature detected by the temperature detecting element becomes lower than a use temperature of the housing. 定電流回路は、前記筐体の使用温度範囲内で、前記発光素子の温度が動作限界温度以下となるような一定の電流値を与えることを特徴とする請求項1記載の光送信器。2. The optical transmitter according to claim 1, wherein the constant current circuit provides a constant current value such that the temperature of the light emitting element becomes equal to or lower than an operation limit temperature within a use temperature range of the housing. 定電流回路は、前記温度検出素子の検出温度が所定の温度に達したときに、定電流の供給を開始することを特徴とする請求項1記載の光送信器。2. The optical transmitter according to claim 1, wherein the constant current circuit starts supplying a constant current when the temperature detected by the temperature detecting element reaches a predetermined temperature. 発光素子と温度検出素子を載置するとともに、前記電子冷却器に熱的に接続された基板と、
前記基板と前記電子冷却器を収容するとともに、前記電子冷却器と熱的に接続され外部に放熱する放熱部が設けられた筐体とを備え、
前記発光素子と前記電子冷却器の熱抵抗よりも、前記電子冷却器と前記筐体の放熱部との熱抵抗を、10倍以上大きくしたことを特徴とする請求項1記載の光送信器。
While mounting the light emitting element and the temperature detection element, a substrate thermally connected to the electronic cooler,
A housing that accommodates the substrate and the electronic cooler, and that is provided with a radiator that is thermally connected to the electronic cooler and radiates heat to the outside,
2. The optical transmitter according to claim 1, wherein the thermal resistance between the electronic cooler and the heat radiating portion of the housing is set to be 10 times or more larger than the thermal resistance between the light emitting element and the electronic cooler. 3.
JP2003087500A 2003-03-27 2003-03-27 Optical transmitter Pending JP2004296805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087500A JP2004296805A (en) 2003-03-27 2003-03-27 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087500A JP2004296805A (en) 2003-03-27 2003-03-27 Optical transmitter

Publications (1)

Publication Number Publication Date
JP2004296805A true JP2004296805A (en) 2004-10-21

Family

ID=33401872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087500A Pending JP2004296805A (en) 2003-03-27 2003-03-27 Optical transmitter

Country Status (1)

Country Link
JP (1) JP2004296805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621216B1 (en) 2004-12-10 2006-09-13 한국전자통신연구원 Temperature compensated optical transmitter of analog/digital mixed mode
JP2010034240A (en) * 2008-07-28 2010-02-12 Panasonic Electric Works Co Ltd Lighting fixture
JP2011108930A (en) * 2009-11-19 2011-06-02 Shimadzu Corp Laser-type gas analyzer using semiconductor laser element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621216B1 (en) 2004-12-10 2006-09-13 한국전자통신연구원 Temperature compensated optical transmitter of analog/digital mixed mode
JP2010034240A (en) * 2008-07-28 2010-02-12 Panasonic Electric Works Co Ltd Lighting fixture
JP2011108930A (en) * 2009-11-19 2011-06-02 Shimadzu Corp Laser-type gas analyzer using semiconductor laser element

Similar Documents

Publication Publication Date Title
US20060022213A1 (en) TO-can heater on flex circuit
US7856038B2 (en) Light-emitting module installing thermo-electric controller
US20070047603A1 (en) Optical Transmitter with Monitoring Photodiode Compensated in Temperature Dependence Thereof
JP2002511658A (en) Laser diode temperature compensation
US6404042B1 (en) Subcarrier and semiconductor device
US8315285B2 (en) Header assembly for extended temperature optical transmitter
US20010024462A1 (en) Semiconductor laser module
US20090244840A1 (en) Electronic device
US8345721B2 (en) Method for driving optical transmitter
US7269192B2 (en) Optical transmitting module and a method for controlling the same
US7542494B2 (en) Device with a radiation-emitting semiconductor component and procedure for the temperature stabilization of a radiation-emitting semiconductor component
US20060262818A1 (en) Microcontroller based thermoelectric cooler controller
US9258063B1 (en) Optical transmitter having multiple optical sources and a method to activate the same
US5399858A (en) Photo-semiconductor module having thermo-element
JP2004207666A (en) Laser-diode module, laser-diode apparatus, and optical transmitter
JP2004296805A (en) Optical transmitter
JP2018014473A (en) Method for controlling optical transceiver
US20090296761A1 (en) Optical device including a bimorph-type piezoelectric element
JP4548649B2 (en) Laser wavelength conversion unit
US20150303652A1 (en) Temperature Controllable High Bit Rate Laser Diode
US7457226B2 (en) Heat source having thermoelectric element, optical pickup assembly employing the same, and method of reducing temperature therein
JP2008009226A (en) Optical transmission module
JP2004296988A (en) Laser diode module and optical transmitter
JP2006114774A (en) Wavelength stabilizing semiconductor laser equipment
JP2830794B2 (en) Optical transmission circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040713

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A621 Written request for application examination

Effective date: 20060223

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104